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Lightweight Ciphers and their Side-channel
Resilience

Annelie Heuser, Stjepan Picek, Sylvain Guilley, and Nele Mentens

Abstract—Side-channel attacks represent a powerful category of attacks against cryptographic devices. Still, side-channel analysis for

lightweight ciphers is much less investigated than for instance for AES. Although intuition may lead to the conclusion that lightweight

ciphers are weaker in terms of side-channel resistance, that remains to be confirmed and quantified. In this paper, we consider various

side-channel analysis metrics which should provide an insight on the resistance of lightweight ciphers against side-channel attacks. In

particular, for the non-profiled scenario we use the theoretical confusion coefficient and empirical optimal distinguisher. Our study

considers side-channel attacks on the first, the last, or both rounds simultaneously. Furthermore, we conduct a profiled side-channel

analysis using various machine learning attacks to recover 4-bit and 8-bit intermediate states of the cipher. Our results show that the

difference between AES and lightweight ciphers is smaller than one would expect, and even find scenarios in which lightweight ciphers

may be more resistant. Interestingly, we observe that the studied 4-bit S-boxes have a different side-channel resilience, while the

difference in the 8-bit ones is only theoretically present.

Index Terms—Side-channel analysis, lightweight ciphers, optimal distinguisher, confusion coefficient, success rate, machine learning

attacks.

✦

1 INTRODUCTION

With the advent of the Internet of Things, we are sur-
rounded with smart objects (aka things) that have the ability
to communicate with each other and with centralized re-
sources. The two most common and widely noticed artifacts
are RFID and Wireless Sensor Networks which are used
in supply-chain management, logistics, home automation,
surveillance, traffic control, medical monitoring, and many
more applications. Most of these applications have the
need for cryptographic secure components which inspired
research on cryptographic algorithms for constrained de-
vices. Accordingly, lightweight cryptography has been an
active research area over the last 10 years. A number of
innovative ciphers have been proposed in order to optimize
various performance criteria and have been subject to many
comparisons.

Furthermore, lightweight cryptography is also an en-
abler in forthcoming technologies, such as 5G communica-
tions and connected cars, which are expected to be deployed
in 2020 (e.g., corresponding, in Japan, to Tokyo Olympic
and Paralympic Games). Indeed, 5G specifications target
end-to-end security with < 1 ms latency, hence ultra-low
delay cryptographic primitives are needed. Besides, con-
nected cars shall interact with the infrastructure in both
an authenticated and timely manner: actually, an accident
can occur if a driving decision in delayed by more than
a few milliseconds. Therefore, lightweight cryptography is
expected to find industrial applications in the near future.
This is why secured (say, validated according to either
Common Criteria or FIPS 140) lightweight cryptography is
a topic of interest, which we address in depth in this paper.

In particular, the resistance against side-channel attacks
has been considered as an additional decision factor lately.
Side-channel attacks analyze physical leakage that is un-
intentionally emitted during cryptographic operations in a
device (e.g., power consumption [1], electromagnetic em-

anation [2]). This side-channel leakage is statistically de-
pendent on intermediate processed values involving the
secret key, which makes it possible to retrieve the secret
from the measured data. So-called profiled side-channel
distinguishers assume that the attacker is able to possess
an additional device to the one he wants to attack, and
on which he has the freedom of nearly full control. In this
advanced setting, Machine learning (ML) techniques have
shown to be effective in various scenarios (e.g., [3], [4]).

Side-channel analysis for lightweight ciphers is of par-
ticular interest not only because of the apparent lack of re-
search so far, but also because of the interesting properties of
S-boxes. Since the nonlinearity property for S-boxes usually
used in lightweight ciphers (i.e., 4 × 4) can be maximally
equal to 4, the difference between the input and the output
of an S-box is much smaller than for instance for AES [5].
Therefore, one could conclude that from that aspect, SCA
for lightweight ciphers must be more difficult. However,
the number of possible classes (e.g., Hamming weight (HW)
or key classes) is significantly lower, which may indicate
that (profiled) SCA must be easier than for standard ciphers.
Besides the difference in the number of classes and conse-
quently probabilities of correct classification, there is also a
huge time and space complexity advantage (for the attacker)
when dealing with lightweight ciphers.

1.1 Our Contributions

In this paper we give a detailed study of lightweight ciphers
in terms of side-channel resistance, in particular for software
implementations. As a point of exploitation we concentrate
on the non-linear operation (S-box) during the first round,
the last round, and both round simultanously (which is
particular interest the cipher uses the same key in the
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first and last round and the S-box is not involutive1). Our
comparison includes SPN ciphers with 4-bit S-boxes such as
KLEIN [6], Midori [7], Mysterion [8], LED [9], Piccolo [10],
PRESENT [11], PRIDE [12], PRINCE [13], RECTANGLE [14],
Skinny [15] as well as ciphers with 8-bit S-boxes: AES,
Zorro [16], Robin [17].

