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  Abstract 

 In this paper we study deliberate attacks on the infrastructure of large scale-free 

networks. These attacks are based on the importance of individual vertices in 

the network in order to be successful, and the concept of centrality (originating 

from social science) has already been utilized in their study with success. Some 

measures of centrality however, as betweenness, have disadvantages that do 

not facilitate the research in this area. We show that with the aid of scale-free 

network characteristics such as the clustering coeffi cient we can get results that 

balance the current centrality measures, but also gain insight into the workings 

of these networks. 

 Copyright © 2006 S. Karger AG, Basel 

   Published online: August 25, 2006   

 DOI: 10.1159/000094196 

Fax +41 61 306 12 34

E-Mail karger@karger.ch

www.karger.com

 Accessible online at:

www.karger.com/cpu 

 Simplexus 

 Networks are all around us, from the 
natural networks of human society and 
those of biological systems to the World 
Wide Web. The shared characteristics of 
such large ‘scale-free’ networks, natural or 
artifi cial, is a hierarchical structure in the 
connection of vertices in the network, 
which can number in their billions when 
considering people or web pages. Sociolo-
gists, biologists, and computer scientists 
hoping to understand networks need to 
fi nd out how vertices are related, what ef-
fect changes to the vertices and their con-
nections can have on the network, and how 
such networks evolve. 

 Commercial concerns and the security 
services also have a vested interest in un-
derstanding networks. At the functional 
level, a better understanding of a network 
should provide alternative ways to index 
and mine information in the network, 
while a robust network theory could im-
prove protection from malware-like vi-
ruses and worms, hackers, and cyberter-
rorism. 

 In this paper, Georgiadis and Kirousis 
have focused on how deliberate attacks 
might affect the infrastructure of large 
scale-free networks. They explain that the 
success of such attacks is often based on 
the importance of individual vertices in a 
network. To understand how a network 
might be attacked, they considered specifi c 
mathematical characteristics of scale-free 
networks, such as the ‘clustering coeffi -
cient’. This is a measure of how many con-
nections there are between each vertex and 
its nearest and next nearest neighbours. 
Their results not only support earlier stud-
ies of the concept of network centrality, ad-
opted from social science, but also provide 
new insights into how networks function. 
They explain that knowledge of which ver-
tices in a network to protect is vital to pre-
venting a network from being destroyed. 

 A network is defi ned as a system con-
sisting of different objects or entities, 
whether hormonal glands, people, or web 
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 1 Introduction 

 Recently there has been an increase of 
interest in many natural and artifi cial 
large-scale networks. For example, it is es-
timated that the network of web pages cur-
rently consists of several billions of verti-
ces  [1] . Many companies owning a search 
engine would like to know the specifi c 
characteristics of this network for purpos-
es of page indexing and maybe to predict, 
up to a point, its future behaviour. In gen-
eral, a network consists of objects, of dif-
ferent kinds in each area of interest, which 
are represented by vertices, and connec-
tions between them, represented by edges. 
Many theoretical results exist due to the 
graph theory of discrete mathematics, 
which handles such objects. This kind of 
modelling is possible for a variety of large-
scale networks, both naturally occurring 
and artifi cial, such as networks of acquain-
tances, citation, food chains, infections, 
proteins  [2–7]  or networks of power grids, 
internet infrastructure, web pages, and so 
on  [8–14] . 

 Especially in the case of social networks 
of any kind, they have been studied by sci-
entists in social sciences for quite a while, 
with methods such as questionnaires and 
personal interviews. One persistent ques-
tion was that of the centrality of an indi-
vidual in such a network or how well ‘con-
nected’ this person is in his environment. 
For example, a measure of this connectiv-
ity is the degree of a vertex, that is the num-
ber of its immediate neighbours. The size 
of these kinds of networks is in the order 
of several tens or in some cases several 
hundreds of vertices and so the research is 
not directly applicable to the large net-
works arising today, mainly technological. 
This is just one of the problems scientists 
face with the large-scale networks. 

 Another problem is the nature of these 
networks. The most prominent model in 
graph theory until recently has been the 
random graph model introduced by Erdős 
and Rényi  [15] . In this model, any two ver-
tices have an equal probability to be con-

pages. These entities are the network’s ver-
tices and the connections between them, 
blood vessels, communication channels, or 
hyperlinks, are the ‘edges’, respectively. For 
any given network, the number of vertices 
is essentially only limited by resources, but 
the complexity and functionality of a net-
work is due not to the number of vertices, 
but to the connections between them. 

 The human brain would be nothing 
more than a grey mass of nerve cells were 
it not for the billions upon billions of dif-
ferent ways the nerve cells can connect. 
Similarly, the web would be nothing more 
than inaccessible cyberjunk were it not for 
the hyperlink connections between its bil-
lions of isolated web pages.  

 For the social scientist then, it is a rela-
tively straightforward matter to garner in-
formation about a network, albeit within 
the limitations of questionnaires and per-
sonal interviews. One perennially impor-
tant characteristic of social networks con-
cerns the centrality of a person – their con-
nections, in other words. It is, for instance, 
likely that the professorial chair of a re-
search department will be a more connect-
ed individual than a lowly undergraduate 
researcher. Finding the vertex degrees of all 
vertices is relatively easy, in all cases. Social 
science research is not applicable in large 
scale-free networks, however, because the 
methods it uses are too time consuming. 
This fact has no impact on studying social 
networks with hundreds of vertices, but 
makes such methods inapplicable to net-
works, such as the web, which have billions 
of nodes. At present, there is no way to map 
such networks, so shortcuts to understand-
ing are essential. 

