
1

Lightweight Convolution Neural Networks for Mobile Edge
Computing in Transportation Cyber Physical Systems

Junhao Zhou, Macau University of Science and Technology, Macau SAR

Hong-Ning Dai, Macau University of Science and Technology, Macau SAR

Hao Wang, Norwegian University of Science and Technology

Cloud computing extends Transportation Cyber-Physical Systems (T-CPS) with provision of enhanced

computing and storage capability via offloading computing tasks to remote cloud servers. However, cloud

computing cannot fulfill the requirements such as low latency and context awareness in T-CPS. The appear-

ance of Mobile Edge Computing (MEC) can overcome the limitations of cloud computing via offloading the

computing tasks at edge servers in approximation to users consequently reducing the latency and improving

the context awareness. Although MEC has the potential in improving T-CPS, it is incapable of processing

computational-intensive tasks such as deep learning algorithms due to the intrinsic storage and computing-

capability constraints. Therefore, we design and develop a lightweight deep learning model to support MEC

applications in T-CPS. In particular, we put forth a stacked convolutional neural network (CNN) consisting

of factorization convolutional layers alternating with compression layers (namely lightweight CNN-FC). Ex-

tensive experimental results show that our proposed lightweight CNN-FC can greatly decrease the number

of unnecessary parameters thereby reducing the model size while maintaining the high accuracy in contrast

to conventional CNN models. In addition, we also evaluate the performance of our proposed model via con-

ducting experiments at a realistic MEC platform. Specifically, experimental results at this MEC platform

show that our model can maintain the high accuracy while preserving the portable model size.

Additional Key Words and Phrases: Convolutional neural network, Model Compression, Factorization, Mo-

bile Edge Computing, Cyber Physical Systems, Jetson TX2 Module

1. INTRODUCTION

In recent years, we have witnessed the proliferation of various physical objects con-
nected in a wireless/wired manner to form the Internet of Things (IoT). IoT enables
the interactions between the physical environment and computing platforms conse-
quently constructing cyber-physical systems (CPS) [Wang et al. 2018]. During the CPS
interaction, learning from massive IoT data is a critical step to extract valuable infor-
mation so as to make intelligent decisions. The recent advances in machine learning
and deep learning bring opportunities in extracting valuable information from massive
IoT data. However, many machine learning (especially for deep learning) methods have
stringent requirements on computing devices while most of IoT devices do not fulfill
these requirements due to the storage and computing limitations. The appearance of
cloud computing can overcome the limitations of IoT devices via offloading computing
tasks to remote cloud servers [Wang et al. 2019].

Despite the strength in data storage and computing capability, cloud computing can-
not fulfill the growing application requirements such as low latency and context aware-
ness. Recently, Mobile Edge Computing (MEC) [Mao et al. 2017], as a complement for
cloud computing can potentially overcome the limitations of cloud computing by of-
floading tasks at edge servers deployed at base stations (BSs), access points (APs) and
gateways in approximation to users [Wang et al. 2017b; Wang et al. 2017a]. Take the
traffic-sign recognition in Transportation Cyber-Physical Systems (T-CPS) or intelli-
gent transportation system (ITS) [Deka et al. 2018] as an example. Traffic-sign recog-
nition plays an important role in developing T-CPS [Luo et al. 2017]. User requests
initiated from mobile devices can be redirected to a nearest edge server (mounted at
onboard device in the car) instead of obtaining the results from a remote cloud sever.
In this manner, the latency can be greatly reduced and the context awareness can be
also improved.

1:2

Vehicular networks

RSU

Wired link

Wireless link

Remote cloudRemote cloud

Computing intensive

algorithms

MEC server

Cloud server

Transportation Control Center

(TCC)

MEC: RSU

Traffic Accident

(Traffic Alert)

!

Transportation Cyber-Physical System

40

MEC: OBU

MEC: PND

Fig. 1: MEC-Cloud Architecture for T-CPS

1.1. Architecture of MEC-Cloud Architecture for T-CPS

Fig. 1 shows an MEC-Cloud architecture to support T-CPS. This architecture con-
sists of three elements related to MEC deployments: 1) Road Side Units (RSU)
with MEC. In T-CPS, RSU is an infrastructure node co-located with BSs or APs along
the roadside. In the MEC-Cloud architecture for T-CPS, MEC servers can be deployed
at RSUs to support the applications of detecting and tracking vehicles, relaying traf-
fic information (such as traffic signs and traffic lights) sent by vehicles. 2) Portable
Navigation Devices (PNDs) or On Board Units (OBUs) with MEC. A PND is a
portable electronic product which combines a positioning capability (acquired by Glob-
al Positioning System) and navigation functions. An OBU is a device installed at a
vehicle. MEC servers can be deployed at both PNDs and OBUs to collect location in-
formation, route structures and traffic flow data consequently offering assistance to
drivers. 3) Transportation Control Center (TCC) with MEC. The TCC is a sup-
porting system for both PND, OBU and RSU. During the communication process, in-
formation is collected and transferred over the TCC. Without the resource limitations,
the TCC can provide comprehensive support to make an optimal decision and apply
the optimized strategies to the T-CPS.

In such MEC-Cloud architecture for T-CPS, MEC plays a crucial role in offering low-
latency and context-aware services to RSUs, vehicles (especially for PNDs and OBUs)
and TCC. Several recent studies investigate MEC technologies in T-CPS. For example,
[Yang et al. 2017; Contreras-Castillo et al. 2017] show that MEC is an efficient tech-
nology to support Internet of Vehicles (IoV). Kaiwartya et al. [Kaiwartya et al. 2016]
have proposed a comprehensive IoV five-layer architecture based on the cloud, con-
nections and clients. The work of [Showering 2016] proposed a navigation system
based on mobile computing devices.

1:3

Nowadays, more and more applications depend on MEC technology, including se-
cure IoT service [Wu et al. 2019], detection of hidden data attacks in sensor-cloud
system [Zhang et al. 2018], resource management in smart city systems [Wang et al.
2019]. In particular, vehicles may communicate with other vehicles through the net-
work in real-time when they connect to the distributed edge devices. Therefore, MEC
is an efficient technology to support IoV, since the MEC server can be installed in vari-
ous places at the network edge. Ref. [Datta et al. 2017] proposed an architecture of IoT
that considers additional enablers such as edge and cloud platforms, smart-phones and
powerful OBUs to support T-CPS.