In the non-profiled scenario we investigate first the
relationship between different key hypotheses with the
confusion coefficient [18], [19]. Using specific properties of
the confusion coefficient (like the minimum value and the
variance) we give a preliminary classification regarding the
side-channel resistance. Furthermore, using simulated data
for various signal-to-noise ratios (SNR) we present empirical
results for the optimal distinguisher [20] and discuss the dif-
ference between attacking 4-bit and 8-bit S-boxes. Finally, we
compare several supervised (i.e., profiled) machine learning
techniques in order to recover 4-bit and 8-bit intermediate
states. These results are of particular interest when conduct-
ing algebraic side-channel analysis [21]. This paper is an
extended version of a paper published in [22].

1.2 Road Map

This paper is organized as follows. Section 2 gives basic
information on the ciphers and exploitations we investigate.
Next, in Section 3 we discuss the optimal distinguisher,
confusion coefficient, and conduct empirical evaluations to
reveal the secret (round)key. In Section 4 we use profiled ma-
chine learning side-channel analysis to recover intermediate
states. Section 5 concludes and offers directions for future
work.

2 CIPHERS & EXPLOITATIONS

2.1 Investigated Ciphers

2.1.1 AES [5]

The Advanced Encryption Standard (AES) has been stan-
dardized by NIST in 2001 [23]. It has an SPN structure
with an internal fixed block size of 128-bits represented
as a 4 × 4 byte matrix. At the beginning, the plaintext
state is xor-ed with the secret key. Subsequently, each
encryption round consists of the application of SubBytes,
ShiftRows, MixColumns, and AddRoundKey, in the last
round, MixColumns is omitted.

2.1.2 KLEIN [6]

KLEIN is an AES-like lightweight block cipher. The substi-
tution stage uses 16 similar involutive 4-bit S-boxes. Similar
to AES, each encryption round consists of AddRoundKey,
SubNibbles, RotNibbles, and MixNibbles, followed
by a final key addition.

2.1.3 LED [9]

LED is heavily based on AES. The encryption is divided
in steps which consists in 4 rounds and a xor operation
with the key. Each round is made of the xoring of a
round constant and AES-style SubCells, ShiftRows and
MixColumnsSerial operations. The S-box used in the
SubCells step is the PRESENT S-box. Interestingly, LED

1. The S-box is not equal to its inverse.

does not have a key scheduling: a key of 64 bits is xored with
internal state. For the 128-bit version the key is divided into
two subkeys of 64 bits which are used alternatively.

2.1.4 Mysterion [8]

The Mysterion cipher is one instance of the so-called LS-
design, in which the internal state of the cipher is a matrix
of s × L bits. The internal state of the block cipher is
organized into a 4×32 bit matrix for Mysterion-128, which is
further subdivided into 4 4×8 blocks. A round contains the
following operations: S-box layer, L-Box layer and
ShiftColumns. The S-box layer is a 4-bit S-box called
“Class 13”, as introduced in [24], that is applied in parallel
to each column of the internal state.

2.1.5 Piccolo [10]

Piccolo is a Generalized Feistel Network with 4 16-bit
branches using an advanced permutation (diffusion layer)
as well as whitening. The 4-bit S-box has a decent non-
linearity and differential uniformity, while having a tiny
hardware footprint: it can be implemented using only 4
NOR gates, 3 XOR gates and 1 XNOR gate.

2.1.6 PRESENT [11]

PRESENT has a 64-bit block size with a bit oriented permu-
tation layer. The non-linear layer is based on a single 4-bit
S-box which was designed to be optimal in hardware. An
encryption round consists of AddRoundKey, a substitution
(sBoxLayer), and a permutation layer (pLayer). A final
key addition is performed after the encryption rounds.

2.1.7 PRIDE [12]

PRIDE has been optimized for 8-bit microcontrollers with
a special focus on the linear layer of the cipher. It is de-
signed in a bit-sliced fashion to minimize the number of
instructions necessary to evaluate it. The 4-bit S-box is an
involution.

2.1.8 PRINCE [13]

The main aim of the design of PRINCE is to provide low
latency. It has a small number of rounds and the layers in
a round have low logic depth. The cipher uses no real key
schedule. The core function contains 5 ”forward” rounds, a
middle round and then 5 ”backward” rounds, so 11 rounds
in total. A forward round starts by a xor with a round
constant xor key, then a non linear layer S and then a linear
layer M. The ”backward” rounds are exactly the inverse of
the ”forward” rounds except for the round constants.

2.1.9 RECTANGLE [14]

The state of RECTANGLE is represented as a 4× 16 matrix.
The non-linear layer consists of the parallel application of a
4-bit S-box on the columns of the state and the linear layer
is a fixed rotation over a different amount of steps in each
row.
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2.1.10 Robin [17]

Like Mysterion, Robin is based on the LS-design principles.
The non-linear layer consists of a parallel applications of a
s×s bits (s = 8) permutation on each column, which is cho-
sen to be efficiently implemented in a bit-sliced fashion and
an involution. The linear layer consists of the application of
a linear L× L bit (L = 16) permutation on each row of the
matrix.

