
LIGHTWEIGHT CRYPTOGRAPHY
Cryptographic Engineering for a Pervasive World

DISSERTATION

for the degree Doktor-Ingenieur
Faculty of Electrical Engineering and Information Technology

Ruhr-University Bochum, Germany

Axel York Poschmann
Bochum, February 2009

To my parents
and Katja.

Author’s contact information:
axel.poschmann@gmail.com

Thesis Advisor: Prof. Dr.-Ing. Christof Paar

Secondary Referee: Dr. Matthew J.B. Robshaw

Thesis submitted: February 4, 2009
Thesis defense: April 30, 2009

“As light as a feather, and as hard as dragon-scales”

Bilbo Baggins in “The Lord of the Rings: The Fellowship of the Ring”.

vii

Abstract

Increasingly, everyday items are enhanced to pervasive devices by embedding computing
power and their interconnection leads to Mark Weiser’s famous vision of ubiquitous comput-
ing (ubicomp), which is widely believed to be the next paradigm in information technology.
The mass deployment of pervasive devices promises on the one hand many benefits (e.g. opti-
mized supply-chains), but on the other hand, many foreseen applications are security sensitive
(military, financial or automotive applications), not to mention possible privacy issues. Even
worse, pervasive devices are deployed in a hostile environment, i.e. an adversary has physical
access to or control over the devices, which enables the whole field of physical attacks. Not
only the adversary model is different for ubicomp, but also its optimisation goals are signifi-
cantly different from that of traditional application scenarios: high throughput is usually not
an issue but power, energy and area are sparse resources. Due to the harsh cost constraints
for ubicomp applications only the least required amount of computing power will be realized.
If computing power is fixed and cost are variable, Moore’s Law leads to the paradox of an
increasing demand for lightweight solutions.

In this Thesis different approaches are followed to investigate new lightweight cryptographic
designs for block ciphers, hash functions and asymmetric identification schemes. A strong fo-
cus is put on lightweight hardware implementations that require as few area (measured in Gate
Equivalents (GE)) as possible. We start by scrutinizing the Data Encryption Standard (DES)—a
standardized and well-investigated algorithm—and subsequently slightly modify it (yielding
DESL) to decrease the area requirements. Then we start from scratch and design a complete
new algorithm, called PRESENT, where we could build upon the results of the first step. A va-
riety of implementation results of PRESENT—both in software and hardware—using different
design strategies and different platforms is presented. Our serialized ASIC implementation
(1, 000 GE) is the smallest published and enabled PRESENT to be considered as a suitable can-
didate for the upcoming ISO/IEC standard on lightweight cryptography (ISO/IEC JTC1 SC27
WG2). Inspired by these implementation results, we propose several lightweight hash func-
tions that are based on PRESENT in Davies-Meyer-mode (DM-PRESENT-80, DM-PRESENT-128)
and in Hirose-mode (H-PRESENT-128). For their security level of 64 (DM-PRESENT-80, DM-
PRESENT-128) and 128 bits (H-PRESENT-128) the implementation results are the smallest pub-
lished. Finally, we use PRESENT in output feedback mode (OFB) as a pseudo-random number
generator within the asymmetric identification scheme crypto-GPS. Its design trade-offs are
discussed and the implementation results of different architectures (starting from 2, 181 GE)
are backed with figures from a manufactured prototype ASIC.

We conclude that block ciphers drew level with stream-ciphers with regard to low area re-
quirements. Consequently, hash functions that are based on block ciphers can be implemented
efficiently in hardware as well. Though it is not easy to obtain lightweight hash functions with
a digest size of greater or equal to 160 bits. Given the required parameters, it is very unlikely
that the NIST SHA-3 hash competition will lead to a lightweight approach. Hence, lightweight
hash functions with a digest size of greater or equal to 160 bits remain an open research prob-
lem.

Keywords. Lightweight Cryptography, Design, Embedded Systems, Hardware, ASIC, S-
boxes, Block cipher, Hash Function, Pervasive Security, IT Security.

ix

Kurzfassung

Alltagsgegenstände werden zunehmend durch das Einbetten von Prozessoren zu pervasiven
Geräten erweitert und ihre Vernetzung führt zu Mark Weiser’s berühmter Vision des Ubiq-
uitous Computing (ubicomp), das gemeinhin als neues IT-Paradigma angenommen wird. Der
erwartete Nutzen ist einerseits vielversprechend (z.B. optimierte Supply-Chains), jedoch sind
andererseits viele der skizzierten Szenarien (z.B. fürs Militär, für Banken oder für die Auto-
mobilbranche) sicherheitskritisch. Schlimmer noch, durch den Einsatz in „feindlicher” Umge-
bung, hat ein möglicher Angreifer volle physikalische Kontrolle über die Geräte, wodurch die
gesamte Klasse der physikalischen Angriffe überhaupt erst ermöglicht wird. Abschließend sei
noch auf die Gefahren für die Privatsphäre und anderer Bürgerrechte durch die Allgegenwär-
tigkeit von eingebetteten Systemen hingewiesen. Sicherheit ist also von zentraler Bedeutung.
Nicht nur das Angreifermodell von ubicomp, auch seine Optimierungsziele unterscheiden
sich deutlich von denen traditioneller IT-Systeme: einerseits geringer Durchsatz, aber ander-
erseits starke Beschränkungen hinsichtlich des Strom-, Energie-, und Flächenverbrauchs. Be-
dingt durch die scharfen Kostenvorgaben wird stets nur das Minimum der benötigten Rechen-
bzw. Speicherkapazität realisiert, wodurch Moore’s Law konträr interpretiert werden muss: da
die Rechenkapazität fix und die Kosten variabel sind führt Moore’s Law zu dem Paradoxon
einer konstanten oder sogar steigenden Nachfrage nach hocheffizienten Implementierungen.

In dieser Dissertation werden verschiedene Ansätze verfolgt um hocheffiziente Implemen-
tierungen von kryptographischen Primitiven wie Blockchiffren, Hashfunktionen und asym-
metrischen Identifikationssystemen zu untersuchen. Der Fokus liegt dabei auf hocheffizienten
Hardwarerealisierungen, die so wenig Fläche wie möglich—gemessen in Gatter Äquivalenten
(GE)—verbrauchen. Zuerst wird der Data Encryption Standard (DES)—ein standardisierter
und gut-untersuchter Algorithmus—effizient implementiert und um den Flächenverbrauch
weiter zu verringern wird er anschließend geringfügig verändert (DESL). Im nächsten Schritt
wird ein komplett neuer Algorithmus (PRESENT) entworfen. Hierbei konnte auf Ergebnisse
der vorherigen Untersuchungen aufgebaut werden. Verschiedenste Hard- und Softwarere-
alisierungen von PRESENT für unterschiedliche Plattformen werden vorgestellt, wobei unser
Hardwarerealisiserung (1, 000 GE) die kleinste bekannte Hardwarerealisierung einer kryp-
tographischen Primitive mit angemessener Sicherheit darstellt. Diese Ergebnisse führten dazu,
dass PRESENT als geeigneter Kandidat für den zukünftigen ISO/IEC Standard für Lightweight
Cryptography (ISO/IEC JTC1 SC27 WG2) gehandelt wird. Auf diesen Ergebnissen aufbauend,
werden neue hocheffiziente Hashfunktionen, die auf PRESENT im Davies-Meyer-Modus (DM-
PRESENT-80, DM-PRESENT-128) und im Hirose-Modus (H-PRESENT-128) basieren, vorgestellt.
Für die jeweiligen Sicherheitslevel von 64 (DM-PRESENT-80, DM-PRESENT-128)) bzw. 128 Bit
(H-PRESENT-128) sind usere Implementierungen diejenigen mit dem geringsten Flächenver-
brauch. Schließlich kommt PRESENT im Output-Feedback-Modus als Pseudozufallszahlen-
generator innerhalb des asymmetrischen Identifikationssystems crypto-GPS zum Einsatz. Ver-
schiedene Architekturen werden vorgestellt und die Implementierungsergebnisse werden
durch die Zahlen eines speziell gefertigten ASIC-Prototypen von crypto-GPS ergänzt.

Die Ergebnisse dieser Dissertation lassen den Schluss zu, dass im Hinblick auf effieziente
Hardwarerealisierungen Blockchiffren mit Stromchiffren gleichgezogen sind. Dadurch lassen
sich Hashfunktionen, die auf Blockchiffren basieren, ebenfalls hocheffizient implementieren.
Dieses trifft jedoch nicht auf Hashfunktionen mit Ausgabelängen von 160 oder mehr Bits zu.
Berücksichtigt man die Parameter des NIST SHA-3 Hashfunktions-Wettbewerbs, ist es sehr

xi

unwahrscheinlich, dass hieraus eine hocheffiziente Hashfunktion resultiert und folglich bleibt
diese Forschungsfrage weiterhin offen.

Schlüsselworte. Hocheffiziente Kryptographie, Entwurf, Eingebette Systeme, Hardware,
ASIC, S-Box, Blockchiffre, Hashfunktion, Pervasive Sicherheit, IT-Sicherheit.

xii

Acknowledgement

This Thesis is the outcome of three years of research at the Embedded Security group1 at the
Horst Görtz Institute for IT Security at the Ruhr University Bochum. During this time I got the
chance to work with friends and therefore could combine many times work and spare time. It
offered me a smooth transition from a students life to the working world. The results would
not have been possible without collaboration with many researchers and colleagues. Therefore
I would like to briefly acknowledge a subset of all the interesting people I met in the past years.

First of all I would like to say Danke! to my supervisor Christof Paar for his great work in
supervising, guiding and mentoring me in a very friendly and cooperative way. Secondly, I
would like to say Danke! to Irmgard Kühn for coping with all the administrative stuff and all
the nice coffee chats that we had. Thank you! Matt Robshaw for being my Thesis reader, and for
all the exciting research projects we had. Danke! Gregor Leander for all the funny hours that
we spent in your office on joint research projects and on conferences. Merci! Yannick Seurin,
Spasibo! Andrey Bogdanov and Tak! Lars Knudsen and Charlotte Vikkelsoe for the joint work
on PRESENT.

Danke! Andrè Weimerskirch for showing me how to stay calm and relaxed even in the most
stressful situations. Danke!, Kiitos!, Merci!, Obrigado!, Spasibo! and Terima kasih! to Dirk West-
hoff, Uwe Herzog, Evgeny Osipov and the whole UbiSec&Sens Team.

I would also like to say Danke! and Dhanyavad! to my predecessors Sandeep Kumar, Kerstin
Lemke, Jan Pelzl and Kai Schramm for showing me a lifestyle that I wanted to live too! Danke!
to my former colleagues Thomas Eisenbarth, Tim Güneysu, Timo Kasper, Markus Kasper for
the very friendly and cooperative atmosphere that we had at the COSY/EMSEC group. Sev-
eral guests have visited our group during the last three years and I would like to say Grazie!
Francesco Regazzoni, Daste schoma dart nakone! Amir Moradi and Děkuj! Martin Novotny for
all the fun we had beside the work. I would also like to say Danke! to all the students I have
supervised. Finally, Danke! to the whole EMSEC group and all other folks that I forgot.

1Former Communication Security (COSY) group.

Table of Contents

1 Introduction 1

1.1 Motivation . 1
1.2 Summary of research contributions and outline . 3

1.2.1 Lightweight block ciphers . 3
1.2.2 Lightweight hash functions . 4
1.2.3 Lightweight public key cryptography . 4

2 Fundamentals 7

2.1 Design strategies for lightweight cryptography . 7
2.2 Notations . 8
2.3 Introduction to ASIC design . 9

2.3.1 Semi-custom standard cell design flow . 9
2.3.2 Power consumption . 10
2.3.3 Metrics . 10
2.3.4 Architecture strategies . 11

2.4 Hardware properties of cryptographic building blocks 12
2.4.1 Internal state storage . 12
2.4.2 Combinatorial elements . 13
2.4.3 Confusion and diffusion . 14

3 New Lightweight DES Variants 17

3.1 DESL and DESXL: design ideas and security consideration 17
3.2 Related work . 18
3.3 Design criteria of DESL . 19

3.3.1 Improved resistance against differential cryptanalysis and Davies Mur-
phy attack . 20

3.3.2 Improved resistance against linear cryptanalysis 21
3.3.3 4R iterative linear approximation . 23
3.3.4 5R iterative linear approximation . 24
3.3.5 nR iterative linear approximation . 26
3.3.6 Resistance against algebraic attacks . 26
3.3.7 Improved S-box . 26

3.4 Implementation results . 27
3.4.1 Lightweight hardware implementation of DES and DESX 27
3.4.2 Lightweight hardware implementation of DESL and DESXL 29
3.4.3 Lightweight software implementation results 29

3.5 Conclusions . 31

4 PRESENT - An Ultra-Lightweight Block Cipher 33

4.1 Related work . 33

Table of Contents

4.2 Design decisions . 34
4.3 Algorithmic description of the PRESENT encryption routine 35

4.3.1 addRoundKey . 36
4.3.2 sBoxlayer . 36
4.3.3 pLayer . 37

4.4 Algorithmic description of the PRESENT decryption routine 39
4.4.1 addRoundKey . 39
4.4.2 invSBoxlayer . 39
4.4.3 invPLayer . 40

4.5 The key schedule . 40
4.5.1 The key schedule for PRESENT-80 . 40
4.5.2 The key schedule for PRESENT-128 . 40

4.6 Cryptanalytic Aspects . 42
4.6.1 Differential and linear cryptanalysis . 42
4.6.2 Structural attacks . 46
4.6.3 Algebraic attacks . 46
4.6.4 Key schedule attacks . 47
4.6.5 Statistical saturation attacks . 47
4.6.6 Algebraic differential attacks . 48

4.7 Further observations . 48

5 Implementation Results of PRESENT 51

5.1 ASIC Implementations . 51
5.1.1 Serialized ASIC implementation . 51
5.1.2 Round-based ASIC implementation . 53
5.1.3 Parallelized ASIC implementation . 54
5.1.4 Discussion of the implementation results 55

5.2 FPGA implementation results . 57
5.2.1 Target platform and designflow . 57
5.2.2 Architecture of the round-based FPGA implementation 57
5.2.3 Implementation results . 59

5.3 Hardware/Software co-design implementation results 60
5.3.1 ASIC based co-processor implementation results 60
5.3.2 FPGA-based co-processor implementation results 61
5.3.3 Instruction set extensions for bit-sliced implementation 63

5.4 Software Implementations . 64
5.4.1 Implemented variants . 64
5.4.2 Software implementation on a 4 bit microcontroller 65
5.4.3 Software implementations on an 8-Bit microcontroller 71
5.4.4 Software implementations on a 16-Bit microcontroller 75
5.4.5 Software implementations on a 32-Bit CPU 78
5.4.6 Other software implementations of PRESENT 80

5.5 Conclusions . 82

6 Lightweight Hash Functions 83

6.1 Motivation . 83
6.2 Related Work . 84
6.3 Design decisions . 85

xvi

Table of Contents

6.4 Background on hash function constructions . 86
6.4.1 Dedicated hash function constructions . 86
6.4.2 Block cipher constructions . 86

6.5 Compact hash functions with a digest size of 64 bits 87
6.5.1 Description of DM-PRESENT-80 and DM-PRESENT-128 87
6.5.2 Implementation results of DM-PRESENT-80 88
6.5.3 Implementation results of DM-PRESENT-128 92

6.6 Compact hash functions with a digest size of 128 bits 95
6.6.1 Description of H-PRESENT-128 . 96
6.6.2 Implementation results of H-PRESENT-128 96

6.7 Compact hash functions with a digest size of ≥ 160 bits 100
6.7.1 Description of C-PRESENT-192 . 100
6.7.2 Implementation results and estimations of C-PRESENT-192 102
6.7.3 Dedicated design elements inspired by PRESENT 103
6.7.4 Estimations of PROP-1 and PROP-2 . 105

6.8 Conclusion . 106

7 Lightweight Public-Key Cryptography 109

7.1 Motivation . 109
7.2 Related Work . 109
7.3 The GPS identification scheme . 110

7.3.1 History . 110
7.3.2 Parameters and optimizations . 110
7.3.3 Design decisions . 113

7.4 The crypto-GPS proof-of-concept prototype board 114
7.4.1 The input and output pins of the ASIC . 114
7.4.2 The handshake protocol for communication between microcontroller

and crypto-GPS ASIC . 115
7.4.3 Different architectures of the ASIC . 116

7.5 Hardware implementations of round-based crypto-GPS 117
7.5.1 Implementation of the Controller component 119
7.5.2 Implementation of the Addwc component 119
7.5.3 Implementation of the S_Storage component with a fixed secret s . . . 119
7.5.4 Implementation of the S_Storage component with a variable secret s . . 120

7.6 Hardware implementation of serialized crypto-GPS 120
7.6.1 Implementation of the Controller component 120
7.6.2 Implementation of the S_Storage component with a fixed secret s . . . 122

7.7 Discussion of implementation results . 122

8 Physical Security Aspects 125

8.1 Motivation . 125
8.2 A pervasive attacker model . 125

8.2.1 Classification of attackers . 125
8.2.2 Classification of attacks . 126
8.2.3 Classification of attack costs . 127

8.3 Classification of pervasive devices . 127
8.3.1 Unprotected pervasive devices . 128
8.3.2 Partly protected pervasive devices . 128

xvii

Table of Contents

8.3.3 Tamper resistant pervasive devices . 130
8.4 Evaluation of pervasive devices with respect to physical security aspects 131

8.4.1 Evaluation of unprotected pervasive devices 131
8.4.2 Evaluation of partly protected pervasive devices 131
8.4.3 Evaluation of tamper resistant pervasive devices 132

8.5 Introduction to side channel attacks and their countermeasures 132
8.5.1 Countermeasures at the algorithmic level 133
8.5.2 Countermeasures at the cell level . 135

8.6 Cost overhead estimations of side channel countermeasures 137
8.6.1 Cost overhead estimations for a masked serialized hardware implemen-

tations of PRESENT . 137
8.6.2 Cost overhead estimations for a masked 4 bit software implementations

of PRESENT . 140
8.7 Conclusions . 140

9 Conclusion 143

Bibliography 147

List of Figures 165

List of Tables 167

Appendix 169

Curriculum Vitae 175

xviii

1 Introduction

“As light as a feather, and as hard as dragon-scales.”

was Bilbo Baggins description for Mithril, a legendary material in J.R.R. Tolkiens famous novel
“The Lord of the Rings” [228]. It is however also an appropriate description for the topic of
this Thesis: Lightweight Cryptography. On the one hand lightweight cryptography aims to yield
very lightweight implementations that are virtually “light as a feather”, but on the other hand
without conceding the security level too much. In fact, one major aspect of lightweight cryp-
tography is to exploit the security-efficiency trade-offs inherent in implementations of cryp-
tographic algorithms. “Hard as dragon scales” is a good paraphrase for this aspect, because
it emphasizes that there are sufficient security levels (e.g. 80 bit key size) beside a theoretical
optimal one.

In the remainder of this chapter, firstly this Thesis is motivated in Section 1.1. Subsequently, in
Section 1.2 a summary of our research contributions and the outline of the Thesis is given.

1.1 Motivation

Increasingly, everyday items are enhanced to pervasive devices by embedding computing
power. The interconnection of these pervasive devices leads to Mark Weiser’s famous vision
of ubiquitous computing (ubicomp) [238]. A widely shared view is that ubiquitous computing is
the next paradigm in information technology. It fits that currently 98.8% of all manufactured
microprocessors are employed in embedded applications and only 1.2% in traditional comput-
ers. Also Stajano foresees a paradigm shift towards ubiquitous computing when he states that
computers “will evolve from a few large, multipurpose, unreliable techno-monoliths to a mul-
titude of small, dedicated, simple and non-threatening appliances" [210, p. XIV]. In 2002 Ross
Anderson predicted that by 2012 “your fridge, your heart monitor, your bathroom scales and
your shoes might work together to monitor (and nag you about) your cardiovascular health"
[210, p. XII]. Nowadays (2009) it seems that it may need another 10 years to let this particular
vision come true, but generally the trend is clearly visible.

The mass deployment of pervasive devices promises many benefits such as lower logistic costs,
higher process granularity, optimized supply-chains, or location based services among others.
For instance the RFID1 technology is believed to be the enabling technology for the internet of
things. Basically, RFID tags consist of a transponder and an antenna and are able to remotely
receive data from an RFID host or reader device. In general, RFID tags can be divided into pas-
sive and active devices: active tags provide their own power supply (i.e. in form of a battery),
whereas passive tags solely rely on the energy of the carrier signal transmitted by the reader
device. As a result, passive RFID devices are not only much less expensive, but also require
less chip size and have a longer life cycle [74].

1Radio Frequency IDentification, see e.g. [74].

Chapter 1. Introduction

Pervasiveness implies mass deployment which in turn implies harsh cost constraints on
the used technology. Software implementations typically face ROM, RAM and energy con-
straints. The latter can be addressed by the designer by avoiding power consuming accesses to
EEPROM or Flash memories and by reducing the required clock cycles. Luckily, on the other
hand in most cases just a few data, e.g. counter, initialization vector or identifier, are processed.
Therefore high throughput is not critical, though reduction of the clock cycle count increases
the throughput. The cost constraints imply in particular for ASICs2 that power, energy, and
area requirements must be kept to a minimum. A complete—i.e. including the analog part—
low-cost RFID tag might have between 1, 000 and 10, 000 GE3 and for security components
may only be 200− 2, 000 GE available [116].

One counter-argument might be that Moore’s Law will provide abundant computing power
in the near future. However, Moore’s Law needs to be interpreted contrary here: rather than
doubling of performance, the price for constant computing power halves each 18 months. This
interpretation leads to interesting conclusions, because many foreseen applications require a
minimum amount of computing power, but at the same time have extremely tight cost con-
straints (e.g. RFID in tetra packs). As a consequence these applications are not realized yet,
simply because they do not pay off. Moore’s law however halves the price for a constant
amount of computing power every 18 months, and consequently enables such applications
after a certain period of time. Therefore, we foresee a constant or even increasing demand for
the cheapest (read lightweight) solutions.

Besides the aforementioned benefits, there are also many risks inherent in pervasive comput-
ing: many foreseen applications are security sensitive, such as wireless sensor networks for
military, financial or automotive applications. With the widespread presence of embedded
computers in such scenarios, security is a striving issue, because the potential damage of ma-
licious attacks also increases. Stajano sees these three major problems that determine whether
ubicomp will be successful or not [210]:

(1) insufficient security

(2) solving the wrong problems (e.g. global public-key infrastructure)

(3) prevent ubicomp to become ubiquitous surveillance.

