
Lightweight Causal and Atomic Group

Multicast

KENNETH BIRMAN

Cornell University

ANDRE SCHIPER

Ecole Polytechnique F6d&al de Lausanne, Switzerland

and

PAT STEPHENSON

Cornell University

The ISIS toolkit is a distributed programming environment based on virtually synchronous

process groups and group communication We present a new family of protocols in support of this

model Our approach revolves around a multicast primitive, called CBCAST, which implements

fault-tolerant, causally ordered message delivery. CBCAST can be used directly, or extended into

a totally ordered multicast primitive, called ABCAST. It normally delivers messages immedi -

ately upon reception, and imposes a space overhead proportional to the size of the groups to

which the sender belongs, usually a small number. Both protocols have been implemented as

part of a recent version of ISIS and we discuss some of the pragmatic issues that arose and the

performance achieved. Our work leads us to conclude that process groups and group communica-

tion can achieve performance and scaling comparable to that of a raw message transport

layer–a finding contradicting the widespread concern that this style of distributed computing

may be unacceptably costly,

Categories and Subject Descriptors: C ,2.1 [Computer-Communication Networks]: Network

Architecture and Design– network communications; C ,2.2 [Computer Communication Net-

works]: Network Protocols—protocol architecture; C.2.4 [Computer-Communication Net-

works]: Distributed Systems — d[strlbuted applications, network operating systems; D, 4.1 [Oper-

ating Systemsl: Process Management — concurrency, synchronization; D .4.4 [Operating Sys-

tems]: Communications Management— message sending, network communication; D.4, 7 [Oper-

ating Systems]: Organization and Design— distributed systems

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Fault-tolerant process groups, message ordering, multicast

communication

This work was supported by the Defense Advanced Research Projects Agency (DoD) under

DARPA/NASA subcontract NAG2-593 administered by the NASA Ames Research Center, and

by grants from GTE, IBM, and Siemens, Inc. The views, opinions, a~d findings contained in this

report are those of the authors and should not be construed as an official Department of Defense

position, policy, or decision

Authors’ Addresses: K. Birman and P. Stephenson, Cornell University, Department of Computer

Science, 4130 Upson Hall, Ithaca, NY 14853-7501; A. Schiper, Ecole Polytechnique F6d6rale de

Lausanne, Switzerland.

Permission to copy without fee all or part of this material is granted provided that the copies are

not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the

Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or

specific permission,

@ 1991 ACM 0734-2071/91/0800-0272 $0150

ACM TransactIons on Computer Systems, Vol 9, No. 3, August 1991, Pages 272-314

Lightweight Causal and Atomic Group Multicast . 273

1. INTRODUCTION

1.1 The ISIS Toolkit

The ISIS toolkit [8] provides a variety of tools for building software in loosely

coupled distributed environments. The system has been successful in address-

ing problems of distributed consistency, cooperative distributed algorithms

and fault-tolerance. At the time of this writing, Version 2.1 of the Toolkit

was in use at several hundred locations worldwide.

Two aspects of ISIS are key to its overall approach:

–An implementation of virtually synchronous process groups. Such a group

consists of a set of processes cooperating to execute a distributed algorithm,

replicate data, provide a service fault-tolerantly or otherwise exploit distri-

bution.

–A collection of reliable multicast protocols with which processes and group

members interact with groups. Reliability in ISIS encompasses failure

atomicity, delivery ordering guarantees and a form of group addressing

atomicity, under which membership changes are synchronized with group

communication.

Although ISIS supports a wide range of multicast protocols, a protocol

called CBCAST accounts for the majority of communication in the system. In

fact, many of the ISIS tools are little more than invocations of this communi-

cation primitive. For example, the ISIS replicated data tool uses a single

(asynchronous) CBCAST to perform each update and locking operation; reads

require no communication at all. A consequence is that the cost of CBCAST

represents the dominant performance bottleneck in the ISIS system.

The original ISIS CBCAST protocol was costly in part for structural

reasons and in part because of the protocol used [6]. The implementation was

within a protocol server, hence all CBCAST communication was via an

Andirect path. Independent of the cost of the protocol itself, this indirection

was expensive. Furthermore, the protocol server proved difficult to scale,

limiting the initial versions of ISIS to networks of a few hundred nodes. With

respect to the protocol used, our initial implementation favored generality

over specialization thereby permitting extremely flexible destination address-

ing. It used a piggybacking algorithm that achieved the CBCAST ordering

property but required periodic garbage collection.

The case for flexibility in addressing seems weaker today. Experience with

ISIS has left us with substantial insight into how the system is used,

permitting us to focus on core functionality. The protocols described in this

paper support highly concurrent applications, scale to systems with large

numbers of potentially overlapping process groups and bound the overhead

associated with piggybacked information in proportion to the size of the

process groups to which the sender of a message belongs. Although slightly

less general than the earlier solution, the new protocols are able to support

the ISIS toolkit and all ISIS applications with which we are familiar. The

benefit of this reduction in generality has been a substantial increase in the

ACM Transactionson ComputerSystems,Vol 9,No. 3,August1991

274 . K. Birman et al

performance and scalability of our system. In fact, the new protocol suite has

no evident limits to the scale of system it could support. In the common case

of an application with localized, bursty communication, most multicasts will

carry only a small overhead regardless of the size or number of groups used,

and a message will be delayed only if it actually arrives out of order.

The paper is structured as follows. Section 2 discusses the types of process

groups supported by ISIS and the patterns of group usage and communication

that have been observed among current ISIS applications. Section 3 surveys

prior work on multicast. Section 4 formalizes the virtually synchronous

multicasting problem and the properties that a CBC!AST or ABCAST protocol

must satisfy. Section 5 introduces our new technique in a single process

group; multiple groups are considered in Section 6. Section 7 considers a

number of ISIS-specific implementation issues. The paper concludes with a

discussion of the performance of our initial implementation, in Section 8.

2. EXPERIENCE WITH ISIS USERS

We begin by reviewing the types of groups and patterns of group usage seen

in existing ISIS applications. This material is discussed in more detail by

Birman and Cooper [3].

ISIS supports four types of groups, illustrated in Figure 1. The simplest of

these is denoted the peer group. In a peer group, processes cooperate as

equals in order to get a task done. They may manage replicated data,

subdivide tasks, monitor one another’s status, or otherwise engage in a

closely coordinated distributed action. Another common structure is the

client /server group. Here, a peer group of processes act as servers on behalf of

a potentially large set of clients. Clients interact with the servers in a

request /reply style, either by picking a favorite server and issuing RPC calls

to it, or by multicasting to the whole server group. In the later case, servers

will often multicast their replies both to the appropriate client and to one

another. A diffusion group is a type of client-server group in which the

servers multicast messages to the full set of servers and clients. Clients are

passive and simply receive messages. Diffusion groups arise in any applica-

tion that broadcasts information to large a number of sites, for example on a

brokerage trading floor. Finally, hierarchical group structures arise when

larger server groups are needed in a distributed system [10, 14]. Hierarchical

groups are tree-structured sets of groups. A root group maps the initial

connection request to an appropriate subgroup, and the application subse -

quently interacts only with this subgroup. Data is partitioned among the

subgroups, and although a large-group communication mechanism is avail-

able, it is rarely needed.

Many ISIS applications use more than one of these structures, employing

overlapping groups when mixed functionality is desired. For example, a

diffusion group used to disseminate stock quotes would almost always be

overlaid by a client/server group through which brokerage programs register

their interest in specific stocks. Nonetheless, existing ISIS applications rarely

use large numbers of groups. Groups change membership infrequently, and

ACM Transactions on Computer Systems, Vol. 9, No 3, August 1991.

Lightweight Causal and Atomic Group Multicast ● 275

0 0
Peer Groups Diffusion Groups

Client/Server Groups Hierarchical Groups

Fig. 1. l’ypesofproces sgroups.

generally contain just enough members for fault-tolerance or load-sharing

(e.g., 3-5 processes). On the other hand, the number of clients of a client/

server or diffusion group may be large (hundreds).

Through studies of ISIS users [3, 4] we have concluded that these patterns

are in part artifacts of the way ISIS evolved. In versions of ISIS prior to the

one discussed here, groups were fairly heavy-weight entities. Applications

obtained acceptable performance only by ensuring that communication to a

group was much more frequent than membership changes. Looking to the

future, we expect our system to continue supporting these four types of

groups. We also expect that groups will remain small, (except for the client

set of a client-server or diffusion group). However, as we rebuild ISIS around

the protocols described here and move the key modules into lower layers of

the operating system, groups and group communication can be expected to

get much cheaper. These costs seem to be a dominant factor preventing ISIS

users from employing very large numbers of groups, especially in cases where

process groups naturally model some sort of application-level data type or

object. As a result, we expect that for some applications, groups will substan-

tially outnumber processes. Furthermore, groups may become much more

dynamic, because the cost of joining or leaving a group can be substantially

reduced using the protocols developed in this paper.

To illustrate these points, we consider some applications that would have

these characteristics. A scientific simulation employing an n-dimensional

grid might use a process group to represent the neighbors of each grid

elelment. A network information service running on hundreds of sites might

ACM Transactions on Computer Systems, VO1 9, No 3, August 1991

276 . K. Birman et al.

replicate individual data items using small process groups; the result would

be a large group containing many smaller data replication domains, perhaps

moving data in response to access patterns. Similarly, a process group could

be used to implement replicated objects in a modular application that imports

many such objects. In each case, the number of process groups would be huge

and the overlap between groups extensive.

The desire to support applications like these represents a primary motiva-

tion for the research reported here. The earlier ISIS protocols have proven

inflexible and difficult to scale; it seems unlikely that they could be used to

support the highly dynamic, large-scale applications that now interest us.

The protocols reported here respond to these new needs, enabling the explo-

ration of such issues as support for parallel processing, the use of multicast

communication hardware, and mechanisms to enforce realtime deadlines and

message priorities.

3. PRIOR WORK ON GROUP COMMUNICATION PROTOCOLS

Our communication protocols evolved from a causal message delivery proto-

col developed by Schiper [25], and are based on work by Fidge [13] and

Mattern [19]. In the case of a single process group, the algorithm was

influenced by protocols developed by Ladin [16] and Peterson [20]. However,

our work generalizes these protocols in the following respects:

—Both of the other multicast protocols address causality only in the context

of a single process group. Our solution transparently addresses the case of

multiple, overlapping groups. Elsewhere, we argue [4] that a multicast

protocol must respect causality to be used asynchronously (without block-

ing the sender until remote delivery occurs). Asynchronous communication

is the key to high performance in group-structured distributed applications

and is a central feature of ISIS.

—The ISIS architecture treats client /server groups and diffusion groups as

sets of overlayed groups, and optimizes the management of causality

information for this case. Both the clients and servers can multicast

directly and fault-tolerantly within the subgroups of a client /server group.

Peterson’s protocols do not support these styles of group use and communi-

cation. Ladin’s protocol supports client/server interactions, but not diffu-

sion groups, and does not permit clients to multicast directly to server

groups.

—Ladin’s protocol uses stable storage as part of the fault-tolerance method.

Our protocol uses a notion of message stability that requires no external

storage.

Our CBCAST protocol can be extended to provide a total message delivery

ordering, inviting comparison with atomic broadcast (ABC!AST) protocols [6,

9, 14, 22, 29]. Again, the extensions supporting multiple groups represent our

primary contribution. However, our ABCAST protocol also uses a delivery

order consistent with causality thereby permitting it to be used

ACM Transactions on Computer Systems, Vol 9, No 3, August 1991

Lightweight Causal and Atomic Group Multicast . 277

asynchronously. A delivery ordering might be total without being causal, and

indeed, several of the protocols cited would not provide this guarantee.

4. EXECUTION MODEL

We now formalize the model and the problem to be solved.

4.1 Basic System Model

The system is composed of processes P = { pl, pz, p.} with disjoint mem-

ory spaces. Initially, we assume that this set is static and known in advance;

later we relax this assumption. Processes fail by crashing detectably (a

fail-stop assumption); notification is provided by a failure detection mecha-

nism, described below. When multiple processes need to cooperate, e.g., to

manage replicated data, subdivide a computation, monitor one another’s

state, and so forth, they can be structured into process groups. The set of such

groups is denoted by G = {gl, gz . . . }.

Each process group has a name and a set of member processes. Members

join and leave dynamically; a failure causes a departure from all groups to

which a process belongs. The members of a process group need not be

identical, nor is there any limit on the number of groups to which a process

may belong. The protocols presented below all assume that processes only

multicast to groups that they are members of, and that all multicasts are

directed to the full membership of a single group. (We discuss client/server

groups in Section 7.)

Our system model is unusual in assuming an external service that imple-

ments the process group abstraction. This accurately reflects our current

implementation, which obtains group membership management from a pre -

existing ISIS process-goup server. In fact, however, this requirement can be

eliminated, as discussed in Section 7.4.