2.1.11 Skinny [15]

SKINNY is a family of adaptable lightweight block ciphers
designed such that the hardware footprint is small. All
members of the family are SPN consisting of several itera-
tions of the following operations transforming a 4x4 matrix
of 4-bit nibbles (64-bit variant) (considered in this paper)
or bytes (128-bit variant). It consists of the following opera-
tions: SubCell (non-linear), AddConstants, ShiftRows,
and MicColumns.

2.1.12 Zorro [16]

Zorro is a modified version of AES with a variant of the S-
box that is easier to mask. Fewer S-box calls are performed
and the number of multiplications has been minimized.
Besides, the execution is split into “steps” of 4 rounds and
the key (simply the master key) is added only at the end of
each step.

2.2 Exploitations

In this paper, our main targets are the weaknesses arising
in software implementations on serial microprocessors. In
these applications, the Hamming weight (HW) and the
Hamming distance (HD) leakage model are most commonly
found in practice. More precisely, the loading and storing
of data in memory (e.g., S-box calls) is usually causing
HW leakage, whereas the register updating (e.g., writing of
intermediate round states) is causing HD leakage. Typically
the latter is less significant than the former, which is why
we concentrate on a specific memory operation. Moreover,
a classical point of exploitation for side-channel analysis is
the first or last round, as in these outer rounds the amount
of key hypothesis to be made is rather small and thus
efficiently enumerable.

Note that our study does not include leakages from all
kinds of operations in the specific ciphers, nor (in case the
cipher uses a key scheduling algorithm) the complexity to
go from a round key to the master key, which may be an
interesting next step for future work.

2.2.1 First Round

The main common operation all previous described ciphers
share, is first the addition (xor) of the roundkey/masterkey
followed by (at least one) S-box call. When concentrating on
the first round our study therefore concentrates on leakage
measurements X arising from an S-box lookup operation as

X = α · HW(Sbox[P ⊕ k⋆]) +N, (1)

where N is independent additive Gaussian noise with vari-
ance σ2, k⋆ one chunk of the secret key (first round key or
master key), P a plaintext chunk (byte or nibble), and α is a
scaling factor.

2.2.2 Last Round

When attacking the last round the attacker uses the cipher-
text to make hypotheses about the state of the S-box input,
i.e. leakage arising as

X = α · HW(Sbox−1[C ⊕ k⋆]) +N, (2)

where k⋆ one chunk of the secret key (last round key or
master key).

3 RECOVERING THE (ROUND) KEY

In this section we are interested in recovering a chunk of
the key used in the first or in the last round. For this
we first consider the leakage of the first and last round
independently and then also in combination. To determine
the worst-case scenario (most powerful attacker) we use the
optimal distinguisher [20] and highlight which properties
are influencing its success exponent [25] which is the first-
order exponent of the success rate. Our results are confirmed
by empirical evaluations of the success rates.

3.1 Optimal Distinguisher & Theoretical Success rate

The optimal distinguisher in case the leakage is known in a
direct scale2 and the noise is Gaussian is defined as

D(k) = −(X − αY (k))2, (3)

where Y (k) is the predicted intermediate state depending
on a key guess k. More precisely, when considering the S-
box output in the first round (see Eq. (1))

Y (k) = HW(Sbox[P ⊕ k]), (4)

whereas when attacking the last round (see Eq. (2)) we have

Y (k) = HW(Sbox−1[C ⊕ k⋆]). (5)

From Eq. (3) using the maximum likelihood rule an attacker
predicts the secret key guess

k̂ = argmax
k

D(k). (6)

The most common measure for side-channel evaluation
is the empirical success rate SR which is the probability of
success given a certain amount of leakage measurements.
Interestingly, the authors in [25] showed that for any side-
channel attack the SR can be modeled using a first-order
exponent (SE) [26], i.e. there exists a constant SE such that3

1− SR ≈ exp(−q · SE),

where q is the number of traces for the expected success rate
to be equal to SR.

Now, the first-order exponent SE for the optimal distin-
guisher takes the following form [25]

SE = min
k 6=k⋆

1

2

κ(k⋆, k)2

κ′′(k⋆, k)− κ(k⋆, k)2 + κ(k⋆, k)/SNR
, (7)

2. The scaling factor α is known or well enough approximated.
3. We use the same definition as in [25]: a function f(x) has first order

exponent ξ(x) if
(

ln f(x)
)

/ξ(x) → 1 as x → +∞, in which case we
write f(x) ≈ exp ξ(x).
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Fig. 1: KLEIN

where SNR = α
2

σ2 is the signal-to-noise-ratio and

κ(k⋆, k) = E

{(Y (k∗)− Y (k)

2

)2}

, (8)

κ′′(k⋆, k) = E

{(Y (k∗)− Y (k)

2

)4}

(9)

are two versions of confusion coefficients (which generalize
that of [18]). Loosely speaking, the confusion coefficients
measure the dependencies between the prediction of the
intermediate states of the secret key k⋆ with any key hy-
pothesis k.