An aggravating factor is that pervasive devices are usually not deployed in a controlled but
rather in a hostile environment, i.e. an adversary has physical access to or control over the
devices. This adds the whole field of physical attacks to the potential attack scenarios. Most
notably are here so-called side-channel attacks, such as Differential Power Analysis/Correlation
Power Analysis [131] or EM attacks [8]. It has been shown that security solutions which use a
cryptographically secure algorithm but are implemented without any side-channel counter-
measures can easily be broken by such attacks [171].

Another active research area is to prevent counterfeiting of goods. According to the U.S. Cham-
ber of Commerce “counterfeiting and product piracy cost the U.S. economy between $200 bil-
lion and $250 billion per year and a total of 750.000 American Jobs” [66, p.26]. Combined with
other sources, [172] estimates the global market size of counterfeited goods with US-$527 bil-
lion4. For this purpose (beside others, such as access control) it is desired to use RFID tags as
cryptographic tokens, e.g. in a challenge response protocol. In this case the tag must be able

2Application Specific Integrated Circuit.
3Gate equivalent is a measure for area requirements of integrated circuits (IC). It is derived by dividing the area

of the IC by the area of a two-input NAND gate with the lowest driving strength.
4Note that the value of global drug trade is estimated with US-$321.6 billion in 2005 [230, p.127].

2

1.2. Summary of research contributions and outline

to execute a secure cryptographic primitive. Contactless microprocessor cards [192], which are
capable to execute cryptographic algorithms, are not only expensive and, hence, not necessar-
ily suited for mass production, but also draw a lot of current. The high, non-optimal power
consumption of a microprocessor can usually only be provided by close coupling systems, i.e.
a short distance between reader and RFID device has to be ensured [74]. A better approach
is to use a custom made RFID chip, which consists of a receiver circuit, a control unit, i.e. a
finite state machine, some kind of volatile and/or non-volatile memory and a cryptographic
primitive. These cryptographic primitives have to be optimized to the harsh power and area
constraints that low-cost passive RFID tags face.

1.2 Summary of research contributions and outline

In this Thesis we focus on the technical aspects of security for ubiquitous computing, but also
take economic considerations into account (see Section 2). Especially the attacker model, coun-
termeasures for DPA/CPA and the design goals for lightweight cryptography are influenced
by cost sensitivity (see Section 8). We will follow different approaches to investigate new
lightweight cryptographic designs and their implementations for block ciphers, hash functions
and public key identification schemes. A strong focus is put on lightweight hardware imple-
mentations that require as few area (measured in Gate Equivalents (GE)) as possible, though
also software figures are provided. The contributions can be classified into lightweight block
ciphers (Section 1.2.1), lightweight hash functions (Section 1.2.2) and lightweight public key
cryptography (Section 1.2.3).

1.2.1 Lightweight block ciphers

In Chapter 3 we start with a serialized implementation of DES that requires 2, 310 GEs and
encrypts a plaintext within 144 clock cycles. To our knowledge, this is the smallest reported
DES implementation, trading area for throughput. In our serialized DES implementation S-
boxes take up approximately 32% of the area. Further we decrease the gate complexity of
DES by replacing the eight original S-boxes by a single new one, eliminating seven S-boxes
as well as the multiplexer. This lightweight variant of DES is named DESL and results in
approximately 20% less chip size than our DES (1, 850 GEs vs. 2, 310 GEs). The S-box has been
carefully selected and highly optimized in such a way that DESL resists common attacks, i.e.
linear and differential cryptanalysis, and the Davies-Murphy-attack. However, the security
provided by DES and DESL is limited by the 56 bit key, which might be adequate for a range
of low-cost applications though. In situations where a higher security level is needed key
whitening can be applied yielding the cipher DESXL, with a security level of approx. 118 bits.
DESXL requires 2, 170 GEs and encrypts a plaintext within 144 clock cycles.5

Another alternative for lightweight cryptography, rather than efficiently implement or slightly
modify an established cipher, is to design a new hardware optimized cipher from scratch. This
approach will be followed in Chapter 4, where we propose PRESENT, a substitution permuta-
tion network (SPN) based block cipher with 31 rounds, a block size of 64 bits, and a key size

5Please note that parts of this chapter, especially the design and security analysis of the S-boxes and DESL, are
based on joint work with Gregor Leander.

3

Chapter 1. Introduction

of 80 or 128 bits.6 The main design philosophy during the design of PRESENT was simplic-
ity: no part of the cipher was added without a good reason for it, like thwarting an attack.
The substitution-layer comprises of 16 S-boxes with 4-bit input and 4-bit output (4 × 4). We
decided to use similar S-boxes both in the data path and in the key-scheduling, because we
learned from DESL that this can result in significant area savings when a serialized implemen-
tation is desired. The choice for 4 × 4 S-boxes rather than 8 × 8 was also hardware driven,
because 4-bit S-boxes require less than a quarter of the area of 8-bit S-boxes (25 GEs vs. 120
GEs). However, 4-bit S-boxes have to be selected very carefully because they are cryptograph-
ically weaker than 8-bit S-boxes. Nevertheless, if they are selected carefully, it is possible to
achieve an appropriate security level. The permutation-layer is a very regular and simple bit
transposition, which comes virtually for free in hardware since it is realized by simple wiring
and, hence, no transistors are required. The permutation-layer ensures that the four output
bits of an S-box will be distributed to four distinct S-boxes in the following round, which en-
sures the avalanche effect. This is required to thwart linear and differential cryptanalyses. The
design and security assessment of PRESENT is treated more detailed in Chapter 4.

The implementation efficiency of PRESENT is intensively scrutinized in Chapter 5. We give de-
tails about different implementations for ASICs (serialized, round-based, parallelized and co-
processor), FPGAs7, and a variety of software platforms (4-, 8-, 16- and 32-bit). Especially note-
worthy are the implementation results for the 4-bit microcontroller and the serialized ASIC.
The first one is the first published implementation of a cryptographic algorithm on such an
ultra constrained device and the latter one requires only 1, 000 GE and constitutes the smallest
published implementation of a cryptographic algorithm with a reasonable security level.

1.2.2 Lightweight hash functions

Inspired by the implementation results of PRESENT, we scrutinize lightweight hash functions
that are based on PRESENT or that have similar design elements in Chapter 6.8 Two proposals
based on PRESENT in Davies-Meyer-mode (DM-PRESENT-80 and DM-PRESENT-128) that offer a
hash digest of 64 bits are presented using literature-based design strategies. For hash functions
with a digest size of 128 bits, PRESENT in Hirose-mode (H-PRESENT-128) is proposed. To ob-
tain digests of 160 bits or more it is required to use at least a triple-block length construction,
since PRESENT has a block size of 64 bits. For this purpose C-PRESENT-192 is proposed using
current best practice, but its implementation results (8, 048 GE) and estimates (> 4, 600 GE)
indicate that this is not the way to go. Instead two proposals—PROP-1 and PROP-2—that use
similar design elements to PRESENT are investigated. Their implementation estimates are more
promising (> 2, 520 GE and > 3, 010 GE).

1.2.3 Lightweight public key cryptography

In Chapter 7 we utilize PRESENTs hardware efficiency for public key cryptography. We use
PRESENT in output feedback mode (OFB) [153], thus turning it into a stream cipher. This stream

6Please note that parts of this chapter, especially the security assessment of PRESENT, are based on joint work with
Gregor Leander, Matt Robshaw, Yannick Seurin, Andrey Bogdanov, Lars Knudsen, Christof Paar and Charlotte
Vikkelsoe.

7Field Programmable Gate Array.
8Please note that parts of this chapter, especially the cryptographic aspects and the design of the hash functions,

are based on a joint work with Matt Robshaw, Yannick Seurin, Gregor Leander, Andrey Bogdanov and Christof
Paar.

4

1.2. Summary of research contributions and outline

cipher is used as a Pseudo Random Number Generator (PRNG) for the public key crypto-
GPS identification scheme [85], which exploits a security-efficiency trade-off by using pre-
computed coupons. The design trade-offs of crypto-GPS are discussed and four different
lightweight hardware architectures are described in detail. We show that crypto-GPS can be
implemented as efficiently as 2, 181 GE. We furthermore describe the architecture of a proto-
type circuit board that contains a manufactured ASIC with our four variants of crypto-GPS.

Physical security aspects are discussed in Chapter 8. We first develop a pervasive attacker
model in Section 8.2, before we characterize pervasive devices in Section 8.3. Based on this
we classify pervasive devices with respect to physical security aspects in Section 8.4. Then
we discuss side channel attacks and their countermeasures in Section 8.5 before we estimate
the cost overhead of hardware and software implementations of PRESENT that contain SCA
countermeasures in Section 8.6.

Finally Chapter 9 concludes this Thesis and provides pointer for future work.

5

2 Fundamentals

In this Chapter necessary background information will be provided. First, design strategies
for lightweight cryptography are discussed in Section 2.1 before the notation is introduced in
Section 2.2. Then an overview over the semi-custom standard cell design flow and the used
metrics is given in Section 2.3. Finally, the hardware properties of cryptographic building
blocks is treated in Section 2.4.

2.1 Design strategies for lightweight cryptography

Lightweight Cryptography is a relatively young scientific sub-field that is located at the intersec-
tion of electrical engineering, cryptography and computer science and focuses on new designs,
adaptions or efficient implementations of cryptographic primitives and protocols. Due to the
harsh cost constraints and a very strong attacker model—especially noteworthy is the possibil-
ity of physical attacks—there is an increasing need for lightweight security solutions that are
tailored to the ubiquitous computing paradigm.

Every designer of lightweight cryptography has to cope with the trade-off between security,
costs, and performance. For block ciphers the key length provides a security-cost trade-off, while
the amount of rounds provides a security-performance trade-off and the hardware architec-
ture a cost-performance trade-off (see Figure 2.1). Usually, any two of the three design goals –
security and low costs, security and performance, or low costs and performance – can be eas-
ily optimized, whereas it is very difficult to optimize all three design goals at the same time.
For example, a secure and high performance hardware implementation can be achieved by
a pipelined architecture which also incorporates many countermeasures against side-channel
attacks. The resulting design would have a high area requirement, which correlates with high
costs. On the other hand it is possible to design a secure and low-cost hardware implementa-
tion with the drawback of limited performance.

Generally speaking, there are three approaches for providing cryptographic primitives for ex-
tremely lightweight applications such as passive RFID tags:

(1) Optimized low-cost implementations for standardized and trusted algorithms.

(2) Slightly modify a well investigated and trusted cipher.

(3) Design new ciphers with the goal of having low hardware implementation costs.

In this Thesis we will scrutinize all three approaches. The problem with the first approach is
that most modern block ciphers were primarily designed with good software implementation
properties in mind, and not necessarily with hardware-friendly properties. This is the right
approach for today’s block ciphers, because on the one hand the vast majority of algorithms
run in software on PCs or embedded devices, and on the other hand silicon area has become so
inexpensive that very high performance hardware implementations (achieved through large
chip area) are not a problem any more. However, if the goal is to provide extremely low-cost

Chapter 2. Fundamentals

!"#$%& '%#%&&"&

()*+$,!

-()*+$,! ./

0)1
"
2*
&"
3
4
,5

6
7
8
3
9
!

:#;5$,";,8#"

<";8#$,2

="#>7#?
@%3;"

A7B?
C7!,

Figure 2.1: Design trade-offs for lightweight cryptography.

security on devices where both of those assumptions do not hold, it turns out that many mod-
ern block ciphers do not perform well for these scenarios. We will underline this observation
when following this approach in Chapter 3 where we start with a serialized DES implementa-
tion.

The second approach is to have a well investigated cipher, the design of which was driven by
low hardware costs. A very well known cipher to this respect is the Data Encryption Standard,
DES [159]. DES was designed in the first half of the 1970s and the targeted implementation
platform was hardware. However, by today’s standard, digital technology was extremely lim-
ited in the early 1970s, i.e. a factor of 220 or 6 orders of magnitude less powerful following
Moore’s Law. Hence, virtually all components of DES were heavily driven by low hardware
complexity: exclusive bit-wise OR (XOR), bit permutation and small S-boxes. We will follow
the second approach by slightly modifying DES in order to gain DESL in Chapter 3. The ob-
vious drawback of DES is that its key length is not adequate for many of today’s applications,
but by applying key-whitening techniques the security level can be increased. This will also
be addressed in Chapter 3.

Though the implementation results of DESL are encouraging, they also show optimization
potentials. Therefore, in order to further decrease the hardware area requirements, we will also
follow the third approach and design the ultra-lightweight cipher PRESENT anew in Chapter 4.

2.2 Notations

Throughout this Thesis we use the following notations:

EK(M) = C Encryption of a message M under the key K to obtain the ciphertext C.
A‖B Concatenation of A and B
|A| Bit-length of A, i.e. |A| = ⌈log2(A)⌉.
xi logical inversion of bit xi.
· logical AND.

8

2.3. Introduction to ASIC design

Figure 2.2: Top-down digital semi-custom standard cell design flow, source [231].

2.3 Introduction to ASIC design

In this Section first an overview over the semi-custom standard cell design flow is provided
in Section 2.3.1. Subsequently, in Section 2.3.2 a brief introduction to power consumption of
ASICs is provided. Then in Section 2.3.3 the metrics are explained and finally architectural
strategies for hardware implementations are discussed in Section 2.3.4.

2.3.1 Semi-custom standard cell design flow

In this Thesis several hardware implementation architectures of lightweight cryptographic al-
gorithms will be described. All architectures were developed and synthesized by using a script
based design flow (see Figure 2.2). We used Mentor Graphics Modelsim [92] for VHDL source
code construction and functional verification. Then the RTL description was synthesized with
Synopsys Design Compiler [219] which was also used to generate the area, timing, and power
estimation reports. For different parts of this Thesis different version of these programs have
been used. We provide details about the used versions in the appropriate subsection. The main
effort of synthesis process was area optimization.

9

Chapter 2. Fundamentals

Throughout this Thesis we use three different standard cell libraries with different technology
parameters: a 350 nm MTC45000 library from AMIS [4], a 250 nm SESAME-LP2 library from
IHP [64], and a 180 nm UMCL18G212D3 library from UMC [233]. Each of them contains a dif-
ferent set of standard cells and also the subset of implemented logical functions differ between
these libraries. These facts will lead to different area requirements expressed in GE for the very
same VHDL source code. We mainly used the UMCL18G212D3 library, which is based on the
UMC L180 0.18µm 1P6M logic process and has a typical voltage of 1.8 Volt [233].

2.3.2 Power consumption

One particular problem of passive RFID applications is that the tags face strict power con-
straints. A rule-of-thumb is that the current consumption should be less than 15µA [72].

The following equation summarizes the power dissipation P in CMOS1 devices [59]:

P =

(

1

2
· C · V 2

dd + Qsc · Vdd

)

· f ·N + Ileak · Vdd

where C denotes the circuit capacitance, Vdd the supply voltage, Qsc the short-circuit charge,
f the operating frequency, N the switching activity and Ileak the leakage current. The first
summand represents the dynamic power consumption and the second the static power con-
sumption. At higher frequencies the dynamic part becomes the dominant factor of the total
power consumption. It can be linearly decreased by lowering the operating frequency f , which
also lowers the switching activity N and quadratically by decreasing the supply voltage Vdd.
The remaining terms of the dynamic part, C and Qsc, are technology dependent and can not be
influenced by an algorithm designer. The static power consumption can be linearly decreased
by applying a lower supply voltage Vdd. Moreover, since the leakage current Ileak is directly
proportional to the number of required GEs, decreasing the gate count directly decreases the
power consumption of the circuit.

To lower power consumption, RFID applications are typically clocked at a low frequency, e.g.
100 KHz or 500 KHz. In this frequency range the static power consumption is dominant. RFID
applications usually have harsh cost constraints and the silicon area of the chip is directly
proportional to the cost. Therefore, a good way to minimize both the cost and the power
consumption is to minimize the area requirements. It has become common to use the term
hardware efficient as a synonym for small area requirements. Besides this it is also used to
measure throughput per area, which is the inverse of the time-area product (TA).

2.3.3 Metrics

To assess the efficiency of our implementation we used the following metrics:

Area: Area requirements are usually measured in µm2, but this value depends on the fabrica-
tion technology and the standard cell library. In order to compare the area requirements
independently it is common to state the area as gate equivalents [GE]. One GE is equiva-
lent to the area which is required by the two-input NAND gate with the lowest driving
strength of the appropriate technology. The area in GE is derived by dividing the area in
µm2 by the area of a two-input NAND gate.

1Complementary Metal Oxide Semiconductor, the most widely-used technology.

10

2.3. Introduction to ASIC design

Cycles: Number of clock cycles to compute and read out the result.

Time: The required amount of time for a certain operation can be calculated by dividing the
amount of cycles by the operating frequency t = cycles

freq. . Throughout this Thesis in most
cases 100KHz is used as the operating frequency. Therefore in most cases the time is
given in milli seconds [ms].

Throughput: The rate at which new output is produced with respect to time. The number
of output bits is divided by the time, i.e. by the needed cycles and multiplied by the
operating frequency. It is expressed in bits per second [bps].

Power: The power consumption is estimated on the gate level by Synopsys PowerCompiler
[220]. It is provided in micro Watt [µW]. Note that power estimations on the transistor
level are more accurate, but this would also require further design steps in the design
flow, e.g. the place&route step.

Energy: The energy consumption denotes the power consumption over a certain time period.
It can be calculated by multiplying the power consumption with the required time of the
operation. For the efficiency of a cryptographic algorithm it might be interesting also to
know the energy consumption per output bit. The energy consumption is provided in
micro Joule [µJ] or micro Joule per bit [µJ

bit], respectively.

Current: The power consumption divided by the typical core voltage of the library. These are
3.3V for the AMIS MTC45000 library, 2.5V for the IHP SESAME-LP2 library, and 1.8V for
the UMC UMCL18G212D3 library.

Efficiency: The throughput to area ratio is used as a measure of hardware efficiency. The
hardware efficiency is calculated by dividing the area requirements by the throughput,
i.e. eff. = area

throughput , and is expressed in gate equivalents per bits per second [GE
bps].

Note that the choice of an appropriate I/O2 interface is highly application specific, while at the
same time it can have a significant influence on the area, power, and timing figures. In order to
have a clearer estimation of the cryptographic core’s efficiency we throughout this Thesis did
not implement any special input or output interfaces, but rather chose a width that best suits
the need of the appropriate implementation.

2.3.4 Architecture strategies

An implementation for a low cost passive smart device, such as RFID tags or contactless smart
cards requires small area and power consumption, while the throughput is of secondary in-
terest. On the other hand, an RFID reader device that reads out many devices at the same
time, requires a higher throughput, but area and power consumption are less important. Ac-
tive smart devices, such as contact smart cards do not face strict power constraints but timing
and sometimes energy constraints. In order to tailor an implementation to the design goals
of the application scenario there are three major hardware architecture options: parallel (loop
unrolled), round-wise, and serial.

A parallel, or loop unrolled, block cipher implementation performs several round operations of
the encryption/decryption process within one clock cycle. Usually parallel implementations
are pipelined, i.e. registers are inserted in the critical path so as to increase the maximum clock
frequency. While parallel implementations have high throughput rates, this is rarely the focus

2Input/Output.

11

Chapter 2. Fundamentals

for RFID applications. Rather, the high area and power demands mean that parallel implemen-
tations of block ciphers and stream ciphers are rarely suited for passive RFID applications.

In a round-wise implementation, one round function of a block or a stream cipher is processed
within one clock cycle. The decreased throughput comes at the benefit of decreased area and
power consumption. From a low power and low area perspective, round-wise implementa-
tions are best suited for stream ciphers and make a reasonable option for block ciphers.

To lower power consumption and area requirements, implementations can be serialized; here
only a fraction of one round is processed in a clock cycle. Up to a certain point this strategy
can significantly decrease the area and the power consumption and the impressive results by
Feldhofer et al. on the AES [161] are achieved by serialization [73]. However, it might not
always be a suitable implementation strategy since the savings can sometimes be cancelled
by the overheads in additional control logic. Nevertheless, from a low power and low area
perspective, serial implementations appear to be best-suited for RFID-like implementations in
the case of block ciphers. The natural way of implementing stream ciphers is in a bit serial
fashion.

2.4 Hardware properties of cryptographic building blocks

This Section first provides a brief overview over sequential (Section 2.4.1) and combinatorial
(Section 2.4.2) logic elements. Then in Section 2.4.3 the basic cryptographic properties of con-
fusion and diffusion are discussed with respect to their hardware properties.

2.4.1 Internal state storage

Ciphers have an internal state which we might refer to as cipher state and key state. When a block
cipher is used, the cipher state is initialized by the plaintext (or ciphertext) and modified under
the action of the key (and therefore the key state). When a stream cipher is used, the cipher
state is initialized by the initialization value and the key. Stream ciphers then use the initialized
cipher state to output the keystream. Block ciphers have a fixed number of rounds and the final
internal state serves as the ciphertext. Note that independent of the implementation strategy
(see above) the internal cipher state has to be saved at each round.

In software environments kilobytes of RAM and ROM are available. In low-cost tag applica-
tions this is not the case. Although most RFID tags have a memory module, for cryptographic
algorithms there is only the barest minimum of storage capacity available. Furthermore, read
and write access to the memory module (usually EEPROM) is very power consuming. As a
consequence it is preferable to store all intermediate values and variables in registers rather
than in external memory.

Registers typically consist of flip-flops. Compared to other standard cells, flip-flops have a
rather high area and power demand. For example, when using the Virtual Silicon (VST) stan-
dard cell library based on the UMC L180 0.18µ 1P6M Logic process (UMCL18G212T3, [233]),
flip-flops require between 5.33 GE and 12.33 GE to store a single bit (see Table 2.1). The gate
count differs so significantly for different cells because the first cell (HDDFFPB1) consists only
of a simple D flip-flop itself, while the latter one (HDSDERSPB1) comprises of a multiplexer
to select one of two possible inputs for storage and a D flip-flop with active-low enable, asyn-
chronous clear and set. There exists a wide variety of flip-flops of different complexity between

12

2.4. Hardware properties of cryptographic building blocks

Table 2.1: Area requirements and corresponding gate count of selected standard cells of the
UMCL18G212T3 library.

