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Abstract—Debugging is difficult and costly. As a human pro-
grammer looks for a bug, it would be helpful to see a complete
trace of events leading to the point of failure. Unfortunately, full
tracing is simply too slow to use in deployment, and may even
be impractical during testing.

We aid post-deployment debugging by giving programmers
additional information about program activity shortly before
failure. We use latent information in post-failure memory dumps,
augmented by low-overhead, tunable run-time tracing. Our
results with a realistically-tuned tracing scheme show low enough
overhead (0–5%) to be used in production runs. We demonstrate
several potential uses of this enhanced information, including
a novel postmortem static slice restriction technique and a re-
duced view of potentially-executed code. Experimental evaluation
shows our approach to be very effective, such as shrinking
stack-sensitive interprocedural static slices by 49–78% in larger
applications.

I. INTRODUCTION

Debugging is a difficult, time-consuming, and expensive
part of software development and maintenance. Debugging,
testing, and verification account for 50–75% of a software
project’s cost [16]; these costs grow even higher in some
cases [14, 36]. Yet, post-deployment failures are inevitable in
complex software. When failures occur in production, detailed
postmortem information is invaluable but difficult to obtain.

Developers would benefit greatly from seeing concrete traces
of events leading to failures, failure-focused views of the
program or program state, or suggestions of potentially-faulty
statements. Sadly, full execution tracing is usually impractical
for complex programs. Even for simple code, full-tracing
overhead may only be acceptable during in-house testing.

One common and very useful artifact of a failed program
execution is a core memory dump. Coupled with a symbol
table, a core dump reveals the program stack of each execution
thread at the moment of program termination, the location
of the crash, the identities of all in-progress functions and
program locations from which they were called, the values of
local variables in these in-progress functions, and the values
of global variables. Prior work with symbolic execution has
shown that this information can help in deriving inputs and/or
thread schedules matching a failed execution [32, 40, 44].

Our goal is to support debugging using latent information
in postmortem core dumps, augmented by lightweight, tunable
instrumentation1. This paper explores two such enhancements:

1Source code is available at http://pages.cs.wisc.edu/~liblit/ase-2013/code/.
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Fig. 1. Overview of data collection and analysis stages. Sharp-cornered rectan-
gles represent inputs and outputs; rounded rectangles represent computations.

(1) a variant of Ball–Larus Path Profiling and (2) simple call-
site coverage. Our results with a realistically-tuned tracing
scheme show low overheads (0–5%) suitable for production
use. We also demonstrate a number of potential pre-processing
debugging uses of this enhanced information, including a
unique hybrid program slicing restriction and a reduction of
potentially-executed control-flow graph nodes and edges.

Figure 1 shows the relationships between our instrumentation
and analyses. After reviewing background material (section II),
we describe each feature of the diagram. Section III describes
the kinds of data we collect and our instrumentation strategies
for doing so. Section IV gives a detailed description of the
analyses we perform on collected data. We assess instrumenta-
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tion overhead and usefulness of analysis results in section V.
Section VI discusses related work and section VII concludes.

II. BACKGROUND

We begin by describing core dumps and their benefits for
postmortem debugging. We then describe a well-studied path
profiling approach developed by Ball and Larus [7], a variant
of which we develop for this work. Finally, we briefly outline
program slicing on which we base one of our analyses.

A. Core Memory Dumps

All widely-used modern operating systems can produce a
file containing a “core dump” of main memory. A dump may
be saved after abnormal program termination due to an illegal
operation, such as using an invalid pointer, or on demand, such
as by raising a fatal signal or failing an assertion. This can be
useful if the core dump is to be used for postmortem analysis.

Typically, a core dump contains the full program stack at
termination. For our purposes, the key elements are the point of
failure (the exact location of the program crash), as well as the
final call location in each other still-active frame on the stack
(i.e., each stack frame’s return address). Conveniently, core
dumps are only produced in the case of program failure. Thus,
they impose no run-time overhead to collect: a key advantage
to the use of core dumps for postmortem analysis.

B. Path Profiling

Path profiling is traditionally used to compute path coverage
during program testing. The approach we adopt from Ball
and Larus [7] is designed to efficiently profile all acyclic,
intraprocedural paths. The algorithm first removes back edges
to transform the control-flow graph (CFG) of a procedure into
a directed acyclic graph (DAG). We represent the transformed
CFG as a single-entry, single-exit DAG G = (V,E,s,x) where
V is the set of nodes in the graph and E ⊆V ×V is the set of
edges with no directed cycles. Every node in V is reachable by
crossing zero or more edges starting at the unique entry node
s ∈V . Conversely, the unique exit node x ∈V is reachable by
crossing zero or more edges starting from any node. A path
p through G is represented as an ordered sequence of nodes
〈p1, . . . , p|p|〉 such that (pi, pi+1) ∈ E for all 1 ≤ i < |p|. We
define a complete path as a path whose initial and final nodes
are s and x respectively. Loops are handled specially, and are
discussed later in this subsection.

The overall goal of the Ball–Larus algorithm is to assign a
value Increment(e) to each edge e ∈ E such that

1) each complete path has a unique path sum produced by
summing over the edges in the path;

2) the assignment is minimal, meaning that all path sums lie
within the range (0, |p|−1); and

3) the assignment is optimal, meaning that each path requires
the minimal number of non-zero additions.

The first step assigns a value to each edge such that
all complete path sums are unique and the assignment is
minimal. To do so, the algorithm traverses the graph in reverse-
topological order. For each n∈V we compute NumPaths[n], the

number of paths from n to x. If we number the outgoing edges
of n as e1, . . . ,ek with respective successor nodes v1, . . . ,vk,
then the weight Weight(ek) assigned to each outgoing edge of
n is ∑

k−1
j=1 NumPaths[v j]. After this step, complete path sums,

using Weight values, are unique and the assignment is minimal.
The next step optimizes the value assignment. This requires

computing a maximum-cost spanning tree (MCST) of G. A
MCST is an undirected graph with the same nodes as G, but
with an undirected subset of G’s edges forming a tree, and
for which the total edge weighting is maximized. Algorithms
to compute maximum-cost spanning trees are well-known.
Remaining non-tree edges are chord edges, and all edge weights
must be “pushed” to these edges. The unique cycle of spanning
tree edges containing a chord edge determines its Increment.