1.2. Limitations of deep learning models in MEC of T-CPS

However, MEC servers are still incapable of computational-intensive tasks, such as
deep learning algorithms due to the storage and computing constraints. For exam-
ple, deep convolutional neural network (CNN) models as one of the most typical deep
learning schemes, show the advantages in learning complicated and hierarchical fea-
tures of massive image data [Krizhevsky et al. 2012]. The work of [Cirean et al. 2012]
proposed a Multi-column deep neural network (MCDNN) structure, which has supe-
rior performance than other machine learning models in German Traffic Sign Recog-
nition Benchmark (GTSRB) [Namor et al. 2011]. Meanwhile, other deep CNN mod-
els such as AlexNet [Krizhevsky et al. 2012], VGG [Simonyan and Zisserman 2014],
GoogLeNet [Szegedy et al. 2015], ResNet [He et al. 2016] also demonstrate the out-
standing performance in image classification. Nevertheless, deep CNN models usually
contain multiple layers with a large number of parameters. As a result, CNN models
typically have a large model size. Moreover, they also require using strong processing
devices (e.g., Graphics Processing Units) to train the models. In addition, the large size
of CNN models also results in the huge communication overhead in distributed CNN
model-training [Iandola et al. 2016]. Therefore, these drawbacks hinder the wide de-
ployment of CNN models in mobile and portable devices in T-CPS, e.g., RSUs, PNDs
or OBUs.

1.3. Contributions

In this paper, we design and develop a lightweight CNN model to support MEC ap-
plications in T-CPS. Our model has the advantages including much smaller model size
than that of conventional CNN models while maintaining high accuracy in traffic-sign
and vehicle classification. The main research contributions of this paper are summa-
rized as follows.

— We put forth a stacked convolutional structure consisting of factorization convolu-
tional layers alternating with compression layers. In particular, the factorization
convolution converts the conventional convolution into a depthwise convolution and a
pointwise convolution consequently reducing the number of unnecessary parameters.
Moreover, we further improve the efficiency of the activation function and reduce the
redundant parameters by using Concatenated Rectified Linear Units (CReLU) for
compression layers. We name the proposed model as lightweight CNN-FC.

— We conduct extensive experiments based on realistic datasets include GTSRB dataset
as well as a vehicle dataset (namely VCifar-100). We evaluate the performance of the
proposed Lightweight CNN-FC model with the comparison of other representative
CNN models including MCDNN [Cirean et al. 2012] model, VGG-16 [Simonyan and
Zisserman 2014] and AlexNet [Krizhevsky et al. 2012]. Our model outperforms the
conventional models in terms of higher classification accuracy and smaller model
size. For example, our model has the model size of 4.9 MB in contrast to 118.8 MB of
VGG-16 while maintaining high accuracy (i.e., above 98.9% in GTSRB dataset).

1:4

— We also evaluate the performance of our proposed lightweight model in a realistic
MEC platform. In particular, the MEC platform is mounted with a Jetson TX2 chipset
released by NVIDIA, which is a low-power embedded system with the support of
lightweight deep learning schemes. Experimental results also show that our model
can obtain high accuracy in the mobile MEC platform.

The remainder of this paper is organized as follows: Section 2 describes related work
in this paper. Section 3 presents our model structure. Sections 4 - 6 give the details of
the main methods used in our model. Experiment results are presented in Section 7.
We conclude and discuss the future work in Section 8.

2. RELATED WORK

We categorize the studies into two categories: 1) traffic sign recognition and vehicle
recognition in T-CPS and 2) lightweight approaches.

2.1. Traffic Sign Recognition and Vehicle Recognition in T-CPS

Nowadays, more and more T-CPS applications are applied in real traffic condition.
In particular, T-CPS applications mainly focus on traffic sign recognition and they
can detect objects of traffic signs [Luo et al. 2017]. Traditional methods for traffic
sign recognition are mainly based on various machine learning algorithms includ-
ing support-vector-machine (SVM) classifiers with local image permutation interval
descriptor (LIPID) [Tian et al. 2014] and sparse reprentations [Lu et al. 2012]. It is
shown in [Hoferlin and Zimmermann 2009] and [Nguwi and Kouzani 2008] that Mul-
tilayer perceptron (MLP) performs high accuracy and achieves low false positive rates
during identifying the characters in speed limit signs in [Bargeton et al. 2008]. The
work of [Sochor et al. 2016] proposed a scheme that CNN can improve fine-grained
vehicle recognition by extracting 3D information of input data sets from video data.
In [Zhang et al. 2017], an MEC-based model in a vehicular network was developed to
support the computation off-loading process thereby preserving the service continuity
in a mobile environment.

Recently, CNN approaches have shown excellent performance in various computer
vision (CV) applications such as traffic sign recognition. The work of [Cirean et al.
2012] depicts Multi-column deep neural network (MCDNN) structure and implement-
ed the classification experiments for traffic signs on GTSRB dataset. MCDNN consists
of multi standard CNNs architecture, gathers and integrates the results from each
CNN. It is shown in [Sermanet and LeCun 2011] that the local and global features
can be used for traffic sign recognization consequently improving the performance.
The recent advances of CNNs have further promoted the proliferation of CV and T-
CPS applications. For example, deeper (more layers) CNN models have been proposed
including Alexnet [Krizhevsky et al. 2012] with 8 layers and VGG [Simonyan and Zis-
serman 2014] with 19 layers and GoogLeNet [Szegedy et al. 2015] with 22 layers. The
deeper CNN models can achieve higher accuracy than shallower models [Simonyan
and Zisserman 2014].

However, deep CNN models also result in a number of challenges, especially for the
mobile applications at IoT nodes and MEC devices. Due to the storage and computing
limitations, mobile devices cannot afford the intensive computing taks and the bulky
model size of deep CNN models. Therefore, it is necessary to design portable deep
learning models to support T-CPS applications.

2.2. Lightweight Approaches

In order to reduce parameters while preserving accuracy in convolutional neural net-
work, a common method is to take an existing CNN model and to simplify its structure.

1:5

Depthwise

convolution

Pointwise

convolution

Lightweight convolution model

Fig. 2: Lightweight CNN-FC Model consists of factorization convolution layers and compression layers.

A straightforward way is to apply singular value decomposition (SVD) to a pretrained
CNN model by [Denton et al. 2014]. Meanwhile, network pruning [Han et al. 2015b]
was proposed to replace the parameters with zero to form a sparse matrix via the
threshold. Recently, [Han et al. 2015a] creates an approach called Deep Compression
combining Network Pruning with quantization (to 8 bits or less) and huffman encod-
ing. In addition, BinaryConnect [Courbariaux et al. 2015], BinaryNet [Courbariaux
and Bengio 2016] and XNORNetworks [Rastegari et al. 2016] are effective in quanti-
zation CNNs. Furthermore, recently researches accelerate the CNNs via using simpler
filters, such as MobileNet [Howard et al. 2017] and SqueezeNet [Iandola et al. 2016].
MobileNet structure uses depth-wise seprable convolutions to construct a lightweight
deep neural network. Moreover, MobileNet can be used for a wide range of applica-
tions effectively, such as object detection, face attribute extraction and large scale
geo-localization. SqueezeNet is a small CNN architecture and and can achieve the
equivalent accuracy level to AlexNet. SqueezeNet compresses a neural network with
about 50 fewer parameters by replacing 3 × 3 convolution with 1 × 1 convolution than
conventional CNN.