 According to Georgiadis and Kirousis, 
there have been numerous theoretical 
studies that have attempted to apply the 
graph theory of discrete mathematics to 
handle vertices and their associated edges. 
Graph theory is rather effective in model-
ling a variety of large scale-free networks, 
such as networks of family, friends, and ac-
quaintances, food chains, the spread of in-

nected by an edge. This model is very well 
studied and many results exist on it, but 
unfortunately it does not describe our ob-
servations in real-world networks. In many 
real-world networks there exists a percent 
of vertices that appear to be better con-
nected to the rest of the vertices. Further-
more, during the network growth, they 
gain easier connections and certainly not 
with equal probability to the other vertices. 
One of the unique characteristics of these 
networks, that distinguishes them from 
previously studied networks, is the power 
law form of the distribution of the vertex 
degrees. 

 In this study we address the problem of 
network attack. We assume the existence of 
an adversary that wants to harm a network, 
by directly attacking and removing the 
vertices comprising it. He has the ability to 
measure some variables of the network in 
order to make educated guesses as to which 
vertex should be targeted next. In our ex-
periments we measure the effi ciency of 
strategies based on such measures as to the 
computational time needed to target a ver-
tex on the specifi c network and the end re-
sult after the attack. We care about mea-
sures that produce most harm with little 
effort. The strategies we are using will be 
based on the centrality measures taken 
from traditional social network research. 

 In this paper we take into account previ-
ous similar studies and we compare our 
fi ndings with theirs. We propose an attack 
strategy that is a trade-off between worst 
and best strategy so far and has signifi cant 
and unique advantages. We also offer in-
sight into the workings in power law graphs 
and indicate future research areas. 

 The paper is organized as follows. In 
section 2 we review the fundamental con-
cepts needed in our study, along with a sep-
arate discussion of the most widely used 
measures of centrality. In section 3 we in-
troduce the use of centrality measures as 
attack strategies. Our experiments can be 
found in section 4 along with our analysis 
of the results. 
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fection, the systems of proteins in an or-
ganism, global power grids, and the infra-
structure of the internet and the web. 

 This is not the only issue that research-
ers must address to gain a better under-
standing of large scale-free networks. 
There is no reason, after all, why the seem-
ingly badly connected undergraduate 
could not meet other well-connected peo-
ple through the Professor’s contacts, clubs, 
family, or indeed any of dozens of possible 
routes. That said, certain people, presi-
dents, celebrities, even professors, tend to 
accumulate more connections to other 
well-connected people at a faster rate than 
lowly undergraduates. Similarly, the verti-
ces in a technological network are not all 
created equal. Of those billions of web pag-
es, there are perhaps a few thousand, if not 
just a few hundred that attract the most 
visitors because there are many, many edg-
es pointing to them from countless other 
pages. An undergraduate’s personal re-
sume page is very unlikely to become as big 
a hub of interest as the Professor’s depart-
mental page. The student’s friends might 
link to the resume page, but there will be 
far more students, university directory, ex-
ternal research sites and organizations that 
link to a Professor’s page. 

 On an even larger scale, web sites such 
Amazon and Google, and big league uni-
versity sites inevitably have many edges 
connected to countless pages and so are 
key hubs. Georgiadis and Kirousis empha-
size that this clustering of edges around a 
small number of hubs is common to many 
real-world networks. The effect is magni-
fi ed during network growth as the ‘hubs’ 
attract more edges simply because of their 
prominence, whether that is deserved or 
not. The same can be said of professors, of 
course, and other biological systems; con-
sider the tree-like structure of blood ves-
sels, neural pathways, and indeed trees. 

 In order to best protect such networks 
from physical or ‘cyber’-attack, we need a 
clearer model and Georgiadis and Kirousis 
hope to provide just such a solution. They 

 2 Fundamental Concepts and 

Defi nitions 

 In this section we defi ne the graph-re-
lated concepts that we will use in our ex-
periments and analysis, along with the 
main notions of centrality that are of inter-
est to us. 

 2.1 Graph-Related Concepts 

 Throughout this paper we represent a 
network as an undirected, unweighted 
graph  G ( V ,  E ), where  V  is the set of verti-
ces (i.e. computers) and  E  is the set of edg-
es (i.e. communication links). Their sizes 
are    |V|  u  =  n  and  u  |E  |  =  m , respectively. 
The degree  k  v  of a vertex  v  is the number 
of edges originating from or ending in ver-
tex  v . We are interested only in graphs gen-
erated by the preferential attachment pro-
cedure, fi rst proposed by Barabási and Al-
bert  [16] , which we will briefl y describe 
here. The iterative creation process con-
sists of 4 steps: 

  Step 0:  Initially the graph has  n  0  verti-
ces and no edges. 

  Step 1:  Add a new vertex  v  to the 
graph. 

  Step 2:  Create  l  edges, each time con-
necting the new vertex  v  to a vertex  w , with 
probability proportional to the degree of 
this vertex: 

pw =

kw∑

u∈V

ku

  Step 3:  Repeat steps 1 and 2 for ( n  –  n  0 ) 
rounds. 

 The end result of this procedure is a 
graph of  n  vertices and  m ( n  –  n  0 ) edges, 
with vertex degree distribution  P ( k ) that 
follows a power law, with exponent   �   = 3 
( P ( k )� k  –  3 ). We call such a graph a Barabá-
si-Albert network or BA network for short. 
Of course there are many models with cre-
ational procedures that generate graphs 
with power law degree distributions (like 
Watts ‘small worlds’  [17, 18] ), but we feel 
that the classical preferential attachment 
model describes complex network genera-
tion in a more general way. Other than that, 

our specifi c results may differ in other 
models but the essence of our insights 
should still apply. 