Instrumentation is then straightforward. The path sum
is kept in a register or variable pathSum, initialized to
0 at s. Along each chord edge, e, update the path sum:
pathSum += Increment(e). When execution reaches x, incre-
ment a global counter corresponding to the path just traversed:
pathCoverage[pathSum]++.

Cycles in the original CFG create an unbounded number of
paths. Control flow across back edges requires creating extra
paths from s to x by adding “dummy” edges from s to the back
edge target (corresponding to initialization of the path sum
when following the back edge) and from the back edge source
to x (corresponding to a counter increment when taking the
back edge). The algorithm then proceeds as before. Because
of the dummy edges to x and from s, counter increments and
reinitialization of the path sum occur on back edges. We expand
our definition of a complete path to include paths beginning
at back edge targets or ending at back edge sources.

Our overview focuses on details relevant to the present work;
see Ball and Larus [7] for the complete, authoritative treatment.
There has been a great deal of follow-on and related work
since the original paper [3, 27, 34, 38], some of which provides
opportunities for potential future work described in section VII.

C. Program Slicing

Program slicing with respect to program P, program point
n, and variables V determines all other program points and
branches in P which may have affected the values of V at n. The
original formulation by Weiser [41] proposed the executable
static slice: a reduction of P that, when executed on any input,
preserves the values of V at n. In this work, we are concerned
with non-executable or closure slices, which are the set of
statements that might transitively affect the values of V .

Ottenstein and Ottenstein [31] first proposed the program
dependence graph (PDG), a useful program representation for
slicing. The nodes of a PDG are the same as those in the
CFG, and edges represent possible transfer of control or data.
A control dependence edge is labeled either true or false and
always has a control predicate or function entry as its source.
An edge n1→ n2 means that the result of the conditional at
n1 directly controls whether n2 executes. (A node may have
multiple control-dependence parents in the case of irregular
control flow such as goto, break, or continue statements.) A
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data dependence edge is labeled with a variable v and has a
variable definition at its source and a variable use at its target.

Our definition of the System Dependence Graph (SDG), an
interprocedural dependence graph, is drawn from Horwitz et al.
[17]. This graph combines all PDGs, and adds a number of
new nodes and edges. Each call is now broken out into three
types of nodes: a call-site, actual-in, and actual-out nodes. (We
treat globals as additional parameters as in Horwitz et al. [17].)
A special actual-out node is created for the return value. Each
PDG is also augmented with formal-in and formal-out nodes
corresponding to formal parameters and the return value, as well
as globals used or defined. Interprocedural control dependence
edges are added from each call site to the called procedure’s
entry node. Interprocedural data dependence edges are added
for all appropriate (actual-in, formal-in) and (formal-out, actual-
out) pairs, including the return value. Finally, summary edges
from actual-in to actual-out nodes are computed; these represent
transitive data dependence summarizing the effects of each
procedure call. Details on the computation of these edges can
be found in Horwitz et al. [17].

A static slice considers all possible program inputs and
execution flows. While debugging, one would like the slice to be
constrained to a particular execution. Korel and Laski [22] first
proposed dynamic slicing as a solution to dataflow equations
over an execution history. We are interested in closure dynamic
slices similar to those proposed by Agrawal and Horgan [1].
The authors propose four variants of dynamic slicing. The
first simply marks all executed nodes, and performs a static
slice over that subset of the graph. The second recognizes
that each executed node has exactly one control-dependence
parent and one reaching definition for each variable used in the
statement. Therefore, this variant slices using only dependence
edges actually observed active during the execution. The third
approach recognizes that different instances of each node may
have different dependence histories. Therefore, this approach
replicates each statement each time it occurs in the execution
trace, attaching only the active dependence edges for that
instance of the statement. Agrawal and Horgan’s final approach
only replicates nodes with unique transitive dependencies.

Dynamic slicing can be very expensive, potentially requiring
data equivalent to a full execution trace. To make matters worse,
one must trace all memory accesses due to pointer variables,
arrays, and structures to have a completely accurate dynamic
slice in the general case [2, 23]. Kamkar et al. [21] and Zhang
and Gupta [45] are able to reduce the cost of dynamic slicing,
but the cost of fully-accurate slicing remains too high for
production use. Venkatesh [39] and Binkley et al. [8] formalize
the semantics of program slicing and discuss the distinctions
and orderings among the different types of program slices.

III. DATA COLLECTION

When considering which data to collect and how, several
desirable properties guide our choices. Instrumentation must be
efficient in time and space, and therefore suitable for production
use. Data must be held in memory until failure, adding no
I/O or other system calls during normal execution. Data size

must scale with aspects of execution state, such as stack depth
or number of program locations. Results must be mappable
back to source code, and contain as little ambiguity as possible.
Lastly, instrumentation must be tunable (for overhead or to
change focus) without recompilation or redeployment.

Any core dump already records the return address of each
active function at the time of failure. While this has all the
above qualities, it may be insufficient on its own. Therefore, we
augment core dumps with two novel techniques: path tracing
and call-site coverage.

A. Ball–Larus Inspired Path Tracing

Path tracing records the last N acyclic paths taken through
each function on the stack at the time of failure. Like any
stack-bound data, this is discarded whenever a function returns.
We achieve this using a variant of Ball–Larus path profiling.
Rather than counting acyclic path executions, we instead record
each completed acyclic path in a stack-allocated circular buffer.