When the SNR is low, then Eq. (7) simplifies to

SE ≈ 1

2
min
k 6=k⋆

κ(k⋆, k) · SNR. (10)

Accordingly, considering the described leakages in
Eq. (1) and Eq. (2) one can see from Eq. (8) and (9) that
the confusion coefficient depends on the particular choice of
the S-box and therefore does SE and SR.

Next, we will focus on the confusion coefficient κ(k⋆, k)
and give empirical results for the success rate for all the
previously described ciphers.

3.2 Attacking the first Round

3.2.1 Confusion Coefficients

Figures 1 to 9 show the confusion coefficient for 4-bit S-
boxes and Figures 11 to 13 for 8-bit S-boxes. Note that the
distribution of κ(k⋆, k) is independent on the particular
choice of k⋆ (in the case there are no weak keys) and the
values are only permuted. For our experiments we choose
k⋆ = 0 and furthermore order κ(k⋆, k) in an increasing
order of magnitude. One can observe that the distribution
is indeed different for the investigated ciphers. Note that if
κ(k⋆, k1) = κ(k⋆, k2) the optimal distinguisher is not able
to distinguish between the key hypothesis k1 and k2.

We highlight mink 6=k⋆ κ(k⋆, k) with a red cross and state
its value next to it. Recall from Eq. (10) that the minimum
confusion coefficient is the influencing factor related to the
S-box influencing the SE and SR (in case of reasonably low
SNR). Comparing the minimum value for 4-bit S-boxes we

Fig. 2: Mysterion

Fig. 3: Midori 1

Fig. 4: Midori 2
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Fig. 5: PRESENT / LED

Fig. 6: Piccolo

Fig. 7: PRINCE

Fig. 8: PRIDE

Fig. 9: RECTANGLE

Fig. 10: Skinny
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Fig. 11: AES

Fig. 12: Zorro

Fig. 13: Robin

achieve the following ranking (from weak to more side-
channel resistant):

1) Piccolo,
2) Mysterion,
3) PRESENT/LED, PRIDE, RECTANGLE, Skinny, Mi-

dori 2,
4) PRINCE,
5) KLEIN, Midori 1.

Interestingly, the values given for 8-bit S-boxes indicate
that the side-channel resistance of the investigated 8-bit S-
boxes is lower than for the ones with 4-bit S-boxes. Recall
that the confusion coefficient measures the relationship be-
tween different key hypotheses. Now, as for 8-bits we have
256 possible values for T ∈ F

8

2
and Y (k) ∈ [0, 1, . . . , 8] it is

easier to distinguish than for 4-bit S-boxes with T ∈ F
4

2
and

Y (k) ∈ [0, 1, . . . , 4].
However, in practice we cannot straightforwardly con-

clude that due to the properties of the confusion coefficient,
4-bit S-boxes are harder to attack than 8-bit S-boxes. One
reason is that the confusion coefficient is theoretical (i.e.,
holding for Q → ∞). But, especially for low noise scenarios
Q might be small (below 100). So, naturally the 4-bit variant
with only 16 inputs should converge faster than with 256
inputs. Or in other words, considering Q = 100, one can
observe each plaintext for 4-bit S-boxes approximately 6.25
times, whereas for the 8-bit case more than the half has not
been observed yet. Another reason is that the variance of
the signal is not equivalent and thus the SNR in Eq. (10).
In particular, as the HW follows a binomial distribution, we
have V ar(HW(Sbox[T ⊕ k])) with T, k ∈ F

4

2
equal to 1 for

4-bit S-boxes and equal to 2 for 8-bit S-boxes. Accordingly,
given the same amount of independent additional noise, the
SNR using 8-bit S-boxes is twice as high as for 4-bit S-boxes.

3.2.2 Empirical Success Rate

Figures 14 to 21 give the success rate for the optimal dis-
tinguisher for various levels of noise, where we simulated
the traces as in Eq. (1) with N ∼ N (0, σ2) and α = 1.
To be reliable, we use 5 000 independent experiments with
randomly chosen T . For 4-bit S-boxes, Figure 14 to Figure 17
confirms the ranking given by the confusion coefficient and
listed above (Piccolo is the weakest and KLEIN, Midori
1 are the most resistant). It hold particularly for higher
noise, which is inline with the theoretical derivations in
Subsect. 3.1.

Figures 18 to 21 show that all three ciphers with 8-bit
S-boxes behave similarly even for different levels of noise.
Accordingly, the (small) differences in the minimum confu-
sion coefficient do not influence the side-channel resistance
in practice.