3. OVERVIEW OF ARCHITECTURE

In this paper, we present a Lightweight CNN-FC model, which consists of two ma-
jor components: 1) factorization convolutional layer and 2) compression layer. Fig. 2
shows a layout of this model, in which several factorization convolutional layers alter-
nate with compression layers to form a stacked structure. We then briefly describe the
working procedure of the Lightweight CNN-FC model.

(1) Image preprocessing. The recent study [Buda et al. 2018] shows that the class-
imbalance problem in input data sets is detrimental to CNN models. Meanwhile, the
traffic-sign data sets such as GTSRB dataset often contain blur, distorted and blem-
ished images, consequently affecting the performance of CNN models. Therefore,
we adopt data oversampling and augmentation methods [Chawla 2009] to solve the
class-imbalance problem and noisy data.

(2) Standard convolution. We choose a standard convolution structure to process the
traffic-sign images. The standard convolution structure consists of several convolu-
tional layers, pooling layers and a fully-connected layer. The convolutional input is
an m×m× r image, where m denotes the height (and also the width) of image and r
denotes the number of channels (e.g., r = 3 in RGB model because of red, green and
blue channels). Meanwhile, we choose b filters, each of which has a size of n× n× q
in the convolutional layer, where n is typically smaller than the dimension of the
input image and q is equal to the number of channels.

(3) Factorization convolutional layer. It is a key component in our Lightweight
CNN-FC model. In this layer, a conventional convolution is decomposed into a
depthwise convolution and a pointwise convolution. Moreover, we also optimize the
convolution stride to reduce the computing cost. The number of factorization con-

1:6

volutional layers is denoted by α. Details about this structure will be given in Sec-
tion 5.

(4) Compression layer. Another key component in our Lightweight CNN-FC model
is the compression layer. We employ a Concatenated Rectified Linear Unit (CReLU)
proposed in [Shang et al. 2016] to design a compression convolution filter that can
significantly reduce the number of unused parameters. Details about this structure
will be introduced in Section 6.

(5) Fully-connected layer. We next employ a fully-connected layer which consists of
a number of neurons to extract the main features of traffic signs. The calculation
procedure is similar to that in the standard convolution layer. In particular, we
denote the number of neurons by β, which is tuneable in our experiments.

(6) Optimizer. The loss function plays a critical role in prediction accuracy of CNN
models. In this paper, we also employ different optimizers to investigate the impacts
of them on the loss function. In this experiment, we select 4 optimizers to evaluate
the performance of them. The selected optimizers are Stochastic Gradient Desce
(SGD), Adagrad, RmsProp and Adam. We present the performance comparison of
different optimizers in Section 7.3.4.

(7) Evaluation on MEC platform. Finally, we also deploy our proposed lightweight
model to the mobile device to support MEC. In particular, we adopt Jetson TX2 for-
mally released by NVIDIA to conduct the experiments. The extensive experiments
demonstrate that our proposed lightweight model can provide a practical solution
to T-CPS application with high prediction accuracy while maintaining a portable
model size.

4. IMAGE PREPROCESSING

First, we need to perform image preprocessing for massive traffic signs and vehicle
data sets. In general, raw data sets often have the imbalance class problem [Buda et al.
2018] since the origin data is always raw and crude during experiments or productions.
This problem is due to the fact that the number of labels in a class is much larger than
that of another class. For example, the number of incurable-disease labels is much
smaller than that of normal-disease labels. As a result, the learning model of incurable-
disease group causes under-fitting, compared with that of normal-disease group [Wang
et al. 2014]. Therefore, it is confirmed that the class imbalance problem causes serious
damage in classification mission. It will result in slow convergence in training phase,
meanwhile, weaken the generalization ability in test set. In order to solve this problem,
the widely used approach is oversampling [Jo and Japkowicz 2004].

In this section, we solve the class imbalance problem by adopting oversampling along
with data augmentation. In particular, oversampling directly optimizes the number of
samples in each class and averages the class distribution. This approach can solve the
class-imbalance problem of datasets. Fig. 3 illustrates the number of samples before
(in blue) and after oversampling (in orange) in GTSRB dataset. It is shown in Fig. 3
that the number of samples per class becomes even after sampling.

It is worth mentioning that the effect of data augmentation is essential for solving
the class imbalance problem in image preprocessing. In particular, we focus on some
specific categories; the numbers of samples in these specific categories are much small-
er than those of normal categories. However, just repeating the number of classes sim-
ply will lead to overfitting [Chawla et al. 2002]. In order to avoid overfitting, we employ
data augmentation when oversampling. Data augmentation is an effective method s-
ince it can obtain a number of images with different effects. In data augmentation, we
employ 4 different data augmentation methods as follows:

1:7

C1 C2 C3 C4 C5 C6 C7 C8

Classes
0

200

400

600

800

1000

1200

1400

Nu
m
be

r o
f S

am
pl
es 1000

202

1005

455

1026

813

1020

412

10151015 1015

78

10211021 1020
928

Class Balance Processing
Origin
Oversample

Fig. 3: Effect of oversampling. Origin data and oversampling data are represented in
blue and in orange, respectively. For example, the number of samples in Class 4 is 412
before oversampling becomes 1,020 thereby balancing the number of samples in each
category.

(1) Color Augmentation. Color enhancement includes adjusting color saturation,
brightness and contrast;

(2) PCA Jittering [Krizhevsky et al. 2012]. The feature value and feature vector can
be obtained via calculating the mean and the standard deviation from RGB chan-
nels;

(3) Gaussian Augmentation. Images are processed with the addition of Gaussian
noise;

(4) Rotation Augmentation [Szegedy et al. 2015]. Images are rotated within the
designated degrees (chosen within 0 to 10 degrees).

Fig. 4 shows the effectiveness of different data augmentation methods.

Origin Color Augmentation PCA Jittering Random Gaussian Random Rotation

cle

Fig. 4: From left to right: Origin picture; Color Augmentation processing; PCA Jittering
processing; Gaussian Augmentation processing; Rotation Augmentation processing.

As a result, we expand the number of GTSRB dataset after oversampling along with
data augmentation. Meanwhile, the major features of each image in the expanded

1:8

dataset are still well preserved as before. Therefore, the expanded dataset is beneficial
to our model (to be illustrated in Section 7).

5. FACTORIZATION CONVOLUTION

In this section, we describe the structure of factorization convolutional layer. Factor-
ization convolutional layer can reduce the computing cost effectively, thus it can reduce
the consumption of computing resources at MEC devices. Fig. 5 depicts the working
procedure of the factorization convolutional layer. Unlike the standard convolutional
layer, a factorization convolutional layer is decomposed into a depthwise convolution
and a pointwise convolution. The depthwise convolution essentially factorizes the stan-
dard convolution into M depthwise convolutional filters, each with a size of DK · DK .
The pointwise convolution combines two outputs of depthwise convolution through N
pointwise convolutional filters, each with a size of 1× 1.