The interface by which a process joins and leaves a process group will not

concern us here, but the manner in which the group service communicates

membership information to a process is relevant. A view of a process group is

a list of its members. A view sequence for g is a list viewo(g), uiewl(g),

vie wn(g), where

(1) uiewo(g) = O,

(2) vi: view,(g) ~ P, where P is the set of all processes in the system, and

(3) viewi(g) and view,+ ~(g) differ by the addition or subtraction of exactly

one process.

Processes learn of the failure of other group members only through this

view mechanism, never through any sort of direct observation.

We assume that direct communication between processes is always possi-

ble; the software implementing this is called the message transport layer.

Within our protocols, processes always communicate using point-to-point and

multicast messages; the latter may be transmitted using multiple point-to-

point messages if no more efficient alternative is available. The transport

communication primitives must provide lossless, uncorrupted, sequenced

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991.

278 . K. Birman et al,

message delivery. The message transport layer is also assumed to intercept

and discard messages from a failed process once the failure detection has

been made. This guards against the possibility that a process might hang for

an extended period (e. g., waiting for a paging store to respond), but then

attempt to resume communication with the system. Obviously, transient

problems of this sort cannot be distinguished from permanent failures, hence

there is little choice but to treat both the same way by forcing the faulty

process to run a recovery protocol.

Our protocol architecture permits application builders to define new trans-

port protocols, perhaps to take advantage of special hardware. The imple-

mentation described in this paper uses a transport that we built over an

unreliable datagram layer.

The execution of a process is a partially ordered sequence of events, each

corresponding to the execution of an indivisible action. An acyclic event

order, denoted ~ , reflects the dependence of events occurring at process p

upon one another. The event sendP(m) denotes the transmission of m by

process p to a set of one or more destinations, dests(m); the reception of

message m by process p is denoted rcuP(m). We omit the subscript when the

process is clear from the context. If I dests(m) I >1 we will assume that send

puts messages into all communication channels in a single action that might

be interrupted by failure, but not by other send or rev actions.

We denote by rcvP(uiewz(g)) the event by which a process p belonging to g

“learns” of uiewi(g).

We distinguish the event of receiuing a message from the event of deliuery,

since this allows us to model protocols that delay message delivery until some

condition is satisfied. The delivery event is denoted deliuerP(m) where

rcuP(m) ~ deliuerP(m).

When a process belongs to multiple groups, we may need to indicate the

group in which a message was sent, received, or delivered. We will do this by

extending our notation with a second argument; for example, deliuerP(m, g),

will indicate that message m was delivered at process p, and was sent by

some other process in group g.

As Lamport [17], we define the potential causality relation for the system,

-+ , as the transitive closure of the relation defined as follows:

(1) If ~p: e ~ e’, then e ~ e’

(2) ~ m: send(m) + rcu(m)

For messages m and m’, the notation m + m’ will be used as a shorthand

for send(m) + sencl(m’).

Finally, for demonstrating liveness, we assume that any message sent by a

process is eventually received unless the sender or destination fails, and that

failures are detected and eventually reflected in new group views omitting

the failed process.

4.2 Virtual Synchrony Properties Required of Multicast Protocols

Earlier, we stated that ISIS is a uirtually synchronous programming environ-

ment. Intuitively, this means that users can program as if the system

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991,

Lightweight Causal and Atomic Group Multicast . 279

scheduled one distributed event at a time (i. e., group membership changes,

multicast, and failures). Were a system to actually behave this way, we

would call it synchronous; such an environment would greatly simplify the

development of distributed algorithms but offers little opportunity to exploit

concurrency. The “schedule” used by ISIS is, however, synchronous in ap-

pearance only. The ordering requirements of the tools in the ISIS toolkit

have been analyzed, and the system actually enforces only the degree of

synchronization needed in each case [6]. This results in what we call a

virtually synchronous execution, in which operations are often performed

concurrently and multicasts are often issued asynchronously (without block-

ing), but algorithms can still be developed and reasoned about using a

simple, synchronous model.

Virtual synchrony has two major aspects.

(1) Address expansion. It should be possible to use group identifiers as the

destination of a multicast. The protocol must expand a group identifier

into a destination list and deliver the message such that

(a) All the recipients are in identical group views when the message

arrives.

(b) The destination list consists of precisely the members of that view.

The effect of these rules is that the expansion of the destination list and

message delivery appear as a single, instantaneous event.

(2) Delivery atomicity and order. This involves delivery of messages fault-

tolerantly (either all operational destinations eventually receive a mes-

sage, or, and only if the sender fails, none do). Furthermore, when

multiple destinations receive the same message, they observe consistent

delivery orders, in one of the two senses detailed below.

Two types of delivery ordering will be of interest here. We define the

causal delivery ordering for multicast messages m and m’ as follows:

m ~ m’ * Vp G dests(m) (l dests (m’): deliver(m) ~ deliuer (m’).

CBCAST provides only the causal delivery ordering. If two CBCAST’S are

concurrent, the protocol places no constraints on their relative delivery

ordering at overlapping destinations. ABCAST extends the causal ordering

into a total one, by ordering concurrent messages m and m’ such that

~m, m’, peg; deliverP(m, g) ~ deliverP(m’, g) *

~q eg: deliver~(m, g) ~ deliverq(m’, g).

Note that this definition of ABCAST only orders messages sent to the same

group; other definitions are possible. We discuss this further in Section 6.2.

Because the ABCAST protocol orders concurrent events, it is more costly

than CBCAST, thereby requiring synchronous solutions where the CBCAST

protocol admits efficient, asynchronous solutions.

Although one can define other sorts of delivery orderings, our work on ISIS

suggests that this is not necessary. The higher levels of the ISIS toolkit are

ACM Transactions on Computer Systems, Vol. 9, No 3, August 1991.

280 . K. Birman et al.

themselves implemented almost entirely using asynchronous CBCAST [5,

26]. In fact, Schmuck shows [261 that many algorithms specified in terms of

ABCAST can be modified to use CBCAST without compromising correctness.

Further, he demonstrates that both protocols are complete for a class of

delivery orderings. For example, CBCAST can emulate any ordering prop-

ert y that permits message delivery on the first round of communication.

Fault tolerance and message delivery ordering are not independent in our

model. A process will not receive further multicasts from a faulty sender

after observing it to fail; this requires that multicasts in progress at the time

of the failure be flushed from the system before the view corresponding to

the failure can be delivered to group members. Furthermore, failures will not

leave gaps in a causally related sequence of multicasts. That is, if m -+ m’

and a process p, has received m’, it need not be concerned that a failure could

somehow prevent m from being delivered to any of its destinations (even if

the destination of m and m’ don’t overlap). Failure atomicity alone would not

yield either guarantee.

4.3 Vector Time

Our delivery protocol is based on a type of logical clock called a vector clock.

The vector time protocol maintains sufficient information to represent ~

precisely.

A vector time for a process p,, denoted VT(pi), is a vector of length n

(where n = I P I), indexed by process-id.

(1) When p, starts execution, VT(p,) is initialized to zeros.

(2) For each event send(m) at p,, VT(PZ)[i] is incremented by 1.

(3) Each message multicast by process p, is timestamped with the incre-

mented value of VT(p,).

(4) When process Pj delivers a message m from p, containing VT(m), p]

modifies its vector clock in the following manner:

vk~l... n: VT(pJ)[k] = max(VT(pJ) [k], Wi’’(m)[k]).

That is, the vector timestamp assigned to a message m counts the number of

messages, on a per-sender basis, that causally precede m.

Rules for comparing vector timestamps are

(1) VTI s VTZ iff vi: VTl[il s VTz[il

(2) VT, < VT, if VT1 s VT, and ~ i: VTI[i] < VT,[i]

It can be shown that given messages m and m’, m ~ m’ iff VT(m) < VT(m’):

vector timestamps represent causality precisely.

Vector times were proposed in this form by Fidge [131 and Mattern [191; the

latter includes a good survey. Other researchers have also used vector times

or similar mechanisms [16, 18, 26, 301. As noted earlier, our work is an

outgrowth of the protocol presented in [251, which uses vector times as the

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991.

Lightweight Causal and Atomic Group Multicast . 281

basis for a protocol that delivers point-to-point messages in an order consist-

ent with causality.

5. THE CBCAST AND ABCAST PROTOCOL

This section presents our new CBCAST and ABCAST protocols. We initially

consider the case of a single process group with fixed membership; multiple

group issues are addressed in the next section. This section first introduces

the causal delivery protocol, then extends it to a totally ordered ABCAST

protocol, and finally considers view changes.

5.1 CBCAST Protocol

Suppose that a set of processes P communicate using only broadcasts to the

full set of processes in the system; that is, v m: dests(m) = P. We now develop

a delivery protocol by which each process p receives messages sent to it,

delays them if necessary, and then delivers them in an order consistent with

causality:

m + m’ a Vp: deliverP (m) ~ deliverP(m’).

Our solution is derived using vector timestamps. The basic idea is to label

each message with a timestamp, VT(m)[k], indicating precisely how many

muhicasts by process pk precede m. A recipient of m will delay m until

VT(m)[k] messages have been delivered from p~. Since ~ is an acyclic

order accurately represented by the vector time, the resulting delivery order

is causal and deadlock free.

The protocol is as follows:

(1)

(2)

(3)

Before sending m, process p, increments VT(p,)[i] and timestamps m.

On reception of message m sent by p, and timestamped with VT(m),

process p] + pi delays delivery of m until:

I
VT(m) [k] = VT(p~)[k] + 1 ifk= i

Vk:l”””n
VT(m) [k] s VT(pJ)[k] otherwise

Process pj need not delay messages received from itself. Delayed mes-

sages are maintained on a queue, the CBCAST delay queue. This queue is

sorted by vector time, with concurrent messages ordered by time of

receipt (however, the queue order will not be used until later in the

paper).

When a message m is delivered, VT(p,) is updated in accordance with

the vector time protocol from Section 4.3.

Step 2 is the key to the protocol. This guarantees that any message m’

transmitted causally before m (and hence with VT(m’) < VT(m)) will be

delivered at pJ before m is delivered. An example in which this rule is used

to delay delivery of a message appears in Figure 2.

We prove the correctness of the protocol in two stages. We first ~how that

causality is never violated (safety) and then we demonstrate that the protocol

never delays a message indefinitely (Iiveness).

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991

282 . K Birman et al.

PI

P2
.

.

- * .($1,0)
.

P3

Fig. 2. Using the VT rule to delay message delivery.

Safety. Consider the actions of a process p~ that receives two messages

ml and m2 such that ml ~ mz.

Case 1. ml and m2 are both transmitted by the same process p,. Recall

that we assumed a lossless, live communication system, hence p~ eventually

receives both ml and mz. By construction, VT(ml) < VI”(mz), hence under

step 2, mz can only be delivered after ml has been delivered.

Case 2. ml and m2 are transmitted by two distinct processes p, and p,.

We will show by induction on the messages received by process p~ that mz

cannot be delivered before ml. Assume that ml has not been delivered and

that PJ has received k messages.

Observe first that ml -+ mz, hence VT(ml) < VT(mz) (basic property of

vector times). In particular, if we consider the field corresponding to process

p,, the sender of ml, we have

VT(ml)[i] S VT(m,)[i]. (1)

Base case. The first message delivered by p] cannot be mz. Recall that if

no messages have been delivered to p~, then VT(p~)[i] = O. However,

VT(ml)[i] >0 (because ml is sent by p,), hence VT(mz)[i] >0. By applica-

tion of step 2 of the protocol, mz cannot be delivered by p].

Inductive step. Suppose pJ has received k messages, none of which is a

message m such that ml -+ m. If ml has not yet been delivered, then

(2)

This follows because the only way to assign a value to VT(p~)[i] greater than

VI”(ml)[i] is to deliver a message from p, that was sent subsequent to ml,

and such a message would be causally dependent on ml. From relations 1

and 2 it follows that

v~(PJ)[4 < v~(~z)[il”

By application of step 2 of the protocol, the k + 1st message delivered by pJ

cannot be mz.

ACM TransactIons on Computer Systems, Vol. 9, No. 3, August 1991

Lightweight Causal and Atomic Group Multicast . 283

Liveness. Suppose there exists a broadcast message m sent by process p,

that can never be delivered to process pj. Step 2 implies that either:

[

VZ’(rn)[k] # VZ’(p~)[k] + 1 fork = i,or
~k:l””.n

W’(m) [k] > VT(pJ)[k] k+i

and that m was not transmitted by process pJ. We consider these cases in

turn.