There are two ways to compare the success rates for
4-bit and 8-bit S-boxes, either having the same additional
independent noise (environmental noise) σ or the same
SNR. Using the same amount of σ (Figures 15 vs. 18 and 17
vs. 20), we can observe that AES, Zorro, and Robin are
weaker than KLEIN/ Midori 1 and similar to or slightly
worse than the others. On the other hand, when comparing
the SNR, we observe that AES, Zorro, and Robin behave in
a similar way as KLEIN/ Midori 1.
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Fig. 14: σ =
√

1/2, SNR = 2 (first round)

Fig. 15: σ = 1, SNR = 1 (first round)

Fig. 16: σ =
√
8, SNR = 1/8 (first round)

Fig. 17: σ = 4, SNR = 1/16 (first round)

Fig. 18: σ = 1, SNR = 2 (first round)

Fig. 19: σ =
√
2, SNR = 1 (first round)
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Fig. 20: σ = 4, SNR = 1/8 (first round)

Fig. 21: σ =
√
32, SNR = 1/16 (first round)

3.3 Attacking the Last Round (inverse S-box)

Instead of attacking the first round using the plaintext, an
attacker may also choose to attack the last round using the
ciphertext. Accordingly, as he makes predictions about the
S-box input in the last round (see Eq. (2)) we are now
interested in properties of the inverse S-box. Note that
KLEIN, Pride, Midori 1, Midori 2, Robin are involutions,
which means that their S-box equals its inverse. For all
remaining Sboxes we will first plot the confusion coefficients
using the same methodology as before and then compare
their empirical success rates.

3.3.1 Confusion Coefficient

Figures 22 to 28 illustrate the confusion coefficients for
all non-involutive S-boxes. Interestingly, one can observe
that compared to the results attacking the first round the
minimum value of the confusion coefficient for Mysterion
and Prince does not change, however, their distribution
does. For all other investigated 4-bit S-boxes the inverse
has a lower minimum confusion coefficient than for the
direct S-box. For the 8-bit S-boxes AES has a lower mini-

Fig. 22: Piccolo (inverse)

Fig. 23: PRESENT / LED (inverse)

mum confusion coefficient whereas Zorro has a higher one
when considering the inverse S-box. Accordingly, except
for Zorro, we expect that when attacking the last round
the empirical success rate should be less or equal to the
success rate of the first round. For comparison all minimum
confusion coefficients for the direct S-box and the inverse
are additionally listed in Table 1. For 4-bit S-boxes (inverse)
we achieve the following ranking (from weak to more side-
channel resistant):

1) Mysterion
2) Midori 2, Piccolo, PRIDE, SKINNY
3) PRINCE,
4) KLEIN, Midori 1, PRESENT, RECTANGLE.

3.3.2 Empirical Success Rate

Figures 29 to 36 show the empirical success rate using the
same simulation settings as previously. Interestingly, the
success rates of the various ciphers are more distinctive than
attacking the first round. Again we see a similar ranking
as indicated by the minimum confusion coefficient and,



0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2757921, IEEE

Transactions on Computers

9

Fig. 24: Prince (inverse)

Fig. 25: MYSTERION (inverse)

Fig. 26: Rectangle (inverse)

Fig. 27: AES (inverse)

Fig. 28: Zorro (inverse)

TABLE 1: Minimum confusion coefficient

Name involution S-box inverse S-box

KLEIN x 0.125 0.125

Midori 1 x 0.125 0.125

Midori 2 x 0.250 0.250

Mysterion 0.3125 0.3125

Piccolo 0.375 0.25

PRESENT/LED 0.25 0.125

PRIDE x 0.25 0.25

PRINCE 0.1875 0.1875

RECTANGLE 0.250 0.125

SKINNY x 0.250 0.250

AES 0.406 0.388

Robin x 0.347 0.347

Zorro 0.378 0.402



0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2757921, IEEE

Transactions on Computers

10

Fig. 29: σ =
√

1/2, SNR = 2 (last round)

Fig. 30: σ = 1, SNR = 1 (last round)

moreover, confirm that the last round is equal or more
resistant than the first round.

For 8-bit inverse S-boxes we again see that all three
ciphers perform nearly equivalently. When comparing to the
4-bit ciphers we see that for equal σ the differences between
the most resilient 4-bit ciphers and the 8-bit ciphers even
becomes the greater. Thus, we observe that 4-bit ciphers can
be much more resilient than 8-bit ciphers, e.g., for σ = 4
PRESENT requires 400 traces in order to reach a success
rate of 0.9, whereas AES, Robin, Zorro require only around
150. Additionally, when considering the same SNR we can
observe the same trend. For example, for SNR= 1/16 the 8-
bit ciphers require 300 traces to reach a success rate of 0.9
and PRESENT 400 traces.