However, completed paths alone do not yield an execution
suffix. We also need the final “incomplete” path leading up
to the failure. Fortunately, given a failing CFG node v and a
partial path sum w, we can recover the unique acyclic path
that accumulates the value w upon reaching v. This is a natural
consequence of the Ball–Larus approach: v and w are the only
state maintained while determining acyclic paths, and therefore
must constitute the system’s entire “memory” of the partial
path covered so far. We must merely guarantee that an accurate
partial path sum is available at every point during execution,
since failure can occur at any time.

Figure 2 shows a small instrumentation example. To instru-
ment each function, we first clone the entire function body. One
copy is instrumented; the other is left unchanged. A new branch
at function entry chooses between the two. For each function,
a global flag ( fooInstumentationActivated ) encodes whether or
not to use the instrumented version on that particular run. These
flags are stored in a special section of the data segment where
they can easily be changed by direct editing of the program
binary. Applications can initially ship with all instrumentation
turned off. Over time, instrumentation can be activated for
selected functions based on previously-observed failures.

Our implementation of path tracing includes a number of
changes relative to standard Ball–Larus path counting. We move
array allocation into the stack, giving one trace (pathTrace ) per
active call. The size of this array determines how many acyclic
paths are retained. This is fixed at build time, defaulting to 10.
(We performed preliminary experiments on small applications,
varying the buffer size over several orders of magnitude up to
100,000. We find that overhead initially increases anywhere
from 10–40% per order of magnitude. Overhead eventually
stabilizes once the array is so large that most of it is unused
and therefore never mapped into memory.)

The stack-allocated array serves as a circular buffer. A local
variable (pathIndex ) tracks the current buffer position. At
each back edge and function exit, we append the path sum
(pathSum ) for the just-completed path to this buffer. On back
edges, the path sum is reinitialized (pathSum = 3 ) to uniquely
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foo() {
while (...)

if (...)
call a();

else
call b();

}
(a) Original

volatile bool fooCalls[2] = {false, false};
bool fooInstumentationActivated;

foo() {
if (fooInstumentationActivated) {

volatile int pathSum = 0;
volatile int pathTrace[N];
volatile int pathIndex = 0;
volatile bool calls[2] = {false, false};
while (...) {

if (...) {
call a();
calls[0] = fooCalls[0] = true;
pathSum += 1;

} else {
call b();
calls[1] = fooCalls[1] = true;

}
pathTrace[pathIndex] = pathSum;
pathIndex = (pathIndex + 1) % N;
pathSum = 3;

}
pathSum += 2;
pathTrace[pathIndex] = pathSum;

} else
// original body of foo

}
(b) Instrumented

Fig. 2. Instrumentation example. Highlighted code implements path tracing
and call-site coverage respectively.

identify paths beginning at the loop head. Obviously, we cannot
instrument functions with more paths than can be counted in
a machine integer. This rarely affects 64-bit platforms, though
section V-B notes one exception seen in our experimental
evaluation. Instrumentation skips affected functions, for which
we simply collect no trace data.

We must be able to access the current path sum at any point,
not just at the very ends of complete paths. For safety, we
forbid the compiler from keeping this value in a register. Rather,
both the path sum and the trace array are declared volatile.

Instrumentation produces a metadata file necessary for future
analyses. For each function, we record (1) a full representation
of the control-flow graph with edges labeled with path sum
increments; and (2) a mapping from basic blocks to line
numbers. The linker aggregates this metadata into a single
record for the entire executable: path info in fig. 1.

B. Call-Site Coverage

Call-site coverage addresses two blind spots in path traces:
paths prior to the first in the trace buffer, and interprocedural
paths through calls that have already returned. Nishimatsu et al.
[29] gather coverage at call sites executed during a particular
run and use this to restrict the static program dependence graph.

Similarly, we keep one global bit for each call site indicating
whether that call ever executed during a run. We also track
call-site coverage for each active frame in the program stack.
Taken together, the local and global coverage bits have several
desirable properties. The local bits offer up-to-date information
for call sites in each still-active function. Space for this is
stack-allocated, so it naturally scales directly with the path
trace. Conversely, the global coverage bits summarize data
from completed calls which have already left the stack.

Figure 2 shows a small instrumentation example. Call-site
coverage uses one global array per instrumented function, and
one local array (of the same size) for each stack frame. For
a function f , we number its call sites f0 . . . fn−1; these serve
as indices into f ’s local and global coverage arrays. Local
coverage data is stored in a stack-allocated n-element array
(calls ), zero-initialized at function entry. A per-function global
n-element array ( fooCalls ), initialized at program start, holds
global call-site information. Immediately following each call
site fi, we store true into slot i of both the local and global
coverage arrays. To preserve ordering, the arrays and stores are
declared volatile. For our experiments, we always enable call-
site coverage for all functions, as our evaluations demonstrate
that it is inexpensive to do so.

Our use of call sites as the program points for which to
gather coverage information is somewhat arbitrary. However,
the choice is well-matched to its purpose. Call sites mark
departures from the visible call stack; these are places where
the stack-based path trace cannot help us. Thus, coverage at call
sites complements path tracing where that help is most likely
to be useful. We find that call-site coverage works extremely
well in practice (see section V-B).

For each call site, we record two pieces of static metadata:
(1) the name of the called function, if known; and (2) the line
number of the call site. The linker aggregates this metadata into
a single record for the entire executable: call info in fig. 1.

C. Additional Consideration: Thread Safety

Our experimental evaluation uses only single-threaded ap-
plications, but our instrumentation remains valid with threads.
Path tracing only accesses stack-allocated variables, and each
thread independently maintains its own path traces. Call-site
coverage writes to globals, but never reads from globals. (We
store each call-site coverage bit as a full byte for atomicity.)
Thus, even updates to the global call-site coverage arrays have
no malign race conditions.