5.1. Computational cost

We next calculate the computational cost of the factorization convolution and eval-
uate the cost reduction in contrast to the standard convolution operation. The compu-
tation costs of depthwise convolutions and pointwise convolutions are denoted by Cdc

and Cpc, respectively. Following the similar steps in MobileNets [Howard et al. 2017],
we have Cdc as the following equation.

Cdc = DK ·DK ·M ·DF ·DF , (1)

where DK ·DK represents the convolution kernel size, the output feature map size is
DF ·DF and M is the number of input channels.

Meanwhile, the computation cost of pointwise convolution is calculated by

Cpc = M ·N ·DF ·DF , (2)

where N is the number of output channels.
We denote the total cost of factorization convolutional operation by Cf , which con-

sists of two components Cdc and Cpc. In other words, we have

Cf = Cdc + Cpc = DK ·DK ·M ·DF ·DF +M ·N ·DF ·DF . (3)

5.2. Cost reduction

By contrast, we denote the computational cost of the standard convolution operation
by Cstd, which can be calculated by the following equation,

Cstd = DK ·DK ·M ·N ·DF ·DF . (4)

Compared with the standard convolution operation, the factorization convolutional
operation can significantly save the computational cost. In particular, we denote the
cost-reduction gain of factorization convolutional operation to standard convolution
operation by Gr, which is given by the following equation,

Gr =
Cf

Cstd
= (DK ·DK ·M·DF ·DF+M·N ·DF ·DF)

(DK ·DK ·M·N ·DF ·DF) = 1
N

+ 1
D2

K

.

(5)
It is shown in Eq.(5) that the cost reduction gain only depends on the number of

output channels and the convolution kernel size while it is independent of input size.

6. COMPRESSION LAYER

In our Lightweight CNN-FC model, we also construct compression layer in order
to reduce the model size. Therefore, the model can be installed at a small storage

1:9

!

!

!

"

!#

$
%

$
%

"

!"#$%&'(")*+,-+./$'+,

0+',$&'(")*+,-+./$'+,

1$2,3243)*+,-+./$'+,

!

$
%

$
%

526$+4'72$'+,)

Fig. 5: Factorization Convolution Layout

platform like MEC device. In this layer, it is necessary to utilize a nonlinear activation
function to represent and map features after convolution operations. Compared with
conventional activation functions such as Sigmoid and Tanh, Rectified Linear Units
(ReLU) can effectively mitigate the problem of gradient disappearance [Krizhevsky
et al. 2012]. ReLU is defined as:

y =

{

x if x ≥ 0
0 if x < 0

(6)

where x denotes input value, and y denotes output of activation function. When x ≤ 0,
y = 0; otherwise, y = x. Using ReLU activation function can converge the network
more quickly. Since ReLU is still not saturate, it can resist the problem of gradien-
t disappearance. Moreover, the computation of ReLU is efficient via using a simple
thresholding.

However, the recent study of [Shang et al. 2016] shows that sophisticated CNN mod-
els like AlexNet taking ReLU as activation functions may have redundant filters, con-
sequently resulting in the extra and unnecessary computational cost. Concatenated
ReLU (CReLU) activation function can overcome the drawbacks of ReLU with a sim-
ple but effective modification.

Fig. 6 shows the structure of a compression layer with CReLU activation function.
In particular, a negation operation and a concatenation operation are conducted before
invoking the ReLU activation function in contrast to the conventional ReLU activation
function. Moreover, CReLU can also help to reduce the redundant filters. Specifically,
we can compress the CNN model via halving the number of the filters by using CReLU
compression layer.

We next analyze the relationship between CReLU and ReLU. We denote a signal by
x. The non-negative operation on x can be represented by

[x]+ = max(x, 0), (7)

where [x]+ denotes the non-negative value of x. For example, if x = 3, then [x = 3]+ =
max(3, 0) = 3. If x = −3, then [x = −3]+ = max(−3, 0) = 0. The term [x]+ essentially

1:10

!"#$%&'()*%+&,-&.#/%+0

1,'$%'/2,'"#&3%45

3%45

1,'$,#(/2,'

1,'6"/%'"/%7&3%45

3%45

1,'$,#(/2,'

1,'6"/%'"/2,'

8%9"/2,'

−2 0 2 4

0

2

4 ReLU

−2 0 2 4

0

2

4 ReLU

Fig. 6: Concept of CReLU

represents the ReLU activation function, i.e., ReLU = [x]+. The activation function
CReLU(x) is defined as the following equation,

CReLU(x) = ([x]+, [−x]+). (8)

Combining Eq.(7) with Eq.(8), the following equation can represent the relation be-
tween CReLU and ReLU:

CReLU(x) = [ReLU(x),ReLU(−x)]. (9)

7. EXPERIMENT

In this section, we conduct the experiments to evaluate the performance of the pro-
posed Lightweight CNN-FC model. We first describe the experimental settings in Sec-
tion 7.1. We then evaluate the performance of the proposed Lightweight CNN-FC mod-
el by comparing with conventional CNN models in Section 7.2. Moreover, we also e-
valuate the impacts of parameters on the performance of the proposed Lightweight
CNN-FC model in Section 7.3.

7.1. Experimental Settings

7.1.1. Experimental Environment. We perform the experiments on two platforms: a PC
and an MEC platform (i.e., Jetson TX2 module). Table I gives the detailed configura-
tions of both the PC and the MEC platform. The software framework in our experi-
ments is Keras 2.0 (i.e., Tensorflow as backend) running on Ubuntu 16.04; this setting
is the same as for both PC and Jetson TX2 Module.

It is worth mentioning that Jetson TX2 module is mainly designed for MEC with
small size and low power consumption. Fig. 7 gives the description of Jetson TX2 mod-
ule. In particular, this embedded platform features an integrated 256-core NVIDIA
Pascal GPU, a hex-core ARMv8 CPU, and 8GB of LPDDR4 memory.

7.1.2. Dataset description. We conduct our experiments on two datasets mainly for T-
CPS applications. The first dataset is GTSRB dataset, which has been widely used in e-
valuating classification algorithms in traffic sign recognition. GTSRB dataset contains
more than 50,000 traffic sign images, which have been categorized into 40 classes. We
select three major categories: Speed-limit signs, Direction signs and Attention signs.
Fig. 8 shows some selected examples from each of the datasets. In addition, we also

1:11

Table I: Experimental Environment

PC

Processor Intel Core i7-7700HQ

Memory (RAM) 16 GB

Graphics NVIDIA GTX 1050

Operating Systems Ubuntu 16.04

Jetson TX2 Module

Processor ARM Cortex-A57 + NVIDIA
Denver2

Memory (RAM) 8 GB

Graphics NVIDIA 256-core Pascal

Operating Systems Ubuntu 16.04

Power

Button

Jetson TX2

Antennas

USB

HDMI

DC Power

Keyboard

Mouse

Display

Wireless

Connection

CPU

GPU

Memory

Storage

Fig. 7: Detailed specifications of Jetson TX2 Module

need to solve the class-imbalance problem since the number of traffic signs images in
each category has significant difference. Therefore, we first preprocess the dataset via
the aforementioned oversampling and data augmentation. To simplify our discussion,
we name the dataset containing Speed-limit signs as GTSRB-1, the dataset containing
Direction signs as GTSRB-2, the dataset containing Attention signs as GTSRB-3 and
the dataset containing all the three categories of traffic signs as GTSRB-T (GTSRB
Total). After oversampling and augmentation, the exact number of traffic signs in each
category is shown in Fig. 8. We can observe that the class-imbalance problem is solved
since the number of traffic signs in each category becomes even.