3.4 Attacking First and Last Round

Naturally when ciphertext and plaintext are available, an
attacker will choose to attack the first or the last round
depending on the attackability. As we showed in the pre-
vious subsections that the first round (direct S-box com-
putation) is less resistant than the last round (inverse S-

Fig. 31: σ =
√
8, SNR = 1/8 (last round)

Fig. 32: σ = 4, SNR = 1/16 (last round)

Fig. 33: σ = 1, SNR = 2 (last round)
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Fig. 34: σ =
√
2, SNR = 1 (last round)

Fig. 35: σ = 4, SNR = 1/8 (last round)

Fig. 36: σ =
√
32, SNR = 1/16 (last round)

box computation). However, in some situations an attacker
may even choose to combine the knowlegde gained from
the attack on the first and the last round. Most of the
investigated ciphers employ a key scheduling algorithm and
thus it is fair to assume the the roundkeys from the first and
last round are independent. In such a scenario the authors
in [27] showed that using the optimal distinguisher on both
leakage samples will only bring a benefit compared to two
independent attacks on each round if the noise is correlated.

But, the situation differs in case the keys used in the
first round and last round can be straightforwardly derived
from each other. Loosely speaking, in this case one can take
benefit simultaneously from the confusion coefficient of the
first and the last round. More precisely, in case of low SNR
Eq. (10) (attack on one round) changes to

SE ≈ min
k 6=k⋆

1

2(1 + ρ2)

(

α2

1

σ2
1

κ1(k
⋆

1
, k) +

α2

2

σ2
2

κ2(k
⋆

2
, k)

)

, (11)

where κ1(k
⋆
1
, k) is the confusion coefficient corresponding

to the first round and κ2(k
⋆
1
, k) the confusion coefficient

corresponding to the last round.
Accordingly, not the minimum value for each confusion

coefficient, but the minimum value of the sum over each
value is decisive. This is particularly interesting as we
observed that for the S-box and its inverse the distribution
differ.

This scenario is observable for LED which does not
employ a key scheduling algorithm. Figure 37 plots the
confusion coefficient for the LED S-box in black and of its
inverse in red. Note that we did not order the confusion co-
efficients as we are particularly interested in the differences
for each key. One can observe that indeed the distribution
and the minimum value of both confusion coefficients is not
taken for the same key guess, i.e.

arg min
k⋆ 6=k

κ1(k
⋆, k) 6= arg min

k⋆ 6=k

κ2(k
⋆, k).

Thus, taking both rounds into account should be really
beneficial from an attackers point of view.

Figure 39 to Fig. 41 show the success rates for the
combined attack compared to attacks on the first and last
round. Clearly, the attack using the information from both
rounds is much more efficient than on the first or on the last
round. For σ = 4 the key can be recovered with a success
rate of 0.9 within 100 traces for both rounds, and 400 traces
when only considering the last round. As a remark, for 4-bit
intermediate states, this example additionally highlights the
important role the confusion coefficient (underlying leakage
model), and that not only the SNR is a key factor influencing
the success rate as assumed in state-of-the-art works.

4 RECOVERING INTERMEDIATE ROUND STATES

In the previous section we were interested in the influence
of the S-box operation in recovering the (round)key and,
in particular, in the relationship between different predicted
intermediate states measured by the confusion coefficient. In
this section we slightly change our focus as we are interested
in the differences of efficiencies between ciphers with 4-
bit states and 8-bit states. More precisely, we investigate
the accuracy when recovering intermediate states directly,
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Fig. 37: PRESENT / LED (standard (black), inverse (red))

Fig. 38: σ =
√

1/2, SNR = 2 (LED)

Fig. 39: σ = 1, SNR = 1 (LED)

Fig. 40: σ =
√
8, SNR = 1/8 (LED)

Fig. 41: σ = 4, SNR = 1/16 (LED)

where accuracy is the percentage of correctly classification.
This scenario is for example of particular interest when
considering algebraic side-channel attacks [21]. In this sce-
nario one only has a very limited amount of traces in the
attacking phase and is interested in recovering Hamming
weight information of intermediate states of ciphers which
are then used as inputs in an algebraic system.

Machine learning (ML) is a term encompassing a number
of methods that can be used for clustering, classification,
regression, feature selection, and other knowledge discov-
ering methods [28]. In supervised machine learning, the
algorithm is provided with a set of data instances (i.e.,
measurements) and data classes (i.e., values of Y (k⋆)) in
a training phase. The goal of this phase is to “learn” the
relationship between the instances and the classes in order
to be able to reliably map new instances to the classes in the
testing phase.

For our study, we use one algorithm per ML family
based on the form in which the output function is repre-
sented. In particular, we use Naive Bayes as the simplest
algorithm that does not have any parameters to tune. Next,
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from the decision tree family we use the C4.5 algorithm,
which is an algorithm considered to be robust to noise. From
the perceptron family, we use the Multi Layer Perceptron
(MLP) algorithm, which represents an advance over the
simple perceptron algorithm.