IV. ANALYSES

Here we describe two analyses we developed to demonstrate
the utility of the new information embedded in core dumps.
First, we describe a simple algorithm by which the feasible
execution set of control-flow graph nodes and edges is restricted
based on dynamic information from a failing run. Second, we
describe a novel static program dependence graph restriction
algorithm which can be used without knowledge of slicing
criterion to allow future restricted static program slicing. Both
analyses are defined with respect to data collected as per
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Procedure callsite_reduce(G f , unusedCalls, last)
input: a single-function combined graph G f
input: a set unusedCalls of unexecuted call nodes in G f
input: a node last representing the last executed node in f

G f .nodes −= unusedCalls;
G f .nodes = cfg_forward_reachable(G f , f .entry)

∩ cfg_backward_reachable(G f , last);

Fig. 3. Call-site reduction

section III. We assume that this data has been extracted from
the core file and is named and organized as follows:

path: One execution suffix for each frame on the stack at
program termination. All paths contain at least one entry: either
the final crash location (for the innermost frame on the stack)
or the location of the still-in-progress call to the next inner
frame (for all other frames).

callCoverage: One array for each stack frame at program
termination. Array elements are Booleans, with one element per
static call site in the frame’s function. If call-site coverage is not
used, all elements are true. From this we extract unusedCalls,
the set of unexecuted call nodes in each frame.

globalCallCoverage: One Boolean array for each function
in the program, regardless of the state of the stack, with one
element per static call site in the corresponding function. If
call-site coverage is used, each element denotes whether or
not the corresponding call site was ever taken. Otherwise, all
elements are true. From this we extract globalUnusedCalls,
the set of unexecuted call nodes across the entire run.

A. Restriction of Execution Paths

Our first analysis determines the set of CFG nodes and edges
which could not have executed given the crashing program
stack and tracing data collected. This analysis involves only
computing static control-flow graph reachability based on the
path and call coverage data. As the analysis is very light-weight,
it could be used before debugging to eliminate portions of the
program structure shown to a programmer.

In the intraprocedural case, we first run the algorithm in
fig. 3. This algorithm eliminates all call sites in the function
that were not taken in a particular activation record, as well as
any other program points which could not have executed given
that the call sites did not execute. The algorithm proceeds
in two phases. First, it determines the set of nodes forward-
reachable from function entry; then it finds the set of nodes
backward-reachable from the function’s end (in this case, the
crash point). Any node not in the intersection of these two sets
either (a) only executes if an eliminated call site executes or (b)
only occurs after the crash point. Then, all nodes in the path
trace must be kept, along with any nodes backward-reachable
from the first path entry (path1). All other nodes are eliminated.
Elimination of edges is identical; the only difference is that
we track edges crossed rather than nodes visited.

The interprocedural algorithm is a straightforward extension.
We apply the logic from fig. 3 to every procedure in the entire
application, now using globalUnusedCalls. After this, for each

input: a single-function combined graph G f
input: a vector of nodes path = 〈path1, . . . ,path|path|〉

representing a path in G f
input: a set unusedCalls of unexecuted call nodes in G f
output: a restricted version of G f with respect to path and

unusedCalls

callsite_reduce(G f , unusedCalls, path|path|);
retain = intra_control_retain(G f , path)

∪ intra_data_retain(G f , path, /0);
G f .pdg_edges ∩= retain;

Fig. 4. Intraprocedural dependence graph reduction

frame on the stack, we execute the intraprocedural algorithm
over a mutable copy of the CFG. The only difference is that, at
call sites, we explore both intraprocedural and interprocedural
CFG edges. After all frames have completed, we eliminate
nodes and edges which were eliminated for all frames.

B. Static Slice Restriction

Our second analysis is a novel technique for program
dependence graph (PDG) restriction based on an early dynamic
program slicing algorithm originally proposed by Agrawal and
Horgan [1]. Note, however, that we are not actually computing
a dynamic slice: during analysis, the slicing criteria (program
point and variables of interest) may not yet be known. Rather,
we restrict the static PDG to respect the failing execution data.
This can be a preparatory step for multiple future slice queries
for any given slicing criteria.

Let P be a program with dependence graph G. Dependence
edges in G are a static over-approximation of those active in
any possible run of P. Suppose one knew exactly which control
and data dependence edges were actually used during a specific
run r. Then one might reasonably restrict G to a subgraph Gr
containing only the dependence edges active during r, and use
the restricted subgraph during subsequent r-specific analyses.
This corresponds to approach 2 in Agrawal and Horgan [1].

If the exact dependence edges are not known, but can be
safely over-approximated, then the graph Gr can likewise be
approximated, giving a subgraph that is larger than ideal, but
still smaller than G. In our case, we have path traces and call
coverage data as described in section III. This trace data is
incomplete and ambiguous: many runs can produce the same
data. We wish to compute a trace-restricted dependence graph
that retains every dependence edge that could possibly have
been active in any run that is consistent with the trace data.

For this formulation, we assume that G is also overlain
with the control-flow edges in each procedure (as the PDG
contains all nodes from the CFG by our definition). In the
remainder of the paper we refer to a graph with both CFG
and PDG edges as a combined graph. In figs. 5 to 7, “→”
always refers to a control-dependence (not control-flow) edge,
while “→v” refers to a data-dependence edge defining v. For
the high-level descriptions of the algorithms given here, we
collapse all actual-in and actual-out nodes into their associated
call nodes for ease of presentation.
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Function intra_control_retain(G f , path)
input: a single-function combined graph G f
input: a vector of nodes path = 〈path1, . . . ,path|path|〉

representing a path in G f
output: a set of nodes retain

unattributed = path;
retain = /0;
foreach (n, i) in (path|path|, |path|), . . . ,(path1,1) do

foreach p in pathi−1, . . . ,path1 do
if p→ n is a control dependence edge in G f then

retain ∪= {p→ n};
remove slot i from unattributed;
break;

reachable = cfg_backward_reachable(G f , path1);
retain ∪= {_→ n | n ∈ reachable};
retain ∪= {q→ n | q ∈ reachable ∧ n ∈ unattributed};

Fig. 5. Intraprocedural control-dependence retention

1) Intraprocedural Restriction: Figure 4 shows the over-
all process of computing intraprocedural restrictions, which
proceeds in several phases. To begin, call-site information is
used to prune the reachable nodes in the combined graph per
fig. 3, described earlier. Next, we identify the control and data
dependence edges that must be retained; details for each of
these appear in figs. 5 and 6 respectively. Lastly, we remove
all dependence edges not selected for retention.