 Other concepts that are used are that of 
the 1-neighbourhood and 2-neighbour-
hood of a vertex. Having a vertex  v  as a cen-
tre, its 1-neighbourhood  �  1  ( v ) consists of 
all vertices at distance 1, i.e. its direct 
neighbours. Such neighbours will from 
now on be called fi rst-neighbours and of 
course it holds that    | �  1  ( v )|    =  k  v . Similarly, 
the 2-neighbourhood of a vertex  v  consists 
of all vertices at a distance of exactly 2 
(from now on second-neighbours) and it 
holds that 

|Γ2 (v)| ≤
∑

w∈Γ1(v)

kw.

The inequality in the above expression 
stands for the fact that some fi rst-neigh-
bours of  v  may have common neighbours, 
thus limiting the number of (unique) ver-
tices in  �  2  ( v ). This phenomenon is called 
 clustering   [13, 19, 20]  and is not only 
possible but characteristic of power law 
graphs. This relation between a vertex and 
its fi rst- and second-neighbours leads to 
the emergence of several structures in the 
graph, the most common of which is the 
triangle. In a triangle, three vertices are 
joined by three edges, one for each pair of 
vertices. The existence of triangles is char-
acteristic of a power law graph, and it is 
this feature that makes them so popular in 
different disciplines: for example, in social 
science, two of one’s friends have a greater 
probability of knowing each other than 
two random-picked strangers. 

 2.2 Standard Centrality Measures 

 2.2.1 Degree Centrality 

 The degree centrality measure gives the 
highest score of infl uence to the vertex 
with the largest number of fi rst-neigh-
bours. This agrees with the intuitive way to 
estimate someone’s infl uence from the size 
of his immediate environment. The degree 
centrality is traditionally defi ned analo-
gous to the degree of a vertex, normalized 



150  Complexus 2006;3:147–157   Lightweight Centrality Measures in Networks under Attack  

over the maximum number of neighbours 
this vertex could have. Thus, in a network 
of  n  vertices, the degree centrality of vertex 
 i ,  C  D  i , is defi ned as: 

CD

i =
ki

n− 1

 The normalization in the region [0, 1] is 
used here to make the centrality of differ-
ent vertices comparable, and also indepen-
dent of the size of the network. 

 2.2.2 Closeness Centrality 

 This notion of centrality focuses on the 
idea of communication between different 
vertices. The vertex which is ‘closer’ to all 
vertices gets the highest score. In effect, 
this measure indicates which one of two 
vertices needs fewer steps in order to com-
municate with some other vertex. Because 
this measure is defi ned as ‘closeness’, the 
inverse of the mean distance of a vertex 
from all others is used. Hence, if  C C 

 i    is the 
closeness centrality, and  d  ij  the shortest 
distance between vertices  i  and  j  in terms 
of edge steps: 

C
C
i =

n− 1
∑

j∈V

dij

 Again, this measure is normalized in the 
region [0, 1]. Additionally, it should be stat-
ed that the distance between two discon-
nected vertices must be a predefi ned very 
large value and not infi nite, if it is desirable 
to discern among low closeness scores. 

 2.2.3 Betweenness Centrality 

 Betweenness centrality refi nes the con-
cept of communication, introduced in 
closeness centrality. Informally, between-
ness centrality of a vertex can be defi ned 
as the percent of shortest paths connecting 
any two vertices that pass through that ver-
tex. The normalized version divides this 
value with the maximum possible be-
tweenness centrality, that is all possible 
shortest paths in a completely connected 
graph. If  C  B  i  is the betweenness centrality 

make the basic assumption that an attack-
er wishing to compromise a network would 
focus on fi rst disabling the vertices. The 
aim would be to cause the most harm with 
the least effort, so the researchers consider 
two variables: the computational time 
needed to target a vertex and the end result 
of the attack. The net result of their study, 
in the best tradition of ‘forewarned is fore-
armed’, reveals an attack strategy that is a 
trade-off between the worst and best strat-
egies seen so far. This strategy, however, 
has what they describe as signifi cant and 
unique advantages. 

 The researchers looked at three novel 
strategies in network attack and compared 
them with two traditional approaches, de-
gree and betweeness centrality. ‘Betwee-
ness’ measures the centrality of a vertex 
very effi ciently, but relies on knowing all 
the network’s shortest paths. This is practi-
cally impossible to determine for a net-
work such as the web. In contrast, the strat-
egies proposed by Georgiadis and Kirousis 
require only local information, i.e. the 1- or 
2-neighbourhood (the external/internal 
links of a web page), which takes far less 
time and effort to compute. 

 The search for an attack strategy funda-
mentally involves fi nding those vertices 
that are most important to the network and 
without which the network might cease to 
function as an holistic system. A random 
attack has previously been shown to have 
little impact on a large scale-free network, 
as one might expect. A research depart-
ment will not close because a random stu-
dent or staff member is absent. Moreover, 
with a random attack there is more chance 
of each strike hitting a lesser vertex simply 
because there are more of them. 