Standard cell Process Library Cell name Area in µm2 GE
NOT 0.18µm UMCL18G212T3 HDINVBD1 6.451 0.67

NAND 0.18µm UMCL18G212T3 HDNAN2D1 9.677 1

NOR 0.18µm UMCL18G212T3 HDNOR2D1 9.677 1

AND 0.18µm UMCL18G212T3 HDAND2D1 12.902 1.33

OR 0.18µm UMCL18G212T3 HDOR2D1 12.902 1.33

MUX 0.18µm UMCL18G212T3 HDMUX2D1 22.579 2.33

XOR (2) 0.18µm UMCL18G212T3 HDEXOR2D1 25.805 2.67

XOR (3) 0.18µm UMCL18G212T3 HDEXOR3D1 45.158 4.67

D Flip flop 0.18µm UMCL18G212T3 HDDFFPB1 51.61 5.33

Scan D flip-flop
0.18µm UMCL18G212T3 HDSDFPQ1 58.061 6

/w enable
Scan flip-flop 0.18µm UMCL18G212T3 HDSDEPQ1 83.866 8.67

complex
0.18µm UMCL18G212T3 HDSDERSPB1 119.347 12.33

Scan flip-flop

these two extremes. A good trade-off between efficiency and useful supporting logic provide
the two flip-flop cells HDSDEPQ1 and HDSDFPQ1. Both are scan flip-flops, which means that
beside the flip-flop they also provide a multiplexer. The latter one is also capable of being gate
clocked, which is an important feature to lower power consumption.

Storage of the internal state typically accounts for at least 50 % of the total area and power
consumption3. Therefore implementations of cryptographic algorithms for low-cost tag appli-
cations should aim to minimize the storage required.

2.4.2 Combinatorial elements

The term combinatorial elements includes all the basic Boolean operations such as NOT, NAND,
NOR, AND, OR, and XOR. It also includes some basic logic functions such as multiplexers
(MUX). It is widely assumed that the gate count for these basic operations is typically inde-
pendent of the library used. However, in [199] we showed that ASIC implementation results
of a serialized PRESENT in different technologies range from 1, 000 GE to 1, 169 GE. This indi-
cates that also the gate count for basic logic gates differs depending on the used standard-cell
library.

For the Virtual Silicon (VST) standard cell library based on the UMC L180 0.18µ 1P6M Logic
process (UMCL18G212T3, [233]) the figures for selected two-input gates with the lowest driving
strength is given in Table 2.1. Note that in hardware XOR and MUX are rather expensive when
compared to the other basic Boolean operations.

3E.g. the area requirements of storage logic accounts for 55 % in the case of PRESENT [33] and for the AES it is
60 %, while half of the current consumption (i.e. 52 %) of the latter is due to storage logic [73].

13

Chapter 2. Fundamentals

2.4.3 Confusion and diffusion

Shannon [208] was the first to formalize the ideas of confusion and diffusion as two attractive
properties in the design of a secure cipher. In practice, almost all block ciphers are product
ciphers, i.e. they are based on subsequent operations of confusion and diffusion. In a block
cipher, confusion is often identified with a substitution layer (see below) while diffusion is
usually identified with a permutation or “mixing” layer. In reality is not always easy to sepa-
rate and identify the components that contribute to confusion or diffusion.

Some ciphers use arithmetic operations as a diffusion and confusion technique, but this can
significantly increase the area and power consumption. Arguably the most common confusion
method is based on S-boxes (see below). A small change in the input to an S-box leads to a
complex change in the output. In order to spread these output changes over the entire state
quickly, a dedicated diffusion layer has to be applied. The classical way of doing this is to use
bit permutation. In hardware, bit permutations can be realized with wires and no transistors
are involved. They are therefore a very efficient component. Note that more complex diffusion
techniques, such as the mix-column layer used in the AES, are also possible. Even though they
have cryptographic advantages, they come at a higher hardware cost.

Many block ciphers, and some stream ciphers, use S-boxes to introduce non-linearity. In soft-
ware S-boxes are often implemented as look-up tables (LUT). In hardware these look-up tables
can have a large area footprint4 or they pose technological problems since a mix of combina-
torial logic and ROM cannot always be easily achieved with a standard hardware design flow.
Hence a purely combinatorial realization is often more efficient.

If combinatorial implementations do not exploit any internal structure in the S-box, then the
area requirements will grow rapidly with a the number of input and output bits. The more
output bits an S-box has, the more Boolean equations will be required. And the more input
bits an S-box has, the more complex these equations are likely to be. An interesting interaction
between cryptography and hardware implementation can be observed here: in order to with-
stand differential and linear cryptanalysis [26, 149], high non-linearity of S-boxes is required,
which directly translates into a high gate count. A close look on the hardware efficiency of the
S-boxes in AES [161], DES [159], and PRESENT [33] illustrates this.

AES uses a bijective 8-bit S-box, i.e. eight input bits are mapped to eight output bits. In [223]
the hardware properties of several implementations of AES S-boxes, each illustrating different
design goals, are compared. It turns out that the AES S-box realised as Boolean logic requires
about 1, 000 GE while there is no implementation that requires less than 300 GE. These figures
also include the inverse S-box.

DES uses eight different S-boxes that map six input bits to four output bits. In Chapter 3 we
will show that in our DES ASIC design the S-boxes require in total 742 GE. However, taking
into account that Boolean terms can be shared between the eight different S-boxes, it is not
surprising that the area requirements for a single 6-bit to 4-bit S-box typically is around 120 GE.
This can also be observed in implementations of DESXL and DESL, which will be introduced
also in Chapter 3. Both algorithms use 6-bit to 4-bit S-boxes but, in contrast to DES, a single
S-box is repeated eight times. Therefore only one instance of the S-box has to be implemented
in a serialized design, which requires 128 GE.

4Note that LUTs with a large memory footprint in software can be vulnerable to side-channel attacks based on
cache misses.

14

2.4. Hardware properties of cryptographic building blocks

In [140] the area requirements of so-called SERPENT-type S-boxes are described. These are a
special subset of 4-bit to 4-bit S-boxes fulfilling certain criteria and we found that the area re-
quirements for this type of S-box varies between 21 GE and 39 GE. As an example, PRESENT

uses a single, bijective 4-bit to 4-bit S-box which can be implemented with 21 GE. However,
in Chapter 5 we will see that a single S-box requires 28 GE when implemented with the
UMCL18G212D3 library. This deviation is caused by the fact that synthesis results depend
heavily on the technology of the standard cells that are used (see discussion above).

After having introduced the basic knowledge about semi-custom ASIC design, we now can
proceed with the first design approach to lightweight cryptography in the next chapter.

15

3 New Lightweight DES Variants

In this Chapter we first give an overview of our approach in Section 3.1 and treat related work
in Section 3.2. Subsequently we present and discuss design criteria for the new algorithm
DESL in Section 3.3. There we will describe how we strengthened the original DES S-box
design criteria in order to achieve a cryptographically stronger S-box compared to the original
DES S-boxes. We will show, that our S-box resists linear and differential cryptanalyses and the
Davies-Murphy-attack. The design and security analysis of DESL is joined work with Gregor
Leander and hence contains contributions from him. Subsequently we present a lightweight
hardware implementation architecture for DES, DESX, DESL and DESXL in Section 3.4. There
we also will present the performance results of the described hardware implementations as
well as software implementation results. Finally, in Section 3.5 we draw conclusions.

3.1 DESL and DESXL: design ideas and security consideration

The main design ideas of the new cipher family of this Chapter, which are either original DES
efficiently implemented or a variant of DES, are:

(1) Use of a serial hardware architecture which reduces the gate complexity.

(2) Optionally apply key-whitening in order to render brute-force attacks impossible.

(3) Optionally replace the 8 original S-boxes by a single one which further reduces the gate
complexity.

If we make use of the first idea, we obtain a lightweight implementation of the original DES
algorithm which consumes about 35% less gates than the best known AES implementation
[71].

To our knowledge, this is the smallest reported DES implementation, trading area for through-
put. The implementation requires also about 86% fewer clock cycles for encrypting of one
block than the serialized AES implementation in [71] (1032 cycles vs. 144) which makes it eas-
ier to use in standardized RFID protocols. However, the security provided is limited by the
56-bit key. Brute forcing this key space takes a few months and hundreds of PCs in software,
and only a few days with a special-purpose machine such as COPACOBANA [135]. Hence,
this implementation is only relevant for application where short-term security is needed, or
where the values protected are relatively low. However, we can imagine that in certain low
cost applications such a security level is adequate.

In situation where a higher security level is needed key whitening, which we define here as
follows:

DESXk.k1.k2
(x) = k2 ⊕DESk(k1 ⊕ x)

Chapter 3. New Lightweight DES Variants

can be added to standard DES, yielding DESX. The additional XOR gates increase the gate
count by about 14%1. The best known key search attack uses a time-memory trade-off and
requires 2120 time steps and 264 memory locations, which renders this attack entirely out of
reach. The best known mathematical attack is linear cryptanalysis [149]. Linear cryptanalysis
requires about 243 known ciphertext blocks together with the corresponding plaintexts. At
a clock speed of 500 kHz, our DESX implementation will take more than 80 years, so that
analytical attacks do not pose a realistic threat. Please note that parallelization is only an option
if devices with identical keys are available.

In situations where extremely lightweight cryptography is needed, we can further decrease
the gate complexity of DES by replacing the eight original S-Boxes by a single new one. This
lightweight variant of DES is named DESL and has a brute-force resistance of 256. In order to
strengthen the cipher, key whitening can be applied yielding the cipher DESXL. The crucial
question is what the strength of DESL and DESXL is with respect to analytical attacks. We
are fully aware that any changes to a cipher might open the door to new attacks, even if the
changes have been done very carefully and checked against known attacks. Hence, we believe
that DESL (or DESXL) should primarily not be viewed as competitors to AES, but should be
used in applications where established algorithms are too costly. In such applications which
have to trade security (really: trust in an algorithm) for cost, we argue that it is a crypto-
graphically sound approach to modestly modify a well studied cipher (in fact, the world’s best
studied crypto algorithm).

3.2 Related work

In [73], Feldhofer et al. propose a very small hardware implementation of the Advanced Encryp-
tion Standard (AES) [161] (3, 400 GE), which was then by far the smallest available implementa-
tion of the AES. Their AES design is based on a byte-per-byte serialization, which only requires
the implementation of a single S-box [54] and achieves an encryption within 1, 032 clock cycles
(= 10.32 ms @ 100kHz). Unfortunately, the ISO/IEC 18000 standard requires that the latency
of a response of an RFID tag does not exceed 320µs, which is why Feldhofer et al. propose a
slightly modified challenge-response protocol based on interleaving. In 2006 Hämäläinen et
al. propose a low area implementation of the AES that requires 3, 100 GE and only 160 clock
cycles [96]. However, these figures are still significantly higher than the assumed 2, 000 GE
and it seems that it is not very likely to further decrease the area requirements for the AES.
This might be due to the fact that the AES—besides the majority of block ciphers—has been
developed with good software properties in mind, which in turn means that the gate count for
a hardware implementation is rather high.

The only well established cipher that was designed with a strong focus on low hardware costs
is the Data Encryption Standard (DES) [159]. The smallest published implementation of DES
consists of 12, 000 transistors, which roughly translates to 3, 000 GE, and requires 28 clock
cycles for one encryption [232]. It was published by Verbauwhede et al. back in 1988 and is not
based on a modern semi-custom standard cell design flow. Instead it uses customized floor-
planning and routing for which the whole implementation was optimized. If we compare
this implementation of DES with a standard, one-round implementation of AES, the former

1This number only includes additional XOR gates, because we assume that all keys have to be stored at different
memory locations anyway.

18

3.3. Design criteria of DESL

consumes about 6% (!) of the logic resources of AES, while having a shorter critical path [232,
201].2

As will become clear in Section 3.4, S-boxes require a large share of the area. Hence, a native
approach is to alter the substitution layer of DES by replacing the eight original S-boxes by
one S-box, which is repeated eight times. While it does not seem to be possible to find better
logic minimizations of the original DES S-boxes, there have been other approaches to alter
the S-box, e.g. key-dependent S-boxes [22], [26] or the so-called siDES [122, 123, 124]. All
these approaches—despite the fact that some of them have worse cryptographic properties
than DES [128]—just change the content and not the number of S-boxes. To the best of our
knowledge, no DES variant has been proposed in the past which uses a single S-box, repeated
eight times. In Section 3.3 we describe how a variant of DES with a single S-box can be made
resistant against the differential, linear, and Davies-Murphy attack. The work is based on the
original design criteria for DES as published by Coppersmith [48] and the work of Kim et
al. [122, 123, 124] where several criteria for DES type S-boxes are presented to strengthen the
resistance against the above mentioned attacks.

3.3 Design criteria of DESL

Coppersmith states the following eight criteria as the “only cryptographically relevant” ones
for the DES S-boxes (see [48]):

(S-1) Each S-box has six bits of input and four bits of output.

(S-2) No output bit of an S-box should be too close to a linear function of the input bits.

(S-3) If we fix the leftmost and rightmost input bits of the S-box and vary the four middle bits,
each possible 4-bit output is attained exactly once as the middle input bits range over
their 16 possibilities.

(S-4) If two inputs to an S-box differ in exactly one bit, the outputs must differ in at least two
bits.

(S-5) If two inputs to an S-box differ in the two middle bits exactly, the outputs must differ in
at least two bits.

(S-6) If two inputs to an S-box differ in their first two bits and are identical in their last two
bits, the two outputs must not be the same.

(S-7) For any nonzero 6-bit-difference between inputs, ∆I , no more than eight of the 32 pairs
of inputs exhibiting ∆I may result in the same output difference ∆O.

(S-8) Minimize the probability that a non zero input difference to three adjacent S-boxes yield
a zero output difference.

In the following sections we will develop eight criterions (C1-C8) which ensure that DESL
is resistant against differential, linear, and the Davies-Murphy attack. Figure 3.1 shows our
approach for setting up the eight conditions and provides an overview over their purpose.

2Please note that between the DES implementation of Verbauwhede et al. [232] in 1988 and the AES implemen-
tation of Satoh et al. [201] in 2001 more than a decade has passed and synthesis algorithms have been greatly
improved since.

19

Chapter 3. New Lightweight DES Variants

Figure 3.1: Eight conditions to be fulfilled by the S-box of DESL in order to thwart differential, linear,
and the Davies-Murphy attack.

3.3.1 Improved resistance against differential cryptanalysis and Davies Murphy
attack

The criteria (S-1) to (S-7) refer to one single S-box. The only criterion which deals with the
combination of S-boxes is criterion (S-8). The designers’ goal was to minimize the probability
of collisions at the output of the S-boxes and thus at the output of the f-function. As a matter
of fact, it is only possible to cause a collision, i.e. two different inputs are mapped to the same
output, in three adjacent S-boxes, but not in a single S-box or a pair of S-boxes due to the
diffusion caused by the expansion permutation. The possibility to have a collision in three
adjacent S-boxes leads to the most successful differential attack based on a 2-round iterative
characteristic with probability 1

234 .

Clearly better than minimizing the probability for collisions in three or more adjacent S-boxes,
is to eliminate them. This was the approach used in [122, 123, 124] and can easily be reached
by improving one of the design criteria.

We replace (S-6) and (S-8) by an improved design criterion similar to the one given in [124].

Condition 1. If two inputs to an S-box differ in their first bit and are identical in their last two bits,
the two outputs must not be the same.

This criterion ensures that differential attacks using 2-round iterative characteristics, as the one
presented by Biham and Shamir in [26], will have all eight S-boxes active and therefore will
not be more efficient than exhaustive search anymore.

20

3.3. Design criteria of DESL

Moreover, the only criterion that refers to more than one S-box, i.e. (S-8), is now replaced by a
condition that refers to one S-box, only. Thus, most of the security analysis remains unchanged
when we replace the eight different S-boxes by one S-box repeated eight times.

Note that as described by Biham in [23] and by Kim et al. in [123] this condition also ensures
resistance against the Davies Murphy attack [56].

3.3.2 Improved resistance against linear cryptanalysis

To improve the resistance of our variant of DES with only one S-Box against linear cryptanal-
ysis (LC) is more complex than the protection against the differential cryptanalysis. Kim et al.
presented a number of conditions that, when fulfilled by a set of S-boxes, ensure the resistance
of DES variants against LC. However, several of these conditions focus on different S-boxes
and this implies that if one wants to replace all eight S-boxes by just one S-box, there are very
tight restrictions to the choice of the S-box. This one S-box has to fulfill all conditions given in
[123] referring to any S-box.

Let Sb = 〈b, S (x)〉 denote a combination of output bits that is determined by b ∈ GF(2)4. Then,
the Walsh-coefficient SW

b (a) for an element a ∈ GF(2)6 is defined by

SW
b (a) =

∑

x∈GF(2)6

(−1)〈b,S(x)〉+〈a,x〉. (3.1)

Since
{x|Sb (x) = 〈a, x〉}+ # {x|Sb (x) 6= 〈a, x〉} = 26

it follows that
SW

b (a) = 2# {x|Sb (x) = 〈a, x〉} − 26.

The probability of a linear approximation of a combination of output bits Sb by a linear com-
bination a of input bits can be written as

p =
{x|Sb (x) = 〈a, x〉}

26
. (3.2)

Combining equations 3.1 and 3.2 leads to

p =
SW

b (a)

27
+

1

2
.

The linear probability bias ε is a correlation measure for this deviation from probability 1
2 for

which it is entirely uncorrelated. We have

ε =

∣

∣

∣

∣

p−
1

2

∣

∣

∣

∣

=

∣

∣

∣

∣

SW
b (a)

27

∣

∣

∣

∣

.

Let us denote the maximum absolute value of the Walsh-Transformation by SW
max. Then clearly

ε ≤

∣

∣

∣

∣

SW
max (a)

27

∣

∣

∣

∣

.

The smaller the linear probability bias ε is, the more secure the S-box is against linear crypt-
analysis. We defined our criterion (S-2”) by setting the threshold for SW

max to 28.

21

Chapter 3. New Lightweight DES Variants

Condition 2. |SW
b (a)| ≤ 28 for all a ∈ GF(2)6, b ∈ GF(2)4.

Note that this is a tightened version of Condition 2 given in [123] where the threshold was
set to 32. In the original DES the best linear approximation has a maximum absolute Walsh
coefficient of 40 for S-box S5.

If an LC attack is based on an approximation that involves n S-boxes, under the standard
assumption that the round keys are statistically independent, the overall bias ε is (see [149])

ε = 2n−1
n

∏

i=1

εi

where the values εi are the biases for each of the involved S-box.

A rough approximation of the effort of a linear attack based on a linear approximation with
bias ε is ε−2, thus if we require that such an attack is no more efficient than exhaustive search
we need ε < 2−28.

It can easily be seen that any linear approximation for 15 round DES involves at least 7 approx-
imations for S-boxes. But as

26
7

∏

i=1

εi ≤ 26
7

∏

i=1

7

32
≈ 2−9.35

this bound is clearly insufficient.

Thus in order to prove the resistance against linear attack, we have to make sure that either
enough S-boxes are active, i.e. enough S-Boxes are involved in the linear approximation, or, if
fewer S-boxes are active, the bound on the probabilities can be tightened. In the first case we
need more than 23 active S-boxes as

221

(

SW
max

128

)22

> 2−28 > 222

(

SW
max

128

)23

. (3.3)

For the second case several conditions have been developed in [122, 123]. Due to our special
constraints we have to slightly modify these conditions. Following [123] we discuss several
cases of iterative linear approximations. We denote a linear approximation of the F function
of DES by

〈I, Z1〉+ 〈K, Z3〉 = 〈O,Z2〉

where Z1, Z2, Z3 ∈ GF(2)32 specify the input, output and key bits used in the linear approxi-
mation.

An n round iterative linear approximation is of the form

〈I1, ·〉+ 〈In, ·〉 = 〈K2, ·〉+ · · ·+ 〈Kn−1, ·〉

and consists of linear approximations for the rounds 2 until n− 1.

Similar as it was done in [122] it can be shown that a three round (3R) iterative linear approxi-
mation is not possible with a non zero bias, due to condition 1.

We therefore focus on the case of a 4 and 5 round iterative approximation only.

22

3.3. Design criteria of DESL

3.3.3 4R iterative linear approximation

A four round iterative linear approximation consists of two linear approximations for the F
function of the second and third round. We denote these approximations as

A : 〈I2, Z1〉+ 〈K2, Z3〉 = 〈O2, Z2〉

B : 〈I3, Y1〉+ 〈K3, Y3〉 = 〈O3, Y2〉.

In order to get a linear approximation of the form

〈I1, ·〉+ 〈I4, ·〉 = 〈K2, ·〉+ 〈K3, ·〉

Using O2 = I1 + I3 and O3 = I2 + I4 it must hold that

Z2 = Y1 and Z1 = Y2.

The 15 round approximation is

−AB −BA−AB −BA−AB.

If the number of S-boxes involved in the approximation of A is a and for B is b we denote by
A = (a, b). First assume thatA = (1, 1). Due to Z2 = Y1 and the property of the P-permutation,
which distributes the output bits of one S-box to 6 different S-Boxes in the next round, it must
hold that |Y1| = |Z2| = 1. For the same reason we get |Z1| = |Y2| = 1. To minimize the
probability of such an approximation we stipulate the following condition

Condition 3. The S-box has to fulfill SW
b (a) ≤ 4 for all a ∈ GF(2)6, b ∈ GF(2)4 with wt(a) =

wt(b) = 1.

This condition is comparable to Condition 4 in [123], however, as we only have a single S-
box, we could not find a single S-box fulfilling all the restrictions from Condition 4 in [123]. If
the S-box fulfills condition 3 the overall bias for the linear approximation described above is
bounded by

ε ≤ 29

(

4

128

)10

< 2−40.

As this is (much) smaller than 2−28 this does not yield to a useful approximation.

Assume now that A = (1, 2) (the case A = (2, 1) is very similar). If B involves two S-boxes
we have |Y1| = |Y2| = 2 and thus |Y2| = |Z1| = 2. In particular for both S-boxes involved in B
Condition 3 applies which results in a threshold

ε ≤ 214

(

4

128

)10 (

28

128

)5

< 2−46

for the overall linear bias.

Next we assume that A = (2, 2) . In this case we get (through the properties of the P function)
that each S-box involved in A and B has at most two input and output bits involved in the
linear approximation. In order to avoid this kind of approximation we add another condition.