Figure 5 shows the process for determining the retained
set of control dependence edges. The goal is to identify the
immediate control-dependence parent of each node in path
and each node potentially executed prior to path. The vector
unattributed holds path entries for which the algorithm has
yet to determine the most direct controlling node. The outer
foreach loop walks backward (beginning from the crash point)
through the entries in path. The inner loop begins with the entry
immediately prior to the current node, again walking backward
through path. During this inner-loop searching process, if a
node is encountered that controls the execution of the outer-
loop node, then the control dependence edge between those
nodes was “active” in the traced execution, and thus must
be retained. Once such a node is found, the outer-loop node
has found its directly-controlling conditional; it is removed
from unattributed and the search for that node ends. After
attributing control dependence parents to as many path entries
as possible, the algorithm determines the set of nodes backward-
reachable from the first entry in the trace. These nodes have
no additional dynamic information: any control dependence
edge from a reachable node could have been active in some
run producing this trace. Finally, all remaining unattributed
nodes from path must retain all incoming control dependence
edges from reachable nodes.

Determining the retained set of data dependence edges,
detailed in fig. 6, follows a similar process, albeit with
some additions. Here, each node must determine active data
dependence parents for each variable used. The algorithm first
determines which variables must be defined and may be used by

Function intra_data_retain(G f , path, calleeExclusions)
input: a single-function combined graph G f
input: a vector of nodes path = 〈path1, . . . ,path|path|〉

representing a path in G f
input: a set of variables calleeExclusions unused at call site

path|path|
output: a set of nodes retain

mustDef = {(n,v) | n ∈ G f .nodes ∧ n must define v};
mayUse = {(n,v) | n ∈ G f .nodes ∧ n may use v};
unattributed = 〈mayUse[pathi] for i in 1, . . . , |path|〉;
unattributed|path| −= calleeExclusions;
retain = /0;
foreach (n, i) in (path|path|, |path|), . . . ,(path1,1) do

foreach p in pathi−1, . . . ,path1 do
if unattributedi = /0 then break;
if p→v n is a data dependence edge in G f for
some v ∈ unattributedi then

retain ∪= {p→v n};
if v ∈ mustDe f [p] then

unattributedi −= {v};

reachable = cfg_backward_reachable(G f , path1);
retain ∪= {_→v n | n ∈ reachable};
forall (n, i) in (path1,1), . . . ,(path|path|, |path|) do

retain ∪= {q→v n | q ∈ reachable∧ v ∈ unattributedi };

Fig. 6. Intraprocedural data-dependence retention

each node in the combined graph. For brevity in presentation,
mustDef and mayUse are computed as sets of (node, variable)
pairs, but will also be interpreted as mappings from nodes
to sets of variables. The unattributed vector now tracks all
unattributed variable uses at each entry. The calleeExclusions
parameter is unused by the intraprocedural analysis. The nested
loops, as in control dependence retention, step backward
through path. In this case, the outer loop finishes with a
path entry only once it has attributed each variable used (or
potentially used, in the case of pointers) at that node. Otherwise,
at each inner loop step, data dependence edges are retained
for any variables not yet attributed. Summary data dependence
edges (from the appropriate actual-in to actual-out nodes)
should be added to retain whenever a call node is encountered.
The path trace does not contain data-flow information. Thus,
in the case of pointers with multiple possible variable targets,
the analysis cannot be certain which dependence for v was
active. Therefore, the algorithm considers a used variable v
attributed only if the source must always define v. Lastly,
we conservatively add all possible data-dependence edges to
unattributed variable uses, much as fig. 5 did for control-
dependence edges leading to unattributed nodes.

2) Interprocedural Restriction: Figure 7 gives the steps for
interprocedural restriction. The formulation closely mirrors the
interprocedural slicing method given in Horwitz et al. [17],
which is also later used to slice over the restricted dependence
graph. First, we use global unusedCalls information to remove
unexecuted calls from each function, as well as any other nodes
execution-dependent on those calls.
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input: a whole-program combined graph G
input: a vector of frames stack, each composed of: a vector of

nodes path = 〈path1, . . . ,path|path|〉 representing a path in
G; and a set unusedCalls of unexecuted call nodes in G

input: a mapping globalUnusedCalls from functions to a set of
their unused call nodes

output: a restricted version of G with respect to stack and
globalUnusedCalls

forall (f , unusedCalls) in globalUnusedCalls do
G f = fragment of G representing function f ;
callsite_reduce(G f , unusedCalls, f .exit);

retain = /0;
formals = /0;

foreach frame in 〈stack|stack|, . . . ,stack1〉 do
G′ = temporary copy of G restricted to frame.function;
call = call node located at frame.path|frame.path|;
callsite_reduce(G′, frame.unusedCalls, call);
actuals = variables for actual arguments for call;
connected = {call→v f | v ∈ actuals ∧ f ∈ formals};
unconnected = {v ∈ actuals | @ call→v _ ∈ connected};
retain ∪= connected;
retain′ = intra_control_retain(G′, frame.path)