 Instead, attackers could use different 
ways to measure the ‘importance’ of a ver-
tex based on its connectedness and exploit 
this in a more destructive approach. The 
researchers suggest that a different, yet 
equally or even more destructive, deletion 
of vertices can be made, in less time with 
less information to hand. Target the Profes-

of vertex  i , ( u ,  i ,  v ) is the set of all shortest 
paths between vertices  u  and  v  passing 
through vertex  i  and ( u ,  v ) is the set of all 
shortest paths between vertices  u  and  v , 
then: 

C
B
i =

∑

u∈V

∑

v �=u∈V

|(u,i,v)|
|(u,v)|

(n − 1) (n − 2)

 This defi nition of centrality explores the 
ability of a vertex to be ‘irreplaceable’ in the 
communications of two random vertices. 
It is of particular interest in the study of 
network attacks, because at any given time 
the removal of the maximum betwenness 
vertex seems to cause maximum damage 
in terms of connectivity and mean dis-
tance in the network. Its main disadvan-
tage is that the summation operator practi-
cally means that it needs global informa-
tion about the network, in order to compute 
the betweenness of a single vertex, and that 
is simply not possible in many contexts. 
For the same reason it is expensive in com-
puting time to compute the score of a ver-
tex, although this disadvantage was signif-
icantly improved recently  [21, 22] . The im-
portance of betweenness centrality as an 
attack strategy is further discussed below. 

 3 Centrality Measures as 

Attack Strategies 

 It has been shown in the past that the 
‘random vertex hit’ strategy performs 
poorly  [23, 24] , due to the hierarchical ef-
fect these networks present, i.e. a random 
vertex has an increased probability to be 
one of the less connected vertices, since 
there are so many of them. So it is desirable 
to use a strategy that achieves better re-
sults, and such strategies could be based 
upon a vertex measure that can profi le the 
potential of each vertex by its value only. A 
number of publications exist  [23–27] , ad-
dressing the question of which strategy is 
best in achieving maximum destructive 
results with less vertex hits, the most ex-
tensive of which, to our knowledge, is that 
by Holme et al.  [23] . Summarizing the re-
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sor’s offi ce and personal assistant though 
and the departmental network could be 
crippled. 

 Their fi rst strategy uses a measure of 
vertex importance known as ‘the edge de-
gree’. A formal defi nition of edge degree 
does not yet exist. So the researchers have 
produced their own formula which defi nes 
it as the product of the number of edges at 
two connected vertexes. If vertex V has 30 
links to other vertices and is connected to 
vertex Y which has 25, then the edge degree 
is 750. This strategy then chooses to attack 
vertices with the greater edge degree based 
on the immediate neighbourhood and is 
referred to as the ‘1-neighbourhood edge 
degree’ strategy. 

 The second attack strategy defi nes edge 
degree as the product of edges within two 
‘neighbourhoods’. So, the approach in-
volves attacking the edge with highest de-
gree and then the endpoint vertex with 
maximum degree. 

 Finally, the third most sophisticated 
strategy uses the 2-neighbourhood edge 
but penalizes ‘triangles’ of connectivity, if 
vertex V is connected to Y and Y is connect-
ed to Z, which in turn is connected to Z, and 
then this reduces the score. To compensate 
for their presence the 2-neighbourhood 
edge degree is divided by the number of 
triangles plus one. 

 The researchers then applied their strat-
egies to experimental networks with 1,500 
vertices and found that each of the three 
emerged as easy to implement, low in com-
putational cost, but effi cient in causing 
harm to the network compared with ear-
lier strategies. 

 Thankfully, a potentially devastating at-
tack within the web is not easy, and would 
probably not have much impact. On the 
other hand, attacking the physical infra-
structure of the internet might be used in 
times of war to isolate a specifi c country of 
the informational highway, or by terrorists 
to wreak havoc. 

  David Bradley   of Sciencebase.com

sults, the comparison is based upon two 
axes: different strategies and recalculation 
of measures. The different strategies stud-
ied are vertex deletion based upon degree 
centrality scores and upon betweenness 
centrality scores, and it is clearly shown 
that betweenness produces better results. 
The recalculation of the involved measures 
refers to the recalculation of degree/be-
tweenness centrality after each vertex de-
letion. 

 In this section we introduce a strategy 
that balances the advantages and disad-
vantages of the above-mentioned strate-
gies. We will not study the closeness cen-
trality, as it has the same basic fl aws as be-
tweenness and none of its advantages. 
Furthermore, we focus on the recalculated 
versions, since the distribution of these 
measures may vary signifi cantly between 
deletions. 

 3.1 How to Measure Destructive 

Power? 

 We are interested in the destruction of 
the network under consideration. Ideally 
that would mean the isolation of each ver-
tex, but it can be argued that it is enough to 
break the network into a suffi ciently large 
number of connected components. We 
chose to examine only the size of the larg-
est component, as a particularly small larg-
est component would mean that the net-
work has degenerated into many small 
connected components. Additionally, we 
can measure directly the impact of vertex 
deletions in the hierarchical structure by 
examining what happens to the largest 
component: a successful attack would 
probably target this component and shrink 
its size dramatically. Another reason is that 
this technique has been used successfully 
during previous studies  [23] , and its use 
will make our results directly comparable. 
We specifi cally use a normalization over 
the largest component size with the initial 
network size, in order to produce a per-
centage comparable between different size 
networks. 

 Since we start with a connected net-
work, it would take some time before it be-
comes disconnected, and during that time 
the size of the largest component would not 
carry signifi cant information. Thus, in ad-
dition to the largest component size, we use 
the mean shortest path length of the net-
work, and specifi cally its mean inverse. The 
mean shortest path length is the mean 
length of all shortest paths in the network, 
between all pairs of vertices. If by  d  uv  we 
denote the length of the shortest path be-
tween vertices  u  and  v , then the mean 
shortest path length  l , in a network of  n  
vertices, is 

l =

∑

u∈V

∑

v �=u∈V

duv

n (n− 1)
.