Condition 4. The S-box has to fulfill SW
b (a) ≤ 16 for all a ∈ GF(2)6, b ∈ GF(2)4 with

wt(a),wt(b) ≤ 2.

23

Chapter 3. New Lightweight DES Variants

This condition is a tightened version of Condition 5 in [123] where the threshold was set to 20.
In this case (remember that we now have 20 S-boxes involved) we get

ε ≤ 219

(

16

128

)20

< 2−40.

In all other cases, more than 23 S-boxes are involved and thus the general upper bound (3.3)
can be applied.

3.3.4 5R iterative linear approximation

A five round iterative linear approximation consists of three linear approximations for the F
function of the second, third and fourth round. We denote these approximations as

A : 〈I2, Z1〉+ 〈K2, Z3〉 = 〈O2, Z2〉

B : 〈I3, Y1〉+ 〈K3, Y3〉 = 〈O3, Y2〉

C : 〈I4, X1〉+ 〈K4, X3〉 = 〈O4, X2〉.

In order to get a linear approximation of the form

〈I1, ·〉+ 〈I5, ·〉 = 〈K2, ·〉+ 〈K3, ·〉+ 〈K4, ·〉

it must hold that

Z1 = Y2 = X1 and Y1 + Z2 + X2 = 0.

The 15 round approximation is

−ABC − CBA−ABC −DE

for some linear approximations D and E each involving at least one S-box. Clearly, as the
inputs of A and C are the same we have A = (a, b, a), i.e. the number of involved S-boxes in A
and C are the same.

Case b = 1: Assume that b = 1, i.e. only one S-box is involved in the linear approximation
B. If |Z1| ≥ 3 than we must have a ≥ 3 and so the number of S-boxes involved is at least 23,
which makes the approximation useless. If |Z1| = 2 we have two active S-boxes for A and B.
Moreover as b = 1 we must have |Y1| = |Z2 + X2| = 1. Due to properties of the P function,
the S-boxes involved in A and B are never adjacent S-boxes, therefore exactly one input bit is
involved in the approximation for each of the two S-boxes. In order to minimize the probability
for such an approximation, we stipulate the following condition:

Condition 5. The S-box has to fulfill

|SW
b1 (a)SW

b2 (a)| ≤ 240

for all a ∈ GF(2)6, b1, b2 ∈ GF(2)4 with wt(a) = 1, wt(b1 + b2) = 1.

24

3.3. Design criteria of DESL

This is a modified version of Condition 7 in [123]. With an S-box fulfilling this condition we
derive an upper bound for the overall bias

ε ≤ 216

(

240

1282

)6 (

16

128

)3 (

28

128

)2

< 2−33.

If |Z1| = 1 then a = 1 and we have |Y1| = |Z2 + X2| = 1 and |Z1| = 1. We stipulate one more
condition.

Condition 6. The S-box has to fulfill
SW

b (a) = 0

for a ∈ {(010000), (000010)}, b ∈ GF(2)4 with wt(b) = 1.

This implies that the input to B is such that a middle bit is affected. Due to the properties of
the P function this implies that in the input of A and C a non-middle bit is affected. As for any
DES type S-box it holds that SW

b (100000) = SW
b (000001) = 0 for all b the only possible input

values for the S-box involved in A and C are (010000) and (000010). To avoid the second one
we define the next condition.

Condition 7.

|SW
b1 (000010)SW

b2 (000010)| = 0

for all b1, b2 ∈ GF(2)4 with wt(b1 + b2) = 1.

The other possible input value, i.e. 01000 occurs only when S-box 1 is active in B and S-box 5
is active in A and C. In this case the input values for the S-box in B is (000100) and the output
value is (0100). The next condition makes this approximation impossible.

Condition 8. The S-box has to fulfill

SW
(0100)(000100) = 0.

Case b = 2: Assume that b = 2, i.e. exactly two S-boxes are involved for B. If a > 2 then at
least 23 S-boxes are involved in total. If a = 2 we have for each S-box involved in B at most 2
input bits and at most 2 output bits. Therefore we can apply the bound from condition 4 to the
two S-boxes from B. Applying the general bound for all the other S-boxes we get

ε ≤ 219

(

16

128

)6 (

28

128

)14

< 2−29.

In the case where a = 1 the two S-boxes involved in B have one input and one output bit
involved each, thus we can apply the strong bound from condition 3 for these S-boxes (6 in
total) and the general bound for the other S-boxes to get

ε ≤ 213

(

4

128

)6 (

28

128

)8

< 2−34.

Case b > 2: In this case we must have a, b ≥ 2 and thus at least 29 S-boxes are involved in
total.

25

Chapter 3. New Lightweight DES Variants

DES S-box S1 S2 S3 S4 S5 S6 S7 S8 DESL
deg 2 1 0 0 5 1 0 0 0 1
deg 3 88 88 88 88 88 88 88 88 88

Table 3.1: Number of Degree two and Degree three Equations

S
14 5 7 2 11 8 1 15 0 10 9 4 6 13 12 3
5 0 8 15 14 3 2 12 11 7 6 9 13 4 1 10
4 9 2 14 8 7 13 0 10 12 15 1 5 11 3 6
9 6 15 5 3 8 4 11 7 1 12 2 0 14 10 13

Table 3.2: Improved DESL S-box

3.3.5 nR iterative linear approximation

For an n round iterative linear approximation with only one S-box involved in each round
(denoted as Type-I by Matsui) our condition 3 ensures that if more than 7 S-boxes are involved
in total the approximation will not be useful for an attack as

ε ≤ 26

(

4

128

)7

= 2−29. (3.4)

3.3.6 Resistance against algebraic attacks

There is no structural reason why algebraic attacks should pose a greater threat to DESL than to
DES. The DESL S-box has been randomly generated in the set of all S-boxes fulfilling the design
criteria described above. Therefore we do not expect any special weakness of the chosen S-box.
Indeed we computed the number of low degree equations between the input and output bits
of the S-box. There exist one quadratic equation and 88 equations of degree 3. Note that for
each 6 to 4 Bit S-box, there exist at least 88 equations of degree 3. Given the comparison with
the corresponding results for the original DES S-boxes in Table 3.1 we anticipate that DESL is
as secure as DES with respect to algebraic attacks.

3.3.7 Improved S-box

We randomly generated S-boxes, which fulfill the original DES criteria (S-1), (S-3), (S-4), (S-
5), (S-7), Condition 1 and our modified Conditions 2 to 8. Our goal was to find one single
S-box, which is significantly more resistant against differential and linear cryptanalyses than
the original eight S-boxes of DES. In our DESL algorithm this S-box is repeated eight times and
replaces all eight S-boxes in DES. Table 3.2 depicts the improved DESL S-box.

26

3.4. Implementation results

3.4 Implementation results

In this section we present the hardware implementation architecture for our family of
lightweight block ciphers. We implemented DES, DESX, DESL, and DESXL in the hardware
description language VHDL, where we sacrificed time for area wherever possible. We used
Synopsys Design Vision V-2004.06-SP2 to map our designs to the Artisan UMC 0.18µm L180
Process 1.8-Volt Sage-X Standard Cell Library and Cadence Silicon Ensemble 5.4 for the Place-
ment & Routing-step. Synopsys NanoSim was used to simulate the power consumption of the
back-annotated verilog netlist of the ASICs.

We first describe the DES and DESX implementations in Section 3.4.1 and subsequently de-
scribe the DESL and DESXL implementations in Section 3.4.2. Finally we list the software
implementation results of DES, DESL and DESX in Section 3.4.3.

3.4.1 Lightweight hardware implementation of DES and DESX

The overall architecture of our size-optimized DES implementation is depicted in Figure 3.2.
Our design basically consists of five core modules: controller, keyschedule, mem_left, mem_right,
and sbox. Subsequently, we give a brief description of these modules.

Controller: The controller module manages all control signals in the ASIC based on a finite
state machine. The FSM is depicted in Figure 3.3.

Keyschedule: In this module all DES round keys are generated. It is composed of a 56-bit
register, an input multiplexer, and an output multiplexer to select the right fraction of
the roundkey.

mem_left: This module consists of eight 4-bit wide registers, each composed of D-flip-flops.3

mem_right: This module is similar to the mem_left module with slight differences. It also
consists of eight 4-bit wide registers, but it has different input and output signals: instead
of a 4-bit wide output it has a 6-bit wide output, due to the expansion function of DES4.

sbox: This module consists of eight S-boxes of the DES algorithm and an output multiplexer.
The S-boxes are realized in combinatorial logic, i.e. a sum of products (SOP) [170].

Figure 3.2 also shows the datapath of our serialized DES design. The 56-bit key is stored in
the key flip-flop register after the PC1 and LS1 permutations have been applied. The plaintext
is first confused using the Initial Permutation (IP), then, it is split into two 32-bit inputs for the
modules mem_left and mem_right, respectively. The input of mem_left is modified by the inverse
of the P permutation and stored in the registers of the modules mem_left and mem_right in one
cycle. Next, the output of the last register in mem_right is both stored in the first register of
mem_right and expanded to six bits. After an XOR operation with the appropriate block of
the current round key, this expanded value is processed by the sbox module, which is selected
by the count signal, provided by the controller module. Finally, the result is XORed with the

3Note that the memory modules were designed in a shift register manner, such that the output of a 4-bit block is
fed as the new input into the following block. At the end of the chain the current 4-bit block is provided and
can be processed without an additional output multiplexer, which results in a saving of 48 GE.

4Note that the design in a shift register manner in this module saves even more area (72 GE) than in the mem_left
module, because here a 6-bit wide output multiplexer can be saved. Altogether 120 GE can be saved by our
memory design compared to a regular design.

27

Chapter 3. New Lightweight DES Variants

Figure 3.2: Datapath of the serialized DES ASIC with original S-boxes.

Figure 3.3: Finite State Machine of the ASIC architecture for DES, DESX, DESL, and DESXL.

28

3.4. Implementation results

output of the mem_left module, and stored in the first flip-flop of the mem_left module. This is
repeated eight times, until all 32 bits of the right half are processed.

In our design, we applied the P permutation in each ninth clock cycle. Because the P−1 per-
mutation is applied before the left 32-bit half Li is stored in the mem_left module, we perform
the (P) permutation on the resulting right half Ri+1 = P

(

P−1 (Li)⊕ S (E (Ri)⊕Ki)
)

, where
Li denotes the left half, Ri denotes the right half, and Ki denotes the round key.

By reducing the datapath from a 32-bit bus to a 4-bit bus, only 6 ·10+4 ·10 = 100 transistors (25
GE) are needed for the XOR operations, compared to 48 · 10+32 · 10 = 800 (200 GE) transistors
in a not-serialized design. This saving comes with the disadvantage of two additional multi-
plexers, each one for the round key (72 GE) and for the S-box output (48 GE). As we will see in
Section 3.4.2, our DESL algorithm does not need an output multiplexer in the sbox module.

Once all eight 4-bit blocks of both halves have been processed, they are concatenated to two
32-bit wide outputs of the modules mem_left and mem_right. The output of the module mem_left
is transformed by the P permutation and stored as the new content of the mem_right module,
while the output of the mem_right module is stored as the new content of the mem_left module.
This execution flow repeats another 15 rounds. Finally, both outputs of the memory modules
mem_left and mem_right are concatenated to a 64-bit wide output. This output is confused by
the Inverse Initial Permutation (IP−1), which results in a valid ciphertext of the DES algorithm.
It takes 144 clock cycles to encrypt one 64-bit block of plaintext. For one encryption at 100 kHz
the average current consumption is 1.19 µA and the throughput reaches 5.55 KB/s.

3.4.2 Lightweight hardware implementation of DESL and DESXL

As we have described in the previous sections, the main difference between DESL and DES
lies in the f -function. We substituted the eight original DES S-boxes by a single but cryp-
tographically stronger S-box (see Table 3.2), which is repeated eight times. Furthermore, we
omitted the initial permutation (IP) and its inverse (IP−1), because they do not provide addi-
tional cryptographic strength, but at the same time require area for wiring. The design of our
DESL algorithm is exactly the same as for the DES algorithm, except for the (IP) and (IP−1)
wiring and the sbox module. Figure 3.4 depicts the architecture of the serialized DESL imple-
mentation.

Our serialized DESL ASIC implementation has an area requirement of 1848 GE and it takes 144
clock cycles to encrypt one 64-bit block of plaintext. For one encryption at 100 kHz the average
current consumption is 0.89 µA and the throughput reaches 5.55 KBps. For further details on
the implementational aspects of our DES and DESL architecture we refer to [184].

3.4.3 Lightweight software implementation results

For the sake of completeness also lightweight software implementation results have been
included here. The figures were taken from [68] and have been obtained for the ATMEL

ATMega128 8-bit microcontroller, which is a widely used embedded processor for smart cards
and WSNs, e.g. in Micaz Motes. Table 3.4 depicts implementation results of DESL and DESXL
for an 8-bit microcontroller.

A comparison with software implementations for 8 bit microcontroller of other block and
stream ciphers will be done in Section 5.4.

29

Chapter 3. New Lightweight DES Variants

Figure 3.4: Datapath of the serialized DESL ASIC with the improved S-box.

Table 3.3: Hardware implementation results of DES, DESX, DESL and DESXL. All figures are obtained
at or calculated for a frequency of 100KHz.

Algorithm key block datapath cycles / T’put Tech. Area Eff. Cur.
size size width block [Kbps] [µm] [GE] [bps/GE] [µA]

Serialized Architecture

DES 56 64 4 144 44.44 0.18 2,309 19.25 1.19
DESL 56 64 4 144 44.44 0.18 1,848 24.05 0.89
DESX 184 64 4 144 44.44 0.18 2,629 16.9 –
DESXL 184 64 4 144 44.44 0.18 2,168 20.5 –

30

3.5. Conclusions

Table 3.4: Software implementation results of DESL and DESXL.

Key Block code Encryption T’put Decryption T’put
size size size [cycles / at 4 MHZ [cycles / at 4 MHZ

Algorithm [bits] [bits] [bytes] block] [Kbps] block] [Kbps]

DESL [195] 56 64 3,098 8,365 30.6 7,885 32.5

DESXL [68] 184 64 3,192 8,531 30.4 7,961 32.2

3.5 Conclusions

We started with the approach of implementing a standardized algorithm with the optimiza-
tion goal of minimal hardware requirements. We chose DES, because it is one of the very few
algorithms that was designed with a strong focus on hardware efficiency and is probably the
best investigated algorithm. As a result we presented the smallest known hardware imple-
mentation of DES in Section 3.4.

The next step was to have a closer look on the hardware requirements of the single components
and it turned out that the substitution layer of DES is very demanding in terms of area require-
ments. Consequently we thought about further optimizations and we decided to slightly and
very carefully change the substitution layer of DES. The literature study revealed that there
was no DES variant published that uses a single S-box repeated eight times. Therefore we
studied the design criteria of DES S-boxes and the various publications that deal with crypto-
graphic properties of S-boxes.

In Section 3.3 we stated eight conditions that have to be fulfilled by a single S-box in order
to be resistant against certain types of linear and differential cryptanalyses, and the Davies-
Murphy attack. We presented a strengthened S-box, which is used in the single S-box DES
variants DESL and DESXL. Furthermore, we showed, that a differential cryptanalysis with
characteristics similar to the characteristics used by Biham and Shamir in [25] is not feasible
anymore. We also showed, that DESL is more resistant against the most promising types of
linear cryptanalysis than DES due to the improved non-linearity of the S-box.

In order to expand the keyspace we also proposed DESXL, which is a DESX variant based
on DESL rather than on DES. DESL and DESXL are two examples for the approach where a
well trusted algorithm is slightly and very carefully modified. In order to gain an even more
hardware efficient implementation of a cryptographic algorithm, it is required to design a new
lightweight algorithm from scratch. This is what we will do in the next chapter.

31

4 PRESENT - An Ultra-Lightweight Block

Cipher

In this Chapter we will follow the third approach and design a new cipher from scratch. First
we will review related work in Section 4.1 before we present our design decisisons in Sec-
tion 4.2. Then we will present algorithmic descriptions of the encryption (Section 4.3) and
the decryption (Section 4.4) routine of PRESENT. The key schedule is presented in Section 4.5
and its cryptanalytic aspects are treated subsequently in Section 4.6. Finally we close this
Chapter with further observations on the structure of PRESENT in Section 4.7. Please note that
this chapter is based on joint work with Andrey Bogdanov, Lars Knudsen, Gregor Leander,
Christof Paar, Matt Robshaw, Yannick Seurin and Charlotte Vikkelsoe. It is hard to clearly sep-
arate individual contributions, but especially the cryptographic aspects, such as the security
assessment in Section 4.6, contain significant contributions from co-designers. Implementation
results of PRESENT will be presented in the following Chapter 5.

4.1 Related work

The RFID technology is widely discussed as a promising solution for the counterfeiting is-
sues in the literature [209, 229, 115, 143]. Many of the proposed authentication protocols use
a Pseudo Random Number Generator (PRNG), a hash function, or symmetric key encryp-
tion [156, 62, 71, 70, 15, 65, 141, 193, 78]. Cheap tags pose severe implementation challenges
and it is far from clear that a suitable hash function even exists. Block ciphers however can
be used as basic building blocks for a secure identification system, for example in a challenge-
response protocol.

Quite a few lightweight cryptographic algorithms have been published that are especially op-
timized for ultra-constrained devices. HIGHT [107] was recently published by Hong et al. in
2006. It has a 64-bit state, a 128-bit key, consists of 32 rounds and was specifically designed for
constrained devices such as wireless sensor networks and RFID-tags. HIGHT has a general-
ized Feistel-like structure and every operation is 8-bit oriented. The authors state a hardware
requirement of 3, 048 GE for a round-based implementation of HIGHT, but unfortunately do
not provide further details.

mCrypton was designed by Lim and Korkishko in 2006 [38] with both lightweight software
and lightweight hardware implementations for constrained devices in mind. It has a 64-bit
state, consists of 13 rounds and is specified for three different key lengths: 64-, 96- and 128-bit.
An encryption-only hardware implementation requires 2, 420 GE with a 64-bit key, 2, 681 GE
with a 96-bit key and 2, 949 GE with a 128-bit key.

SEA (Scalable Encryption Algorithm) [213] was proposed by Standaert et al. in 2006 and was
targeted for constrained (software) devices. As the name suggests, SEA is designed for a broad-
range of application and special emphasis was put on scalability. Consequently, the data state

Chapter 4. PRESENT - An Ultra-Lightweight Block Cipher

size n, the key length k and the processor word size b are parameters that can be adjusted
to the target application. This flexibility comes at a price of higher area requirements and an
implementation of SEA with a block and key size of n = 96 bits, a word size of b = 8 bits and
nr = 93 rounds requires 3, 758 GE [144].

TEA (Tiny Encryption Algorithm) was proposed by Wheeler and Needham [239] and was
designed with great emphasis on simplicity. It operates on a 64-bit data state, has a 128-bit key
and consists of 64 rounds. Kelsey et al. have mounted a related key attack on TEA [119], which
lead to the development of a tweaked version called XTEA [240]. Despite the simplicity of the
basic round functions, a hardware implementation of TEA still requires 2, 355 GE [243].

ICEBERG was published by Standaert et al. in 2004 and was specifically designed for recon-
figurable devices [212]. It has a 64-bit state, a 128-bit key and consists of 16 rounds. All com-
ponents of ICEBERG are involutional and hence are well suited for combination of encryption
and decryption functionality. However, the smallest published hardware implementation re-
quires 7, 732 GE [144], which is far from being lightweight.

The eSTREAM project [175] aimed at designing new lightweight stream ciphers and its hard-
ware profile specifically targeted lightweight hardware implementations. Grain [99] and Triv-
ium [57] are among the finalists and have the lowest hardware footprint. Grain can be imple-
mented with only 2, 599 GE and Trivium with only 1, 294 GE [89]. However, a major drawback
of stream ciphers is the lengthy initialization phase (e.g. 321 clock cycles for GRAIN and 1, 333
for TRIVIUM) prior to first usage. The authors of Trivium state that Trivium “was designed
as an exercise in exploring how far a stream cipher can be simplified without sacrificing its
security, speed or flexibility” and they “strongly discourage the use of Trivium at this stage”
(April 2005) [57]. Up to now (February 2009) no cryptanalytic attack has been published that
is better than brute force but some attacks come close [63, 150, 191].

Keeloq [171] and Mifare [173] are two examples for cryptographic algorithms that have been
kept secret by the designers in order to gain also security by obscurity, thus violating the Ker-
ckhoff principle [120]. However, Keeloq and Mifare both were broken shortly after their algorithm
was reverse-engineered [32, 173]. Though Tea and mCrypton come close to the 2, 000 GE bar-
rier, HIGHT, SEA and TEA are already significantly larger than what is wanted.

4.2 Design decisions

Besides security and efficient implementation, the main goal when designing PRESENT was
simplicity. It is therefore not surprising that similar designs have been considered in other
contexts [102] and can even be used as a tutorial for students [101]. In this section we justify the
decisions we took during the design of PRESENT. First, however, we describe the anticipated
application requirements.

In designing a block cipher suitable for extremely constrained environments, it is important to
recognize that we are not building a block cipher that is necessarily suitable for wide-spread
use; we already have the AES [161] for this. Instead, we are targeting some very specific
applications for which the AES is unsuitable. These will generally conform to the following
characteristics.

� The cipher is to be implemented in hardware.

34

4.3. Algorithmic description of the PRESENT encryption routine

� Applications will only require moderate security levels. Consequently, 80-bit security
will be adequate. Note that this is also the position taken for hardware profile stream
ciphers submitted to eSTREAM [175].

� Applications are unlikely to require the encryption of large amounts of data. Imple-
mentations might therefore be optimised for performance or for space without too much
practical impact.

� In some applications it is possible that the key will be fixed at the time of device manufac-
ture. In such cases there would be no need to re-key a device (which would incidentally
rule out a range of key manipulation attacks).

� After security, the physical space required for an implementation will be the primary
consideration. This is closely followed by peak and average power consumption, with
the timing requirements being a third important metric.

� In applications that demand the most efficient use of space, the block cipher will often
only be implemented as encryption-only. In this way it can be used within challenge-
response authentication protocols and, with some careful state management, it could be
used for both encryption and decryption of communications to and from the device by
using the counter mode [162].