Furthermore, we also construct a vehicle dataset consisting of vehicle images via
extracting vehicle images from Cifar-100 dataset, which is a well-established object

1:12

Speed-limit signs

(GTSRB-1)

Direction signs

(GTSRB-2)

Attention signs

(GTSRB-3)

Fig. 8: Examples from GTSRB Dataset

recognition dataset that contains 100 classes and each class has 600 images collected
by [Krizhevsky 2009]. We name this dataset as VCifar-100 dataset, which contains
5 classes: bicycles, buses, motorcycles, pickup trucks, trains. In addition, VCifar-100
dataset has no class-imbalance problem since the number of samples in each category
is identical (i.e., 500). Fig. 9 shows several examples selected from each class of the
VCifar-100 dataset.

bicycle bus motorcycle pickup truck train

Fig. 9: Examples from VCifar-100 Dataset

7.1.3. Comparison algorithms. We evaluate the performance of the proposed
Lightweight CNN-FC model with other conventional CNN models as described
as follows.

MCDNN [Cirean et al. 2012] is a multi-layer CNN model used for GTSRB dataset
and performed excellent (won the final phrase in the benchmark of German traffic sign
recognition with even better accuracy than human recognition in 2011). This model
consists of 6 layers (i.e., 2 convolutional layers, 2 pooling layers and 2 fully-connected
layers) .

AlexNet was proposed and developed by Krizhevsky, Sutskever and Hinton
[Krizhevsky et al. 2012]. It consists of totally 8 layers: 5 convolutional layers and 3
fully-connected layers. The activation function is ReLU.

VGG-16 was proposed and developed by Simonyan and Zisserman [Simonyan and
Zisserman 2014]. This model significantly increases the number of layers in CNN ar-
chitectures to 16 layers (the 19-layer version is named as VGG-19). It consists of 13
convolutional layers and 3 fully-connected layers.

Factorization-Net is a CNN model with a single factorization convolutional layer. It
can be regarded as a special case of our proposed Lightweight CNN-FC model without
compression layers.

1:13

Table II: Accuracy on GTSRB and VCifar-100 datasets. GTSRB-1: Speed limit signs;
GTSRB-2: Direction signs; GTSRB-3: Attention signs; GTSRB-T: GTSRB Total.

Models
Model
Size

of Pa-
rameters

Accuracy
(GTSRB-1)

Accuracy
(GTSRB-2)

Accuracy
(GTSRB-3)

Accuracy
(GTSRB-T)

Accuracy
(VCifar-

100)

AlexNet 30.2 MB 3,889,835 95.02% 96.60% 95.53% 96.31% 95.31%

VGG-16 118.8 MB 15,291,499 96.52% 97.29% 97.70% 98.60% 94.99%

MCDNN 19.7 MB 2,466,507 97.95% 97.79% 97.21% 98.50% 95.91%

Factorization
Net

6.1 MB 754,373 96.75% 95.61% 94.95% 97.71% 95.11%

Lightweight
CNN-FC (PC)

4.9 MB 602,475

98.43% 98.61% 97.91% 98.96% 96.98%

Lightweight
CNN-FC

(Jetson TX2)
97.14% 97.72% 97.79% 98.15% 97.16%

7.1.4. Performance metrics. We conduct the experiments by considering two perfor-
mance metrics: classification accuracy and model size. In particular, the classification
accuracy is defined as the ratio of the number of correct classifications to the total num-
ber of classifications. To evaluate the model size, we mainly consider the total number
of parameters of the trained models and the file size of the trained models (in terms of
MB).

7.2. Experimental results

Table II presents the performance comparison of our proposed Lightweight CNN-
FC model with other conventional CNN models. It is worth noting that the experi-
ments were conducted on five datasets: GTSRB-1, GTSRB-2, GTSRB-3, GTSRB-T and
VCifar-100. In the experiments, we choose the number of the factorization convolu-
tional layers to be α = 4 and the number of of neurons in the fully connected layer to
be β = 256. Factorization-Net has the same number of the factorization convolutional
layers as our model.
Accuracy. It is shown in Table II that Lightweight CNN-FC model outperforms other
existing models in all the five datasets (GTSRB-1, GTSRB-2, GTSRB-3, GTSRB-T and
VCifar-100). For example, the accuracy of Lightweight CNN-FC model in GTSRB-T is
98.96%, which is the highest among all the models even though MCDNN and VGG-
16 achieve the close accuracy values to our model. Furthermore, we ran Lightweight
CNN-FC model on the mobile MEC device (Jetson TX2) and obtain the accuracy on
GTSRB-T; the accuracy on TX2 is 98.15%, very close to that of PC. We can observe that
accuracy of our model on MEC device is similar to that on PC with different datasets
even though PC platform has greater computation capability than MEC device (see
Table I). Therefore, our lightweight structure is feasible after factorization and com-
pression procedure. The performance improvement of the proposed Lightweight CNN-
FC model may attribute to the excellent characteristics of Lightweight CNN-FC model
such as reducing the unnecessary and redundant parameters.

1:14

Table III: Comparison of computational cost

Convolution type Computational cost

Standard convolution 2,359,296

Factorization convolution 335,872

Model size. Model size is an important parameter to evaluate the portability of CNN
models in MEC deployment. On one hand, the model can be easily loaded on MEC de-
vices when its model size is small enough. On the other hand, a portable CNN model
is also beneficial in distributing training in T-CPS. Table II also gives the comparison
on the model size between the proposed Lightweight CNN-FC model and other con-
ventional models. It is shown in Table II that Lightweight CNN-FC model has much
smaller model size than those of other models. For example, Lightweight CNN-FC
model has the file size of 4.9 MB with 602,475 parameters, which is about 6.2× smaller
than that of AlexNet and 24.25× smaller than that of VGG-16 with high classification
accuracy. Lightweight CNN-FC model has even 4.02 × smaller model size than that of
the shallow structure MCDNN model. In summary, after analyzing both the accuracy
and the model size, our Lightweight-FC model is advantageous to be deployed at MEC
equipment.

7.3. Impacts of parameters

We then investigate the impacts of various parameters on the performance of
Lightweight CNN-FC model.

7.3.1. Effect of factorization convolution. In CNN, the computational cost is an important
factor reflecting the efficiency of algorithms. We first evaluate the computational cost
of the factorization convolution of the proposed Lightweight CNN-FC model with in
contrast to that of a standard convolution. In particular, the computational cost of the
factorization convolution and that of the standard convolution can be calculated by
Eq.(3) and Eq.(4), respectively, as given in Section 5. Specifically, we set parameters
DK = 3, M = 32, N = 32, DF = 16. Table III summarizes the computational costs of
the factorization convolution and the standard convolution.