 The mean inverse of shortest path 
length  l  –1  is defi ned as 

l−1 =

∑

u∈V

∑

v �=u∈V

1

duv

n (n− 1)

 In practice we use the mean inverse of 
shortest path length because by doing that 
we nullify the effects of disconnected ver-
tices and their ‘infi nite’ distance. An in-
creasing mean value of this measure means 
that average distances in the network are 
increasing, and this subsequently means 
that the attack in the network produces 
quantifi able, destructive results. Clearly, 
since we use the mean inverse of this mea-
sure, we expect it to decrease with time. 

 3.2 Standard Centrality Measures 

Explained 

 As already mentioned, the random ver-
tex hit strategy has practically no effect on 
the network’s integrity, and that is because 
it cannot take into consideration its hierar-
chical structure. This is exactly where a de-
gree-based attack succeeds. By targeting 
the highest-degree vertices fi rst, it attacks 
directly the global network connectivity. It 
must be pointed out that not all properties 
of Barabási-Albert networks are known. 
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Initially it was believed that high-degree 
vertices were connected with other high-
degree vertices preferably over lower-de-
gree vertices (assortative mixing)  [28] . Re-
cent studies  [29]  show that Barabási-Al-
bert networks are rather neutral on this 
property, and in some cases even show the 
opposite behaviour (disassortative mix-
ing), i.e. high-degree vertices prefer lower-
degree vertices to connect to. We believe 
this observation can explain the success, 
albeit partial, of this strategy, as in the dis-
assortative mixing the deletion of the high-
est-degree vertex would affect many verti-
ces: but since this is not a predominant 
phenomenon the effectiveness of this 
strategy would be limited. 

 On the other hand, the betweenness-
based strategy seems ideal, especially with 
the performance metrics used (mean 
shortest path length, largest component 
size). By defi nition, the betweenness mea-
sures the ability of a vertex to be irreplace-
able in shortest paths throughout the net-
work. So when this vertex is removed, in-
evitably all shortest paths that depended 
on it will also be removed, and equally long 
or longer paths would take their place. This 
has an obvious impact in the mean short-
est path length, which is constantly non-
decreasing, at least as long as a unique gi-
ant component exists. Such high between-
ness vertices, which connect many others 
with shortest paths, would be initially lo-
cated in the largest component as most 
vertices would be located there. Therefore, 
the failure of these paths also affects the 
largest component size, since multiple fail-
ures may produce disconnected vertices. 
Similar arguments can be used with the 
closeness centrality. 

 3.3 Proposed Strategies 

 We propose a family of strategies based, 
in part, on edge degree. Although a formal 
defi nition of edge degree does not exist, we 
experimented with several possible defi ni-
tions, all based on vertex degree. Specifi -
cally, an edge’s degree has some connection 

with the endpoint vertices of this edge. As 
was the case in Holme et al.  [23]  we settled 
with the edge degree being the product of 
the degrees of the endpoint vertices, as it 
followed closely our intuition on the im-
portance of edges. If  e  = ( w ,  u ), an edge 
with endpoints  w  and  u , having degrees  k  w  
and  k  u , respectively, its edge degree k�

e
1 is 

defi ned as: 

k
Γ1

e
= kw · ku

 The fi rst strategy which uses the edge de-
gree to select vertices does so by fi rst se-
lecting the edge with maximum degree, 
and then the vertex of this edge with max-
imum (vertex) degree. In case of multiple 
edges/vertices with the same (maximum) 
degree, we chose uniformly at random. 
Note that this strategy examines the im-
mediate neighbourhood of each endpoint 
vertex, and scores higher edges having 
endpoints with large 1-neighbourhoods. 
From now on we will refer to this strategy 
as ‘1-neighbourhood edge degree’ strat-
egy. 

 The second strategy defi nes edge de-
gree as the product of the 2-neighbour-
hoods of its endpoint vertices. This 2-
neighbourhood edge degree  k�

e
2    of an edge 

 e  = ( w ,  u ) is defi ned formally as: 

kΓ2

e =

∑

i∈Γ1(w)

ki ·

∑

j∈Γ1(u)

kj

 The vertex selection is exactly the same as 
before: choose the edge with maximum de-
gree and then the endpoint vertex with 
maximum degree. We will refer to this 
strategy as ‘2-neighbourhood edge degree’ 
strategy. 

 The third proposed strategy is based on 
the ‘2-neighbourhood edge degree’, as de-
fi ned above. The main difference is that it 
penalizes the existence of triangles in 
which the edge is present. Specifi cally, it di-
vides the above computed edge degree by 
the number of triangles that this edge par-
ticipates in plus one to avoid division by 

zero. Thus, if  T  is the number of triangles 
involving the edge in question as a side of 
the triangle, the formal defi nition of the al-
ternative edge degree is: 

K
Γ2

e =

∑

i∈Γ2(w)

ki ·

∑

j∈Γ2(u)

kj

T + 1

 We refer to this strategy as ‘2-neighbour-
hood edge degree with penalty’. 

 4 Experiments 

 For the experiments we used networks 
of 1,500 vertices, created by the BA proce-
dure mentioned in section 2. The param-
eters of importance are the size of the ini-
tial network (before the procedure starts 
adding vertices) and the degree of each 
added vertex. We used degree 5 for each 
new vertex and we kept the initial network 
small, consisting of 5 vertices connected 
with random edges. Each edge between 
two vertices had 0.5 probability of existing, 
so as to differentiate the vertices for the 
growing procedure. We intentionally kept 
the initial network small because larger 
(initial) networks create larger gaps be-
tween high-degree and low-degree verti-
ces during the network growth. As a result, 
highly central vertices are fewer and more 
easily recognizable by any targeting strat-
egy and are diminished quickly, leaving no 
time for the various strategies to produce 
different results. 