∪ intra_data_retain(G′, frame.path, unconnected);
retain ∪= retain′;
formals = { formal | formal→ _ ∈ retain′ };

worklist = all call nodes n such that retain contains any
intraprocedural dependence edge from n;

retain ∪= edges interprocedurally backward-reachable
from worklist without crossing any edges
from calls to formal-ins;

G.pdg_edges ∩= retain;

Fig. 7. Interprocedural dependence graph reduction

Next we process each stack frame, beginning with the
crashing function. This phase identifies active dependence edges
within and between stack procedures; transitive dependencies
from called (and returned) procedures are captured with
summary edges. For each frame, we make a temporary subgraph
of G containing only nodes from the frame’s function. This
is done because interprocedural restriction must respect the
retain sets of all invocations of each procedure on the stack
(in the case of recursion) and all possible invocations through
transitive calls. We then remove unused calls. At this point,
we need to connect this frame to the previous frame by
retaining data dependence edges from formal-in nodes to actual
variables from the call. For the innermost frame, this has no
effect. For other frames, connected will contain those edges
to formal-in nodes that correspond to (transitively) potentially-
used formals in the previous stack frame; these must be retained.
unconnected contains any actuals not connected to a useful
formal. Note that here the intraprocedural restriction algorithms
are used as subroutines. We now use the third parameter
to intra_data_retain: the algorithm does not consider unused
actuals to be “unattributed,” as incoming data dependence edges
for these variables were unused.

The final step of the algorithm retains dependence edges from
transitive calls beginning from the stack frames. A worklist is

TABLE I
EVALUATED APPLICATIONS

Application Type Variants Mean LOC

print_tokens Siemens 7 727
print_tokens2 Siemens 10 568
schedule Siemens 9 413
schedule2 Siemens 10 373
tcas Siemens 41 173

ccrypt Linux utility 1 5,280
flex Linux utility 81 14,946
grep Linux utility 59 15,460
gzip Linux utility 59 8,114
sed Linux utility 75 14,314
space ADL interpreter 38 9,563

gcc C compiler 1 222,196

populated with all calls not corresponding to the crash point in
this frame. All dependence edges backward-reachable in the
SDG from the worklist nodes (including edges corresponding to
function returns but excluding those corresponding to function
calls) must be retained. These edges correspond to transitive
interprocedural dependencies for previously-returned calls. The
algorithm does not need to “re-ascend” to calling procedures
because summary edges are included in both phases.

3) Additional Considerations and Relationship to Dynamic
Slicing: Slices over a restricted graph, like those of Agrawal
and Horgan [1] and Horwitz et al. [17], are closure slices.
These over-approximate the set of statements that may have
affected the variable values at the chosen slice point, but are not
necessarily executable or equivalent to the original program.

Unlike Agrawal and Horgan, our algorithms are not actually
computing dynamic slices: they are not “slicing from” any
particular program point. In fact, one way to define the analyses
is as partial-trace dynamic slicing from every point along our
execution suffix. Every static slice taken over the restricted
graph should be consistent with the trace data, modulo the loss
of accuracy (as in Agrawal and Horgan’s approach 3) when
a node is executed multiple times with different dependence
parents. Our dependence graph is static, so these dynamically-
distinct nodes are necessarily collapsed into one static node. The
choice of static-slice start node is orthogonal to this restriction.

Our primary goal is extremely lightweight data collection.
Therefore, we do not track updates to memory locations as
would be necessary for fully-accurate interprocedural dynamic
slicing [2]. We accept a potential loss of accuracy that comes
with static alias analysis for globals and pointer variables when
crossing procedure boundaries.

V. EXPERIMENTAL EVALUATION

We conducted experiments to assess the efficiency of our data
collection strategies and the utility of the information we collect.
We use Clang/LLVM 3.1 [25] to compile and instrument
programs. Instrumentation operates directly on LLVM bitcode.

We selected a range of applications varying in functionality
and size. Table I gives additional details about our test subjects.
The Siemens applications, flex, grep, gzip, sed, and space were
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TABLE II
EXECUTION TIME RELATIVE TO UNINSTRUMENTED CODE

All

Application None −Calls +Calls Realistic Optimized

print_tokens 1.000 0.999 1.002 1.001 0.998
print_tokens2 1.002 1.001 1.000 0.999 0.999
schedule 1.000 1.000 1.001 0.999 0.999
schedule2 1.001 1.000 1.000 1.000 1.000
tcas 1.000 1.000 1.001 1.001 1.000

ccrypt 1.003 1.008 1.016 1.005 0.999
flex 1.003 1.006 1.006 1.008 1.025
grep 1.019 1.049 1.053 1.032 1.020
gzip 1.024 1.155 1.157 1.044 1.011
sed 1.009 1.030 1.037 1.015 1.000
space 1.000 1.004 1.003 1.002 1.001

gcc 1.027 1.062 1.080 1.053 1.015

obtained from the Software-artifact Infrastructure Repository
[33]. space contains real faults, sed contains both seeded and
real faults, and the remaining SIR-provided test subjects contain
only seeded faults. ccrypt and gcc are real, released versions
with real faults. Some application versions have multiple faults
which can be enabled separately; the “Variants” column of
table I counts unique builds across all versions and all available
faults. All of these applications are written in C. However, there
are no practical reasons our approach could not be applied to
object-oriented programming languages, and both our analysis
back end and compiler front end support compilation and
analysis of C++ code.

Results presented in this section are aggregates across all
versions, bugs, and test suites of each application. In general,
results vary little among builds of a given application; we note
any exceptions below.

A. Run-Time Overhead

Overhead is the ratio of execution times for instrumented and
uninstrumented code. We measured overheads at various levels
of tracing, using a quad-core Intel Core i5 with 16 GB of RAM
running Red Hat Enterprise Linux 6.3. For each version of each
application, we ran the test suite over the non-faulty build at
least three times and took the geometric mean of the overheads
for each test case. Results appear in table II. Smaller values
are better, with 1.0 conveying no instrumentation overhead.