Taking such considerations into account we decided to make PRESENT a 64-bit block cipher
with an 80-bit key. Optionally we also give specifications for a version with a 128-bit key. En-
cryption and decryption with PRESENT have roughly the same physical requirements. Opting
to support both encryption and decryption will result in a lightweight block cipher implemen-
tation that is still smaller than an encryption-only AES. Opting to implement an encryption-
only PRESENT will give an ultra-lightweight solution. The encryption subkeys can be com-
puted on-the-fly.

The literature contains a range of attacks that manipulate time-memory-data trade-offs [28] or
the birthday paradox when encrypting large amounts of data. However such attacks depend
solely on the parameters of the block cipher and exploit no inner structure. Our goal is that
these attacks be the best available to an adversary. Side-channel and invasive hardware at-
tacks are likely to be a threat to PRESENT, as they are to all cryptographic primitives. For the
likely applications, however, the moderate security requirements reflect the very limited gain
any attacker would make in practice. In a risk assessment, such attacks are unlikely to be a
significant factor.

4.3 Algorithmic description of the PRESENT encryption routine

PRESENT is an example of an SP-network [153] and consists of 31 rounds. The block length is
64 bits and two key lengths of 80 and 128 bits are supported. Given the applications we have in
mind, we recommend the version with 80-bit keys. This is more than adequate security for the
low-security applications typically required in tag-based deployments, but just as importantly,
this matches the design goals of hardware-oriented stream ciphers in the eSTREAM project and
allows us to make a fairer comparison.

Each of the 31 rounds consists of an XOR operation to introduce a round key Ki for 1 ≤ i ≤ 32,
where K32 is used for post-whitening, a linear bitwise permutation and a non-linear substitu-
tion layer. The non-linear layer uses a single 4-bit S-box S which is applied 16 times in parallel

35

Chapter 4. PRESENT - An Ultra-Lightweight Block Cipher

Figure 4.1: A top-level algorithmic description of the encryption routine of PRESENT.

in each round. The encryption routine of the cipher is described in pseudo-code in Figure 4.1,
and each stage is now specified in turn. The design rationale are given in Section 4.2 and
throughout this Thesis we number bits from zero with bit zero on the right of a block or word.

4.3.1 addRoundKey

Given round key Ki = κi
63 . . . κi

0 for 1 ≤ i ≤ 32 and current STATE b63 . . . b0, addRoundKey
consists of the operation for 0 ≤ j ≤ 63,

bj → bj ⊕ κi
j .

4.3.2 sBoxlayer

We use a single 4-bit to 4-bit S-box S : F
4
2 → F

4
2 in PRESENT. This is a direct consequence of

our pursuit of hardware efficiency, with the implementation of such an S-box typically being
much more compact than that of an 8-bit S-box. Since we use a bit permutation for the linear
diffusion layer, AES-like diffusion techniques [54] are not an option for PRESENT. Therefore we
place some additional conditions on the S-boxes to improve the so-called avalanche of change.
More precisely, the S-box for PRESENT fullfils the following conditions, where we denote the
Fourier coefficient of S by

SW
b (a) =

∑

x∈F
4

2

(−1)〈b,S(x)〉+〈a,x〉.

(1) For any fixed non-zero input difference ∆I ∈ F
4
2 and any fixed non-zero output difference

∆O ∈ F
4
2 we require

#{x ∈ F
4
2 |S(x) + S(x + ∆I) = ∆O} ≤ 4.

(2) For any fixed non-zero input difference ∆I ∈ F
4
2 and any fixed output difference ∆O ∈ F

4
2

such that wt(∆I) = wt(∆O) = 1 we have

{x ∈ F
4
2 |S(x) + S(x + ∆I) = ∆O} = ∅.

36

4.3. Algorithmic description of the PRESENT encryption routine

Table 4.1: The PRESENT S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

(3) For all non-zero a ∈ F
4
2 and all non-zero b ∈ F

4
2 it holds that |SW

b (a)| ≤ 8.

(4) For all a ∈ F
4
2 and all non-zero b ∈ F

4
2 such that wt(a) = wt(b) = 1 it holds that |SW

b (a)| ≤
4.

As will become clear in Section 4.6, these conditions will ensure that PRESENT is resistant to
differential and linear attacks. Using a classification of all 4-bit S-boxes that fulfill the above
conditions [140] we chose an S-box that is particular well-suited to efficient hardware imple-
mentation.

The S-box used in PRESENT is a 4-bit to 4-bit S-box S : F
4
2 → F

4
2. Let x = (x3‖x2‖x1‖x0)

denote the 4-bit input to the S-box and let S(x) = (S3(x)‖S2(x)‖S1(x)‖S0(x)) denote its 4-bit
output. By using the Boolean minimization tool espresso [170] we obtained the following
four Boolean output functions for the PRESENT S-box:

S0(x) = x3·x2·x1·x0+x3·x2·x1·x0+x3·x2·x1·x0+x3·x1·x0+x3·x2·x1·x0+x3·x2·x1·x0+x3·x2·x0

S1(x) = x3 · x2 · x1 · x0 + x3 · x2 · x0 + x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x1 · x0 + x3 · x2 · x0

S2(x) = x3 ·x2 ·x1 ·x0 + x3 ·x2 ·x1 ·x0 + x3 ·x2 ·x1 + x3 ·x2 ·x1 ·x0 + x2 ·x1 ·x0 + x3 ·x2 ·x1 ·x0

S3(x) = x3·x2·x1·x0+x3·x2·x1·x0+x3·x2·x1·x0+x3·x2·x1+x3·x2·x1·x0+x3·x2·x1·x0+x3·x2·x1·x0

where xi denotes the inversion of bit xi, · denotes a logical AND and + denotes a logical OR.
The action of this S-box in hexadecimal notation is given by Table 4.1.

For sBoxLayer the current STATE b63 . . . b0 is considered as sixteen 4-bit words w15 . . . w0 where
wi = b4∗i+3||b4∗i+2||b4∗i+1||b4∗i for 0 ≤ i ≤ 15 and the output nibble S[wi] provides the updated
state values in the obvious way.

The XOR distribution table of the PRESENT S-box is given in Table 4.2. As one can see the
maximum probability of any output differential ∆O is limited by P∆O

= 4
16 = 2−2.

4.3.3 pLayer

When choosing the mixing layer, our focus on hardware efficiency demands a linear layer that
can be implemented with a minimum number of processing elements, i.e. transistors. This
leads us directly to bit permutations. Given our focus on simplicity, we have chosen a regu-
lar bit-permutation and this helps to make a clear security analysis (see Section 4.6). The bit
permutation used in PRESENT is given by Table 4.3. Bit i of STATE is moved to bit position P (i).

It is also possible to write the P-layer in the following way:

P (i) =

{

i · 16 mod 63, i ∈ {0, . . . , 62}
63, i = 63.

37

Chapter 4. PRESENT - An Ultra-Lightweight Block Cipher

Table 4.2: Differential distribution table of the PRESENT S-box.

∆O

∆I 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 2 0 4 0 0 0 2 0 2 0 4
2 0 0 0 0 0 0 2 2 0 2 2 0 2 4 2 0
3 0 4 2 2 0 0 0 0 2 0 2 0 0 2 2 0
4 0 0 0 2 0 2 0 0 0 4 0 2 0 2 0 4
5 0 0 4 0 4 0 0 0 0 0 4 0 4 0 0 0
6 0 0 2 4 2 0 2 2 0 2 0 0 0 0 2 0
7 0 4 0 2 2 0 0 0 2 0 0 0 2 2 2 0
8 0 0 0 0 0 0 2 2 0 2 2 4 2 0 2 0
9 0 4 0 0 2 2 0 0 2 0 0 2 2 0 2 0
A 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0
B 0 0 0 2 0 2 4 0 4 0 0 2 0 2 0 0
C 0 0 2 0 2 4 2 2 0 2 0 0 0 0 2 0
D 0 4 2 0 0 2 0 0 2 0 2 2 0 0 2 0
E 0 0 2 0 2 0 0 0 0 4 2 0 2 0 0 4
F 0 0 0 0 0 0 4 4 4 0 0 0 0 0 0 4

Table 4.3: The permutation layer of PRESENT.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

38

4.4. Algorithmic description of the PRESENT decryption routine

Figure 4.2: A top-level algorithmic description of the decryption routine of PRESENT.

Table 4.4: The inverse PRESENT S-box.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] 5 E F 8 C 1 2 D B 4 6 3 0 7 9 A

4.4 Algorithmic description of the PRESENT decryption routine

Figure 4.2 depicts a top-level algorithmic overview of the decryption routine of PRESENT. As
one can see it consists of the inverse operations applied in the reverse order of the encryption
routine of PRESENT. These inverse operations will be detailed in this Section.

4.4.1 addRoundKey

The addRoundKey operation is the same as in the encryption routine. However, for the sake
of clarity we describe it again in this section. Given round key Ki = κi

63 . . . κi
0 for 1 ≤ i ≤ 32

and current STATE b63 . . . b0, addRoundKey consists of the operation for 0 ≤ j ≤ 63,

bj → bj ⊕ κi
j .

4.4.2 invSBoxlayer

The S-box used in the decryption routine of PRESENT is the inverse of the 4-bit to 4-bit S-box
S : F

4
2 → F

4
2 that was described in Section 4.3.2. The action of the inverse S-box in hexadecimal

notation is given by Table 4.4.

For invSBoxLayer the current STATE b63 . . . b0 is considered as sixteen 4-bit words w15 . . . w0

where wi = b4∗i+3||b4∗i+2||b4∗i+1||b4∗i for 0 ≤ i ≤ 15 and the output nibble S[wi] provides the
updated state values in the obvious way.

39

Chapter 4. PRESENT - An Ultra-Lightweight Block Cipher

Table 4.5: The inverse permutation layer of PRESENT.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63

4.4.3 invPLayer

The bit permutation used in the decryption routine of PRESENT is given by Table 4.5. Bit i of
STATE is moved to bit position P (i).

4.5 The key schedule

PRESENT can take keys of either 80 or 128 bits. In Section 4.5.1 we describe the version with an
80-bit key and in the following Section 4.5.2 the 128-bit version is described.

4.5.1 The key schedule for PRESENT-80

The user-supplied key is stored in a key register K and represented as k79k78 . . . k0. At round
i the 64-bit round key Ki = κ63κ62 . . . κ0 consists of the 64 leftmost bits of the current contents
of register K. Thus at round i we have that:

Ki = κ63κ62 . . . κ0 = k79k78 . . . k16.

After extracting the round key Ki, the key register K = k79k78 . . . k0 is updated as follows.

1. [k79k78 . . . k1k0] = [k18k17 . . . k20k19]
2. [k79k78k77k76] = S[k79k78k77k76]
3. [k19k18k17k16k15] = [k19k18k17k16k15]⊕ round_counter

Thus, the key register is rotated by 61 bit positions to the left, the left-most four bits are
passed through the PRESENT S-box, and the round_counter value i is exclusive-ored with
bits k19k18k17k16k15 of K with the least significant bit of round_counter on the right. Fig-
ure 4.3 depicts the key schedule for PRESENT-80 graphically.

4.5.2 The key schedule for PRESENT-128

In this Section the key schedule for 128-bit keys is presented. Similar to the 80-bit variant
at the beginning the user-supplied key is stored in a key register K and is represented as

40

4.6. Cryptanalytic Aspects

Figure 4.3: The key schedule of PRESENT-80.

Figure 4.4: The key schedule of PRESENT-128.

k127k126 . . . k0. At round i the 64-bit round key Ki = κ63κ62 . . . κ0 consists of the 64 leftmost
bits of the current contents of register K. Thus at round i we have that:

Ki = κ63κ62 . . . κ0 = k127k126 . . . k64.

After extracting the round key Ki, the key register K = k127k126 . . . k0 is updated as follows.

1. [k127k126 . . . k1k0] = [k66k65 . . . k68k67]
2. [k127k126k125k124] = S[k127k126k125k124]
3. [k123k122k121k120] = S[k123k122k121k120]
4. [k66k65k64k63k62] = [k66k65k64k63k62]⊕ round_counter

Thus, the key register is rotated by 61 bit positions to the left, the left-most eight bits are passed
through two PRESENT S-boxes, and the round_counter value i is exclusive-ored with bits
k66k65k64k63k62 of K with the least significant bit of round_counter on the right. Figure 4.4
depicts the key schedule for PRESENT-128 graphically.

41

Chapter 4. PRESENT - An Ultra-Lightweight Block Cipher

Figure 4.5: The grouping of S-boxes in PRESENT for the purposes of cryptanalysis. The input numbers
indicate the S-box origin from the preceeding round and the output numbers indicate the
destination S-box in the following round.

4.6 Cryptanalytic Aspects

In [33] we presented the results of a security analysis of PRESENT. In the following our findings
are recalled. First differential and linear cryptanalysis are treated in Section 4.6.1. Subsequently
structural attacks (Section 4.6.2), algebraic attacks (Section 4.6.3), key schedule attacks (Sec-
tion 4.6.4), statistical saturation attacks (Section 4.6.5) and combined algebraic and differential
attacks (Section 4.6.6) are treated.

4.6.1 Differential and linear cryptanalysis

Differential [26] and linear [149] cryptanalysis are among the most powerful techniques avail-
able to the cryptanalyst. In order to gauge the resistance of PRESENT to differential and linear
cryptanalysis we provide a lower bound to the number of so-called active S-boxes involved in
a differential (or linear) characteristic.

We divide the 16 S-boxes into four groups (see Figure 4.5) and by examining the permutation
layer one can then establish the following.

(1) The input bits to an S-box come from four distinct S-boxes of the same group.

(2) The input bits to a group of four S-boxes come from 16 different S-boxes.

(3) The four output bits from a particular S-box enter four distinct S-boxes, each of which
belongs to a distinct group of S-boxes in the subsequent round.

(4) The output bits of S-boxes in distinct groups go to distinct S-boxes.

We use these observations in the following to proof Theorem 4.1.

Differential cryptanalysis.

The case of differential cryptanalysis is captured by the following theorem.

Theorem 4.1. Any five-round differential characteristic of PRESENT has a minimum of ten active S-
boxes.

Proof. Recalling that the rounds are indexed from 1 to 31, consider five consecutive rounds of
PRESENT ranging from i− 2 to i + 2 for i ∈ [3 . . . 29]. Let Dj be the number of active S-boxes in

42

4.6. Cryptanalytic Aspects

round j. If Dj ≥ 2, for i − 2 ≤ j ≤ i + 2, then the theorem trivially holds. So let us suppose
that one of the Dj is equal to one. We can distinguish several cases:

Case Di = 1. The S-box of PRESENT is such that a difference in a single input bit causes
a difference in at least two output bits (cf. the second design criterion). Thus Di−1 +
Di+1 ≥ 3. Using observation 1 above, all active S-boxes of round i − 1 belong to the
same group, and each of these active S-boxes have only a single bit difference in their
output. So according to observation 2 we have that Di−2 ≥ 2Di−1. Conversely, according
to observation 3, all active S-boxes in round i + 1 belong to distinct groups and have
only a single bit difference in their input. So according to observation 4 we have that
Di+2 ≥ 2Di+1. Together this gives

∑i+2
j=i−2 Dj ≥ 1 + 3 + 2× 3 = 10.

Case Di−1 = 1. If Di = 1 we can refer to the first case, so let us suppose that Di ≥ 2.
According to observation 3 above, all active S-boxes of round i belong to distinct groups
and have only a single bit difference in their input. Thus, according to observation 4,
Di+1 ≥ 2Di ≥ 4. Further, all active S-boxes in round i+1 have only a single bit difference
in their input and they are distributed so that at least two groups of S-boxes contain at
least one active S-box. This means that Di+2 ≥ 4 and we can conclude that

∑i+2
j=i−2 Dj ≥

1 + 1 + 2 + 4 + 4 = 12.

Case Di+1 = 1. If Di = 1 we can refer to the first case. So let us suppose that Di ≥ 2.
According to observation 1 above, all active S-boxes of round i belong to the same group
and each of these active S-boxes has only a single bit difference in their output. Thus,
according to observation 2, Di−1 ≥ 2Di ≥ 4. Further, all active S-boxes of round i−1 have
only a single bit difference in their output, and they are distributed so that at least two
groups contain at least two active S-boxes. Thus, we have that Di−2 ≥ 4 and therefore
that

∑i+2
j=i−2 Dj ≥ 4 + 4 + 2 + 1 + 1 = 12.

Cases Di+2 = 1 or Di−2 = 1. The reasoning for these cases is similar to those for the second
and third cases.

The theorem follows.

By using Theorem 4.1 any differential characteristic over 25 rounds of PRESENT must have
at least 5 × 10 = 50 active S-boxes. The maximum differential probability of a PRESENT S-
box is 2−2 and so the probability of a single 25-round differential characteristic is bounded by
2−100. Advanced techniques allow the cryptanalyst to remove the outer rounds from a cipher
to exploit a shorter characteristic. However, even if we allow an attacker to remove six rounds
from the cipher, a situation without precedent, then the data required to exploit the remaining
25-round differential characteristic exceeds the amount available. Thus, the security bounds
are more than we require. However, we have practically confirmed that the bound on the
number of active S-boxes in Theorem 4.1 is tight.

Practical confirmation.

We can identify characteristics that involve ten S-boxes over five rounds. The following two-
round iterative characteristic involves two S-boxes per round and holds with probability 2−25

over five rounds.

43

Chapter 4. PRESENT - An Ultra-Lightweight Block Cipher

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 = ∆.

A more complicated characteristic holds with probability 2−21 over five rounds.

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 7 0 7 0

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A

→ 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

→ 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0

→ 0 0 0 0 0 0 0 0 0 0 8 8 0 0 8 8

→ 0 0 3 3 0 0 0 0 0 0 3 3 0 0 3 3.

While the probability of this second characteristic is very close to the bound of 2−20, it is non-
iterative and of little practical value. Instead we have experimentally confirmed the probability
of the two-round iterative differential. In experiments over 100 independent sub-keys using
223 chosen plaintext pairs, the observed probability was as predicted. This seems to suggest
that for this particular characteristic there is no accompanying significant differential. How-
ever, determining the extent of any differential effect is a complex and time-consuming task
even though our preliminary analysis has been encouraging.

Linear cryptanalysis.

The case of the linear cryptanalysis of PRESENT is handled by the following theorem where we
analyse the best linear approximation to four rounds of PRESENT.

Theorem 4.2. Let ǫ4R be the maximal bias of a linear approximation of four rounds of PRESENT. Then
ǫ4R ≤

1
27 .

Proof. Recall that Matsui’s piling-up lemma [149] estimates the bias of a linear approximation
involving n S-boxes to be

2n−1
n

∏

i=1

ǫi,

where the values ǫi are the individual bias of each (independent) S-box. According to the de-
sign principles of PRESENT, the bias of all linear approximations is less than 2−2 while the bias

of any single-bit approximation is less than 2−3. Let ǫ
(j)
4R denote the bias of a linear approxima-

tion over 4 rounds involving j active S-boxes. Now consider the following three cases.

(1) Suppose that each round of a four-round linear approximation has exactly one active S-
box. Then the bias of each of the two S-boxes in the middle rounds is at most 1/8 and the
overall bias for a four round approximation can be bounded as follows:

ǫ
(4)
4R ≤ 23 × (2−3)2 × (2−2)2 = 2−7.

44

4.6. Cryptanalytic Aspects

(2) Suppose, instead, that there are exactly five active S-boxes over four rounds. Then by
the grouping of S-boxes in Figure 4.5, the active S-boxes over three consecutive rounds
cannot form the pattern 1-2-1. For this to happen, the two active S-boxes in the middle
round are activated by the same S-box and must therefore belong to two different groups
of S-boxes. But if this is the case they couldn’t activate only one S-box in the following
round. Consequently the number of active S-boxes is either 2-1-1-1 or 1-1-1-2, so that

ǫ
(5)
4R ≤ 24 × (2−3)× (2−2)4 = 2−7.

(3) Finally, suppose that there are more than five active S-boxes. Thus

ǫ
(j)
4R ≤ 2j−1 × (2−2)j = 2−j−1 ≤ 2−7 for j > 5.

The equality is theoretically attainable for j = 6. This is a strict inequality for all other
j’s.

The theorem follows.

We can use Theorem 4.2 directly to bound the maximal bias of a 28-round linear approximation
by

26 × ǫ74R = 26 × (2−7)7 = 2−43.

Therefore under the assumption that a cryptanalyst need only approximate 28 of the 31 rounds
in PRESENT to mount a key recovery attack, linear cryptanalysis of the cipher would require
of the order of 284 known plaintext/ciphertexts. Such data requirements exceed the available
text.

Some advanced differential/linear attacks.

The structure of PRESENT allows us to consider some dedicated forms of attacks. However,
none have yielded an attack that requires less text than the lower bound on text requirements
for linear cryptanalysis. Among the dedicated attacks we considered was one using palin-
dromic differences, since symmetrical differences are preserved with probability one over the
diffusion layer, and some advanced variants of differential-linear attacks [138]. While the at-
tacks seemed promising over a few rounds, they very quickly lost their practical value and are
unlikely to be useful in the cryptanalysis of PRESENT. We also established that truncated differ-
ential cryptanalysis [126, 127] was likely to have limited value, though the following two-round
truncated extension holds with probability one.

∆ = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

→ 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 3 [iterate the two-round characteristic]

→
...

→ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

→ 0 0 0 ? 0 0 0 ? 0 0 0 ? 0 0 0 3

→ δ0 δ1 δ2 δ3 δ4 δ5 δ6 δ7 δ8 δ9 δ10 δ11 δ12 δ13 δ14 δ15 where all δi ∈ {0, 1}.

Even when used to reduce the length of the differential characteristics already identified, the
data requirements still remain excessive.

45

Chapter 4. PRESENT - An Ultra-Lightweight Block Cipher

Differential attack on reduced-round versions of PRESENT

Shortly after the publication of PRESENT Wang published her findings about the differential
properties of PRESENT in [235]. Wang showed that a 16-round version of PRESENT is sus-
ceptible to differential cryptanalysis. In particular 264 chosen plaintexts are required and the
time complexity is about 265 memory accesses to obtain the right key with a probability of
0.999999939. Furthermore 232 6-bit counters and 224 hash cells are the memory requirements.
One drawback of the attack is that it requires a complete codebook, i.e. all available 264 plain-
texts and their corresponding ciphertexts are required. If all plaintexts and their corresponding
ciphertexts are known to the attacker, the key is not required anymore, because he can simply
look up the plaintext to a given ciphertext. Furthermore, the attack can only cryptananlyze 16
out of 31 rounds, hence there is still a large security margin. However, these findings provide
an interesting starting point for further studies of the differential properties of PRESENT.