 The results are shown in  fi gures 1–4 . 
The inverse mean shortest path length, the 
size of the largest component and the clus-
tering coeffi cient are measured after each 
vertex deletion and shown in separate il-
lustrations. For each of these parameters, 
fi ve different data sets exist, correspond-
ing to the fi ve strategies under study 
(highest degree, betweenness, 1-neigh-
bourhood edge degree, 2-neighbourhood 
edge degree and 2-neighbourhood edge 
degree with penalty). Their values at each 
deletion step are the average of 50 experi-
ments with different networks of 1,500 
vertices. Of the monitoring parameters, 
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the easiest to read is the size of the largest 
component and its transition is shown in 
magnifi cation in  fi gure 3 . It is easy to see 
the relation between the various strate-
gies, as each one, having done preliminary 
work, performs better or worse than the 
others during the transition. 

 4.1 Drilling into Experimental 

Results 

 The inverse mean shortest path length 
initially declines, meaning that distances 
inside the network begin to grow in gen-
eral. At some point this trend is reversed 
because during the deletion process the 
connected components become quite 
small and the distances inside them are 
even smaller than in the initial network. 
Thus, the inverse length continues to in-
crease as connected components are cut 
into smaller pieces and this continues until 
they stop breaking up. At this point the in-
verse length is at its maximum value and 
almost all signifi cant vertices are gone, as 
subsequent deletions leave the compo-
nents at roughly the same size. From this 
maximum point on, the network continues 
to shrink at an almost constant rate. The 
fi ve strategies differ mainly in their ability 
to break the already small connected 
 components into even smaller ones, lead-
ing to higher maximum points, as shown 
in   fi gure 1 . 

 The size of the largest component is a 
more straightforward measure. After each 
deletion the size of a component is reduced 
by one and, at least initially, the deleted ver-
tex is selected from the largest component. 
As more ‘central’ vertices are deleted, criti-
cal paths collapse and the largest compo-
nent breaks into smaller pieces.  Figure 2  
shows clearly that there is an early stage 
where the strategies built up tensions by 
deleting important vertices, a transition 
phase where very important vertices are 
gone and each deletion breaks the largest 
component into small pieces, followed by a 
slow shrinking of the largest component. 
The transition phase is where the various 

Fig. 2.  Size of largest connected component shown as percent of the initial size, 
as vertices are sequentially deleted. The results are the average of 50 experiments 
with networks of 1,500 vertices

Fig. 1.  Inverse mean shortest path length shown as percent of the initial length, 
as vertices are sequentially deleted. The results are the average of 50 experiments 
with networks of 1,500 vertices. 



154  Complexus 2006;3:147–157   Lightweight Centrality Measures in Networks under Attack  

strategies compete, and betweenness is 
most successful in making the transition 
in fewer deletions. However, comparable to 
the degree strategy which performs poorly, 
our proposed strategies bridge the gap 
with betweenness by up to 23, 29 and 55% 
for 1-neighbourhood, 2-neighbourhood 
and 2-neighbourhood with penalty edge 
degree, respectively. 

 The clustering coeffi cient during the 
early stage is decreasing by orders of 
 magnitude, meaning that the deleted 
 vertices, tagged as central by the various 
strategies, contribute greatly to the global 
clustering coeffi cient ( fi g. 4 ). During the 
transition phase it appears to be fl uctuat-
ing due to the shrinking of the largest 
component and the increase in the num-
ber of components, and in the last phase 
it is completely wiped out as triangles do 
practically not exist. The betweenness 
stands out, since during the transition 
phase it creates a seesaw effect on the 
 clustering coeffi cient, never destroying all 
triangles in the connected components. 
Although we have no solid evidence, we 
feel that this observation is the key to 
 understanding the role and the success of 
betweenness, and to replicate its behav-
iour in other measures. 

 In order to understand why the pro-
posed strategies work as they do, we focus 
on a high-degree edge and examine its spe-
cifi c characteristics ( fi g. 5 ). Just by looking 
at the high-degree edge alone, one can ar-
gue that it connects high-degree vertices; 
therefore, it is important for the communi-
cation of ( k  w  – 1) vertices (at the one end-
point) with another ( k  u  – 1) vertices (at the 
other endpoint). So its deletion alone 
would probably affect many vertices and 
the distances between them. As for the 
highest-degree endpoint (which will even-
tually be deleted), one must keep in mind 
that high-degree vertices do not usually 
connect to other high-degree vertices. On 
one hand, deleting high-degree vertices is 
a strategy successful enough on its own 
(see degree centrality strategy), but with 

Fig. 3.  Size of largest connected component shown as percent of the initial 
size, as vertices are sequentially deleted. Detail of the transition. 

  Fig. 4.  Clustering coeffi cient of network, as vertices are sequentially deleted. The 
results are the average of 50 experiments with networks of 1,500 vertices. 
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maximum edge degree we ensure that the 
high-degree vertex to be deleted will be 
connected to the highest possible degree 
vertex (given it is not a common phenom-
enon) and the deletion will affect a greater 
number of vertices. On the other hand, 
since high-degree vertices do not connect 
often, this fi lter adequately differentiates 
otherwise equal vertices (i.e. when degree 
centrality is used). 