It is shown in Table III that the computational cost of the factorization convolution
is much smaller than that of the standard convolution (i.e., it is 7× cost reduction
for factorization convolution). As a result, the model size of the trained model with the
factorization convolution can also be greatly reduced. Take Table II as an example. The
model with factorization convolution only (i.e., Factorization-Net) has the model size of
6.1 MB, which is much smaller than that of MCDNN (with the standard convolution).

Meanwhile, the factorization convolution does not significantly affect the classifica-
tion accuracy. Fig. 10 shows the accuracy and loss values of the proposed Lightweight
CNN-FC model with factorization layer only (i.e., Factorization-Net). As shown in
Fig. 10, both the accuracy and loss values of the model converge after 10 iterations.
Moreover, the accuracy of training set is 97.71%, which is just slightly lower than the
accuracy of MCDNN model (i.e., 98.50%). We next show that the higher accuracy can
be achieved with the combination of compression layer.

7.3.2. Effect of compression layer. We next evaluate the impact of compression layer in
our proposed Lightweight CNN-FC model. We add compression layers with CReLU ac-
tivation function. As shown in Table II, the introduction of compression layers reduces
the model size. For example, Lightweight CNN-FC model has the model size of 4.9 MB,
which is smaller than that of Factorization-Net (with size of 6.1 MB).

1:15

0 2 4 6 8
Number of Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Training
Validation

(a) Accuracy

0 2 4 6 8
Number of Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Training
Validation

(b) Loss

Fig. 10: From left to right: Accuracy and loss of Lightweight CNN-FC model with
factorization convolution only running on GTSRB-T. Left: Accuracy of training set is
97.71% and accuracy of validation set is 98.46% after 10 iterations (i.e., converges).
Right: Loss of training set is 0.0717 and that of validation set is 0.0603 after 10 itera-
tions.

0 2 4 6 8
Number of Epochs

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Training
Validation

(a) Accuracy

0 2 4 6 8
Number of Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
ss

Training
Validation

(b) Loss

Fig. 11: From left to right: Accuracy and loss of Lightweight CNN-FC model with both
factorization and compression layers running on GTSRB-T dataset. Left: Accuracy of
training set is 98.07% and accuracy of validation set is 98.96% after 10 iterations (i.e.,
converges). Right: Loss of training set is 0.0609 and that of validation set is 0.0603 after
10 iterations.

On the other hand, the compression layers can further improve the classification ac-
curacy. Fig. 11 shows the accuracy and the loss values after the compression layers are
added. Compared with the model with factorization layer only (as shown in Fig. 10),
adding compression layer can further improve the classification accuracy.

7.3.3. Effect of number of factorization convolutional layers. We then investigate the impact
of the number of factorization convolutional layers on the performance. We vary the
number of factorization convolutional layers from 1 to 4 (we denote the number of
factorization convolutional layers by α). It is worth mentioning that we also need to
supplement compression layers between factorization convolutional layers (as shown
Fig. 2). The experiments were also conducted on data GTSRB-T and VCifar-100 only.

1:16

Table IV: Evaluation with different numbers of factorization convolutional layers

No. of factorization layers
Accuracy
(GTSRB-T)

Accuracy
(VCifar-100)

Model Size No. of parameters

α = 1 95.25% 87.62% 3.38 MB 434,635

α = 2 97.09% 90.06% 3.5 MB 433,221

α = 3 97.16% 91.11% 4.3 MB 522,309

α = 4 98.96% 96.98% 4.9 MB 602,475

Table V: Evaluation of different optimizers on Lightweight CNN-FC (α = 1)

Optimizers Model Size
Accuracy

(GTSRB-T)
of Parameters

Adagrad 3.38 MB 88.71% 434,635

Adam 5.03 MB 87.73% 434,635

RMSprop 3.38 MB 84.81% 434,635

SGD 3.38 MB 95.08% 434,635

Table IV presents the results. It is shown in Table IV that increasing the number
of factorization convolutional layers results in the increment of the classification accu-
racy while the model size is also increased. Note that the increment of the model size
is quite insignificant (e.g., enlarges from 3.5MB to 4.9MB when α increases from 2 to
4). This result implies that the proposed CNN is quite portable and may be used for
mobile applications.

7.3.4. Effect of optimizers. In our lightweight structure, a suitable optimizer can im-
prove the performance during model training and parameter updating. Without loss of
generality, our lightweight convolution model uses a single factorization convolutional
layer (i.e., α = 1) and a compression layer. We then adopt four optimizers to evaluate
the performance: Adagrad, Adam, RMSprop, SGD.

Adagrad [Duchi et al. 2011]. Adagrad is a gradient-based optimization algorithm
suitable for dealing with sparse data. In our experiment, we adopt the learning rate
as the parameter of Adagrad optimizer. Figs. 12 (a) and (b) show the accuracy and the
loss of Adagrad, respectively. The experiment results show that the convergence of the
loss is pretty slow (see Fig. 12(b)). For example, when the accuracy is only 88.71%, the
loss still maintains at 0.3328. Therefore, Adagrad may not be a suitable optimizer in
our model.

Adam [Kingma and Ba 2014]. Adaptive Moment Estimation (Adam) is an optimized
method that computes the adaptive learning rate for each parameter. In the second
set of experiments, we evaluate impact of Adam on Lightweight CNN-FC. Figs. 12 (c)
and (d) show the accuracy and the loss of Adam. We can find that Adam still results
in slower convergence (e.g., when the accuracy of training set is 87.73%, the loss of
training set is 0.3610).

1:17

1 2 3 4 5 6 7 8 9 10
Number of Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Training
Validation

(a) Accuracy of Adagrad

1 2 3 4 5 6 7 8 9 10
Number of Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Training
Validation

(b) Loss of Adagrad

1 2 3 4 5 6 7 8 9 10
Number of Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Training
Validation

(c) Accuracy of Adam

1 2 3 4 5 6 7 8 9 10
Number of Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Training
Validation

(d) Loss of Adam

1 2 3 4 5 6 7 8 9 10
Number of Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Training
Validation

(e) Accuracy of RMSprop

1 2 3 4 5 6 7 8 9 10
Number of Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Training
Validation

(f) Loss of RMSprop

1 2 3 4 5 6 7 8 9 10
Number of Epochs

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Training
Validation

(g) Accuracy of SGD

1 2 3 4 5 6 7 8 9 10
Number of Epochs

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Lo
ss

Training
Validation

(h) Loss of SGD

Fig. 12: Evaluation of Optimizers

1:18

Table VI: Evaluation on number of neurons in the fully-connected layer on GTSRB-T)

β AlexNet VGG-16 MCDNN Factorization Net
Lightweight
CNN-FC

β = 64 78.29% 89.34% 96.17% 82.66% 95.97%

β = 128 93.51% 96.82% 97.85% 96.54% 97.04%

β = 256 96.31% 98.60% 98.50% 97.11% 98.96%

Table VII: Evaluation on number of neurons in the fully-connected layer on VCifar-100

β AlexNet VGG-16 MCDNN Factorization Net
Lightweight
CNN-FC

β = 64 91.15% 84.78% 91.55% 92.91% 95.67%

β = 128 93.59% 91.15% 94.71% 93.67% 95.71%

β = 256 95.31% 94.99% 95.91% 95.11% 96.98%

RMSprop [Tieleman and Hinton 2012]. RMSprop is an adaptive learning rate
method proposed by Geoff Hinton. It mainly contributes to resolving radically dimin-
ishing learning rates of Adagrad optimizer. Figs. 12 (e) and (f) show that the accuracy
and the loss fluctuate radically in training phase. Furthermore, the model cannot
converge after 10 epochs.