Our experiments are divided in two phases: training
and testing (i.e., attacking) with datasets containing 10 000,
30 000, and 50 000 instances. As common for ML techniques
we use 2/3 of the instances for training and 1/3 for testing
(e.g., results for 10 000 instances are obtained with 6 650
training instances and 3 350 instances in the testing phase).
On the training set we conduct a 10-fold cross-validation
with all the considered parameters. Note that the training
phase contains a tuning phase in which we select the best
parameters for each algorithm. Due to the lack of space,
we do not present results from the training phase but we
mention the best obtained parameters that are then used
in the testing phase. We also conducted the same set of
experiments with more advanced ML techniques – Rotation
Forest and Support Vector Machines, but the results did not
differ significantly from those presented here.

Note that our simulated measurements only contain one
feature (time instance), which is commonly accepted for
simulated data, but not usual when using ML techniques
or profiled SCA (at least before dimension reduction). If
one has at his disposal a sufficient number of measurements
with many features and the level of noise is low, previous
results confirm that such a scenario is easy for profiled
attack. However, if the level of noise is high or the number
of measurements is too low, then the process becomes
more cumbersome. Our study shows that even if only a
single feature is available (with sufficient information), the
attack can be very powerful. Moreover, with the increase in
the number of features, the “curse of dimensionality” can
appear: as the number of features grow, the classification
effort grows exponentially. Common ways to overcome this
problem in SCA are dimension reduction techniques like
PCA and LDA. Finally, we note that working with only
a single feature also makes theoretical analysis, such as
probably approximately correct (PAC) learning, easier; we
leave this for future work.

4.1 Naive Bayes (NB)

classifier is a method based on the Bayesian rule (similar to
template attacks [29]). Naive Bayes works under the sim-
plifying assumption that the predictor attributes (measure-
ments) are mutually independent among the features given
the target class. The existence of highly correlated attributes
in a dataset can thus influence the learning process and
reduce the number of successful predictions. Additionally,
Naive Bayes assumes a normal distribution for predictor
attributes and outputs posterior probabilities.

The space complexity for the Naive Bayes algorithm for
both the training and the testing phase equals O

(

|Y|Dv
)

,
where |Y| is the number of classes, D is the number of fea-
tures, and v is the average number of values for a feature. On
the other hand, for the training phase, the time complexity
equals O

(

QD
)

and for the testing phase O
(

|Y|D
)

, where
Q is the number of training examples. Further information
about the Naive Bayes algorithm can be found in [30].

4.2 C4.5

is the landmark decision tree algorithm [31]. It is a divide-
and-conquer algorithm that splits features at tree nodes
using the information-based gain ratio criterion. The node
splits in further branches if more information is gained (as
measured by the gain ratio) by the split than by keeping all
the instances at the node. The runtime of the algorithm is
O
(

D × Q × logQ
)

, where D is the number of features and
Q is the number of instances [32]. The trees are first grown
to full length and pruned afterwards in order to avoid data
overfitting.

With the C4.5 algorithm we investigate the influence of
the confidence factor parameter that is used for pruning,
where smaller values relate to more pruning. We tested that
parameter in the range [0.05, 0.4] with a step of 0.05. We
conducted a separate tuning phase for each noise level and
selected a confidence factor of 0.1 for σ = 1, 0.2 for σ = 3,
and 0.05 for σ = 5.

4.3 Multi Layer Perceptron (MLP)

is a feedforward neural network that maps sets of inputs
onto sets of appropriate outputs. Multi layer perceptron
consists of multiple layers of nodes in a directed graph,
where each layer is fully connected to the next one. To train
the network, the backpropagation algorithm is used, which
is a generalization of the least mean squares algorithm in the
linear perceptron. A perceptron is a linear binary classifier
applied to the feature vector. Each vector component has
an associated weight wi. Furthermore, each perceptron has
a threshold value θ. The output of a perceptron is “1” if
the direct sum between the feature vector and the weight
vector is larger than zero and “-1” otherwise. A perceptron
classifier works only for data that are linearly separable, i.e.,
if there is some hyperplane that separates all the positive
points from all the negative points [28].

MLP must consist of 3 or more layers (since input
and output represent two layers) of nonlinearly-activating
nodes [33]. We investigate a learning rate parameter in range
[0.05, 0.4] with a step of 0.05, a momentum with values
[0.1, 0.2, 0.3, 0.4], a training time with values [400, 500, 600],
and a validation threshold with values [10, 20, 30]. In our
experiments we set the number of hidden layers to be
equal to (number of classes+ number of attributes)/2,
the learning rate is set to 0.1, the momentum applied to the
weights during the update is set to 0.2, the training time is
set to 500, and the validation threshold to 20.

4.4 4-bit vs. 8-bit

We highlight with a gray cell if the the Area Under Curve
(AUC) [34] is close to 0.5 which means that the algorithm is
closer to random guessing. Note that in our study we use
PRESENT and AES. However, the results (in particular the
accuracy) are not specific to these ciphers but rather to the
fact of using 4-bit/8-bit S-boxes, the intermediate states and
the binomial distribution of the HW.