 The 2-neighbourhood edge degree 
strategy operates in a similar way. The 
same arguments as above are still valid 
here, i.e. a high-degree edge connects more 
vertices than a low-degree one. The main 
difference is that we are now talking about 
vertices that are part of the 2-neighbour-

hood of the one endpoint vertex which 
connect with the vertices of the 2-neigh-
bourhood of the other endpoint vertex. 
This may be more reliable than the 1-
neighbourhood of the endpoints since a 
light disassortative mixing seems to exist. 
This means that high-degree vertices con-
nect to lower-degree ones, thus their infl u-
ence dies out quickly as we move further 
from their centre. By using 2-neighbour-
hoods we favour vertices whose infl uence 
two steps away is still strong. The downside 
of this strategy is its slightly larger compu-
tational load compared to the 1-neigh-
bourhood edge degree, but this is still far 
from that of betweenness centrality. Fur-
thermore, it uses semilocal information for 

its computation, which, we estimate, should 
not be a problem in most practical uses. 

 The mechanism behind the alternative 
2-neighbourhood edge degree strategy is 
somewhat different. Obviously the same 
arguments of the two previous strategies 
are still valid here. An instance that is han-
dled differently is shown in  fi gure 6 . Nor-
mally the 2-neighbourhood edge degree of 
this edge would be 

∑

i∈Γ2(w)

ki ·

∑

j∈Γ2(u)

kj

 but since it participates in a triangle due to 
the common neighbour of both endpoint 
vertices, this edge degree is divided by 2. 
Thus edges that connect two ‘smaller’ ver-
tices in terms of 2-neighbourhoods can 
have a larger edge degree and be selected 
instead. The situation is even worse if the 
edge participates in more triangles, as in 
 fi gure 7 , for its edge degree would be even 
smaller. The edge degree can gradually in-
crease, if vertices comprising the triangles 
get selected for the deletion process, and 
the triangles collapse. 

 This edge degree with penalty measures 
the size of two 2-neighbourhood connect-
ing through one edge, as was the case in the 
previous 2-neighbourhood edge degree. 
But it also considers the importance of al-
ternative paths between these two 2-neigh-
bourhoods. There is no doubt that select-
ing one endpoint of an edge participating 
in many triangles will also destroy these 
triangles, but vertices connecting same 
size 2-neighbourhoods with no triangles 
are more important to the whole network, 
and this is expressed by this measure and 
verifi ed by our results.

 
 4.2 Algorithm Complexities 

  Theorem 1 . The worst case time com-
plexities of the proposed strategies are 
O ( m), O (m ��n) and O (mn)   for 
1-neighbourhood, 2-neighbourhood and 
2-neighbourhood with penalty edge de-
grees, respectively. Furthermore the aver-

  Fig. 5.  1-neighbourhoods of two connected vertices. 

  Fig. 6.  2-neighbourhoods of two connected vertices. 

  Fig. 7.  2-neighbourhoods of two connected vertices with triangles. 
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age case time complexity is  O ( m ) for all 
strategies. 

  Proof.  The 1-neighbourhood edge de-
gree just multiplies two integers, namely 
the vertex degrees of the edge endpoints, 
for all edges. The query of the degree of a 
vertice is an  O (1) operation in the LEDA 
environment we are using  [30] , so the total 
cost of computing 1-neighbourhood edge 
degree for all edges is  O ( m ) in any case. 

 The 2-neighbourhood edge degree que-
ries for each endpoint vertex, the vertex de-
gree of all its neighbours and sums it up, 
multiplying the two endpoint sums, and 
does this for all edges. The iteration of all 
neighbouring vertices of a vertex has guar-
anteed asymptotic complexity on the num-
ber of actual neighbours. So in the worst 
case, this computation has  O ( mk  max ) 
complexity, where  k  max  is the maximum 
degree in the network. Specifi cally for the 
Barabási-Albert network there exists an 
analytic solution  [31]  for the degree  k  i ( t ) 
of a vertex  i  at time step  t , as 

ki (t) = l

√

t

ti
(4)

 where  l  is the number of edges per new ver-
tex and  t  i  is the time step when vertex  i  was 
added to the network. After  n  time steps 
the maximum degree in the network is 

kmax = O
(√

n
)

 And so the worst case time complexity is 

O (m
√

n).

 But since the mean degree in the network 
is  k = 2l  (as can easily be seen), the aver-
age case time complexity is  O ( m ). 
 The third strategy is computed as above, 
but for one endpoint of the edge, we scan 
its neighbour’s neighbour lists to fi nd the 
other endpoint (indicating the existence of 
triangles). So its worst case complexity is 
 O ( mk  max 

 2 ) and thus  O ( mn ). Similarly its 
average case complexity is  O ( m ). 

 5 Conclusions 

 We have studied three novel strategies 
in network attack and compared them 
with two traditional approaches, degree 
and betweeness centrality, both with its 
own merits and fl aws. These strategies 
have proven to be simple enough to imple-
ment, with low computational cost, and yet 
effi cient compared to the best strategy. In 
addition to their value as attack strategies, 
they can help to shed light on the inner 
workings of a power law network. One of 
the great diffi culties in their study is our 
ignorance as to what measures are impor-
tant to the behaviour of these networks. 
Our experiments link the degree-degree 
correlations among vertices with their cen-
trality in the network. Furthermore, to the 
extent of our knowledge, it is the fi rst time 
that the clustering effect is linked to the 
centrality of a vertex. Although we know 
this is responsible for the ‘denseness’ of 
power law networks, its exact role remains 
unclear. Our third strategy indicates that it 
plays a major role in conjunction with oth-
er phenomena, such as the degree-degree 
correlations. It would be of interest to study 
several models of networks, other than the 
BA model, that show documented assorta-
tive or disassortative behaviour and mod-
els that have known clustering coeffi cient 
distributions, in order to explore further 
these effects of our strategies. Further-
more, it is the subject of future research to 
determine whether the utilization of other 
network structures, similar to the triangles 
we are using in this study, will help bridge 
the gap between local strategies and global 
ones, as is betweenness. This development 
will not only help us to study larger net-
works but will also reveal the role of indi-
viduals in such a vast network. 