— VT(m)[i] # VT(p~)[i] + 1; that is, m is not the next message to be deliv-

ered from p, to pj. Notice that only a finite number of messages can

precede m. Since all messages are multicast to all processes and channels

are lossless and sequenced, it follows that there must be some message m’

sent by p, that pj received previously, has not yet delivered, and that is

the next message from pi, i.e., VT(m’)[i] = VT(pj)[i] + 1. If m’ is also

delayed, it must be under the other case.

—~k # i: VT(m)[k] > VT(p~)[kl. Let n = VT(m)[hl. The nth transmission

of process pk, must be some message m’ ~ m that has either not been

received at pJ, or was received and is delayed. Under the hypothesis that

all messages are sent to all processes, m’ was already multicast to pJ. Since

the communication system eventually delivers all messages, we may as-

sume that m’ has been received by p]. The same reasoning that was

applied to m can now be applied to m’. The number of messages that must

be delivered before m is finite and > is acyclic, hence this leads to a

contradiction.

5.2 Causal ABCAST Protocol

The CBCAST protocol is readily extended into a causal, totally ordered,

ABCAST protocol. We should note that it is unusual for an ABCAST protocol

to guarantee that the total order used conforms with causality. For example,

say that a process p asynchronously transmits message m using ABCAST,

then sends message m’ using CBCAST, and that some recipient of m’ now

sends m“ using ABCAST. IIere we have m + m’ ~ m“, but m and m“ are

transmitted by different processes. Many ABCAST protocols would use an

arbitrary ordering in this case; our solution will always deliver m before m“.

This property is actually quite important: without it, few algorithms could

safely use ABCAST asynchronously, and the delays introduced by blocking

until the protocol has committed its delivery ordering could be significant.

This issue is discussed further by Birman et al. [4].

Our solution is based on the ISIS replicated data update protocol described

by Birman and Joseph [7] and the ABCAST protocol developed by Birman

and Joseph [7] and Schmuck [26]. Associated with each view viewi(g) of a

process group g will be a token holder process, token(g) e viewi(g). We also
assume that each message m is uniquely identified by uicl(m).

To ABCAST m, a process holding the token uses CBCAST to transmit m

in the normal manner. If the sender is not holding the token, the ABCAST is

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991.

284 . K. Birman et al

done in stages:

(1) The sender CBCAST’S m but marks it as undeliverable. 1 Processes other

than the token holder (including the sender) that receive this message

place m on the CBCAST delay queue in the usual manner, but do not

remove m from the queue for delivery even after all messages that

precede it causally have been delivered. It follows that a typical process

may have some number of delayed ABCAST messages at the front of its

CBCAST delay queue. This prevents the delivery of causally subsequent

CBCAST messages, because the vector time is not updated until delivery

occurs. On the other hand, a CBCAST that precedes or is concurrent with

one of these undeliverable ABCAST messages will not be delayed.

(2) The token holder treats incoming ABCAST messages as it would treat

incoming CBCAST messages, delivering them in the normal manner.

However, it also makes note of the uid of each such ABCAST.

(3) After the process holding the token has delivered one or more ABCAST

messages, it uses CBCAST to send a sets-order message giving a list of

one or more messages, identified by uid, and ordered in the delivery order

that arose in step 2. If desired, this CBCAST may be delayed so as to

“batch” such transmissions, but it must be sent before (or piggybacked

upon) any subsequent ABCAST or CBCAST by the token holder. If

desired, a new token holder may be specified in this message.

(4) On receipt of a sets-order message, a process places it on the CBCAST

delay queue in the normal manner. Eventually, all the ABCAST mes-

sages referred to in the sets-order message will be received, and all the

CBCAST messages that precede the sets-order will have been delivered

(liveness of CBCAST).

Recall that + places a partial order on the messages in the delay queue.

Our protocol now reorders concurrent ABCAST messages by placing them

in the order given by the sets-order message, and marks them as

deliverable.

(5) Deliverable ABCAST messages may be delivered off the front of the

queue.

Step 4 is the key one in the protocol. This step causes all participants to

deliver ABCAST messages in the order that the token holder used. This

order will be consistent with causality because the token holder itself treated

these ABCAST messages as if they were CBCAST’S.

The cost of doing an ABCAST depends on the locations where multieasts

originate and the frequency with which the token is moved. If multicasts

tend to originate at the same process repeatedly, then once the token is

moved to that site, the cost is one CBCAST per ABCAST. If they originate

1 It might appear cheaper to forward such a message drrectly to the token holder However, for a

moderately large message such a solution would double the IO done by the token holder,

creating a likely bottleneck, whale reducing the IO load on other destinations only to a minor

degree.

ACM Transactions on Computer Systems, Vol 9, No. 3, August 1991.

Lightweight Causal and Atomic Group Multicast . 285

randomly and the token is not moved, the cost is 1 + 1/k CBCAST’S per

ABCAST, where we assume that one sets-order message is sent for ordering

purposes after k ABCAST’S.

5.3 Multicast Stability

The knowledge that a multicast has reached all its destinations will be useful

below. Accordingly, we will say that a multicast m is k-stable if it is known

that the multicast has been received at k destinations. When k = I dests(m) I

we will say that m is (~ully) stable.

Recall that our model assumes a reliable transport layer. Since messages

can be lost in transport for a variety of reasons (buffer overflows, noise on

communication lines, etc.), such a layer normally uses some sort of positive

or negative acknowledgement scheme to confirm delivery. Our liveness

assumption is strong enough to imply that any multicast m will eventually

become stable, if the sender does not fail. It is thus reasonable to assume that

this information is available to the process that sent a CBCAST message.

To propagate stability information among the members of a group, we will

introduce the following convention. Each process p, maintains a stability

sequence number, stable (p,). This number will be the largest integer n such

that all multicasts by sender p, having VT(P,)[i] s n are stable.

When sending a multicast m, process pi piggybacks its current value of

stable(p,); recipients make note of these incoming values. If stable(pi)

changes and pi has no outgoing messages then, when necessary (see below),

P, can send a stability message containing only stable(P,).

5.4 VT Compression

It is not always necessary to transmit the full vector timestamp on each

message.

LEMMA 1. Say that process pi sends a multicast m. Then VT(m) need only

carry vector timestamp fields that have changed since the last multicast by p,.

PROOF. Consider two multicasts m and m’ such that m + m’. If pi is the

sender of m and p~ is the sender of m’, then there are two cases. If i = j then

VT(m)[i] < VT(m’)[i], hence (step 2, Section 5.1) m’ cannot be delivered

until after m is delivered. Now, if i # ~“ but m’ carries the field for P,, then

VT(m)[i] s VT(m’)[i], and again, m’ will be delayed under step 2 until after

m is delivered. But, if this field is omitted, there must be some earlier

message m“, also multicast by p~, that did carry the field. Then m will

be delivered before m“ and, under the first case, m“ will be delivered

before m’. ❑

Compression may not always be advantageous: the data needed to indicate

which fields have been transmitted may actually increase the size of the VT

representation. However, in applications characterized by relatively local-

ized, bursty communication, compression could substantially reduce the size

of the timestamp. In fact, if a single process sends a series of messages, and

receives no messages between the sends, then the VT timestamp on all

ACM TransactionsonComputerSystems,Vol. 9,No. 3,August1991.

286 . K. Birman et al.

messages but the first will just contain one field. Moreover, in this case, the

value of the field can be inferred from the FIFO property of the channels, so

such messages need not contain any timestamp. We will make further use of

this idea below.

5.5 Delivery Atomicity and Group Membership Changes

We now consider the implementation of atomicity and how group member-

ship changes impact the above protocols. Such events raise several issues

that are addressed in turn:

(1) Virtually synchronous addressing.

(2) Reinitializing VT timestamps.

(3) Delivery atomicity when failures occur.

(4) Handling delayed ABCAST messages when the token holder fails without

sending a sets-order message.

Virtually synchronous addressing. To achieve virtually synchronous ad-

dressing when group membership changes while multicasts are active, we

introduce the notion of fZushing the communication in a process group.

Initially, we will assume that processes do not fail or leave the group (we

treat these cases in a subsequent subsection). Consider a process group in

view,. Say that view, + ~ now becomes defined. We can flush communication

by having all the processes in view,+ ~ send a message “flush i + l“, to all

other processes in this view. After sending such messages and before receiv-

ing such a flush message from all members of view, + 1 a process will accept

and deliver messages but will not initiate new multicasts. Because communi-

cation is FIFO, if process p has received a flush message from all processes in

uiew, + ~, it will first have received all messages that were sent by members of

view,. In the absence of failures, this establishes that multicasts will be

virtually synchronous in the sense of Section 4.

A disadvantage of this flush protocol is that it sends n2 messages. Fortu-

nately, the solution is readily modified into one that uses a linear number of

messages. Still deferring the issue of failures, say that we designate one

member of view, + ~, PC, as the fhsh coordinator. Any deterministic rule can

be used for this purpose. A process p, other than the coordinator flushes by

first waiting until all multicasts that it sent have stabilized, and then

sending a view, + ~ flush message to the coordinator.2 The coordinator, PC,

waits until flush messages have been received from all other members of

view, + ~. It then multicasts its own flush message to the members of view, + 1

(it need not wait for its own multicasts to stabilize). Reception of the flush

multicast from PC provides the same guarantees as did the original solution.

If stability is achieved rapidly, as would normally be the case, the cost of the

new protocol is much lower: 2 n messages.

2 Actually, it need not wait until the coordinator has received its active multicasts, since

channels are FIFO.

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991

Lightweight Causal and Atomic Group Multicast . 287

Reinitializing VT fields. After executing the flush protocol, all processes

can reset the fields of VT to zero. This is clearly useful. Accordingly, we will

now assume that the vector timestamp sent in a message, VT(m), includes

the index i of viewi in which m was transmitted. A vector timestamp

carrying an expired index may be ignored, since the flush protocol used to

switch views will have forced the delivery of all multicasts that could have

been pending in the prior view.

Delivery atomicity and virtual synchrony when failures occur. We now

consider the case where some process fails during an execution. We discuss

the issues raised when processes voluntarily leave a group at the end of this

subsection.

Failures introduce two basic problems:

(1) A failure could disrupt the transmission of a multicast. Thus, if p, has

received a multicast m message from p,, and has not learned of the

stability of that multicast, some of the other destinations of m may not

have received a copy.

(2) We can no longer assume that all processes will respect the flush protocol,

since the failure of a process pi could prevent it from sending flush

messages for some view, even if that view reports pi as still operational.

On the other hand, we also know that a view showing the failure of p,

will eventually be received.

To solve the first problem, we will have all processes retain copies of the

messages they receive. If pJ detects the failure of pi, it will forward a copy of

any unstable multicasts it has received from pi to other members of the

group. All processes identify and reject duplicates. However, the second

problem could now prevent the protocol from being respected, leaving the

first problem unsolved, as illustrated in Figure 3. This shows that the two

problems are closely related and have to be addressed in a coordinated way.

The solution to this atomicity and virtual synchrony problem is most

readily understood in terms of the original n2 message flush protocol. If we

are running that protocol, it suffices to delay the installation of viewi + ~ until,

for some k = 1, flush messages for viewz+h have been received from all

processes in viewi+h rl view,+ ~. Notice that a process may be running the

flush protocol for view,+~ despite not yet having installed viewi+ ~.

More formally, the algorithm executed by a process p is as follows.

(1) On receiving viewi+~, p increments a local variable inhibit_ sends; while

the counter remains greater than O, new messages will not be initiated. p

forwards a copy of any unstable message m that was sent in

viewj(j < i + k) to all processes in viewj (7 view, + ~3, and then marks m as

stable. Lastly, p sends “flush i + k“ to each member of view, +~.

(2) On receiving a copy of a message m, p examines the index of the view in

which m was sent. If p most recently installed view, and m was sent in

3 In practice, it may be easier and faster to multicast all the unstable messages for view~ to all

processes in uiew,+k. Processes not in uiewj fl view,+h will discard this multicast.

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991.

288 . K. Birman et al.

PI P2 P3 P4

bi_>5

#- .~-,
Cbca.st 1 . -..

V]ew A

flush (T~)

flush (i%)

fonwd(cbcastl) ~ - ----

flush (PI)

cbcastz

View B

M
flush (R)

fomwd(cbcaw)

flush (TJ)

1“4

Phv.@&&g@im

(3)

(4)

R l% F’3 R

View A

View B

VirtuallV SynchronousAddressh~

Fig. 3, Group flush algorithm

view(m) < i, p ignores m as a duplicate. If m was sent in view,, p

applies the normal delivery rule, identifying and discarding duplicates in

the obvious manner. If m was sent in uiew(m) > i, p saves m until

view(m) has been installed.

On receiving “flush i + k“ messages from all processes in

view, + ~ n view, + ~ (for any k > 1),p installs view, + ~ by delivering it to

the application layer. It decrements the inhibit_ sends counter, and, if

the counter is now zero, permits new messages to be initiated.