We built each application version using our instrumentor,
with all non-library functions instrumented. We then varied
(1) the set of functions whose instrumentation is enabled at
run time, and (2) whether or not call-site coverage was used.
The “None” column of table II shows the overhead with all
functions instrumented, but all tracing disabled at run time. The
“All” columns show the overhead with path tracing enabled
for all functions in the program, either without (“−Calls”)
or with (“+Calls”) call-site coverage enabled. The “Realistic”
column represents a compromise between “None” and “All”:
call-site coverage is activated, and path tracing is enabled for
any function appearing in the crash stack of any failing test
case for that version. This is a realistic configuration if latent

instrumentation can be enabled post-deployment in response
to observed failures.

All of the preceding results used non-optimized builds, as
this is most conducive to debugging. The “Optimized” column
of table II activates the same instrumentation as “Realistic” but
with Clang “-O3” optimization enabled. Analysis still works
correctly on optimized code, due in part to our use of volatile
declarations as discussed in section III. Overheads drop to
2.5% for the single slowest application (flex), and a mere 0.6%
averaged across all applications. However, debugging optimized
code is always tricky. For example, statement reordering can
make the execution paths we recover difficult to understand.
Prior work on debugging optimized code [19, 37] is directly
applicable here.

Our results indicate that limiting path tracing to functions
involved in failures can significantly reduce overhead. Call-
site coverage imposes little overhead in most cases: it would
be reasonable to enable this unconditionally for all functions.
The overhead of a particular application appears to depend
on non-trivial factors. For example, larger applications do
not necessarily have more overhead. Most applications have
comparable overheads for all versions with realistic instrumen-
tation. One version of gzip has significantly lower overhead
(about 2% on average), while the other versions are around
5%. Overheads between sed versions vary more, ranging
from negligible to 4.5%. Averaged across all applications, the
realistic configuration shows a mere 1.3% overhead.

B. Analysis Effectiveness

We evaluated the benefit of our analyses described in
section IV. For test cases where core dumps were already
produced, we used the generated core file. If a test case
produced bad output without crashing, we used the output
tracing tool of Horwitz et al. [18] to identify the first character
of incorrect output, and forced the application to abort at that
point. We aggregated results by taking arithmetic means across
all failing tests of each faulty build, then across all faulty
builds of each version. This avoids over-representing builds
that simply have many failing test cases. For intraprocedural
results, we ran each analysis over every function on the stack
that has at least one ambiguous branch on a path from function
entry to the crash point.

We ran all analysis experiments with tracing and call-
site coverage enabled for all functions. gcc has thirteen
functions with more than 263 acyclic paths; these cannot
be instrumented for path tracing, but all call-site coverage
remains available. gcc’s large size also prevented us from
constructing the whole-program combined graph. Therefore, we
omit interprocedural analysis results for gcc. We also excluded
six gcc functions that we could not analyze with our memory-
based analysis: assign_parms, expand_expr, fold, fold_truthop,
rest_of_compilation, and yyparse.

1) Implementation Details: CodeSurfer 2.2p0 [4] produces
our SDGs. All CFG nodes (i.e., all nodes except for those
representing “hidden” actuals such as global variables) have
associated source-code location information.
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Because we use two different pieces of software (Clang and
CodeSurfer) to determine statement locations for path trace
entries and call sites, minor disagreements are inevitable. Line
numbers are the smallest granularity at which we can reliably
match Clang AST nodes to CodeSurfer graph nodes. Because
of this, ambiguity reduces the precision of our analysis in the
correspondence stage of fig. 1. In flex, gcc, and one version

of grep, we had to modify one source code line by eliminating
a line break at the start of an if statement that otherwise caused
irreconcilable disagreement between Clang and CodeSurfer line
numbers. Our analysis also introduces ambiguity into the SDG
to safely match Clang’s output, referred to as the fix graph
stage in fig. 1.

2) Restriction of Execution Paths: The restriction algorithms
in section IV-A can eliminate CFG nodes and edges that could
not possibly have been active during a given run. The four
“Active Nodes” and “Active Edges” columns in table III report
the reduction in the number of CFG-reachable nodes and edges
in our experiments. These numbers are relative to context-
sensitive, stack-constrained, backward reachability. For the
intraprocedural analysis, we count backward-reachable nodes
and edges from the frame’s crash point. For the interprocedural
analysis, we work back from the crash point of the innermost
stack frame. Larger numbers here are better: 0% means no
reduction, while values closer to 100% mean that our analyses
eliminated many inactive nodes or edges.

Reductions for the smaller applications are modest. Most
failures in these applications occur very early in execution.
Execution ambiguity is very low, often with only one stack
frame besides main. There are exceptions: one version of
print_tokens2 sees an average 49% reduction in active edges.
Results for larger applications are much more impressive, with
average reductions as high as 71%. Most applications are
uniform across versions, but versions of sed have active edge
reductions ranging from 38–83% in the intraprocedural case,
and 51–85% in the interprocedural case. space versions vary
from 9–56% intraprocedurally and 6–53% interprocedurally.
In general, for complex applications, we find that a stack trace
alone leaves great ambiguity as to which code was active.
Our feedback data and analyses can significantly reduce this
ambiguity with negligible impact on performance.

3) Static Slice Reduction: Per section IV-B3, the computed
restriction is independent of (and can be computed prior to
selecting) the slicing criteria. We compute interprocedural static
slices backward from the crash point in the innermost stack
frame; intraprocedural slices work backward from the crash
point in each function in the crash stack. All interprocedural
slices are callstack-sensitive [9, 18, 24].