4.6.2 Structural attacks

Structural attacks such as integral attacks [125] and bottleneck attacks [80] are well-suited to the
analysis of AES-like ciphers, such as the AES itself [54], SQUARE [53] or SHARK [194]. Such
ciphers have strong word-like structures, where the words are typically bytes. However, the
design of PRESENT is almost exclusively bitwise, and while the permutation operation is some-
what regular, the development and propagation of word-wise structures are disrupted by the
bitwise operations used in the cipher.

In [244] a bit-pattern based integral attack is proposed and the authors analyze reduced round
variants of PRESENT with 5, 6 and 7 rounds. The authors highlight that a 5 round attack only
requires 80 chosen plaintexts, but the 7 round attack already requires 224.3 chosen plaintexts
and has a time complexity of 2100.1 and a data complexity of 277 bytes. Furthermore the authors
state that integral attacks “can not be extended beyond a certain point” due to increasing time
complexity with increasing number of rounds. Hence, integral attacks do not seem to be a
threat for PRESENT.

4.6.3 Algebraic attacks

Algebraic attacks have had better success when applied to stream ciphers than block ciphers.
Nevertheless, the simple structure of PRESENT means that they merit serious study. The
PRESENT S-box is described by 21 quadratic equations in the eight input/output-bit variables
over GF (2). This is not surprising since it is well-known that any four bit S-box can be de-
scribed by at least 21 such equations. The entire cipher can then be described by e = n × 21
quadratic equations in v = n× 8 variables, where n is the number of S-boxes in the encryption
algorithm and the key schedule. For PRESENT we have n = (31×16)+31 thus the entire system
consists of 11, 067 quadratic equations in 4, 216 variables.

The general problem of solving a system of multivariate quadratic equations is NP-hard. How-
ever the systems derived for block ciphers are very sparse since they are composed of n small
systems connected by simple linear layers. Nevertheless, it is unclear whether this fact can
be exploited in a so-called algebraic attack. Some specialised techniques such as XL [50] and
XSL [51] have been proposed, though flaws in both techniques have been discovered [44, 60].

46

4.6. Cryptanalytic Aspects

Instead the only practical results on the algebraic cryptanalysis of block ciphers have been ob-
tained by applying the Buchberger [29] and F4 [69] algorithms within Magma [146]. Simula-
tions on small-scale versions of the AES showed that for all but the very smallest SP-networks
one quickly encounters difficulties in both time and memory complexity [45]. The same applies
to PRESENT as we will show in the next section.

Practical confirmation.

We ran simulations on small-scale versions using the F4 algorithm in Magma. When there is a
single S-box, i.e. a very small block size of four bits, then Magma can solve the resulting system
of equations over many rounds. However, by increasing the block size and adding S-boxes,
along with an appropriate version of the linear diffusion layer, the system of equations soon
becomes too large. Even when considering a system consisting of seven S-boxes, i.e. a block
size of 28 bits, we were unable to get a solution in a reasonable time to a two-round version of
the reduced cipher. Our analysis suggests that algebraic attacks are unlikely to pose a threat to
PRESENT.

4.6.4 Key schedule attacks

Since there are no established guidelines to the design of key schedules, there is both a wide
variety of designs and a wide variety of schedule-specific attacks. The most effective attacks
come under the general heading of related-key attacks [20] and slide attacks [29], and both rely
on the build-up of identifiable relationships between different sets of subkeys. To counter this
threat, we use a round-dependent counter so that subkey sets cannot easily be “slid”, and we
use a non-linear operation to mix the contents of the key register K. In particular,

� all bits in the key register are a non-linear function of the 80-bit user-supplied key by
round 21,

� that each bit in the key register after round 21 depends on at least four of the user-
supplied key bits, and

� by the time we arrive at deriving K32, six bits are degree two expressions of the 80 user-
supplied key bits, 24 bits are of degree three, while the remaining bits are degree six or
degree nine function of the user-supplied key bits.

We believe these properties to be sufficient to resist key schedule-based attacks.

4.6.5 Statistical saturation attacks

Recently, a new class of statistical saturation attacks has been proposed by Collard and Stan-
daerd [47] and PRESENT has been chosen to demonstrate the attack. It exploits properties of
the permutation layer, in particular the fact that only 8 out of 16 bits of the output of S-boxes 5,
6, 9 and 10 are directed to other S-boxes. However, the authors can only break 14 rounds out of
the 31 rounds of PRESENT and it requires 234 plaintext-ciphertext pairs.1 Since this attack has
been applied to a reduced version of PRESENT with less than half of its rounds, the remaining
security margin is still large. Nevertheless, this is an interesting new type of attack and it will
be interesting to see it applied to other block ciphers too.

1On the webpage of one of the authors [46] it is stated however that 15 rounds of PRESENT can be broken with
2
35.6 plaintext-ciphertext pairs.

47

Chapter 4. PRESENT - An Ultra-Lightweight Block Cipher

Table 4.6: The reduced permutation layer P16(x).

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P16(i) 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

4.6.6 Algebraic differential attacks

In [2] three attacks are proposed that combine algebraic and differential techniques. The au-
thors performed experimental results for two of three proposed attacks on reduced round vari-
ants of PRESENT-80 with 16 (PRESENT-80-16) rounds and on PRESENT-128 with 17 (PRESENT-
128-17), 18 (PRESENT-128-18) and 19 (PRESENT-128-19) rounds. However, they also state that
such an attack on PRESENT-128-19 would require 2113 CPU cycles and hence is impractical.

4.7 Further observations

Gregor Leander made an observation that promises great optimization potential for software
implementations [139]. Figure 4.6(a) depicts two rounds of PRESENT and it can be seen that
the 16 bit output of one set of four adjacent S-boxes is exactly mapped to the 16 bit input of
four S-boxes in the next round. Leander proposed to re-arrange the S-boxes as it is depicted
in Figure 4.6(b). As it becomes clear now, the modified permutation layer P ′(x) can be seen
as a concatenation of four instances of a permutation layer P16(x) that each permutes a 16 bit
chunk of the state, i.e.

P ′(x3||x2||x1||x0) = P16(x3)||P16(x2)||P16(x1)||P16(x0)

where xi = b16·i+15||b16·i+14|| . . . ||b16·i for 0 ≤ i ≤ 3. The updated state is not in the same
order as the original permutation layer P (x) would have transformed it, so the roundkey has
to be re-ordered nibble-wise. If we apply P ′(x) again to the state we need another 64 bit
permutation P ′′(x) in order to guarantee that P (P (x)) = P ′′(P ′(P ′(x))). Interestingly it holds
that P ′′ = P−1, hence

P (P (x)) = P−1(P ′(P ′(x))).

It is also possible to write the reduced P-layer in the following way:

P16(i) =

{

i · 4 mod 15, i ∈ {0, . . . , 14}
15, i = 15.

Please note that P16(x) is an involution, i.e. P16(x) = P−1
16 (x). As we will see in Section 5.4.5

exploitation of this observation will lead to an optimized software implementation of the de-
cryption routine.

48

4.7. Further observations

(a) with regular bit-ordering.

(b) with re-arranged S-boxes and a split permutation layer.

Figure 4.6: Two rounds of PRESENT

49

5 Implementation Results of PRESENT

In Chapter 4 the block cipher PRESENT was introduced. For different application scenarios
there exist different demands on the implementation and the optimization goals. In this chap-
ter we consider a wide variety of different target platforms ranging from highly-optimized
ASICs, over more flexible but still efficient low-cost FPGAs to hardware-software co-design
approaches and flexible software implementations for 4-, 8-, 16- and 32-bit processors. We
start with three ASIC implementations of PRESENT in Section 5.1, each of them is highly op-
timized for a specific scenario. FPGA implementations provide more flexible solutions than
ASICs while exploiting the hardware efficiency of PRESENT. We present implementation fig-
ures of PRESENT for low-cost FPGAs in Section 5.2. Then we discuss implementation results
that use hardware-software co-design approaches in Section 5.3. Software implementations
for a wide range of different target platforms are presented in Section 5.4. Finally, this chapter
is concluded in Section 5.5.

5.1 ASIC Implementations

In this Section we first describe a serialized architecture that is minimized in terms of area and
power consumption in Section 5.1.1. Subsequently, we present a round-based architecture that
is optimized in terms of area, speed, and energy in Section 5.1.2. For the sake of completeness,
also a parallelized architecture that uses pipelining technique and generates a high through-
put is presented in Section 5.1.3. In order to decrease the area requirements even further, all
architectures can perform encryption only. This is sufficient for encryption and decryption of
data when the block cipher is operated for example in counter mode.

Finally, we evaluate our implementation results with respect to the three scenarios low cost
passive smart devices, low cost active smart devices, and high end smart devices in Sec-
tion 5.1.4. We considered the following optimization goals for the three scenarios: low cost
and passive smart devices should be optimized for area and power constraints and low cost
and active smart devices for area, energy, and time constraints. Note that in our methodol-
ogy high end devices are always contact smart cards and hence should be optimized for time
and energy constraints. Therefore we do not distinguish between passive and active high end
smart devices.

5.1.1 Serialized ASIC implementation

As was already pointed out in Section 4.3.3 the permutation layer of PRESENT can be written
as:

P (i) =

{

i · 16 mod 63, i ∈ {0, . . . , 62}
63, i = 63.

An interesting property of P is the fact that three consecutive application of P (i) lead to the
original bit position i, i.e. P (P (P (i))) = i. For bits 0 and 63 this is an obvious observation

Chapter 5. Implementation Results of PRESENT

(a) before application of the pLayer. (b) after application of the pLayer.

Figure 5.1: Bit positions of the PRESENT state arranged in a 4× 4× 4 bit cube.

(a) before the rotation. (b) during the rotation. (c) after the rotation.

Figure 5.2: Exemplary 4× 4× 4 bit state cube.

and for the remaining bits this follows from the fact that P (P (P (i))) = (((i · 16) · 16) · 16)
mod 63 = i · 4096 mod 63 = i · 1 mod 63.

Consider that we arrange the state of PRESENT in a cube with 4 bits in each dimension, i.e. a
4 × 4 × 4-bits cube, and that we number the bits according to Figure 5.1(a). After applying
the pLayer permutation to the state cube the bit positions change (see Figure 5.1(b)). If one
looks carefully it can be seen that the pLayer acts as a rotation of the cube around an axis that
runs from the upper right corner at the front to the bottom left corner in the back. This virtual
axis would touch bits 0, 21, 42 and 63 (before rotation). An exemplary state cube is depicted in
Figure 5.2 before (Figure 5.2(a)), during (Figure 5.2(b)) and after (Figure 5.2(c)) a rotation.

However, it is not an easy task to implement such an architecture efficiently in hardware. The
problem of rotating a 4 × 4 × 4-bits cube has been treated by Pfister/Kaufman [180] in the
context of real-time volume rendering. Unfortunately, the selection of single bits in hardware
requires a MUX (2.33 GE per bit) and is hence rather expensive in terms of area. Therefore we
dropped this idea and used the following architecture instead.

52

5.1. ASIC Implementations

Architecture

A serialized architecture of PRESENT-80 is depicted in Figure 5.3. As one can see it has a 4-
bit width datapath, i.e. only 4 bits are processed in one clock cycle. Consequently it takes 16
clock cycles to XOR all 16 chunks of the state with the according chunk of the round key and
subsequently process the result by the S-box. Another clock cycle is required to perform the
pLayer on the whole state. This is due to the fact that the pLayer was designed to provide
a good avalanche effect, which in turn prohibits efficient serialization. Since the S-box is not
occupied by the datapath in this clock cycle, the key schedule can share the same hardware
resources and hence uses the same S-box. This saves 28 GE for a separate S-box at the cost of
a new MUX (10 GE). Also the remaining operations of the key schedule are performed in this
clock cycle, while in the previous 16 clock cycles only the key state was shifted. Since the key
state consists of 20 4-bit chunks, but was only shifted 16 times, the 61 bit left rotation has to be
adapted. Contrary to the round-based implementation, now an FSM is required to control the
control signals. Furthermore, additionally to the 5-bit round counter another 4-bit counter is
required to keep track of the chunks within one round.

The serialized architecture requires 17 clock cycles to process one round and since it has a 4-bit
width I/O interface 20 clock cycles are required to initialize the circuit. Since the final round
does not include the pLayer it requires only 16 clock cycles during which the result is also
output and new data and key can be read in.1 The done signal indicates if the output is valid.
In total a complete PRESENT-80 encryption of a 64-bit message requires 31 · 17 + 16 + 4 = 547
clock cycles. An encryption with a serialized PRESENT-128 implementation requires 31 · 17 +
16 + 16 = 559 clock cycles.

data_in

key

State
[gReg-4/64]

Key
[gReg-4/80]

S-Box

P-Layer

4

<<61

4

4

80

64

64

80

data_out

FSM
5

counter
n_reset

done

 P
R

E
S

E
N

T
-8

0
/4

4

4

4 4
4

4

4

71

5

4

4

4

Figure 5.3: Datapath of the serialized PRESENT architecture.

5.1.2 Round-based ASIC implementation

This architecture represents the direct implementation of the PRESENT top-level algorithm de-
scription in Figure 4.1, i.e. one round of PRESENT is performed in one clock cycle. The focus
lies on a compact solution, but at the same time with an eye on the time-area product. To save

1Note that it requires 4 additional clock cycles to read in the 80 bit key and 20 additional clock cycles for the
128-bit key, respectively.

53

Chapter 5. Implementation Results of PRESENT

power and area a loop based approach is chosen. The balance between the 64-bit datapath and
the used operations per clock cycle leads to a good time-area product. Due to the reuse of sev-
eral building blocks and the round structure, the design has a high energy efficiency as well.
The architecture uses only one substitution and permutation layer. So the datapath consists of
one 64-bit XOR, 16 S-boxes in parallel, and one P-Layer. To store the internal state and the key,
a 64-bit state register and an 80-bit key register are required. The key scheduling consists of a
key register, a 5-bit XOR, one S-box and a 61-bit left rotation, which is only wiring. Figure 5.4
depicts the architecture of the round based approach for PRESENT. At first the key and the
plaintext are stored into the respective register. After each round the internal state is stored
into the state register and the updated key state in the key register. After 31 rounds the state
is finally processed via XOR with the last round key, hence a 5-bit counter is required. This
architecture does not require an FSM.

State
[FF-64]

Key
[FF-80] S-Box

P-Layer

<<61

4

80

80
counter

 P
R

E
S

E
N

T
-8

0
/6

4

4

71

564

S-Boxes

data_out

64

64

5

64

80data_in key

64

[79:16]

Figure 5.4: Datapath of the round-based PRESENT-80 architecture.

5.1.3 Parallelized ASIC implementation

For the sake of completeness we also briefly describe a parallelized pipelined architecture of
PRESENT-80 as described in [199], though it is not lightweight. As introduced in Section 2.1 for
a parallel design the algorithm is “unrolled”, i.e. each of the 31 rounds has its own datapath in
order to achieve a higher throughput. The required round key is generated by taking the right
bits from the 80-bit key and if necessary pass them through an S-box or add a roundcounter
value. All subkeys are available in parallel and no register is needed to store the key. Figure 5.5
shows the datapath of the pipelined architecture. It consists of 32 XORs, 496 S-boxes, and 31 P-
Layer for the datapath. The key scheduling consists of 31 S-boxes and the round counter XOR
is hard wired, i.e. the XOR addition is realized by inverters. First the given 64-bit plaintext
and the first round key are XORed. The result is split up into 16 4-bit blocks. Each block is
processed by a 4-bit S-box in parallel. The 64-bit P-Layer transposes the bits at the end of each
of the 31 rounds. Note that the 32th round consists only of the XOR operation.

This straight forward approach does not achieve a high maximum operating frequency, be-
cause the input signal has to propagate through all XOR and S-box gates and hence the critical
path is obviously too long. The more gates belong to the path the higher is the resulting ca-
pacitance to be switched. So the time period for a switching event is stretched. To shorten the

54

5.1. ASIC Implementations

S

P

Key

Plaintext

Ciphertext

64

80

64

S

16
x

4

4

64

S

P
64

S

16
x

4

4

64

Roundkey1

31 x

Roundkey31 Roundkey32

D

Q

64

64

Roundkey1

D

Q

64

Figure 5.5: Datapath of the pipelined parallelized PRESENT-80 architecture, source [199].

critical path, flip-flops as pipeline stages were installed after each round, i.e. after each P-Layer
(see Figure 5.5). On the one hand this increases the chip area and power consumption further,
but on the other hand the maximum frequency can be raised significantly (recall that for this
architecture the main design goal is high throughput and not low area requirements).

The pipelined parallelized implementation of PRESENT-80 requires 27, 028 GE and once the
pipeline is completely filled (after 31 clock cycles) it can encrypt a message block of 64 bits
within one clock cycle. This translates to a delay of 31 cycles and a throughput of 6.4 Mbps at
a frequency of 100 KHz. More details about this architecture can be found in [199].

5.1.4 Discussion of the implementation results

Table 5.1 summarizes the implementation results and compares them to other block and stream
cipher implementations after synthesis.2 The upper part shows implementation results of se-
rialized architectures with round-based architectures in its middle part. For the sake of com-
pleteness, also figures of a parallelized PRESENT-80 implementation have been included in the
lower part. As one can see a serialized implementation of PRESENT-80 requires 1, 075 GE. To the
best of our knowledge this is the smallest implementation of a cryptographic algorithm with
a moderate security level, i.e. 80 bit. The figures for a serialized PRESENT-128 implementation
are extrapolated by adding the area for storing 48 additional key bits (288 GE) and a second
S-box (28 GE). Due to the serialization it takes 547 clock cycles to encrypt one message block,
which leads to a rather small throughput and, consequently, a small hardware efficiency. The
implementation figures of DES, DESL, DESX and DESXL have been copied from Section 3.4.
Compared to the implementation figures of PRESENT all DES variants are inferior. For com-
parison reason also figures for two implementations of the AES [73, 96] and the stream ciphers
TRIVIUM and GRAIN [89] are included. The AES implementation of Feldhofer et al. [73] is
considered to be the benchmark of all lightweight implementations though the implementa-
tion of Hämäläinen et al. is around 10% smaller and more than 6 times faster than the first one.
However, compared to our serialized PRESENT-80 and PRESENT-128 implementation, it is still
2− 3 times larger.

It is noteworthy that also the implementation results of both eSTREAM hardware profile final-
ists TRIVIUM and GRAIN require more area than both serialized PRESENT implementations.

2The power figure for SEA and ICEBERG have been derived by scaling down the energy consumption linearly
from the figure stated in [144] and dividing by 1.2V, the core voltage of the used technology.

55

Chapter 5. Implementation Results of PRESENT

Table 5.1: Hardware implementation results of PRESENT-80 and PRESENT-128 with an encryption only
datapath for the UMCL18G212T3 standard-cell library. All figures are obtained at or calcu-
lated for a frequency of 100KHz. Please be aware that power figures can not be compared
adequately between different technologies.

Algorithm key block datapath cycles / T’put Tech. Area Eff. Cur.
size size width block [Kbps] [µm] [GE] [bps/GE] [µA]

Serialized Architecture

PRESENT 80 64 4 547 11.7 0.18 1,075 10.89 1.4
PRESENT 128 64 4 559 11.45 0.18 1,391 8.23 —

DES 56 64 4 144 44.44 0.18 2,309 19.25 1.19
DESL 56 64 4 144 44.44 0.18 1,848 24.05 0.89
DESX 184 64 4 144 44.44 0.18 2,629 16.9 —
DESXL 184 64 4 144 44.44 0.18 2,168 20.5 —

AES [73] 128 128 8 1,032 12.4 0.35 3400 3.65 3.0
AES [96] 128 128 8 160 80 0.13 3,100 25.81 —

Trivium [89] 80 SC 1 1 100 0.13 2,599 38.48 4.67
Grain [89] 80 SC 1 1 100 0.13 1,294 77.28 2.75

Round-based Architecture

PRESENT 80 64 64 32 200 0.18 1,570 127.4 2.78
PRESENT 128 64 64 32 200 0.18 1,884 106.2 3.67

SEA [144] 96 96 96 93 103.23 0.13 3,758 27.47 1.7
ICEBERG [144] 128 64 64 16 400 0.13 7,732 51.73 3.19
HIGHT [107] 128 64 64 34 188.2 0.25 3,048 61.75 –

Parallelized Architecture

PRESENT [199] 80 64 64 1 6,400 0.18 27,028 236.79 38.3

56

5.2. FPGA implementation results

Due to the high throughput achievable by both stream ciphers also the hardware efficiency is
better than for a serialized PRESENT implementation. However, for a minimal area footprint
this assumption does not hold anymore. Furthermore, if attention is turned to the round-
based implementation results of PRESENT-80, it becomes visible that for 1, 570 GE a hardware
efficiency of 127.4 bits per second per GE is achievable, which is the highest among all ci-
phers in this table. Please note furthermore that stream ciphers require a significant amount
of time for initialization (e.g. 321 clock cycles for GRAIN and 1, 333 for TRIVIUM) prior to
first usage. For comparison reasons, figures for round-based implementations of SEA, ICE-
BERG [144] and HIGHT [107] have been included. All three block ciphers require between
3, 048 GE and 7, 732 GE and also the hardware efficiency is worse than for both PRESENT-80
and PRESENT-128 implementations. ICEBERG’s high throughput (400 Kbps) is nullified by its
large area requirements of 7, 732 GE.

5.2 FPGA implementation results

In this section we describe an FPGA implementation of a stand-alone PRESENT component. We
implemented an encryption and a decryption only core and for each we investigated two dif-
ferent design strategies (boolean representation and look-up tables) for the S-box component.
First we describe our target platform and the tool-chain in Section 5.2.1. Then we describe our
architectures in Section 5.2.2 and finally present our results in Section 5.2.3.

5.2.1 Target platform and designflow

We implemented both encryption and decryption functions in VHDL for the Spartan-III
XC3S400 (Package FG456 with speed grade -5) FPGA core from Xilinx [242]. We used Men-
tor Graphics ModelSimXE 6.2g for simulation purposes and Xilinx ISE v10.1.03 WebPACK for
design synthesis.