Any message m that was sent in view, and has not yet been delivered

may be discarded. This can only occur if the sender of m has failed, and

has previously received and delivered a message m’ (m’ ~ m) that has

now been lost. In such a situation, m is an orphan of a system execution

that was “erased” by multiple failures.4

A message can be discarded as soon as it has been delivered locally and

has become stable. Notice that a message becomes stable after having

been forwarded at most once (in step 1).

4 Notice that in our model, even if process p accepts and delivers a message m under this

protocol, the failure of p could lead to a situation in which m is not delivered to its other

destinations. Our definition of delivery atomicity could be changed to exclude such executions,

but atomicity could then only be achieved using a much more costly 2-phase delivery protocol,

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991

Lightweight Causal and Atomic Group Multicast . 289

(5) A process p that sent a message m in view, will now consider m to have

stabilized if delivery confirmation has been obtained from all processes in

view, (7 view, + ~, for any value of k, or if view, + ~ has been installed.

LEMMA 2. The flush algorithm is safe and live.

PROOF. A participant in the protocol, p, delays installation of view,+ ~

until it has received flush messages sent in view, +k (k > 1) from all members

of view, +~ that are still operational in view, +~. These are the only processes

that could have a copy of an unstable message sent in view,. This follows

because messages from failed processes are discarded, and because messages

are only forwarded to processes that were alive in the view in which they

were originally sent. Because participants forward unstable messages before

sending the flush, and channels are FIFO, p will have received all messages

sent in view, before installing vie wi + ~. It follows that the protocol is safe.

Liveness follows because the protocol to install viewi+ ~ can only be delayed

by the failure of a member of view, + ~. Since view,+ ~ has a finite number of

members, any delay will be finite. ❑

This protocol can be modified to send a linear number of messages in each

view, using the same coordinator-based scheme as was proposed earlier.

Instead of sending “flush i + k“ messages to all processes in

viewi~ ~ (l viewi+k, a process forwards copies of unstable messages to the

coordinator, followed by a “flush i + k“ message. (A message m originally

sent in viewi by a process p, which failed before m became stable, is regarded

as unstable by a surviving process q e VIEW, until q installs view, +~.) The

coordinator, in turn, forwards these messages back to the other processes in

the view, and then, after receiving “flush i + k“ messages from all the

members in view, ~h, multicasts its own flush message. view, +k can be

installed when the flush message from the coordinator is received.

We now consider the case where failures occur during the execution of the

above protocol. The coordinator should abort its protocol if it is waiting for a

flush message from some process p, and view, +k+l becomes defined, showing

that p has failed. In this case, the protocol for view,+~ + ~ will subsume the

one for view, + ~. Similarly, if the coordinator itself fails, a future flush run by

some other coordinator will subsume the interrupted protocol, A successfully

completed flush permits installation of all prior views.

For liveness, it now becomes necessary to avoid infinitely delaying the

installation of a view in the event of an extended process join/failure se-

quence. We therefore modify the protocol to have participants inform the

coordinator of their current view. A coordinator that has gathered flush

messages for view, +h from all the processes in view, + ~ (1 view, + ~ can send a

view, + ~ flush message to any process still in view,, even if it has not yet

received all the flush messages needed to terminate the protocol for view, + ~.

With this change, the protocol is live.

As illustrated in Figure 3, this protocol converts an execution with

nonatomic multicasts into one in which all multicasts are atomically deliv-

ered, at linear cost.

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991,

290 . K, Birman et al.

A slight change to the protocol is needed in the case where a process leaves

a group for reasons other than failure. ISIS supports this possibility, and it

triggers a view change similar to the one for a failure, but in which the

departing process is reported as having left voluntarily. In this case, the

flush algorithm must include the departing process, which is treated as a

member of the group until it either fails or the algorithm terminates. This

ensures that even if the departing member is the only process to have

received some multicast interrupted by a failure, delivery atomicity will still

be preserved.

ABCAST ordering when the token holder fails. The atomicity mechanism

of the preceding subsection requires a small modification of the ABCAST

protocol. Consider an ABCAST that is sent in view, and for which the token

holder fails before sending the sets-order message.

After completion of the flush protocol for uiew,, the ABCAST message will

be on every delay queue, but not delivered anywhere. Moreover, any sets-

order messages that were initiated before the failure will have been deliv-

ered everywhere, hence the set of undelivered ABCAST messages is the same

at all processes. These messages must be delivered before view, + ~ can be

installed.

Notice that the delay queue is partially ordered by + We can solve our

problem by ordering any concurrent ABCAST messages within this set using

any well-known, deterministic rule. For example, they can be sorted by uid.

The resulting total order on ABCAST messages will be the same at all

processes and consistent with causality.

6. EXTENSIONS TO THE BASIC PROTOCOL

Neither of the protocols in Section 5 is suitable for use in a setting with

multiple process groups. We first introduce the modifications needed to

extend CBCAST to a multigroup setting. We then briefly examine the

problem of ABCAST in this setting.

The CBCAST solution we arrive at initially could be costly in systems with

very large numbers of process groups or groups that change dynamically.

This has not been a problem in the current ISIS system because current

applications use comparatively few process groups, and processes tend to

multicast for extended periods in the same group. However, these character-

istics will not necessarily hold in future ISIS applications. Accordingly, the

second part of the section explores additional extensions of the protocol that

would permit its use in settings with very large numbers of very dynamic

process groups. The resulting protocol is interesting because it exploits

properties of what we call the communication structure of the system.

6.1 Extension of CBCAST to Multiple Groups

The first extension to the protocol is concerned with systems composed of

multiple process groups. We will continue to assume that a given multicast is

sent to a single group destination, but it may now be the case that a process

belongs to several groups and is free to multicast in any of them.

ACM TransactIonsonComputerSystems,Vol. 9, No 3,August 1991.

Lightweight Causal and Atomic Group Multicast . 291

PI
‘ml : ((1,0,0,*),(*,0,0,0))

P2
~4 : ((L1, O,*), (*, l, O,l))

.
s-.
,-. .t . .

s . .
P3 ,

‘,m2 : ((1,0,0, *), (*,1>L3,13)); .
. ..

, . .-
,
*

P4
;...m3 : ((1,0,0,*), (*, 1,0, 1))

y .

Fig, 4. Messages sent within process groups. GI = { PI, p2, P3} and Gz = { P2, P3, P4}.

Suppose that process p, belongs to groups g. and g~, and multicasts

within both groups. Multicasts sent by p, to g. must be distinguished from

those to g~. If not, a process belonging to g~ and not to g. that receives a

message with VT(rn)[i] = k will have no way to determine how many of

these k messages were actually sent to g~ and should, therefore, precede m

causally.

This leads us to extend the single VT clock to multiple VT clocks. We will

use the notation VT. to denote the logical clock associated with group g.;

VTJ i] thus counts5 multicasts by process p, to group g.. The stability

sequence number, stable(p,) should be similarly qualified: stable.(p,). Proc-

esses maintain VT clocks for each group in the system, and attach all the VT

clocks to every message that they multicast.

The next change is to step 2 of the protocol (Section 5. 1). Suppose that

process pi receives a message m sent in group g. with sender pi, and that p]

also belongs to groups { gl, . . ., g.} = Gj. Step 2 can be replaced by the
following rule:

2’. On reception of message m from p, + p], sent in g., process pj delays m

until

2.1’ vT.(m)[il = VT~(pj)[i] + 1, and
2.2’ Vk: (p~~g~~ k # i): VT~(m)[k] s VT(pj)[k], and

2.3’ Vg: (ge G,): VTJm) < VT~(pJ).

This is just the original protocol modified to iterate over the set of groups to

which a process belongs. As in the original protocol, pJ does not delay

messages received from itself.

Figure 4 illustrates the application of this rule in an example with four

processes identified as PI . . . P4. processes P1, PZ and P3 belong to grOUP Gl,

5 Clearly, if p, is not a member of g=, then W“a[i] = O, allowing a sparse representation of the

timestamp, For clarity, our figures will continue to depict each timestamp VT’ as a vector of

length n, with a special entry * for each process that is not a member of ga.

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991.

292 . K Birman et al

and processes p2, p3 and p4 to group G2. Notice that mz and m~ aye delayed

at p3, because it is a member of Gl and must receive m ~ first. However, mz

is not delayed at p4, because pd is not a member of GI. And m ~ is not

delayed at Pz, because Pz has already received ml and it was the sender of

mz.

The proof of Section 5 adapts without difficulty to this new situation; we

omit the nearly identical argument. One can understand the modified proto-

col in intuitive terms. By ignoring the vector timestamps for certain groups

in step 2.3’, we are asserting that there is no need to be concerned that any

undelivered message from these groups could causally precede m. But, the

ignored entries correspond to groups to which pj does not belong. Since all

communication is done within groups, these entries are irrelevant to pJ.

6.2 Multiple-Group ABCAST

When run over this extended CBCAST protocol, our ABC!AST solution will

continue to provide a total, causal delivery ordering within any single process

group. However, it will not order multicasts to different groups even if those

groups have members in common. In a previous article [4] we examine the

need fm a global ABCAST ordering property and suggest that it may be of

little practical importance, since the single-group protocol satisfies the re-

quirements of all existing ISIS applications of which we know. We have

extended our ABCAST solution to a solution that provides a global total

ordering; the resulting protocol, in any single group g, has a cost propor-

tional to the number of other groups that overlap with g. Details are

presented by Stephenson [281. This extended, global-ordering ABCAST proto-

col could be implemented if the need arises.

6.3 Extended VT CompressIon

In Section 5.4 we introduced a rule for compressing a vector timestamp

before transmission. One might question the utility of such a technique

within a single process group, especially if the group is likely to be small. In

a multiple-~oup setting, the same technique might permit a process to omit

entire vector timestamps from some of its multicasts. Additionally, because

our group flush algorithm resets the group timestamp to all zeros, the

multiple-group algorithm will frequently obtain a vector timestamp for a

group in which there has been no communication since the last flush, and

hence is all zeros. Obviously, such a timestamp can be omitted.

More generally, the “latest” nonzero timestamp for a group g. need only

be included on the first of any series of messages sent in some other group g~.

This is the timestamp obtained by taking the element-by-element maximum

for fields in all received timestamps for the group. Further communication

within g~ need not include this timestamp, since all this communication will

be causally after the message that contained the updated value of VT.. To be

precise, any process in g~ that updates its value of VT. as a result of a

message received from some process not in g~ will include the updated value

of VT. in the next message m that it multicasts to g~. The updated value

ACM Transactions on Computer Systems, Vol 9, No 3, August 1991

Lightweight Causal and Atomic Group Multicast . 293

need not be included in any subsequent messages multicast to g~. Further

details of this optimization, and a proof of correctness, can be found presented

by Stephenson [281.

We can do even better. Recall the definition of multicast stability (Section

5.3). Say that a group is active for process p, if

(1) p is the initiator of a multicast to g that is not stable, or

(2) p has received an unstable multicast to g.

Activity is a local property; i.e., process p can compute whether or not some

group g is active for it by examining local state. Moreover, g may be active

for p at a time it is inactive for q (in fact, by delaying the delivery of

messages, a process may force a group to become inactive just by waiting

until any active multicasts stabilize).

Now, we modify step 2’ of the extended protocol as follows. A process p

which receives a multicast m in group g. must delay m until any multicasts

m’, apparently concurrent with m, and previously received in other groups

g~ (b # a) have been delivered locally. For example, say that process p

receives ml in group gl, then mz in group gz, and then m~ in group gl.

Under the rule, mz must not be delivered until after ml. Similarly, m~ must

not be delivered until after mz. Since the basic protocol is live in any single

group, no message will be delayed indefinitely under this modified rule.

Then, when sending messages (in any group), timestamps corresponding to

inactive groups can be omitted from a message. The intuition here is that it

is possible for a stable message to have reached its destinations, but still be

blocked on some delivery queues. Our change ensures that such a message

will be delivered before any subsequent messages received in other groups.

Knowing that this will be the case, the vector timestamp can be omitted.

It is appealing to ask how effective timestamp compression will be in

typical ISIS applications. In particular, if the compression dramatically

reduces the number of timestamps sent on a typical message, we will have

arrived at the desired, low overhead, protocol. On the other hand, if compres-

sion is ineffective, measures may be needed to further reduce the number of

vector timestamps transmitted. Unfortunately, we lack sufficient experience

to answer this question experimentally. At this stage, any discussion must

necessarily be speculative.