The two “Slice” columns in table III show our results. These
numbers represent reduction in slice sizes relative to a callstack-
sensitive backward slice from the same location without the
benefit of our dependence graph restriction. Larger numbers
are better: 0% means no reduction in slice size, while values
closer to 100% mean that slices were much smaller with our
restriction analysis than without. Slice sizes count PDG nodes
that have a source-code representation (i.e., that map to a

line number). Note that a line can have more than one node.
For example, for a call with parameters we count each actual
parameter separately, as some may be included in the slice
while others are not.

Smaller applications again see less benefit. As before, there
are some exceptions: one version of schedule has an average
interprocedural slice reduction of about 75%, but the absolute
slice sizes here are small, so the absolute ambiguity is not
large. space is the only larger application with highly varied
results, ranging from 6–46% intraprocedurally and 10–63%
interprocedurally. Results improve substantially for larger
applications, with interprocedural slice reduction showing better
results (49–78% reduction) than the intraprocedural variant.
Call-site coverage has the potential to eliminate many functions
from the combined graph; close examination shows that this
happens frequently and to great effect. In addition, path tracing
plays an important role: if a trace can determine that frame-
local call sites were not taken, the slice is able to remain within
the stack frame where ambiguity is resolved more directly. flex
is a good counterexample: path traces commonly do not reach
function entry (being stuck in a tight loop), and we see less
impressive numbers both intra- and interprocedurally. Yet even
in this case, the worst among the large programs, our approach
cuts interprocedural slice sizes almost in half. The best results,
for ccrypt, show nearly an 80% reduction, the cost of which
is a mere half percent of overhead (“Realistic” in table II).

VI. RELATED WORK

Several prior efforts use symbolic execution in conjunction
with dynamic feedback data to reproduce failing executions
[12, 13, 20, 32, 44]. We intentionally sacrifice perfect replay
in favor of low overhead and tunable instrumentation. As
symbolic execution can be very expensive and is undecidable
in the general case, we see related work on symbolic execution
based on core dumps as possible beneficiaries of the restriction
analyses we perform. Yuan et al. [42, 43] use static analysis
with logs from failing runs to identify paths that must, may,
or cannot have executed between logging points. While we
do not require run-time logging, it provides another valuable
source of information that could be used in conjunction with
the analyses described here.

Selective path profiling [5], adaptive bug isolation [6],
and the Gamma project [11, 30] emphasize adaptive post-
deployment instrumentation with data collection aggregated
across large user communities. Such approaches are comple-
mentary to our own: we focus on gathering very valuable
information at very low cost, while these related efforts focus
on how best to deploy information-gathering instances.

Gupta et al. [15] compute slices within a debugger; ordered
break points and call/return traces restrict the possible paths
taken. While Gupta et al. focus on interactive debugging, our
approach is intended for deployed applications. This imposes
different requirements, leading to different solutions. Our
overheads must remain small relative to a completely unin-
strumented application, not merely relative to an application
running in an interactive debugger. Gupta et al. use complete
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TABLE III
RELATIVE REDUCTION IN COUNTS OR SIZES DUE TO FEEDBACK ANALYSIS

Intraprocedural Interprocedural

Application Active Nodes % Active Edges % Slice % Active Nodes % Active Edges % Slice %

print_tokens 23 27 23 37 39 35
print_tokens2 31 35 23 21 22 18
schedule 8 11 9 17 19 22
schedule2 5 7 0 8 8 19
tcas 22 24 22 53 57 24

ccrypt 33 36 39 71 71 78
flex 31 36 35 50 50 49
grep 45 49 51 61 61 63
gzip 38 42 43 58 59 72
sed 50 54 49 65 66 65
space 24 28 21 45 46 53

gcc 44 49 52 - - -

break-point and call/return traces, while we have only bounded
buffers for each morsel of dynamic data. Takada et al. [35]
offer near-dynamic slicing by tracking each variable’s most
recent writer. Our work focuses more on control than data; in
the presence of pointers and arrays, lightweight dynamic data
dependence tracing in the style of Takada et al. could be a
useful addition. Call-mark slicing [29] marks calls that execute
during a given run, then uses this to prune possible execution
paths, thereby shrinking static slices. The first phase of our
interprocedural slice restriction algorithm uses a similar strategy.
However, our information is more detailed: we have both global
coverage information as well as segregated information for
each stack frame.

VII. CONCLUSIONS AND FUTURE WORK

Our primary design goal was to provide valuable extended
core-dump information for debugging with low enough over-
head to be used in a production setting. Path tracing and
call-site coverage are complementary strategies that realize
this goal. Experimental evaluation finds interprocedural slice
reductions as high as 78%, and active node and edge reductions
as high as 71%. Average overheads are merely 1.3% in a
realistic debugging configuration. Thus, we provide significant
debugging support for negligible cost.

We consider several areas open for improvement. Our prelim-
inary inspection suggests that the bulk of our overhead comes
from path tracing in complex functions. One might simply leave
these uninstrumented; unfortunately, these complex functions
may be exactly what the programmer needs help understanding.
One could also trace just some paths, perhaps adapting work
by Vaswani et al. [38] on preferential path profiling. The
resulting trace suffix would be ambiguous but potentially still
useful. Global call-site coverage works well as described here,
but is both coarse-grained and inflexible. We are interested
in approaches which can encode calling context with low
overhead [10, 34], rather than explicitly and blindly logging
all call sites. We are also interested in leveraging aspects of
data flow as well as control flow; analyses by Yuan et al. [43]
to identify “most-useful” variables may be a good start. Our

current instrumentation and analysis techniques should be able
to analyze C++ applications; we are interested in exploring
whether our techniques translate well to larger object-oriented
software with many dynamically-bound calls. Future work
could also consider aggregation of data from multiple failing
runs in, for example, slice-based fault localization (e.g. [26])
or some form of union slicing (e.g. [28]). Finally, we believe
our traced information holds great promise for assisting with
failure recreation via symbolic execution.
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