SGD [Bottou 2010]. SGD is an efficient optimizer since it can eliminate the redun-
dancy of computations for large datasets by performing one update at a time. Figs. 12
(g) and (h) show the accuracy and the loss of the SGD optimizer. We observe from the
results that SGD can effectively achieve the convergence after 10 epochs.

Table V also compares the model size, the accuracy, the number of parameters of all
the four optimizers. Compared with Adagrad, RMSprop and Adam, we can draw the
conclusion from Table V that SGD is the best optimizer in our lightweight CNN-FC
model because SGD can achieve the highest accuracy (i.e., 95.08%) and the minimum
model size (i.e., 3.38 MB).

7.3.5. Effect of Number of Neurons in Fully-Connected Layer. We also investigate the impact
of the number of neurons in the fully-connected layer. Similarly, we conduct the exper-
iments on dataset GTSRB-T and VCifar-100 only. In particular, we denote the number
of neurons in the fully-connected layer by β. We vary the values of β from 64 to 256.
Meanwhile, we also compare the lightweight CNN-FC with other conventional models
when other parameters are fixed.

It is shown in Table VI and Table VII that the proposed Lightweight CNN-FC out-
performs other conventional models in terms of the highest accuracy when the number
of neurons in the fully-connected layer varies from 64 to 256. Moreover, the highest ac-
curacy is achieved when β = 256.

8. CONCLUSION

In this paper, we put forth a lightweight convolutional neural network used for MEC
in T-CPS. In particular, this model contains a stacked structure, in which several fac-
torization convolutional layers alternate with compression layers. Our model has the
merits including the small model size while maintaining high classification accuracy.
For example, the proposed Lightweight CNN-FC model with 4 factorization convolu-

1:19

tional layers has model size of 4.9 MB, which are much smaller than other conventional
CNN models. Meanwhile, the accuracy of the proposed model also outperforms other
models. This is mainly because the optimized design on convolution layers and com-
pression layers, consequently removing the redundant parameters. Finally, we also
evaluate the performance of the proposed lightweight CNN-FC models by conducting
experiments on a realistic MEC platform.

ELECTRONIC APPENDIX

ACKNOWLEDGMENTS

The work is supported by Macao Science and Technology Development Fund under Grant No.

0026/2018/A1, National Natural Science Foundation of China (NFSC) under Grant No. 61672170, NSFC-

Guangdong Joint Fund under Grant No. U1401251, the Science and Technology Planning Project of Guang-

dong Province under Grant No. 2015B090923004 and No. 2017A050501035, Science and Technology Pro-

gram of Guangzhou under Grant No. 201807010058.

REFERENCES

A. Bargeton, F. Moutarde, F. Nashashibi, and B. Bradai. 2008. Improving pan-European speed-limit signs
recognition with a new ”global number segmentation” before digit recognition. In 2008 IEEE Intelligent
Vehicles Symposium. 349–354. DOI:http://dx.doi.org/10.1109/IVS.2008.4621168

Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT’2010. Springer, 177–186.

Mateusz Buda, Atsuto Maki, and Maciej A. Mazurowski. 2018. A systematic study of the class imbalance
problem in convolutional neural networks. Neural Networks 106 (2018), 249–259.

Nitesh V Chawla. 2009. Data mining for imbalanced datasets: An overview. In Data mining and knowledge
discovery handbook. Springer, 875–886.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. 2002. SMOTE: synthetic
minority over-sampling technique. Journal of Artificial Intelligence Research 16, 1 (2002), 321–357.

D Cirean, U Meier, J Masci, and J Schmidhuber. 2012. Multi-column deep neural network for traffic sign
classification. Neural Networks the Official Journal of the International Neural Network Society 32, 1
(2012), 333–338.

Juan Contreras-Castillo, Sherali Zeadally, and Juan Antonio Guerrero Ibáñez. 2017. A seven-layered model
architecture for Internet of Vehicles. Journal of Information and Telecommunication 1, 1 (2017), 4–22.

Matthieu Courbariaux and Yoshua Bengio. 2016. BinaryNet: Training Deep Neural Networks with Weights
and Activations Constrained to +1 or -1. CoRR abs/1602.02830 (2016). http://arxiv.org/abs/1602.02830

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. 2015. BinaryConnect: Training Deep Neural
Networks with binary weights during propagations. CoRR abs/1511.00363 (2015). http://arxiv.org/abs/
1511.00363

S. K. Datta, J. Haerri, C. Bonnet, and R. Ferreira Da Costa. 2017. Vehicles as Connected Resources: Oppor-
tunities and Challenges for the Future. IEEE Vehicular Technology Magazine 12, 2 (June 2017), 26–35.
DOI:http://dx.doi.org/10.1109/MVT.2017.2670859

Lipika Deka, Sakib M. Khan, Mashrur Chowdhury, and Nick Ayres. 2018. 1 - Transporta-
tion Cyber-Physical System and its importance for future mobility. In Transportation
Cyber-Physical Systems, Lipika Deka and Mashrur Chowdhury (Eds.). Elsevier, 1 – 20.
DOI:http://dx.doi.org/https://doi.org/10.1016/B978-0-12-814295-0.00001-0

Emily Denton, Wojciech Zaremba, Joan Bruna, Yann Lecun, and Rob Fergus. 2014. Exploiting linear struc-
ture within convolutional networks for efficient evaluation. In International Conference on Neural In-
formation Processing Systems. 1269–1277.

John Duchi, Elad Hazan, and Yoram Singer. 2011. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research 12, Jul (2011), 2121–2159.

Song Han, Huizi Mao, and William J. Dally. 2015a. Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding. Fiber 56, 4 (2015), 3–7.

Song Han, Jeff Pool, John Tran, and William J. Dally. 2015b. Learning both Weights and Connections for
Efficient Neural Networks. CoRR abs/1506.02626 (2015). http://arxiv.org/abs/1506.02626

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recogni-
tion. In Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.