Recall from Section 2 that ISIS applications are believed to exhibit commu-

nication locality. In our setting, locality would mean that a process that most

recently received a message in group g, will probably send and receive

several times in g, before sending or receiving in some other group. It would

be surprising if distributed systems did not exhibit communication locality,

since analogous properties are observed in almost all settings, reflecting the

fact that most computations involve some form of looping [121. Process-Woup-

based systems would also be expected to exhibit locality for a second reason:

when a distributed algorithm is executed in a group g there will often be a

flurry of message exchange by participants. For example, if a process group

were used to manage transactionally replicated data, an update transaction

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991.

294 . K, Birman et al,

might multicast to request a lock, to issue each update, and to initiate

the commit protocol. Such sequences of multicasts arise in many ISIS

algorithms.

The extended compression rule benefits from communication locality, since

few vector timestamps would be transmitted during a burst of activity. Most

groups are small, hence those timestamps that do need to be piggybacked on

a message will be small. Moreover, in a system with a high degree of locality,

each process group through which a vector timestamp passes will “delay” the

timestamp briefly.

For example, suppose that a process that sends one multicast in group g,

will, on the average, send and receive a total of n multicasts in g, before

sending or receiving in some other group. Under our extended rule, only the

first of these multicasts will carry vector timestamps for groups other than

g,. Subsequent multicasts need carry no vector timestamps at all, since the

sender’s time stamp can be deduced using the method of Section 5.4. More-

over, if the vector timestamp for a group gl changes k times per second,

members of an adjacent group g2 (that are not also members of gl) will see a

rate of change of k /n. A group at distance d would see every ndth value,

giving a rate of k / nd per second. Thus, the combination of compression and

communication locality can substantially reduce the vector time stamp over-

head on messages. In fact, if most messages are sent in bursts, the “average”

multicast may not carry any timestamps at all!

6.4 Garbage Collection of Vector Timestamps

Our scheme is such that the accumulation of “old” vector timestamps can

occur in processes not belonging to the groups for which those timestamps

were generated. For example, say that process p, not a member of group g,

receives a message dependent on some event in group g. Then p will obtain

a copy of VT(g), and will retain it indefinitely (although transmitting it only

once to each process in the groups to which it belongs). This could introduce

significant overhead when a process joins a group, since it will need to

transmit a large number of timestamps on its first multicast in the group,

and group members will reciprocally need to send it any vector timestamps

that they hold.

In fact, there are several ways that old timestamps could be garbage

collected. An especially simple solution is to flush any active group periodi-

cally (say, at least once every n seconds). Then if the time at which a vector

timestamp was received is known, the timestamp can always be discarded

after n seconds.

6.5 Atomicity and Group Membership Changes

The protocols for group flush and multicast atomicity need to be reconsidered

in light of this multiple group extension.

Virtually synchronous addressing. Recall that virtually synchronous ad-

dressing is implemented using a group flush protocol. In the absence of

failures, the protocol of Section 5.5 continues to provide this property.

ACM TransactionsonComputerSystems,Vol. 9, No. 3,August 1991,

Lightweight Causal and Atomic Group Mulficast . 295

Although it may now be the case that some messages arrive carrying “stale”

vector timestamps corresponding to group views that are no longer installed,

the convention of tagging the vector timestamp with the view index number

for which is was generated permits the identification of these timestamps,

which may be safely ignored: any messages to which they refer were deliv-

ered during an earlier view flush operation.

Atomicity and virtual synchrony when failures occur. When the flush

algorithm of Section 5.5 is applied in a setting with multiple, overlapping

groups, failures introduce problems not seen in single-group settings.

Consider two processes pl, p2 and two groups gl, gz, such that pl belongs

to gl and p2 to both gl and gz, and suppose the following event sequence

occurs:

(1) pl multicasts ml to g, in view(gl).

(2) pz receives and delivers ml, while in (view(gI), view(g,)).

(3) p, multicasts m2 to g,, still in (uiew(gl), view(g,)).

(4) Both p, and p2 fail, causing the installation of viezu(gl)’ and vier,v(gzj’.

Now, consider a process q belonging to both gl and gz. This process will be a

destination of both ml and mz. If p2 was the only process to have received

ml before pl failed, ml will be lost due to the failure; q would then install

viezv(gl)’ without delivering ml. Further, suppose that mz has been received

by another process q’, belonging to gz but not gl. If q’ remains operational,

q will receive mz during the flush protocol for view(gz)’. This creates a

problem:

(1) If q delivers mz before installing viezv(gz)’, causality will be violated,

because ml was not delivered first.

(2) If mz is not delivered by q, atomicity will be violated, because m2 was

delivered at a process q’ that remained operational.

Even worse, q may not be able to detect any problem in the first case.

Here, although m~ will carry a vector timestamp reflecting the transmission

of ml, the timestamp will be ignored as “stale .“ In general, q will only

recognize a problem if mz is received before the flush of gl has completed.

There are several ways to solve this problem. Since the problem does not

occur when a process communicates only within a single group, our basic

approach will be to intervene when a process begins communicating with

another group, delaying communication in group gz until causally prior

messages to group gl are no longer at risk of loss, Any of the following rules

would have this effect:

– One can build a k-resilient protocol that operates by delaying communica-

tion outside a group until all causally previous messages are k-stable; as k

approaches n, this becomes a conservative but completely safe approach.

Here, the sender of a message may have to wait before being permitted to

transmit it,

—Rely on the underlying message transport protocol to deliver the message

to all destinations despite failures. For example, a token ring or ethernet

ACM TransactionsonComputerSystems,Vol. 9,No. 3,August1991.

296 . K. Birman et al.

might implement reliable multicast transport directly at the link level, so

that messages are never lost at this stage.

—Construct a special message-logging server which is always guaranteed to

have a copy of any messages that have not yet been delivered to all their

destinations. Such a facility would resemble the associative message store

in the original ISIS system [71 and also recalls work by Powell and Presotto

[231.

Our implementation uses the first of these schemes, and as initially

structured, operates completely safely (i. e., with k = n). That is, a process p,

that has sent or received multicasts in group gl will delay initiation of a

multicast in group g2 until the gl multicasts are all fully stable. Our future

system will be somewhat more flexible, allowing the process that creates a

group to specify a value of k for that group; such an approach would have a

performance benefit. We note that standard practice in industry is to con-

sider a system fault-tolerant if it can tolerate a single failure, i.e., k = 1.

Barry GleesonG has made the following observation. Delays associated

with multicast stability for reasons of atomicity represent the most likely

source of delay in our system. However, with the following sort of specialized

multicast transport protocol, this delay can be completely eliminated. Con-

sider an application in which the sender of a message is often coresident with

one of the recipients, that is, on the same physical computer, and in which

the network interface is reliable (lossless) and sequenced (sends messages in

order, even when the destination sets differ). This implies, for example, that

if a message m is received by a process p, any message m’ transmitted from

the same source prior to m will have already been received at all its

destinations.

On the resulting system, it would never be necessary to delay messages to

a local destination: any action taken by a local recipient and causally related

to the received message would only reach external nodes after stability of the

prior multicast. For k-stability in the case k = 1,a remote destination would

never need to delay a message because k stability has (trivially) been

achieved in this case. With reliable multicast hardware (or a software device

driver that implements a very simple form of reliable, FIFO-ordered multi-

cast), reception might even imply total stability. In such settings, no message

need ever be delayed due to atomicity considerations! Our protocols could

then perform particularly well, since they would tend to “pipeline” multi-

casts between nodes, while never delaying intranode communication at all.

6.6 Use of Communication Structure

l.Jntil the present, we have associated with each message a vector time or

vector times having a total size that could be linear in the number of

processes and groups comprising the application. On the one hand, we have

argued that in many systems compression could drastically reduce size.

o Barry Gleeson is with the UNISYS Corporation, San Jose, California.

ACM Transactions on Computer Systems, Vol 9, No. 3, August 1991

Lightweight Causal and Atomic Group Multicast . 297

Moreover, similar constraints arise in many published CBCAST protocols.

However, one can still imagine executions in which vector sizes would grow

to dominate message sizes. A substantial reduction in the number of vector

timestamps that each process must maintain and transmit is possible in the

case of certain communication patterns, which are defined precisely below.

Even if communication does not always follow these patterns, our new

solution can form the basis of other slightly more costly solutions which are

also described below.

Our approach will be to construct an abstract description of the group

overlap structure for the system. This structure will not be physically main-

tained in any implementation, but will be used to reason about communica-

tion properties of the system as it executes. Initially, we will assume that

group membership is “frozen” and that the communication structure of the

system is static. Later, in Section 6.7, we will extend these to systems with

dynamically changing communication structure. For clarity, we will present

our algorithms and proofs in a setting where timestamp compression rules

are not in use; the algorithms can be shown to work when timestamp

compression is in use, but the proofs are more complicated.

Define the communication structure of a system to be an undirected graph

CG = (G, E) where the nodes, G, correspond to process groups and edge

(gl, gz) belongs to E iff there exists a process p belonging to both g, and gz.

If the graph so obtained has no biconnected component7 containing more than

k nodes, we will say that the communication structure of the system is

k-bounded. In a k-bounded communication structure, the length of the largest

simple cycle is k. 8A O-bounded communication structure is a tree (we neglect

the uninteresting case of a forest). Clearly, such a communication structure

is acyclic.

Notice that causal communication cycles can arise even if CG is acyclic.

For example, in Figure 4, messages ml, m2, m3 and m~ form a causal cycle

spanning both gl and gz. However, the acyclic structure restricts such

communication cycles in a useful way. Below, we demonstrate that it is

unnecessary to transport all vector timestamps on each message in the

k-bounded case. If a given group is in a biconnected component of size k,

processes in this group need only to maintain and transmit timestamps for

other groups in this biconnected component. We can also show that they need

to maintain at least these timestamps. As a consequence, if the communica-

tion structure is acyclic, processes need only maintain the timestamps for the

groups to which they belong.

We proceed to the proof of our main result in stages. First we address the

special case of an acyclic communication structure, and show that if a system

has an acyclic communication structure, each process in the system only

maintains and multicasts the VT timestamps of groups to which it belongs.

7 Two vertices are in the same biconnected component of a graph if there is still a path between

them after any other vertex has been removed.

8 The nodes of a simple cycle (other than the starting node) are distinct; a complex cycle may

contain arbitrary repeated nodes.

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991.

298 . K. Blrman et al.

Notice that this bounds the overhead on a message in proportion to the size

and number of groups to which a process belongs.

We will wish to show that if message ml is sent (causally) before message

mk, then ml will be delivered before mh at all overlapping sites. Consider

the chain of messages below.

This schema signifies that process PI multicasts message ml to group gl,

that process p2 first receives message ml as a member of group gl and then

multicasts m2 to g2, and so forth. In general, g, may be the same as g~ for

i # j and p, and p~ may be the same even for i # ~ (in other words, the

processes p, and the groups g, are not necessarily all different). Let the term

message chain denote such a sequence of messages, and let the notation
P,

m, ‘A m~ mean that p~ transmits m~ using a time stamp VT(mj) that directly

reflects the transmission of m,. For example, say that m, was the kth

message transmitted by process p, in group ga. So m, ~ m~ iff VT.(p~)[i] > k

and consequently VT.(m~)[i] > k. Our proof will show that if m, ~ mj and
u.

the destinations of m, and m~ overlap, then m, ‘~ m~, where p] is the sender

of mJ. Consequently, m, will be delivered before ml at any overlapping

destinations.

We now note some simple facts about this message chain that we will use

in the proof. Recall that a multicast to a group g. can only be performed by a

process p, belonging to g.. Also, since the communication structure is

acyclic, processes can be members of at most two groups. Since mh and ml

have overlapping destinations, and p2, the destination of ml, is a member of

gl and of g2, then gk, the destination of the final broadcast, is either gl or

g2. Since CG is acyclic, the message chain ml mk simply traverses part of

a tree reversing itself at one or more distinguished groups. We will denote

such a group g,. Although causality information is lost as a message chain

traverses the tree, we will show that when the chain reverses itself at some

group gr, the relevant information will be “recovered” on the way back.

LEMMA 3. If a system has an acyclic communication structure, each proc-

ess in the system only maintains and multi casts the VT times tamps of groups

to which it belongs.

PROOF. The proof is by induction on 1, the length of the message chain

ml . . mk. Recall that we must show that if ml and mk have overlapping

destinations, they will be delivered in causal order at all such destinations,

i.e., ml will be delivered before mh.

Base case. 1 = 2. Here, causal delivery is trivially achieved, since ph = pz

must be a member of gl and mk will be transmitted with gl’s timestamp. It

will therefore be delivered ‘correctly at any overlapping destinations.

ACM Transactions on Computer Systems, Vol 9, No 3, August 1991

Lightweight Causal and Atomic Group Multicast . 299

Inductive step. Suppose that our algorithm delivers all pairs of causally

related messages correctly if there is a message chain between them of length

1< k. We show that causality is not violated for message chains where 1 = k.