5.2.2 Architecture of the round-based FPGA implementation

As can be seen from Fig. 5.6(a) our PRESENT-80 and PRESENT-128 entities have 212 and 270
I/O pins, respectively. We did not implement any I/O logic such as a UART interface in order
to achieve implementation figures for the plain PRESENT core. The interface usually strongly
depends on the target application, hence we deliberately use additional I/O pins for a parallel
key input. There are two reasons why we abandon the options of hard-coding the key inside
the cipher module or implementing serial interface to supply the key to the algorithm. First,
we want to reduce the control logic overhead to a minimum in order to present performing
results of the plain encryption core. Secondly, we anticipate that the majority of applications
most likely would use PRESENT as an independent cipher module within a larger top entity,
so that the key can be supplied externally. From that perspective our implementation choice
offers the best flexibility.

Unfortunately, the low-cost Spartan-III XC3S200 FPGA has no package with more than 173 I/O
pins [242]. Therefore we decided to move to the more advanced Spartan-III XC3S400 which
features a package (FG456) with 264 I/O pins. Larger Spartan FPGAs such as the Spartan-III
XC3S1000 feature even more I/O pins but also contain more logic resources. Since in this The-
sis we focus on lightweight and low-cost implementations of PRESENT we chose the smallest

57

Chapter 5. Implementation Results of PRESENT

(a) I/O interfaces

����� �����

��	�

��
���������

��
���������

����
�����

(b) Finite State Machine.

Figure 5.6: I/O interfaces and FSM of the PRESENT-80 FPGA implementation.

possible device Spartan-III XC3S400 which is only slightly larger (and hence more expensive)
than the Spartan-III XC3S200.

The entire cipher control logic was implemented as a 3-state finite-state machine (see Fig.5.6(b)).
After reset the first round begins and the two inputs of the algorithm, plaintext and user-
supplied key are read from the corresponding registers. The 64- and 80-bit multiplexers select
the appropriate input depending on the value of the round counter, i.e. initial values for plain-
text and key are valid only in round 1. Both 64- and 80-bit D-flip-flops are used for round
synchronization between the round function output and the output of the key schedule. Part
of the round key is then XOR-ed with the plaintext. Key schedule and round function run in
parallel for each round 1 ≤ i ≤ 32.

Implementation of both permutation and bit-rotation is very straightforward in hardware,
which is a simple bit-wiring. The highly non-linear PRESENT S-box function is the core of
the cryptographic strength of the cipher, and is the only design component that takes a lion’s
share of both computational power and area. Two implementation options for the PRESENT

S-box were taken in consideration in order to optimize the efficiency of the cipher. Using
Look-Up Tables (LUTs) for bit substitution is the most obvious one and was implemented first.
An alternative considered next was determining a minimal non-linear Boolean function

Si : F
4
2 7→ F2

(x3x2x1x0) 7→ yi, 0 ≤ i ≤ 3

for each bit output of the PRESENT S-box using only standard gates, i.e. AND, OR and NOT. The
tool espresso [170] was used to produce such minimal Boolean functions for the PRESENT S-
box.

Interestingly, in some cases this modification yielded a performance boost in terms of max.
frequency/throughput and area requirements measured in occupied slices. E.g., for PRESENT-
80 with espresso-optimized S-box ISE showed significant decrease in critical path delay due
to routing as compared to the S-box implementation with LUTs. From our results we conclude
that espresso and its minimal Boolean functions can yield better resources utilization and
may in some cases outpace ISE’s internal synthesis mechanisms.

The decryption unit of PRESENT is very similar to the encryption. The first round of decryption
requires the last round key of the encryption routine. For optimal performance we assume that
this last round key is pre-computed and available at the beginning of the decryption routine.
The assumption is fair since we have to perform this step only once for multiple cipher texts.

58

5.2. FPGA implementation results

Table 5.2: Performance results for encryption and decryption of one data block with PRESENT for dif-
ferent key sizes and S-box implementation techniques on a Spartan-III XC3S400 FPGA.

Key enc/ S-box LUTs FFs Total Max. CLK Throughput Eff.
size dec (espresso/ equiv. freq cycles (Mbps) (Mbps/

LUT) Slices (MHz) Slices)

80
enc

espresso 253 152 176 258 32 516 2.93

LUT 350 154 202 240 32 480 2.38

dec
espresso 328 154 197 240 32 480 2.44

LUT 328 154 197 238 32 476 2.42

128
enc

espresso 299 200 202 250 32 500 2.48

LUT 300 200 202 254 32 508 2.51

dec
espresso 366 202 221 239 32 478 2.16

LUT 366 202 221 239 32 478 2.16

5.2.3 Implementation results

Table 5.2 summarizes the performance figures for our implementations. All figures presented
are from Post Place & Route Timing Report. To achieve optimal results both Synthesis and
Place & Route Effort properties were set to High and Place & Route Extra Effort was set to
Continue on Impossible.

Numerous FPGA implementations of AES block cipher exist. Some of them are tuned to max-
imize data throughput, whereas others were designed for optimization of area requirements
and power consumption. There are also block ciphers that were designed specifically for hard-
ware (SEA [145]) or even FPGA (ICEBERG [211]) applications. We compare our PRESENT im-
plementation with different existent FPGA implementations of those ciphers. Given the wide
range of different features and logic slices provided by different FPGAs it is hard to make a fair
comparison, so additional information on implementation platform and boundary conditions
is provided.

Table 5.3 shows that in the field of cryptographic implementations for low-cost FPGA cores,
PRESENT offers both the smallest area requirement and highest hardware efficiency compared
to AES as well as ICEBERG and SEA implementations. Note, that our implementation does not
require any Block RAM units while most AES implementations do. For this matter we show
the total equivalent slice count for each implementation to highlight the real area requirements.

The speed grade of the Spartan devices has significant impact on the max. frequency of the
cipher. Switching from speed grade 4 to speed grade 5 gave us up to 20% max. frequency
increase. There are also different packages for each device platform with varying pinout count.
Those facts make a fair inter-platform comparison even harder. Hence, for comparison’s sake
we picked only AES implementations on Spartan devices with speed grade 5 and above. For
ICEBERG and SEA there are only Virtex-II implementations available. We also chose PRESENT

version with 128-bit key size for the same reason even though the implementation figures for
PRESENT-80 are more encouraging.

59

Chapter 5. Implementation Results of PRESENT

Table 5.3: Performance comparison of FPGA implementations of cryptographic algorithms.

Cipher Block FPGA device Max. T’put Total Eff.
Size freq. (Mbps) equiv. (Mbps/

(MHz) Slices Slice)

PRESENT-128 64 Spartan-III XCS400-5 254 508 202 2.51

PRESENT-80, [94] 64 Spartan-IIIE XC3S500 - - 271 -

ICEBERG, [211] 64 Virtex-II - 1016 631 1.61

SEA126,7, [145] 126 Virtex-II XC2V4000 145 156 424 0.368

AES, [43] 128 Spartan-II XC2S30-6 60 166 522 0.32

AES, [88] 128 Spartan-III XC3S2000-5 196.1 25,107 17,425 1.44

AES, [88] 128 Spartan-II XC2S15-6 67 2.2 264 0.01

AES, [200] 128 Spartan-II XC2V40-6 123 358 1214 0.29

AES, [37] 128 Spartan-III 150 1700 1800 0.9

5.3 Hardware/Software co-design implementation results

Embedded systems offer a wide range of different implementation opportunities. On the ex-
tremes there are plain hardware and plain software implementations. In practice however
often hardware software co-design strategies are applied, which we will address in this sec-
tion. We start with a co-processor ASIC implementation in Section 5.3.1 that was published by
Rolfes et al. in [199]. Subsequently, in Section 5.3.2 we discuss a co-processor FPGA implemen-
tation of Guo et al. [94] and finally we treat Instruction Set Extensions for bit-sliced software
implementations that have been published by Grabher et al. [91] in Section 5.3.3.

5.3.1 ASIC based co-processor implementation results

To equip a smart device with cryptographic functions there are different ways for implementa-
tion: software or hardware. The first solution requires RAM to store the program and inhibits
the microcontroller while performing cryptographic algorithms. The second possibility is to
implement the crypto part straight into the microcontroller core. A more flexible way is to con-
struct a cryptographic co-processor that is controlled by the main core. It uses a memory-like
interface for communication. Using the round based architecture of PRESENT-128, we present
in this section a cryptographic co-processor with encryption and decryption capabilities.

Architecture

To get a compact and also fast solution we use the round based architecture presented in Sec-
tion 5.1.2 with a modified finite state machine and added further multiplexers. Now the plain-
text is loaded in 32-bit blocks. As far as we know this is the maximum bit width of microcon-
trollers for smart devices. The co-processor is controlled by write and read enable signals. The
address signal selects the different bit blocks and encryption or decryption mode. Figure 5.7
illustrates the interfaces and the units.

60

5.3. Hardware/Software co-design implementation results

Ciphertext [31 ..0]

Ready

WENB

RENB

Key [127 ..0]

Data [31 ..0]

Addr [3 ..0]

Key Scheduling

Datapath Encryption

Datapath Decryption

FSM

I/o Interface

CLK

RESET

Figure 5.7: Block diagram of PRESENT-128 co-processor with 32-bit interface.

Implementation results

The best choice is to implement a round based architecture with a 32-bit I/O interface. In the
literature several AES implementations can be found that are up to the mark. We compare the
PRESENT implementations to Pramstaller et al. [186] and Satoh et al. [201]. Also a commercial
solution by Cast Inc. [39] is listed. Table 5.4 shows the results for the different implementa-
tions. As there are many smart cards equipped with 8-bit microcontrollers we list the results
for an 8-bit interface, too. The PRESENT co-processor is much more compact than the other
implementations and also needs less clock cycles to compute the ciphertext.

Table 5.4: Implementation results of the co-processor architectures of a PRESENT-80 ASIC [199].
Cipher Datapath Tech. max Freq. Area T’put Cycles

[Bit] [µm] [MHz] [GE] [Mbps]

PRESENT-128

8
0.35 131 2,587 133 63
0.25 121 2,851 123 63
0.18 353 2,900 359 63

32
0.35 143 2,681 234 39
0.25 141 2,917 231 39
0.18 323 2,989 529 39

AES [39]
32

0.18 300 124,000 872 44
AES [201] 0.11 131 54,000 311 54
AES [186] 0.6 50 85,000 70 92

5.3.2 FPGA-based co-processor implementation results

Guo et al. investigated the energy and performance efficiency of an FPGA-based System-on-
Chip (SoC) platform with AES and PRESENT co-processors in [94]. They used the GEZEL [203]

61

Chapter 5. Implementation Results of PRESENT

cosimulation environment that creates a platform simulator by combining instruction-set sim-
ulators with a hardware kernel. The GEZEL description can be transformed into synthesizable
VHDL code and Guo et al. used the resulting VHDL code to add an AES and a PRESENT co-
processor in the Xilinx Platform Studio 9.1.02. Table 5.5 summarizes their result.

Table 5.5: Co-processor implementation results of AES and PRESENT within a System-on-Chip platform
based on a low-cost FPGA [94].

unit AES-128 PRESENT-80

Area

Crypto core [slices] 1,877 271
Co-processor /w wrapper [slices] 2,097 460

Timing for encryption of 100 blocks

SW [cycles] 432,756 2,295,863
HW [cycles] 1,200 3,300
HW/SW [cycles] 77,428 51,427
HW speedup [factor] 360.6 695.7
HW/SW speedup [factor] 5.6 44.6

Power/Energy of crypto core for 10 encryptions 20 MHZ

Quiescent Power [mW] 51.51 44.06
Dynamic Power [mW] 40.75 3.49
Time [ms] 6 16.5
Energy [mJ] 0.55 0.78
Energy/byte [µJ/byte] 3.46 9.81

Power/Energy of FPGA system for 4 encryptions 50 MHZ

Quiescent Power [mW] 31.25 31.25
Dynamic Power [mW] 19.97 19.61
Time [ms] 62.08 41.2
Energy [mJ] 3.18 2.1
Energy/byte [µJ/byte] 49.68 65.48

As one can see the area requirements of AES are about 7 times higher compared to PRESENT if
we consider the crypto core and it is still 4.5 times higher if we also take the wrapper into ac-
count. On the other hand the timing for both plain software (SW) and plain hardware (HW) im-
plementations are 2.75 times better for the AES. However, if also the I/O communication over-
head between processor and co-processor is considered the AES requires 1.5 times more cycles
compared to PRESENT. The possible speedup of a plain hardware and a combined HW/SW
co-design implementation compared to a plain software implementation is provided by the
following two rows of the table. Though AES requires 360 times less cycles in hardware com-
pared to software implementations, if also the I/O communication overhead is considered the
speedup is reduced to a factor of 5.6. A plain hardware implementation of PRESENT requires
nearly 700 times fewer clock cycles and a combined HW/SW co-design implementation still
requires 44.6 times fewer clock cycles compared to a plain software implementation. These
figures impressively underline PRESENT’s suitability for hardware implementations.

62

5.3. Hardware/Software co-design implementation results

The power figures of PRESENT are less or equal to those of AES for both the crypto core compo-
nent and the complete FPGA system. However, the total energy consumption and the energy
per byte consumption are worse for PRESENT compared to AES for the crypto core component.
For the complete FPGA system the total energy consumption of PRESENT is less than for AES,
while the energy per byte ratio is better for AES. Concluding it can be observed that PRESENT

is better suited for low-area and low-power implementations that do not have to encrypt large
amounts of data, such as passive low-cost devices. Note that this was exactly one of the design
goals of PRESENT.

5.3.3 Instruction set extensions for bit-sliced implementation

Bit-slicing was introduced by Biham in [21] and is a technique which considers a processor
with a word size of w bits to be w 1-bit processors that operate in a SIMD3-style parallelism.
Instead of encrypting data blocks subsequently, w blocks are processed at in a bit-serial way at
the same time.

In a standard software implementation each data block has the following bit arrangement

Bi = bi,w−1bi,w−2 . . . bi,0, 0 ≤ i ≤ m− 1,

where m denotes the amount of data blocks to be processed, Bi denotes the i-th data block
and bi,j denotes the j-th bit of the i-th data block. The order of processing would be
B0, B1, . . . , Bm−1. In a bit-sliced implementation data blocks have the following bit arrange-
ment

Bi = bw−1,ibw−2,i . . . b0,i, 0 ≤ i ≤ m− 1.

Let us consider a CPU with a word size of w = 64 bits and a block cipher such as PRESENT

or DES with a block size of n = 64 bits. Then in standard implementation we would process
blocks with the following bit arrangements:

B0 = b0,63b0,62 . . . b0,0, B1 = b1,63b1,62 . . . b1,0, . . . , B63 = b63,63b63,62 . . . b63,0.

In a bit-sliced implementation however the bit arrangement looks like the following:

B0 = b63,0b62,0 . . . b0,0, B1 = b63,1b62,1 . . . b0,1, . . . , B63 = b63,63b62,63 . . . b0,63.

In other words, the i-th data block that is processed by the CPU consists of the i-th bit of all
data blocks. Therefore, prior to processing, the data words have to be re-arranged bit by bit,
which poses a significant overhead. In total however bit-slicing was shown to significantly
speed-up software implementations of block ciphers. Interestingly, it is especially suited to
speed-up operations that are efficient in hardware and rather inefficient in software, such as
bit permutations.

Grabher et al. describe Instruction Set Extensions (ISE) for bit-sliced implementations in [91].
They used the Processor Designer tool-chain from CoWare, which is based on LISA (Lan-
guage for Instruction Set Architectures), to describe a CRISP4 5-stage pipeline along with each
4 KB data and instruction RAM in a Harvard-architecture. Then they used Xilinx ISE

3Single Instruction Multiple Data.
4Cryptographic Reduced Instruction Set Computing Processor.

63

Chapter 5. Implementation Results of PRESENT

7.3 to synthesyze it to an ADM-XRC-II PCI card, which includes a Xilinx Virtex-II

XC2V6000-4FF1152 FPGA device with 33, 000 slices.5

Table 5.6 summarizes their results of a comparison between AES, serpent and PRESENT. As one
can see PRESENT is by far the smallest but also the slowest implementation of all algorithms.
On the one hand it is no wonder that PRESENT has the smallest code footprint in bit-sliced
implementations, because it is strongly optimized for a low hardware complexity. On the
other hand it would be interesting to see why it takes so many clock cycles for one encryption
of PRESENT.

Table 5.6: Performance of ISE for bit-sliced implementations of AES, serpent and PRESENT.

Algorithm Implementation Source Cycles Code size
strategy [bytes]

AES-128

32 bit [19] 1,662 1,160
Bit-sliced [132] 2,699 2,080
Bit-sliced /w LUTs [91] 2,203 1,328
Bit-sliced /w LUTs and perm. [91] 1,222 858

serpent-128
Bit-sliced [91] 2,031 2,112
Bit-sliced /w LUTs [91] 922 984

PRESENT-80
Bit-sliced [91] 39,986 500
Bit-sliced /w LUTs [91] 28,082 408

5.4 Software Implementations

This section presents software implementation results of PRESENT on a wide range of different
platforms. First we provide an overview of different implementation profiles in Section 5.4.1.
Subsequently we present implementation results for 4-bit microcontrollers, which are up to
now the first implementation results for a cryptographic algorithm on a 4-bit microcontroller.
Hence, they may serve as a proof-of-concept for the feasibility of cryptography on such con-
strained devices. Then we provide implementation figures of PRESENT for 8-, 16- and 32-bit
microcontrollers/CPUs.

5.4.1 Implemented variants

PRESENT-80 has been implemented with three different functionalities, i.e. each one variant is
capable of encryption or decryption only, and one variant can perform both encryption and
decryption. Furthermore we optimized all three variants either for speed or code size. We
numbered the profiles as follows (see also Table 5.7):

Profile I is optimized for speed and can perform the encryption routine only.

5Please note that the PRESENT implementation used in [91] was created by a group of students in winter term 2007
at the Ruhr-University Bochum. During the same course a different group created a bit-sliced implementation of
PRESENT that requires only 26, 400 clock cycles for encryption and 31, 200 clock cycles for decryption. Because
these figures have been obtained for different target platforms they are not included in the comparison table.

64

5.4. Software Implementations

Table 5.7: The different profiles for the software implementations.

encryption Decryption Enc + Dec

Speed I III V
Code II IV VI

Profile II is optimized for code size and can perform the encryption routine only.

Profile III is optimized for speed and can perform the decryption routine only.

Profile IV is optimized for code size and can perform the decryption routine only.

Profile V is optimized for speed and can perform both the encryption and decryption routine.

Profile VI is optimized for code size and can perform both the encryption and decryption

routine.

5.4.2 Software implementation on a 4 bit microcontroller

4-Bit microcontroller are deployed in a very broad range of everyday life items, ranging from
watches and washing machines to security critical applications such as car tire sensors or one-
time PIN generators. To the best of our knowledge so far no implementation of a cryptographic
algorithm on such a constrained platform has been published.

4-bit target platform and development environment

The ATAM893−D, member of Atmel’s MARC4 family of 4-bit single-chip microcontrollers
inherits a RISC6 core and contains EEPROM, RAM, parallel input/output ports, two 8-bit
programmable multifunction counters/timer and an on-chip clock generation with integrated
RC-, 32-kHz and 4-MHz crystal oscillators. It is widely used in wireless applications such as
remote keyless entry, immobilizer systems and wireless sensors. Atmel’s MARC4 microcon-
troller family is based on a low-power 4-bit CPU core. The modular MARC4 architecture is
high-level language oriented, consuming still below 1 mA in active mode [13]. Programming
of MARC4 microcontrollers is supported by a personal computer based software develop-
ment system with a high-level language qForth compiler and a real-time core simulator (see
Fig. 5.8(a)).

The CPU is based on the Harvard architecture with physically separate program memory and
data memory. For the communication between ROM, RAM and peripherals three indepen-
dent buses (instruction-, memory- and I/O-bus) are used. The core contains 4 KByte program
memory (ROM), 256x4-bit data memory (RAM), arithmetic-logic-unit (ALU) (see Fig. 5.9(b)),
Program Counter (PC), RAM address register, instruction decoder and interrupt controller.
The RAM is used for the Expression Stack, the Return Stack and as data memory for variables
and arrays. It can be addressed by any of the four 8-bit wide RAM Address Registers SP, RP,

X and Y (see below). These registers allow access to any of the 256 RAM nibbles.

All arithmetic, I/O and memory reference operations take their operands from, and return
their result to the Expression Stack (EXP) which is addressed by SP. The MARC4 performs

6Reduced Instruction Set Computing.

65

Chapter 5. Implementation Results of PRESENT

(a) Screenshot of the MARC4 Simple Core Simulator. (b) Atmel MARC4 Starter Kit.

Figure 5.8: Development environment for the MARC4 4 bit microcontroller.

(a) MARC4 microcontroller
size comparison with 1 cent
coins.

(b) Blockdiagram of the ALU of MARC4, source: [13].

Figure 5.9: Blockdiagram of the ALU and size comparison of MARC4.

the operations with the top of stack items (TOS and TOS-1). The TOS register contains the
top element of EXP and works in the same way as an accumulator. This stack is also used for
passing parameters between subroutines, and as a scratchpad area for temporary storage of
data (see Figure 5.9(b)). The 12-bit wide Return Stack (RET) is addressed by the Return Stack
Pointer (RP). It is used for storing return addresses of subroutines, interrupt routines and for
keeping loop-index counters. It can also be used as a temporary storage area.

The instruction set supports the exchange of data between the top elements of the Expression
Stack and the Return Stack. The two stacks within the RAM have a user-definable maximum
depth. The MARC4 controller has six programmable registers and one condition code register.
The Program Counter (PC) is a 12-bit register that contains the address of the next instruction
to be fetched from the ROM. Instructions currently being executed are decoded in the instruc-
tion decoder to determine the internal micro-operations. For linear code (no calls or branches),
the program counter is incremented with every instruction cycle. If a branch, call, return in-
struction or an interrupt is executed, the program counter is loaded with a new address. The
PC is also used with the table instruction to fetch 8-bit wide ROM constants.

66

5.4. Software Implementations

We used the MARC4 Starter Kit which contains five samples of the Atmel ATAM893 µC (see
Fig. 5.9(a)), the target application board T4xCx92, an E-Lab ICP V24 Portable programmer and
corresponding MARC4 programming board (see Figure 5.8(b)), as well as the software devel-
opment software (see Figure 5.8(a)).

Since the MARC4 inherits a stack-based architecture (which is similar to a zero-address ma-
chine) and its instructions contain only the operation to be performed without any source or
destination, please note that it was arduous to implement the PRESENT block cipher on the
target platform. In fact it turned out to be similar to the Tower of Hanoi mathematical game.