In addition to the previous scenario of attacking the HW
of the output of the S-box, we first perform classifications
on key chunks, directly resulting in 16 and 256 classes. The
results are presented in Table 2, showing that the accuracy



0018-9340 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2017.2757921, IEEE

Transactions on Computers

14

(given in percentages) for PRESENT is higher than for AES
for all levels of noise, which seems natural since PRESENT
has a significantly smaller number of classes than AES.
However, when comparing the best values directly, one can
observe that the difference is rather small (e.g., for σ = 1:
41.55 vs. 38.33). What is interesting to observe, is that the
level of noise has much less impact when comparing σ = 3
and σ = 5 than when comparing σ = 1 and σ = 3. Finally,
we observe that the number of measurements does not play
a significant role in this case.

Table 4 gives the results for attacking the HW output
of the S-box. Again, we observe that the accuracy is higher
for PRESENT than for AES, but we notice that for AES the
algorithm is rather “randomly” guessing than predicting
meaningful classes. This is mainly due to the imbalance
of the HWs since they follow a binomial distribution (see
Table 3). In particular, for AES with randomly distributed
inputs, the HW value 4 is occurring in 27.34% of all events,
which is rather high. Therefore, the classifier mainly outputs
class 4, giving an accuracy between 27% and 28%. For
PRESENT we can see that HW class 2 is occurring in 37.5%
of all cases. However, as there are fewer classes in total, the
algorithm seems to try to find a reasonable classification.

We additionally investigate the scenario of chosen plain-
texts during the profiling phase. Table 5 presents the results
for both PRESENT and AES with exactly 1 000 measure-
ments for each class, i.e., the total number of measurements
equals 5 000 for PRESENT and 9 000 for AES. We can see
that the problem of predicting only a subset of classes is not
present and again we observe that classifying PRESENT is
more accurate than AES.

5 CONCLUSIONS

In this paper, we investigate whether side-channel analysis
is easier for lightweight ciphers than e.g. for AES. We cover
both profiled and non-profiled techniques where we are
interested in recovering secret (round)keys or intermediate
states. In the case of non-profiled attacks, we evaluate a
number of S-boxes appearing in lightweight ciphers using
the confusion coefficient and empirical simulations.

First, we investigate in the scenario where the attacker
targets the first round and thus exploits the S-box computa-
tion. We observe that the 8-bit S-boxes from AES, Zorro, and
Robin perform similarly, whereas for 4-bit S-boxes we have
a clear ranking, with the S-box of Piccolo being the weakest
to attack and the S-box of KLEIN and Midori (1) the hardest.

Interestingly, when considering the last round and thus
the inverse S-box operation the ranking changes such that
Myterion is the weakest and PRESENT/LED is the most
side-channel resistant cipher from the ones investigated.
Moreover, we could observe that attacking the last round
is equal or less efficient for all considered ciphers.

Finally, we used the information gained from both
rounds together, where this approach is of interest when
the cipher does not use round keys from a key scheduling
algorithm but rather uses the same (or a straightforward
computable) key in each round. LED fulfils this require-
ment. For a reasonable low SNR, to reach a success rate
of 0.9 an attack on both rounds only requires 100 traces,
whereas an attack using the first round requires 200 traces

and on the last 400 traces. This example highlights the im-
portant role the confusion coefficient (relationship between
predicted intermediate states under a leakage model from
different key hypotheses), and that not only the SNR (even
if low) is a key factor influencing the success rate.

Additionally, our result show that we cannot conclude
that the 4-bit S-boxes are generally significantly less resistant
than the investigated 8-bit S-boxes. In particular, when
considering inverse S-boxes we showed that 4-bit S-boxes
may be more resistant.

For profiled attacks, we analyze several machine learn-
ing techniques to recover 4-bit and 8-bit intermediate states.
Our results show that attacking 4-bit is somewhat easier
than attacking 8-bit, with the difference mainly stemming
from the varying number of classes in one or the other
scenario. Still, that difference is not so apparent as one could
imagine. Since we work with only a single feature and
yet obtain a good accuracy in a number of test scenarios,
we are confident (as our experiments also confirm) that
adding more features will render classification algorithms
even more powerful, which will result in an even higher
accuracy.

Finally, we did not consider any countermeasures for the
considered lightweight algorithms, since the capacity for
adding countermeasures is highly dependent on the envi-
ronment (which we assume to be much more constrained
than in the case of AES). However, our results show that a
smart selection of S-boxes results in an inherent resilience
(especially for 4-bit S-boxes).

Moreover, we show that in case of highly restricted de-
vices, in which countermeasures on the whole cipher are not
practically feasible, a designer may choose to only protect
the weakest round (first round) in the cipher to increase
the side-channel resistant until a certain limit. Future work
may concentrate on finding this trade-off between available
resources and security requirements, in particular when
considering IoT devices.
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