Consider a point in the causal chain where it reverses itself. We represent

this by m,.l * m, -+ mr, * mr+l, where mr.l and mr+l are sent in gr_l E

g,+ 1 by P, and P,+ 1 respectively, and m, and m,, are sent in g, by p, and

p,,. Note that p, and p,+ ~ are members of both groups. This is illustrated in

Figure 5. Now, m,, will not be delivered at p,+ ~ until mr has been delivered
Pr+l

there, since they are both broadcast in g,. We now have mr ~ ~ m, * mr~ ~.

We have now established a message chain between ml and mh where 1< k.

So, by the induction hypothesis, ml will be delivered before mh at any

overlapping destinations, which is what we set out to prove. ❑

THEOREM 1. Each process p, in a system needs only to maintain and

multicast the VT timestamps of groups in the biconnected components of CG to

which p, belongs.

PROOF. As with Lemma 3, our proof will focus on the message chain that

established a causal link between the sending of two messages with overlap-

ping destinations. This sequence may contain simple cycles of length up to h,

where k is the size of the largest biconnected component of CG. Consider the

simple cycle illustrated below, contained in some arbitrary message chain.

Pl~. . . P2:P3m:’
.gl &?l gl

Now, since pl, p2 and p3 are all in groups in a simple cycle of CG, all the

groups are in the same biconnected component of CG, and all processes on

the message chain will maintain and transmit the timestamps of all the

groups. In particular, when ml arrives at p3, it will carry a copy of VTgl

indicating that ml was sent. This means that ml will not be delivered at p3

until ml has been delivered there. So ml+ ~ will not be transmitted by p3
P3

until ml has been delivered there. Thus ml a ml+ ~. We may repeat this

process for each simple cycle of length greater than 2 in the causal chain,

reducing it to a chain within one group. We now apply Lemma 3, completing

the proof. ❑

Theorem 1 shows us what timestamps are sufficient to assure correct

delivery of messages. Are all these timestamps in fact necessary? It turns out

that the answer is yes. It is easy to show that if a process that is a member of

a group within a biconnected component of CG does not maintain a VT

timestamp for some other group in CG, causality may be violated. We

therefore state without formal proofi

THEOREM 2. If a system uses the VT protocol to maintain causality, it is

both necessary and sufficient for a process p, to maintain and transmit those

ACM Transactions on Computer Systems, Vol 9, No. 3, August 1991.

300 . K. Birman et al.

Fig. 5. Causal reversal

VT times tamps corresponding to groups in the biconnected component of CG to

which p, belongs.

6.7 Extensions to Arbitrary, Dynamic Communication Structures

The previous section assumed that the communication graph was known

statically. Operationally, this would correspond to a system in which, once

established, process group membership never changed. Any realistic applica-

tion is likely to be more dynamic, making it hard to manage information

concerning the biconnected components of CG. Moreover, any real dis-

tributed system will probably contain a mixture of subsystems, some having

a regular communication structure, and some not.

Consider the multiple-group examples raised in the introduction. A scien-

tific computation using groups for nearest neighbor communication will have

a regular communication structure. The structure is known in advance and is

a property of the algorithm, and it would be desirable to exploit this to reduce

overhead on messages. Lemma 3 and Theorem 1 are ideally suited for this

purpose. (We describe the system call interface used to communicate this

information in Section 7.3).

This might or might not be true for the network information service. The

designer of such a service has a choice between controlling the location of

replication domains, or permitting data to migrate in an uncontrolled man-

ner, creating fairly random domains. However, such a service will want to

balance processor loads and storage utilization, which might be hard in the

latter approach. Thus, the designer might well prefer to “tile” the network

with process groups in a regular way, which could then be exploited using

our above results— again, presuming a suitable interface for communicating

this information.

On the other hand, a system built of abstract objects will almost certainly

have an arbitrary communication structure that changes continuously as

applications are started and terminate. Here, the communication structure

ACM TransactionsonComputerSystems,Vol 9, No, 3,August 1991.

Lightweight Causal and ~tomic Group Multicast . 301

would be impossible to represent; indeed, it may well change faster than

information about it can be propagated within the system. The best a process

could possibly do is to reason about local properties of the structure.

We now develop some simple results that enable processes to maintain only

timestamps for groups to which they actually belong, and yet to operate

safely in dynamically changing communication graphs that may contain

cycles. Below, we will assume that processes may join and leave groups

dynamically, and may leave a group for reasons other than failure (in

existing ISIS this is possible, but uncommon). This results in a highly

dynamic environment. Nonetheless, a process might be able to infer that a

group to which it belongs is not present in any cycle. This would follow, for

example, if the group is adjacent to at most one other group. Such informa-

tion can be obtained by an exchange of adjacency information when a process

joins a group, and subsequently multicasting updated information in gl each

time a current member joins some other group ga. Further, say that group gz

is adjacent to groups gl and g~, but that gl is adjacent to no other group.

Then gz and eventually g~ may come to learn that there is no cycle present.

Conservative solution. Our first solution is called the conservative protocol

and uses multicast stability (Section 5.3). The idea will be to restrict the

initiation of new multicasts so that a message m can only be sent in a group

g when it is known that any causally prior messages m’ will be delivered

first, if m and m’ share destinations.

The conservative multicast rule states that a process p may multicast to

group gl iff gl is the only active group for process p or p has no active

groups (the notion of an active group was defined in Section 6.3). If p

attempts to multicast when this rule is not satisfied, it is simply delayed.

During this delay, incoming messages are not delivered. This means that all

groups will eventually become inactive and the rule above will eventually be

satisfied. At this point, the message is sent. It is now immediate from the

extended compression rule of Section 6.3 that when a message m is multicast

in group g, only the sender’s timestamp for group g need be transmitted.

The conservative rule imposes a delay only when two causally successive

messages are sent to different groups. Thus, the rule would be inexpensive in

systems with a high degree of locality. On the other hand, the overhead

imposed would be substantial if processes multicast to several different

groups in quick succession.

Multicast epochs. We now introduce an approach capable of overcoming

the delays associated with the conservative rule but at the cost of additional

group flushes. We will develop this approach by first assuming that a process

leaves a group only because of a failure and then extending the result to

cover the case of a process that leaves a group but remains active (as will be

seen below, this can create a form of phantom cycle).

Assume that CG contains cycles but that some mechanism has been used

to select a subset of edges X such that CG = (G, E – X) is known to be

acyclic. We extend our solution to use the acyclic protocol proved by Lemma 2

for most communication within groups. If there is some edge (g, g’) e X, we

ACM Transactionson Computer Systems, Vol 9, No. 3, August 1991.

302 . K. Birman et al

will say that one of the two groups, say g, must be designated as an excluded

group. In this case, all multicasts to or from g will be done using the protocol

described below.

Keeping track of excluded groups could be difficult; however, it is easy to

make pessimistic estimates (and we will derive a protocol that works cor-

rectly with such pessimistic estimates). For example, in ISIS, a process p

might assume that it is in an excluded group if there is more than one other

neighboring group. This is a safe assumption; any group in a cycle in CG will

certainly have two neighboring groups. This subsection develops solutions for

arbitrary communication structures, assuming that some method such as the

previous is used to safely identify excluded groups.

We will define a notion of multicast epoch, to be associated with messages

such that if for two messages ml and mz, epoch(ml) < epoch(m2), then ml

will always be delivered before m2. In situations where a causal ordering

problem could arise, our solution will increment the epoch counter.

Specifically, each process p maintains a local variable, epochP. When

process p initiates a multicast, it increments its epoch variable if the

condition given below holds. It then piggybacks epochP on the outgoing

message. On reception of a message m, if epochP < epoch(m), then p will

initiate the flush protocol for all groups to which it belongs, by sending a

message “start flush” to the other group members. Reception of this mes-

sage triggers execution of the flush protocol of Section 5.5, just as for a new

group view (because our implementation clears vector timestamps as part of

the flush, ISIS numbers views using a major and minor view number: the

major number is incremented for each new view, and the minor one for each

flush done within the same view). On completing the flush protocol, all group

members set the value of their epoch variables to the maximum of the ones

held by group members.

When will a process increment its epoch variable? Say that m is about to

be multicast by p to g. We say that p is not safe in g ifi

–The last message p received was from some other group g’, and

—either g or g’ is an excluded group.

Our protocol rule is simple; on sending, if process p is not safe in group g, p

will increment epochP before multicasting a message m to g. In this case, m

will carry the epoch value but need not carry any vector timestamps;

reception of m will cause a flush in g (and any other groups to which

recipients belong). Otherwise, p will just increment its VT timestamp in the

usual manner, and then piggyback onto m the epoch variable and time-

stamps for any (active) groups to which it belongs. A message is delivered

when it is deliverable according to both the above flush rule and the VT

delivery rule.

Notice that the flushing overhead of the modified protocol is incurred only

when epoch values actually change, which is to say only on communication

within two different groups in immediate succession, where one of the groups

is excluded. That is, if process p executes for a period of time using the VT

protocol and receives only messages that leave epochP unchanged, p will not

ACM Transactions on Computer Systemsj Vol. 9, No 3, August 1991.

Lightweight Causal and Atomic Group Multicast . 303

initiate a flush. However, when an epoch variable is incremented the result

could be a cascade of group flushes. Epoch variables will stabilize at the

maximum existing value and flushing will then cease.

THEOREM 3. The VT protocol extended to implement multicast epochs will

deliver messages causally within arbitrary communication structures.

PROOF. Consider an arbitrary message chain where the first and last

messages have overlapping destinations. For example, in the chain shown

below, Pk + ~ might be a member of both gl and g~ and hence a destination of

both ml and m~. Without loss of generality, we will assume that gl . . . g~

are distinct. We wish to show that the last message will be delivered after

the first at all such destinations.

If none of gl . . . g~ is an excluded group, then, by Lemma 3, ml will be

delivered before mk at ph+ ~. Now, let gi be the first excluded group in the

above message chain. If gi is excluded, then p, will increment its epoch

variable before sending m,. As epoch numbers can never decrease along a

causal chain, we will have epoch(ml) < epoch(m~), and a flush protocol will

have run in any groups to which a destination of mk belongs, before m~ can

be delivered. ml was sent before the flush, and hence will be delivered by

pk~ 1 before it delivers mk. ❑

We have been assuming that a process only leaves a group because of

failure. Now, without changing the definition of the communication graph,

say that processes can also leave groups for other reasons, remaining active

and possibly joining other groups. Earlier, it was suggested that a process

might observe that the (single) group to which it belongs is adjacent to just

one other group and conclude that it cannot be part of a cycle. In this class of

applications, this rule may fail. The implication is that a process that should

have incremented its epoch variable may neglect to do so, thereby leading to

a violation of the causal delivery ordering.

To see how a problem could arise, suppose that a process p belongs to

group gl, then leaves gl and joins g2. If there was no period during which p

belonged to both gl and g2, p would use the acyclic VT protocol for all

communication in both gl and g2. Yet, it is clear that p represents a path by

which messages sent in g2 could be causally dependent upon messages p

received in gl, leading to a cyclic message chain that traverses gl and g2.

This creates a race condition under which violations of the causal delivery

ordering could result.

9An interesting variation on this scheme would involve substituting synchronized real-time

clocks for the epoch variable; a message would then be delayed until the epoch variable for a

recipient advanced beyond some minimum value. This would also facilitate implementation of

the real-time W’ garbage collection method of Section 6.4. Readers familiar with the A-T

real-time protocols of Cristian et al. [11] will note the similarity between that protocol and such a

modification of ours. In fact, clock synchronization (on which the A-T scheme is based) is

normally done using periodic multicasts [17, 27].

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991.

304 . K. Birman et al,

This problem can be overcome in the following manner. Each process p,

simply increments its epoch counter after it leaves a group g. and before it

sends any subsequent messages. This will ensure that any message sent by p,

after it leaves g. will be delivered subsequent to any message whose effect p,

had observed, directly or indirectly, before it left g~.

7. APPLYING THE PROTOCOLS TO ISIS

This section briefly discusses some pragmatic considerations that arise when

implementing the protocols for use in 1S1S.

7.1 Optimization for Client / Server Groups

Up to now, our discussion has focused on communication in peer groups. In

ISIS clientlserver settings, a set of servers forms one group, and each client

of the service they are providing forms an additional group containing that

client and the server set (see Figure l). Theorem 2 appears to state that in

this case, each group containing one of the clients needs to maintain the

timestamps of every other such client group-a total timestamp size of

0(s*c), where s is the number of servers and c is the number of clients.