1:20

Benjamin Hoferlin and Klaus Zimmermann. 2009. Towards reliable traffic sign recognition. In 2009 IEEE
Intelligent Vehicles Symposium. IEEE, 324–329.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. 2017. MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. (2017). http://arxiv.org/abs/1704.04861

Forrest N. Iandola, Song Han, Matthew W. Moskewicz, Khalid Ashraf, William J. Dally, and Kurt Keutzer.
2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and < 0.5MB model size. (2016).
http://arxiv.org/abs/1602.07360 cite arxiv:1602.07360Comment: In ICLR Format.

Taeho Jo and Nathalie Japkowicz. 2004. Class imbalances versus small disjuncts. Acm Sigkdd Explorations
Newsletter 6, 1 (2004), 40–49.

Omprakash Kaiwartya, Abdul Hanan Abdullah, Yue Cao, Ayman Altameem, Mukesh Prasad, Chin-Teng
Lin, and Xiulei Liu. 2016. Internet of vehicles: Motivation, layered architecture, network model, chal-
lenges, and future aspects. IEEE Access 4 (2016), 5356–5373.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arX-
iv:1412.6980 (2014).

Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images. Technical Report.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet classification with deep convolu-
tional neural networks. Communications of the Acm 60, 2 (2012), 2012.

Ke Lu, Zhengming Ding, and Sam Ge. 2012. Sparse-Representation-Based Graph Embedding for Traffic
Sign Recognition. IEEE Trans. Intelligent Transportation Systems 13, 4 (2012), 1515–1524.

Hengliang Luo, Yi Yang, Bei Tong, Fuchao Wu, and Bin Fan. 2017. Traffic Sign Recognition Using a Multi-
Task Convolutional Neural Network. IEEE Transactions on Intelligent Transportation Systems PP, 99
(2017), 1–12.

Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief. 2017. A Survey on Mobile Edge Computing: The Com-
munication Perspective. IEEE Communications Surveys Tutorials 19, 4 (Fourthquarter 2017), 2322–
2358. DOI:http://dx.doi.org/10.1109/COMST.2017.2745201

Angela F. Danil De Namor, Mohammad Shehab, Rasha Khalife, and Ismail Abbas. 2011. The German Traffic
Sign Recognition Benchmark: A multi-class classification competition. In International Joint Conference
on Neural Networks. 1453–1460.

Yok-Yen Nguwi and Abbas Z Kouzani. 2008. Detection and classification of road signs in natural environ-
ments. Neural computing and applications 17, 3 (2008), 265–289.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. 2016. XNOR-Net: ImageNet
Classification Using Binary Convolutional Neural Networks. CoRR abs/1603.05279 (2016). http://arxiv.
org/abs/1603.05279

Pierre Sermanet and Yann LeCun. 2011. Traffic sign recognition with multi-scale convolutional networks.
In Neural Networks (IJCNN), The 2011 International Joint Conference on. IEEE, 2809–2813.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. 2016. Understanding and Improving Con-
volutional Neural Networks via Concatenated Rectified Linear Units.. In ICML (JMLR Workshop and
Conference Proceedings), Maria-Florina Balcan and Kilian Q. Weinberger (Eds.), Vol. 48. JMLR.org,
2217–2225.

Paul Edward Showering. 2016. Navigation system configured to integrate motion sensing device inputs.
(Aug. 2 2016). US Patent 9,405,011.

Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image
Recognition. CoRR abs/1409.1556 (2014). http://arxiv.org/abs/1409.1556

Jakub Sochor, Adam Herout, and Jiri Havel. 2016. BoxCars: 3D Boxes as CNN Input for Improved Fine-
Grained Vehicle Recognition. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 1–9.

Tian Tian, Ishwar Sethi, and Nilesh Patel. 2014. Traffic sign recognition using a novel permutation-based
local image feature. In Neural Networks (IJCNN), 2014 International Joint Conference on. IEEE, 947–
954.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture 6.5-rmsprop: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural networks for machine learning 4, 2 (2012), 26–31.

Kung Jeng Wang, Bunjira Makond, Kun Huang Chen, and Kung Min Wang. 2014. A hybrid classifier com-
bining SMOTE with PSO to estimate 5-year survivability of breast cancer patients. Applied Soft Com-
puting Journal 20, 7 (2014), 15–24.

1:21

Tian Wang, Yuzhu Liang, Weijia Jia, Muhammad Arif, Anfeng Liu, and Mande Xie. 2019. Coupling resource
management based on fog computing in smart city systems. Journal of Network and Computer Applica-
tions 135 (2019), 11 – 19. DOI:http://dx.doi.org/https://doi.org/10.1016/j.jnca.2019.02.021

Tian Wang, Wenhua Wang, Anfeng Liu, Shaobin Cai, and Jiannong Cao. 2018. Improve the Localization
Dependability for Cyber-Physical Applications. ACM Trans. Cyber-Phys. Syst. 3, 1, Article 6 (Sept. 2018),
21 pages.

Tian Wang, Jiandian Zeng, Yongxuan Lai, Yiqiao Cai, Hui Tian, Yonghong Chen, and Baowei Wang. 2017b.
Data collection from WSNs to the cloud based on mobile Fog elements. Future Generation Computer
Systems (2017). DOI:http://dx.doi.org/https://doi.org/10.1016/j.future.2017.07.031

T. Wang, G. Zhang, A. Liu, M. Z. A. Bhuiyan, and Q. Jin. 2019. A Secure IoT Service Architecture with
an Efficient Balance Dynamics Based on Cloud and Edge Computing. IEEE Internet of Things Journal
early access (2019), 1–13. DOI:http://dx.doi.org/10.1109/JIOT.2018.2870288

Xiaokang Wang, Laurence T Yang, Xia Xie, Jirong Jin, and M Jamal Deen. 2017a. A cloud-edge computing
framework for cyber-physical-social services. IEEE Communications Magazine 55, 11 (2017), 80–85.

YouKe Wu, Haiyang Huang, Qun Wu, Anfeng Liu, and Tian Wang. 2019. A risk defense method based on
microscopic state prediction with partial information observations in social networks. J. Parallel and
Distrib. Comput. 131 (2019), 189 – 199. DOI:http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2019.04.007

Fangchun Yang, Jinglin Li, Tao Lei, and Shangguang Wang. 2017. Architecture and key technologies for
Internet of Vehicles: a survey. Journal of Communications and Information Networks 2, 2 (2017), 1–17.

Guangxue Zhang, Tian Wang, Guojun Wang, Anfeng Liu, and Weijia Jia. 2018. Detection of hidden data
attacks combined fog computing and trust evaluation method in sensor-loud system. Concurrency and
Computation: Practice and Experience (12 2018), e5109. DOI:http://dx.doi.org/10.1002/cpe.5109

Ke Zhang, Yuming Mao, Supeng Leng, Yejun He, and Yan Zhang. 2017. Mobile-edge computing for vehic-
ular networks: A promising network paradigm with predictive off-loading. IEEE Vehicular Technology
Magazine 12, 2 (2017), 36–44.