 

Acknowledgement 
 This research was partially supported by the EU 

within the 6th Framework Programme under con-
tract 001907 ‘Dynamically Evolving, Large Scale In-
formation Systems’ (DELIS) and was also partially 
supported by the European Social Fund (ESF), Op-
erational Program for Educational and Vocational 
Training II (EPEAEK II), and particularly the Pro-
gram  Pythagoras . 

 References 
  1 Baldi P, Frasconi P, Smyth P: Modeling the Internet 

and the Web: Probabilistic Methods and Algorithms. 
Chichester, Wiley, 2003. 

  2 Jeong H, Tombor B, Albert R, Oltvai N, Barabási A: 
The large-scale organization of metabolic networks. 
Nature 2000;   407:   651–654. 

  3 Liljeros F, Edling R, Amaral N, Stanley E, Aberg Y: 
The web of human sexual contacts. Nature 2001;   411:  
 907–908. 

  4 Mariolis P: Interlocking directorates and control of 
corporations: the theory of bank control. Soc Sci Q 
1975;   56:   425–439. 

  5 Pimm L: Food Webs, ed 2. Chicago, University of 
 Chicago Press, 2002. 

  6 Podani J, Oltvai N, Jeong H, Tombor B, Barabási A, 
Szathmáry E: Comparable system-level organization 
of archaea and eukaryotes. Nat Genet 2001;   29:   54–56. 

  7 Jones J, Handcock M: An assessment of preferential 
attachment as a mechanism for human sexual net-
work formation. Proc R Soc Lond B Biol Sci 2003;   270:  
 1123–1128. 

  8 Albert R, Jeong H, Barabási A: Diameter of the world 
wide web. Nature 1999;   401:   130–131. 

  9 Chen Q, Chang H, Govindan R, Jamin S, Shenker S, 
Willinge W: The origin of power laws in internet 
 topologies revisited. IEEE Infocom 2002, 2002. 

 10 Faloutsos M, Faloutsos P, Faloutsos C: On power-law 
relationships of the internet topology. SIGCOMM, 
1999, pp 251–262. 

 11 Huberman A: The Laws of the Web: Patterns in the 
Ecology of Information. Cambridge, MIT Press, 2001. 

 12 Lawrence S, Giles L: Searching the world wide Web. 
Science 1998;   280:   98–100. 

 13 Ravasz E, Barabási A: Hierarchical organization in 
complex networks. Phys Rev E Stat Nonlin Soft Matter 
Phys 2003;   67:   026112. 

 14 Watts J: A simple model of global cascades on 
random networks. Proc Natl Acad Sci USA 2002;   99:   
£5766–5771. 

 15 Erdős P, Rényi P: On random graphs. Publ Math 
 Debrecen 1959;   6:   290–291. 

 16 Barabási A, Albert R: Emergence of scaling in random 
networks. Science 1999;   286:   509–512. 

 17 Watts J, Strogatz H: Collective dynamics of  
‘small-world’ networks. Nature 1998;   393:   440–442. 

 18 Watts J: Small Worlds. Princeton, Princeton University 
Press, 1999. 

 19 Newman J: The structure and function of complex 
networks. SIAM Rev 2003;   45:   167–256. 



157 Complexus 2006;3:147–157  Georgiadis   /Kirousis   

 

 20 Bornholdt S, Schuster G: Handbook of Graphs and 
Networks.  Berlin , Wiley-VCH, 2002. 

 21 Brandes U: A faster algorithm for betweenness cen-
trality. J Math Sociol 2001;   25:   163–177. 

 22 Newman J: Scientifi c collaboration networks. ii. 
 Shortest paths, weighted networks, and centrality. 
Phys Rev E 2001;   64:   016132. 

 23 Holme P, Kim J, Yoon No, Han K: Attack vulnerability 
of complex networks. Phys Rev E 2002;   65:   056109. 

 24 Cohen R, Erez K, Ben-Avraham D, Havlin S: Resilience 
of the internet to random breakdowns. Phys Rev Lett 
2000;   85:   4626–4628. 

 25 Broder A, Kumar R, Maghoul F, Raghavan P, 
 Rajagopalan S, Stata R, Tomkins A, Wiener J: Graph 
structure in the web. Comput Networks 2000;   33:   309. 

 26 Callaway S, Newman J, Strogatz H, Watts J: Network 
robustness and fragility: percolation on random 
graphs. Phys Rev Lett 2000;   85:   5468–5471. 

 27 Cohen R, Erez K, Ben-Avraham D, Havlin S: 
 Breakdown of the internet under intentional attack. 
Phys Rev Lett 2001;   86:   3682–3685. 

 28 Krapivsky L, Redner S: Organization of growing 
 random networks. Phys Rev E 2001;   63:   066123. 

 29 Zhuang-Xiong H, Xin-Ran W, Han Z: Pair correlations 
in scale-free networks. Chin Phys 2004;   13:   273–278. 

 30 Mehlhorn K, Nahe S: LEDA: a Platform for 
 Combinatorial and Geometric Computing. Cambridge, 
Cambridge University Press, 2000. 

 31 Barabási A, Albert R, Jeong H: Mean-fi eld theory for 
scale-free random networks. Physica A 1999;   272:  
 173–187. 

  