Fortunately, since clients will not be communicating with each other except

through the servers, and the servers form a peer subgroup of size s that

receives all of these multicasts, an optimization can be applied to reduce the

entire timestamp size to 0(s + c). This optimization essentially collapses all

the client groups into one large group; it is fully described by Stephenson

[.281. A modified version of the conservative delay rule can be used to reduce

any timestamps transmitted outside of the group to size s. Finally, since

timestamps associated with inactive groups can be omitted, and most clients

of a large group will presumably be inactive, even the internal timestamps

can be reduced in size, to length 0(s + k) for some small k. 10

Our protocols also work well with the other styles of process group usage,

as summarized in Table I. In diffusion groups, one vector timestamp is

needed for the whole group. The number of entries in the time stamp can be

optimized: entries are only needed for the server processes, since these are

the only ones that initiate multicasts. Hierarchical groups fall naturally into

our general approach: since a process normally interacts with a single

representative subgroup, the length of the vector timestamp seen is normally

determined by the size of that subgroup. Further, a hierarchical group

manager might have the freedom to create subgroups to be explicitly acyclic.

Some ISIS applications form large process groups but would benefit from

the ability to multicast to subsets of the total membership. For example, a

stock quote service might send an IBM quote to only those brokers actually

trading IBM stock. Such an ability can be emulated by forming groups

approximating the multicast destination sets and discarding unwanted mes-

sages. Alternatively, our protocol can be extended into one directly support-

10 For example, by implementing the compression scheme or by simply having a client of a group

drop out of it after some period of inactivity,

ACM Transactions on Computer Systems, Vol 9, No 3, August 1991

Lightweight Causal and Atomic Group Multicast . 305

Table I. Overhead Resulting from Different Process Group Styles

Fixed Overhead sender.id, uid, epochP, dest_group, stabled=,~(l~)

28 bytes total

Variable Overhead I VT tirnestarnps as needed (Section 6.3) II
VT timestamp sizes: k,k<n

Peer Group n is the number of group members.

Client/Sewer k,k~s+c
II

s is the number of servers and c is the number of clients.

Diffusion k,ksb

I b is the number of members broadcasting into the group. II

Hierarchical k,k~n

n is the size of a submou~.

ing subset multicast. The basic idea is to move to a large time stamp,

representing the number of times each possible sender has sent to each

possible recipient. The resulting array would be sparse and repetitious, and

hence could be substantially compressed. At present, we favor the former

scheme, as it requires no changes to our basic protocol.

7.2 Point-to-Point Messages

Early in the the paper, we asserted that asynchronous CBCAST is the

dominant protocol used in ISIS. Point-to-point messages, arising from replies

to multicast requests and RPC interactions, are also common. In both cases,

causal delivery is desired. Our implementation supports the transmission of

point-to-point messages with causal delivery guarantees. This is done using

an RPC scheme, in which the sender is inhibited from starting new multi-

casts until reception of the point-to-point message is acknowledged. The

sender transmits the vector timestamps that would be needed for a CBCAST,

but does not increment its own vector timestamp prior to transmission.

Point-to-point messages are thus treated using the basic causality algorithm

but are events internal to the processes involved.

The argument in favor of this method is that a single point-to-point RPC is

fast and the cost is unaffected by the size of the system. Although one can

devise more complex methods that eliminate the period of inhibited multicast-

ing, problems of fault-tolerance render them less desirable.

7.3 System Interface Issues

One question raised by our protocols concerns the mechanism by which the

system would actually be informed about special application structure, such

as an acyclic communication structure. This is not an issue in the current

ISIS implementation, which uses the conservative rule, excluding groups

adjacent to more than one neighboring group. In the current system, the only

ACM TransactionsonComputerSystems,Vol. 9,No. 3,August1991.

306 . K. Birman et al.

problem is to detect clients of a group, and as noted earlier, these declare

themselves through the pg _ client interface.

In the future, we expect to address these issues through a new system

construct, the causality domain [4]. A causality domain is a set of groups

within which causality is enforced. Each group is created in a domain and

subsequently remains in it. Causality is not enforced between domains, but a

flush primitive can be provided, which will block a process until all causally

11 We are designing an interface byprior messages have been delivered.

which parameters such as the message stability constant k or assertions

about the communication structure can be asserted on a per-domain basis, In

the case of a domain declared to have an acyclic communication structure, a

routine pg _ exclude may be used to designate excluded groups.

An application such as the physics simulation described earlier could set

up its group structure as a separate causality domain, declaring it to be

acyclic and excluding enough groups to ensure that cycles will be broken. By

invoking flush before switching from domain to domain, causal safety would

be achieved on both intra- and interdomain operations.

7.4 Group View Management

The current ISIS implementation retains the prior ISIS group view manage-

ment server. Looking to the future, however, it will be possible to use our

new protocol in a stand-alone fashion. Membership changes (adding or drop-

ping a member from a group) can be implemented using the CBCAST

protocol, including the new member as a destination in the former case.

Clearly, this requires a form of mutual exclusion, which is obtained by

having a distinguished group member initiate any such membership

changes .12 Reception of this CBCAST message would trigger a view flush

protocol: approximately 3 n messages are thus needed to add one member to a

group of size n. The addition or deletion of a client in a client-server or

diffusion group is cheaper: a multicast and flush are still needed, but since

clients don’t need to know about other clients, it can be confined to the server

subgroup .

A source of failure information is needed in this scheme. In a previous

article [24], we discuss the asynchronous failure detection problem and

present an optimal algorithm.

Such a redesigned system would realize a long-term goal of our effort. The

current ISIS architecture is difficult to scale to very large LAN settings

because of its reliance on a central protocol server. Although this server need

not reside directly on every node, it introduces a bottleneck that limits the

scalability of the architecture to networks with at most a few hundred

11 There are a number of possible implementations of flush, but for brevity we defer discussion of

this issue to a future paper.

12As in conventional distributed computing environments, this approach assumes that groups

would be registered with some sort of group location service Initial connection to a group would

be via a forwarded request, causing the caller to be added as a new member or client.

Subsequent to this, group operations could be performed dmectly.

ACM Transactions on Computer Systems, Vol. 9, No, 3, August 1991

Lightweight Causal and Atomic Group Multicast . 307

workstations. By reimplementing the group view mechanism in terms of our

new multicast protocol and separating failure detection into a free-standing

module, this limit to scalability can be eliminated.

8. PERFORMANCE

We implemented the new CBCAST and ABCAST protocols within the ISIS

Toolkit, Versions 2.1 and 3.0 (respectively available since October 1990 and

March 1991); the figures below are from the V3.O implementation evaluated

using SUN 4/60 workstations on a lightly loaded lOMbit Ethernet. The

implementation is less ambitious than what we plan for the future ISIS

system, which will support the new protocols directly in the operating

system. Nonetheless, the measured performance was encouraging.

Table II shows that the cost of transmitting a message using CBCAST

grows roughly linearly with the size of the destination group. The first line of

the table shows the cost of sending a CBCAST to another thread in the same

process; subsequent lines show the cost to one or more remote destinations.

Figures for ABCAST appear in Table III; in these, the multicasting process

did not hold the ordering token.

ISIS performance can be compared to what can be achieved using the

vendor-supplied remote procedure mechanism for the machines with which

we worked. For example, a null 2-process remote procedure call using our

facility had a round-trip latency of 6.51ms; with a lk message and a null

reply we measured 7. 86ms. The figures for SUN RPC (over TCP) are 3. 5ms

and 4 5ms respectively. 13 These SUN figures do not include creation of any

sort of lightweight task on the remote side, nor is the wall-clock time when a

message was sent or received recorded, although ISIS does both. Thus, of the

3.36ms additional cost seen with the lk ISIS RPC, a substantial part is

attributable to aspects of the ISIS environment unrelated to the multicast

protocol. We note that a 7-destination null multicast in which all destina-

tions reply costs 22.9ms using our protocol; 7 successive null RPC’S would

cost 24. 5ms using the SUN protocol.

Figure 6 shows the relative cost of CBCAST RPC’S as a function of packet

size and number of sites; Figure 7 compares the cost of a lk CBCAST to a lk

ABCAST as the number of sites grows. From these graphs we see that packet

size is a dominant factor in determining cost, and that ABCAST runs at

roughly half the speed of CBCAST in tests with small packets. This last point

reflects an initial ABCAST implementation in which the ordering token does

not move, and also the higher scheduling and IO costs incurred by applica-

tions running the more synchronous protocol.

ISIS throughput figures compare well with traditional streaming protocols

such as TCP: for 7k packets sent to a single remote destination, CBCAST

13 It should be noted that although the SUN RPC figUre is about as good as one can ‘ind ‘n

commercial UNIX systems, the state of the art in experimental operting systems is quite a bit

faster. We are now working on an an 1S1S implementation in the x-Kernel under Mach [1, 211,

and plan to compare performance of the resulting ISIS RPC with that of the Mach/x-Kernel

RPC.

ACM Transactions on Computer Systems, Vol. 9, No 3, August 1991.

308 . K. Birman et al,

Table 11. Multicast Performance Figures (CBCAST) S: Null Packets; M: lK Packets;

L: 7K Packets. All Figures Measured on SUN 4/60’s Running SUNOS 4.1.1

Causal multi-rpc

All dests reply Asynchronous

Destinations (ins) msglsec kblsec

s M L s L

Self 1.51 1.52 1.51 4240 16706

1 6.51 7.86 17.0 1019 550

2 8.67 10.1 23.4 572 361

3 10.7 12.2 34.9 567 249

4 12.9 15.2 43.4 447 180

5 16.3 18.8 54.1 352 143

6 19.6 21.9 64.6 305 118

7 22.9 25.7 75.7 253 101

Table 111. Multicast Performance Figures (ABCAST).

S: Null Packets; M: lK Packets; L: 7K Packets

7

Ordered multi-rpc

J411 dests reply Asynchronous

Destinations (ins) msg/sec kbisec

s M L s L

Self 1.52 1.56 1.55 3300 20000

1 1~.~ 14.0 25.5 341 560

~ 18.5 19.7 30.7 273 317

3 ?4.6 ~5.6 42.6 207 175

4 31.4 32.5 53.5 19’7 152

5 39.1 39.2 70.3 35’2 115

G 44.3 42.1 77.5 133 98.9

7 55.2 48.3 97.0 97 79.7

achieved exactly the same performance (550k bytes per second) as the TCP

implementation supplied by SUN, and the total rate of data sent through

UNIX remains between 550kb/sec and 750kb/sec as the number of destina-

tions increases (recall that we currently make no use of hardware multicast

so that an n-destination multicast involves sending essentially identical

messages n times).

ACM Transactions on Computer Systems, Vol 9, No. 3, August 199 L

Lightweight Causal and Atomic Group Multicast . 309

Causal rpc with all replies

801 1 I I I I I I

60

I

7 kbyte packets

1 kbyte packets

50 Null packets

mS 40

+--
.+. .

-e -

30 F

;~

o 1 2 3 4 5 6 7

Number of remote destinations

Fig. 6. CBCAST RPC timing as a function of message and group size.

CBCAST vs ABCAST RPC time (lk packets)

50 1 I I 1 I 1
..”

45 -
. . .

.,.
+

40 -
. ...”

.+. ”.
. .,..

35 - CBCAST ~ . . .
ABCAST “+” “ ..*

30 “ . . .
. . .

mS 25 - h“ b. . .
. . .

20 - .+’”.
15 “ . . .

*

10 - .“”.’

(
o-

0 1 2 3 4 5 6 7
Number of remote destinations

Fig. 7. CBCAST vs. ABCAST RPC timing as a function of group size.

The engineering of UNIX UDP leads to flow control problems when large

volumes of data are transmitted. When ISIS streams to, say, 7 destinations,

the sender generates large numbers of UDP packets (these are typically

4000-8000 bytes long and may contain as many as 25 ISIS messages piggy

backed into a single data packet). For 7 destinations, ISIS may have as many

as 100 or more of these messages in transit at one time and when a single

process generates such a high volume of UDP traffic, UNIX begins to lose

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991

310 ● K. Birman et al,

Table IV. Null Causal Multicast to Another Local Thread with Reply

Total Causal

Operation cost cost

send 406 US 86 us

receive 394 us 31 us

reply 406 US 86 us

receive 224 US 31 us

Total 1.43 mS 234 US

(hfeasured) 1.51 mS

both outgoing and incoming UDP packets silently. To avoid this, we resort to

heuristic flow control, choking down the sender just before we expect to

overload UNIX. Within the x-Kernel, where detailed memory statistics will

be directly available, far better flow control should be possible.

One might wonder why we didn’t implement ISIS over TCP. Most UNIX

implementations limit application programs to have only a small number of

open TCP connections at any time, due to memory buffering (mbuf) limita-

tions within the kernel. This is unrelated to limits on the number of file

descriptors a program may have open.

It is difficult to directly compare the performance of the ISIS protocols with

that of other published multicast protocols. We know of no other reliable

multicast protocols implemented over UNIX. Perhaps the best known proto-

col, the Amoeba reliable multicast [151, is constructed as a special device

driver implemented at the lowest possible layer of the kernel. This system

achieves a performance of more than 1000 ordered multicasts per second.

Although we achieve comparable performance for our streaming CBCAST

protocol (to one remote destination), the Amoeba performance is unaffected

by scale, while ours drops rapidly with scale. Amoeba achieves this impres-

sive result using special hardware, an option that would also accelerate the

ISIS protocols.

In order to understand how CPU time was expended by our protocol, we

profiled the protocol within a single processor and between a pair of processes

using RPC over a lOMbit ethernet. Both request and reply were sent as

single-destination CBCAST’S. (The focus on RPC may seem odd, in light of

our emphasis on asynchronous multicast, but this is the obvious way to

measure round-trip delays). We then computed the costs attributable to

different parts of the system. Table IV shows a profile for a null RPC sent by

a thread to another entry point within its own address space. This involves

creating a new thread to handle each delivered message but no communica-

tion outside of the address space of the test program. The first column shows

total (measured) costs, the second shows costs attributed to causality, which

we obtained by comparing the costs of sending causally ordered and FIFO

messages. The send and receive figures were obtained by hardwiring our

ACM Transactions on Computer Systems, Vol 9, No 3, August 1991

Lightweight Causal and Atomic Group Multicast . 311

Table V. lk Causal Multicast to a Remote Process with Reply

Causal multicast .23 rns

Rest of Isis 1.21 mS

Transport 3.6 mS

System Ca.1.ls 1.59 mS

wire Time 1.5 mS

TotaJ 8.1 mS

(Measured) 7.86 mS

system to loop through the corresponding sections of code ten thousand times.

Cache hit ratios may explain the slightly low estimate.

Table V shows the costs on a layer-by-layer basis for the 7.86ms RPC to a

remote process. The costs are broken down into the time spent in the protocol

implementation (taken from the null multicast table, above), the transport

costs, costs spent in system calls, and the time on the wire for a lk message

with its ISIS-supplied header and a null reply. The header size used was

approximately 220 bytes14 in each case. Our breakdown compares causal

multicast with a FIFO transport, as opposed to a completely unordered

multicast, because our protocols make such heavy use of a FIFO transport

assumption. The reader should note, however, that remote-procedure call

protocols would generally not include such a requirement, offering an avenue

for improved RPC times (i.e., using a non-FIFO transport) that maybe closed

to the ISIS system. For example, if the destination is a process running on a

parallel processor, ISIS applications will not obtain as much benefit from

physical parallelism as could an RPC protocol. The ISIS application would

see a serialized stream of incoming messages (which it could accept using

multiple threads), while a good RPC implementation might multithread the

operating system itself.

The major conclusion we draw from these performance studies is that

nearly all the time spent in our new protocol is in the layers concerned with

physically transporting messages in FIFO order to a remote machine. Our

protocol imposes little cost in comparison to this number. This result has

convinced us that our new system should be built over some sort of extensible

14 Most of this header reflects the ISIS system structure, not our protocols. Each ISIS packet

consists of an enclosing message containing one or more data messages, and each of these

messages has a 64-byte header, listing information such as the destinations of the message, the

sender, the size of the message, the byte format of the sender, etc. An intersite packet carries

additional sequencing and acknowledgment data structure, adding 24 bytes. Further, ISIS

messages are transmitted as self-describing symbol tables, imposing an overhead of both space

and time, The vector timestamp data, in the present implementation, adds (40 + 4 n) bytes to a

CBCAST in an n-member group. In developing ISIS, this scheme gave us valuable flexibility.

However, in reimplementing the system, we will be using a simpler and more compact represen-

tation, and this overhead should be much reduced.

ACM Transactions on Computer Systems, Vol. 9, No. 3, August 1991.

312 . K. Birman et al.

kernel, so that the protocol can be moved closer to the hardware communica-

tion device. For example, both Mach and Chorus permit application develop-

ers to move modules of code into the network communication component of

the kernel. In our case, this would yield a significant speedup. The other

obvious speedup would result from the use of hardware multicast, an idea

that we are now exploring experimentally.

9. CONCLUSIONS

We have presented a protocol efficiently implementing a reliable, causally

ordered multicast primitive. The protocol is easily extended into a totally

ordered “atomic” multicast primitive and has been implemented as part of

Versions 2.1 and 3.0 of the ISIS Toolkit. Our protocol offers an inexpensive

way to achieve the benefits of virtual synchrony. It is fast and scales well; in

fact, there is no evident limit to the size of network in which it could be used.

IIven in applications with large numbers of overlapping groups, the overhead

cm a multicast is typically small and in systems with bursty communication,

most multicasts can be sent with no overhead other than that needed to

implement reliable, FIFO interprocess channels. With appropriate device

drivers or multicast communication hardware, the basic protocol will operate

safely in a completely asynchronous, streaming fashion, never blocking a

message or its sender unless out-of-order reception genuinely occurs. Our

conclusion is that systems such as ISIS can achieve performance competitive

with the best existing multicast facilities— a finding contradicting the

widespread concern that fault-tolerance may be unacceptably costly.

ACKNOWLEDGMENTS

The authors are grateful to Maureen Robinson for the preparation of many of

the figures. We also thank Keith Marzullo, who suggested we search for the

necessary and sufficient conditions of Section 6.6 and made many other

useful comments. Gil Neiger, Tushar Chandra, Robert Cooper, Barry Glee-

son, Shivakant Misra, Aleta Ricciardi, Mark Wood, and Guerney Hunt made

numerous suggestions concerning the protocols and presentation, which we

greatly appreciate.

REFERENCES

1. ACCETTA, M., BARON, R , GOLUB, D., RASIUD, R., TEVANIAN, A., AND YOUNG, M. Mach: A

new kernel foundation for UNIX development. Tech. Rep., School of Computer Science,

Carnegie Mellon Univ., Pittsburgh, PA, Aug. 1986. Also in proceedings of the Summer 1986

USENIX Conference (July 1986), pp. 93-112.

2. ACM SIGOPS, Proceedings of the Ninth ACM Symposium on Operating Systems Principles

(Bretton Woods, N. H., Oct. 1983).

3. BIRMAN, K., AND COOPER, R. The ISIS project: Real experience with a fault tolerant

programming system. European SIGOPS Workshop, Sept. 1990. To appear in Operating

Syst. Reu. April 1991; also available as Tech. Rep. TR90-1138, Cornell Univ , Computer

Science Dept.

4. BIRMAN, K. A., COOPER, R., AND GLEESON, B. Programming with process groups: Group

ACM Transactions on Computer Systems, Vol. 9, No, 3, August 1991

Lightweight Causal and Atomic Group Multicast . 313

and multicast semantics. Tech. Rep. TR91-1 185. Cornell Univ., Computer Science Dept,,

Feb. 1991.

5. BIRMAN, K., AND JOSEPH, T. Exploiting replication in distributed systems. In Distributed

Systems, Sape Mullender, Ed., ACM Press, New York, 1989, pp. 319-368,

6. BIRMAN, K. P., AND JOSEPH, T. A. Exploiting virtual synchrony in distributed systems. In

Proceeding of the Eleuenth ACM Symposium on Operating Systems Prmctples (Austin, Tex.,

Nov. 1987). ACM SIGOPS, New York, 1987, pp. 123-138.

7. BIRMAN, K. P., AND JOSEPH, T. A, Reliable communication in the presence of failures.

ACM Trans. Comput. Syst. 5, 1 (Feb. 1987), 47-76.

8. BIRMAN, K. P., JOSEPH, T. A., KANE, K., AND SCHMUCK, F. ISIS – A Distributed Program-

m ing Environment User’s Guzde and Reference Manual, first edition. Dept. of Computer

Science, Cornell Univ., March 1988.

9. CHANG, J., AND MAXEMCHUK, N. Reliable broadcast protocols. ACM Trans. Comput. Syst.

2, 3 (Aug. 1984), 251-273.

10. COOPER, R., AND BIRMAN, K. Supporting large scale applications on networks of worksta-

tions. In Proceedings of 2nd Workshop on Workstation Operattng Systems (Washington D. C.,

Sept. 1989), IEEE, Computer Society Press. Order 2003, pp. 25-28.

11. CRISTIAN, F., AGHILI, H., STRONG, H. R., AND DOLEV, D. Atomic broadcast: From simple

message diffusion to Byzantine agreement. Tech. Rep. RJ5244, IBM Research Laboratory,

San Jose, Calif., July 1986. An earlier version appeared in Proceedings of the International

Symposium on Fault-Tolerant Computing, 1985.

12. DENNING, P. Working sets past and present. IEEE Trans. Softw. Eng. SE-6, 1 (Jan, 1980),

64-84.

13. FIDGE, C. Timestamps in message-passing systems that preserve the partial ordering. In

Proceedings of the 11th Australian Computer Science Conference, 1988, pp. 56-66,

14. GARGIA-MOLINA, H., AND SPAUSTER, A, Message ordering in a multicast environment. In

Proceedings 9th International Conference on Distributed Computing Systems (June 1989),

IEEE, New York, 1989, pp. 354-361.

15, KAASHOEK, M F., TANENBAUM, A. S., HUMMEL, S, F., AND BAL, H, E. An efficient reliable

broadcast protocol. Operating Syst. Reu. 23, 4 (Ott. 1989), 5-19.

16. LADIN, R., LISKOV, B., AND SHRIRA, L. Lazy replication: Exploiting the semantics of dis-

tributed services, In Proceedings of the Tenth ACM Symposium on Principles of Distributed

Computing (Quebec City, Quebec, Aug. 1990). ACM, New York, 1990, pp. 43-58.

17, LAMPORT, L. Time, clocks, and the ordering of events in a distributed system. Commun.

ACM, 21, 7 (July 1978), 558-565,

18. MARZULLO, K. Maintaining the time in a distributed system. PhD thesis, Dept, of Electri-

cal Engineering, Stanford Univ., June 1984.

19. MATTERN, F. Time and global states in distributed systems. In Proceedings of the Znterna-

ttonal Workshop on Parallel and Distributed Algorithms. North-Holland, Amsterdam, 1989.

20. PETERSON, L. L., BUCHOLZ, N, C., AND SCHLICHTING, R. Preserving and using context

information in interprocess communication. ACM Trans. Comput. Syst. 7, 3 (Aug. 1989),

217-246.

21. PETERSON, L. L., HUTCHINSON, N., O’MALLEY, S., AND ABBOTT, M. Rpc in the x-Kernel:

Evaluating new design techniques. In Proceedings of the Twelfth ACM Symposium on

Operating Systems Principles (Litchfield Park, Ariz., Nov. 1989). ACM, New York, 1989, pp.

91-101.

22. PITELLI, F., AND GARCIA-M• LENA, H. Data processing with triple modular redundancy.

Tech. Rep. TR-002-85, Princeton Univ., June 1985.

23. POWELL, M. AND PRESOTTO, D. L. Publishing A reliable broadcast communication mecha-

nism. In Proceedings of the Ninth ACM Symposium on Operating System Principles pp.

100-109. Proceedings published as Operating Systems Reuiew 17, 5.

24. RICCIARDI, A., AND BIRMAN, K. P. Using process groups to implement failure detection in

asynchronous environments. Tech. Rep. TR91-1 188, Computer Science Dept., Cornell Univ.,

Feb. 1991.

25. SCHIPER, A., EGGLI, J., AND SANDOZ, A. A new algorithm to implement causal ordering. In

ACM Transactions on Computer Systems, Vol 9, No 3, August 1991.

314 . K Birman et al.

Proceedings of the 3rd International Workshop on DwtrLbuted Algor~thms, Lecture Notes on

Computer Science 392, Springer-Verlag, New York, 1989, pp. 219-232.

26 SCHMUCK, F, The use of efficient broadcast primitives in asynchronous distributed systems.

PhD thesis, Cornell Univ., 1988,

27. SRIKANTH, T. K., AND TOUEG, S. Optimal clock synchromzatlon. J. ACM 34, 3 (July 1987),

626-645.

28 STEPHENSON, P. Fast causal rnulticast, PhD thesis, Cornell Univ., Feb. 1991.

29, VERiSSIMO, P., RODRIGUES, L., AND BAPTISTA, M. Amp: A highly parallel atomic multlcast

protocol. In Proceedings of the Symposium on Commun zcations Architectures & Protocols

(Austin, Tex., Sept 1989). ACM, New York, 1989, 83-93.

30. WALKER, B., POPEK, G., ENGLISH, R., KLINE, C., AND THIEL, G. The LOCUS distributed

operating system. In proceedings of the Ninth ACM Symposmm on Operatzng Systems

Principles (Bretton Woods, N H , Ott 1983), pp. 49-70

Received April 1990; revised April 1991; accepted May 1991

ACM Transactions on Computer Systems, Vol. 9, No 3, August 1991