All variables have to be initialized with a specific value for the MARC4 hardware to function
correctly, since no variables are automatically assigned to zero. The 64-bit plaintext (or cipher-
text, respectively) input to be encrypted (decrypted) is stored in the nibbles TextF to Text0,
where TextF represents the 4 most-significant-bits (MSB) of the input. Hence, we refer to
their order from ‘0’ to ‘9’ followed by alphabetical means until the letter ‘F’. Naming congru-
ates with the 80 bits of the key variables KeyJ to Key0. In order to implement the PRESENT

round counter the 2VARIABLE construct is used. It allocates RAM space for storage of one
double length (8-bit) value. The 5 most significant bits of the 8-bit variable Round represent
the current number of rounds performed. This design decision was made to efficiently imple-
ment the exclusive-or operation (XOR) in the key scheduling function.

PRESENT consists of an initial key addition followed by 31 iterations of :PBOX, :KEYSCHED
and :KEYXOR. Also the 8-bit counter Round has to be increased in every iteration.
: ENCRYPT \ This i s a COMMENT

KEYSCHED
Round 2@ 8 M+ Round 2 ! \ i n c r e a s e Round by 8
SBOX PBOX KEYXOR

;

The required 31 iterations of :ENCRYPT are performed in a 10 · 3 + 1 fashion. The word :EN-
CLOOP applies 10 iterations of :ENCRYPT and is executed 3 times, resulting in 30 iterations
of one round of PRESENT. Completing the encryption :ENCRYPT is once again executed, ap-
plying the last iteration of the PRESENT encryption.
: ENCLOOP

11 BEGIN \ DO 10 times ENCRYPT
1− DUP 0 > WHILE \ . . . WHILE TOS > 0
ENCRYPT REPEAT DROP \ drop loop−counter =0

;
\ −−−−−−−−−−−−−−−ENCRYPTION−−−−−−−−−−−−−−−−−−−−−−−

: INT1 \ INT1 = encryption
KEYXOR \ I n i t i a l KeyXOR
4 BEGIN \ DO 3 times ENCLOOP

1− DUP
0 > WHILE
ENCLOOP \ DO−END

REPEAT DROP
ENCRYPT \ 31 s t Round of PRESENT

;

Due to the harsh memory constraints of the MARC4 microcontroller (4 KB ROM, 128 B RAM)
our main optimization goal was to reduce the code size, but with an eye on the execution
time. Unfortunately the harsh memory constraints did not allow to fit an implementation
that is capable of encryption and decryption. Therefore, we first discuss the encryption only
implementation (profile II) and subsequently the decryption only implementation (profile IV)
before we turn to the implementation results.

Code size optimized implementation of the encryption only variant

Encrypting one block of 64 bits with a given 80-bit key can be divided into 4 procedures co-
inciding with the blocks found in Fig. 4.1. These procedures are Adding the Key (addRound-

67

Chapter 5. Implementation Results of PRESENT

Key,:KeyXOR), Substitution Table (sBoxLayer, :SBOX), Permutation Layer (pLayer, :PBOX) and
Deriving the Key (update, :KeySched).

The :KeyXOR sub-routine starts with a rather trivial function, the Key XOR. TextF places the
8-bit RAM−address of the variable TextF as two 4-bit values on to the stack (low nibble is top
element). @ copies the 4-bit value at a specified memory location via the two topmost nibbles
onto the top of the stack (TOS). ! stores a 4-bit value at a specified memory location. The two
topmost nibbles represent the 8-bit RAM−address where the value being the 3rd element on
the stack, is to be stored.
: KEYXOR

TextF @ \ load value of TextF onto s tack
KeyJ @ \ load value of KeyJ onto s tack
XOR TextF ! \ XOR and save back to TextF
[. . .]

\ a l l t h i s can a l s o be wri t ten in . . .
Text0 @ Key4 @ XOR Text0 ! \ . . . one l i n e

;

The substitution table consisting of 16 values featured as nibbles stored in the ROM of the
MARC4 microcontroller, beginning at ROM−address 0x360h and ending at 0x36Fh. This
is done with ROMCONST which saves 4-bit values in an array at consecutive ROM addresses.
Though the MARC4 instruction set contains the function DTABLE@ which fetches an 8-bit con-
stant from a ROMCONST array referring a 12-bit ROM address, a performance gain about 20%
is achieved using ROMBYTE@ instead. Since no carry can occur, the first address (12 bits) of the
array sTable can be placed onto the Expression Stack, only the lowest 4 bits of the address
need to be added up to generate the substitution table lookup-address.
ROMCONST sTable 12 , 5 , 6 , 11 , 9 , 0 , 10 , 13 , 3 , 14 , 15 , 8 , 4 , 7 , 1 , 2 , AT 360h

sTable \ lookup t a b l e base address
Text0 @ + \ lookup t a b l e index by adding . .

\ . . value of Text0
ROMBYTE@ \ sTable s u b s t i t u t e
Text0 ! \ save sTable [Text0] to Text0
DROP \ drop high nibble
[. . .]

;

Given the permutation layer’s characteristics, it can be implemented using only 16 bits as
temporary memory, which are stored in the variables Temp3 to Temp0. The way most efficient
approach of implementing the permutation layer was to shift each single bit out of the actual
variable, and into its new location. This way of ‘filling’ the variables equates filo-queueing and
it is therefore necessary to insert the subsequent MSB into the LSB position.

Commands used to shift into and rotating out of the carry-bit are SHL, SHR, ROL, ROR

(cf. [221]).
Text0 @ SHR Temp0 @ ROR Temp0 !
SHR Temp1 @ ROR Temp1 !
SHR Temp2 @ ROR Temp2 !
SHR Temp3 @ ROR Temp3 ! \ Text0 " emptied "
DROP \ Drop " empty " Text0 from stack

This way all 16x4 bits of TextF to Text0 are consecutively processed to assign the bits to their
new position. Each of these 16 iterations clears one 4-bit variable which is subsequently used
as the next temporary variable maintaining memory-efficiency.

Efficient rotation of all 80 key-bits by 61 positions to the left in the Key Schedule (:KeySched)
is performed by moving 20 bits to the right and then rotate one position to the left. Since 20 is
a multiple of the 4-bit architecture, the first operation would actually be only re-addressing
memory pointers. As mentioned before the MARC4 hardware is a zero-address machine,
therefore re-addressing can only be accomplished by copying the respective values into their
new positions.

68

5.4. Software Implementations

: KEYSCHED
Key4@ Key3@ Key2@ Key1@ Key0@ KeyJ@ KeyI@ KeyH@ KeyG@
KeyF@ KeyE@ KeyD@ KeyC@ KeyB@ KeyA@ Key9@ Key8@ Key7@

Key6 @ Key5@ \ Pushed Keys onto s tack > >20. .

SHL Key0 ! \ Rotate through Carry BEGIN
ROL Key1 ! \ . . <<1 matches >>19 ergo <<69
[. . .]

ROL KeyJ !
0111b CCR @ < \ i f Carry , i n s e r t 0001b i n t o Key0
IF Key0 @ 1 XOR Key0 !
ELSE Key0 @ 0 XOR \ non−varying RunTime

Key0 ! NOP NOP NOP \ −−> timing−a t t a c k r e s i s t a n c e
THEN \ Rotate through Carry END

The single bits 79 to 76 oblige one SBOX lookup as shown above and the 8 bits of the counter
Round are added to the bits 19 to 15 of the key resulting in the new actual key.
Round 2@ Key3@ XOR Key3 ! Key4@ XOR Key4 ! \ Add Counter

Code size optimized implementation of the decryption only variant

Due to MARC4’s constrained hardware specifications in terms of available memory, no pre-
computing and storing of the round-keys for decryption can be achieved. Therefor before
decrypting, the 31st key is pre-computed, and an inverse key scheduling routine is imple-
mented. Though performance takes a slight hit from the extra amount of pre-computing the
31st key, this was the most efficient way to implement the decryption routine without the need
for additional external memory.

The differences in decrypting data, instead of encrypting, are that instead of the regular S-box
and permutation layer their respective inverses are used in the reverse order of appearance.
Furthermore the first decryption key (i.e. the last encryption key) has to be pre-computed, i.e.,
the complete encryption key-schedule has to be finished, first.

The word LASTKEY computes the first decryption key and is therefore iterated 30 + 1 times.
Now that the first decryption key is stored in KeyJ to Key0 the decryption can be started by
setting interrupt number seven (INT7). The decryption code again coincides with encryption,
except for the counter Round being decreased and changing order of the inverse substitution
table with the inverse permutation layer as described in the following subsections. Adding the
key during decryption is similar to the addition during encryption. The inverse Substitution
table (:ISBOX) of the decryption is stored at ROM-addresses 0x370h and ending at 0x37Fh.
The same characteristics of the :SBOX (see above) also apply here, except for the inverted
substitution table IsTable.
ROMCONST I sT ab l e 5 , 14 , 15 , 8 , 12 , 1 , 2 , 13 , 11 , 4 , 6 , 3 , 0 , 7 , 9 , 10 , AT 370h

The code of the inverse substitution layer (:iPBOX) logically equals the code of the :PBOX (see
above) with only minor changes of sorting.

Presumable the last key is already stored in the variables KeyJ to Key0, the inverse key schedul-
ing shares most of its code with the key scheduling routine of the encryption, just in reverse
order. It starts with the exclusive-or with Round and the inverse substitution table lookup of
the bits 79 to 76. The way of shifting all key-bits 61 positions to the right is again done the same
way as explained before, only changed in its order to achieve the inverse shifting direction.

Performance results

The results refer to the optimized and most efficient implemented version. Since this is the
first state-of-the-art block cipher on a 4-bit microcontroller there are no figures for comparison

69

Chapter 5. Implementation Results of PRESENT

enc/ ROM Stack Init. Cycles / block
dec [lines of code] [EXP] [RET] [cycles] [cycles]

enc 841 25 4 230 55,734

dec 945 25 4 230 65,574

Table 5.8: Code size and cycle count of PRESENT-80 on the ATAM893-D 4-Bit microcontroller.

CLK Time for Current Energy
enc / Freq. int. / enc/dec T’put cons. per block per bit
dec [KHz] ext. [ms] [bits/sec] [µA] [µJ] [µJ/bit]

enc
2,000 int. 27.9 2,297 79.3 3.98 0.06

500 ext. 111.5 574 6.7 1.3 0.02

16 ext. 3,483 18.4 9.2 57.7 0.9

dec
2,000 int. 32.8 1,952 79.3 4.68 0.07

500 ext. 131.1 488 6.7 1.58 0.02

16 ext. 4,098 15.6 9.2 67.87 1.06

Table 5.9: Throughput and energy results of PRESENT-80 on the ATAM893-D 4-Bit microcontroller.

available. The pursued target of implementing PRESENT-80 on a 4-bit microcontroller was
to achieve the shortest possible execution time while requiring as less resources as possible.
Therefore the code size and maximum growth of both stacks (EXP & RET) are listed. As one
can see from Table 5.8 the decryption routine requires 100 lines of code more compared to the
encryption routine which is due to the additional key-scheduling and the additional inverse
S-box. The stack growths and also the time for initialization were similar for both encryption
and decryption.

The encryption of 64 bit plaintext requires 55, 734 cycles which is equivalent to 27.9 ms at
2 MHz (see Table 5.9). In the theoretical lowest possible cycle rate of 2 KHz this would be
equivalent to 27.9 seconds. The decryption of one data block of 64 bits requires 65, 574 cycles
which is equivalent to 32.8 ms at 2 MHz or 32.8 seconds at 2 KHz, respectively. These figures
translate to about 2.3 and 1.9 Kbits per second for encryption and decryption at 2 MHz or 18.4
and 15.6 bits per second at 16 KHz, respectively. Please note that RFID applications typically
do not require the processing of large amounts of data.

1.8V was applied as the supply voltage for measurements to obtain the current consumption
of the microcontroller. A Keithley 2001 digital multi-meter [117] was used for measuring while
encrypting data on the µC. Table 5.9 shows the power consumption for different frequencies.
Please note that these numbers also resemble the power consumption of the decryption re-
spectively. Furthermore, measurements have also been conducted for a supply voltage of 5V,
but the measured current consumption was reciprocal proportional to the operating frequency.
Since we could not find an explanation for this phenomenon, we decided to remove these fig-
ures from Table 5.9.

The microcontroller was either clocked by an external crystal (XTAL) oscillator or using the
internal RC-oscillator. The following clock-speeds were generated using a 32 kHz XTAL: 16

70

5.4. Software Implementations

kHz, 2 kHz and also the SLEEP mode. The 2 MHz frequency was generated using the internal
RC-oscillator. Finally, in order to reduce power-consumption, an external 4 MHz XTAL was
used generating the 500 kHz. We selected the different frequencies in order to show the time-
power/energy trade-off that is possible with our PRESENT implementation. While 2 MHz and
2 KHz are the maximum and minimum frequencies of the ATAM893-D we also wanted to pro-
vide figures for an implementation that requires less then 200 ms for encryption/decryption
of one block. It turned out that 500 KHz is the lowest possible frequency to reach this goal.

As one can see from Table 5.9 at a supply voltage of 1.8V the current consumption of the
microcontroller is below 10 µA when clocked at 16 KHz and 500 KHz. This is an interesting
result, because it indicates that this implementation can also be used for passively powered
low-cost RFID tags, which typically require such harsh power constraints. At 500 KHZ is
the best energy per bit ratio, which is interesting for active devices in order to maximize the
lifespan of the battery.

5.4.3 Software implementations on an 8-Bit microcontroller

These implementations can be downloaded free of charge from the website http://www.

lightweightcrypto.org/present.

8 bit target platform and development environment

The ATMEL AVR RISC7 microcontroller family uses a Harvard architecture concept, i.e. it uses
separate memories and buses for program and data. Its two stage pipeline allows to execute
in every clock cycle one instruction and most of its 130 instructions are single cycle instruc-
tions [9]. Out of this family we chose the ATmega163 microcontroller [11] as the target plat-
form. Besides other features such as timers and counters, the ATmega163 provides 16 K bytes
Flash, 512 bytes EEPROM, 1024 bytes SRAM and 32 general purpose working register. Fig-
ure 5.10 depicts the architecture of the ATmega163. Access to the SRAM costs 2 clcock cycles
and access to the Flash memory costs 3 clock cycles. The ATmega163 can operate with up to
8 MHz. At a frequency of 4 MHZ and a voltage supply of 3 Volt the ATmega163 draws 5 mA
of current when active, 1.9 mA in Idle Mode and less than 1µA in Power-down Mode. The
interested reader is referred to the data sheet [11] and the instruction set manual [9] for further
details about the ATmega163 microcontroller.

We used the integrated development environment AVR Studio 4.13 from ATMEL [10]. It is
provided free of charge by ATMEL and supports a wide range of ATMEL’s microcontrollers,
such as the ATmega series. The AVR Studio features an in-build chip simulator and a source
file editor as well as decent project management capabilities. Furthermore it uses the open-
source WinAVR tool kit [241] that contains a GNU GCC compiler for C/C++ source, the avr-gdb
debugger and the avrdude programmer.

Speed optimized implementation

For speed optimization it is wise to pre-compute and store all round keys in an array, because
it has to be done only once in the beginning. Since PRESENT requires 32 round keys of each

7Reduced Instruction Set Computing

71

Chapter 5. Implementation Results of PRESENT

Figure 5.10: Architecture of the ATmega163 8 bit microcontroller, source: [11].

72

5.4. Software Implementations

64 bits, in total 256 Bytes of data memory are required. The 61 bit rotation to the left in the
key schedule is equivalent to a 19 bit rotation to the right. For the speed optimized variants
this rotation was decomposed into a 16 bit and a 3 bit shift to the right. This is advantageous
on an 8 bit platform, such as the ATmega163, because a 16 bit shift can be implemented by
re-addressing the 8 bit registers in the following way:

key[i] = key[i + 2 MOD 10], 0 ≤ i ≤ 9.

Finally the 61 bit rotation of all 80 bits can be implemented by ten register address swaps and
10 ·3 = 30 shifting operations. The S-box for the key schedule is stored as 16 8-bit values where
the high nibble is the S-box output value and the low nibble is padded with zeros. This allows
to immediately OR the S-box output value with the four LSB of the highest key state byte.

The S-Layer of PRESENT consists of 16 4× 4 S-boxes (see Chapter 4). A naïve approach would
be to select a 4 bit chunk of the current state byte s, substitute it with the 4 bit S-box output
value and store the result at the right position of the state. However, this would require to
apply an AND operation to the state with a selection mask (0xF0 or 0x0F) and a table look-
up. In case that the processed nibble is the higher significant one, additionally a shifting by 4
positions to the left before and after the S-box look-up is required. A more efficient—and well-
known—technique is to combine two (or more) smaller S-boxes to a larger S-box. By joining
two PRESENT S-boxes we get the new 8× 8 S-box:

S8×8(x1||x2) = S(x1)||S(x2).

S8×8 has 256 entries of each 8 bits. Using S8×8 significantly decreases the cycle count while
also significantly increases the memory requirements.

The permutation layer of PRESENT is probably the most difficult part to implement in software,
because it processes each of the 64 state bits individually. While in hardware this can be done
virtually free of cost, in software this poses severe difficulties. A naïve approach would select
64 times a single bit, look-up the shifting offset in a table and shift it to its new position. Since
table look-ups require 2 clock cycles this approach would require at least 64 · (1 + 2 + 1) = 256
operations in total. A well-known implementation trick is to use look-up tables instead of
permutations. Figure 5.11 depicts the general time-memory trade-off for look-up tables. The
left side shows the classic look-up table approach for an n bit permutation, which requires only
one look-up to get the result. However, the memory requirements are 2n · n bits. In the case of
PRESENT n = 64 and hence the memory requirement would be 264 · 64 = 267 Bytes, which is by
far too much.

Therefore a divide-and-conquer approach with the following steps seems to be better suited:

(1) Split the n bit word in k parts, each n
k bits wide.

(2) Create k different tables, each with 2
n

k entries of n bits.

(3) Join the k look-up results from the different tables to one final result.

Depending on the joining operation in step 3 (OR, XOR or AND) it is either required to pad
the table entries with ′0′ bits (OR, XOR) or with ′1′ bits (AND) in step 2. The advantage of this
divide-and-conquer approach is that it trades memory for additional time. Since we have k
tables each with 2

n

k entries of n bits, the memory requirement is k · 2
n

k · n bits. On the other
hand now k table look-ups are required and an additional joining operation.

73

Chapter 5. Implementation Results of PRESENT

...2
n

...2
n/k

...2
n/k

...2
n/k

1)

2)

k)

. . .

k 2 1

n
k

nn

n

n

n

Time: 1

Memory: 2
n
·n bits

Time: k + 1

Memory: k·2
n/k
·n bits

Classic LUT Split LUTs

result resultAND/OR

Figure 5.11: Time-memory trade-off for look-up tables.

A natural next step for optimizing a software implementation for an 8 bit microcontroller
would be to set k = 8. While the timing then would be 8 + 1 = 9 steps, the memory require-
ments would be 8 · 2

64

8 · 64 bits = 214 bytes = 16KB. Unfortunately this is the exact amount
of Flash memory that our target platform ATmega163 provides and hence this approach does
not allow a single additional line of code. Therefore we set k = 16 and now it takes 17 steps
to process the permutation while the memory requirements are reduced to 16 · 2

64

16 · 64 bits
= 211 bytes = 2KB. However, one Flash memory access requires 3 clock cycles, therefore the 8
look-up operations require at least 24 cycles and our timing complexity is about 25 steps. Even
worse, one step refers to processing a 64-bit word, which on an 8-bit architecture costs at least
8 cycles each. Therefore the time complexity is around 25 · 8 = 200 clock cycles. In the end this
was the main reason to implement the P-layer in assembly, which results in 176 clock cycles.

Finally, we advised GCC to compile with the -O3 option, which aggressively optimizes the
code for speed, e.g. by loop-unrolling.

Size optimized implementation

For a size optimized implementation it is wise to compute the round keys on-the-fly, i.e. no key
is pre-computed. On the one hand this significantly increases the execution time, but on the
other hand also significantly decreases storage requirements. For profile I (encryption only)
we chose this option, but for profile II (decryption only) things are different. For decryption
first the last round key has to computed with the regular key schedule using the regular S-
box S. The last round key then can be used to calculate the round keys backwards for which
the S−1 S-box is required. Hence, for decryption an on-the-fly key schedule would require to
implement the regular key schedule and its inverse. Furthermore both S-boxes S and S−1 have
to be stored. Our implementation results of both variants revealed that the pre-computation
approach yields smaller program code (948 B) compared to the on-the-fly variant (1022 B).
Therefore we implemented profile II with key pre-computation.

The 61 bit left rotation of the key schedule now is implemented in a FOR loop, while the
counter XOR and the S-box look-up are identical to the speed optimized version. The XOR
between a round key byte and the appropriate state byte is implemented in a loop.

74

5.4. Software Implementations

For size optimization we chose to implement the S-box as a byte array of 16 entries. The output
of this S4×8 called S-box is given by the output value of the PRESENT S-box (lower nibble) with
the higher nibble padded with 0x0:

S4×8(x) = 0x0||S(x).

The S-box look-up of all eight state bytes is realized in a loop for both the encryption and the
decryption routine.

For the size optimized version we resigned to use assembly code. Instead we used the arith-
metic representation of the permutation layer P (i) and its inverse P−1(i) as it was described
in Section 4.3.3:

P (i) =

{

i · 16 mod 63, i ∈ {0, . . . , 62}
63, i = 63.

(5.1)

P−1(i) =

{

i · 4 mod 63, i ∈ {0, . . . , 62}
63, i = 63.

(5.2)

We used a loop to permute all bits of the state according to Equations 5.1 and 5.2. Finally,
we advised GCC to compile with the -Os option, which aggressively optimizes the code for
minimal size, e.g. by not unrolling any loop.

Performance results

Table 5.10 summarizes our implementation results and provides details about all implemented
profiles. We compare the implementation results of profile V (speed optimized implementation
of encryption and decryption) to other software implementations in Table 5.11. As one can see,
our PRESENT-80 implementation is about 11% faster than the one published in [68] but still
significantly slower than the AES or IDEA implementation from the same publication. Also
the code size of our implementation is larger than the code size of PRESENT and IDEA but
smaller than AES.

5.4.4 Software implementations on a 16-Bit microcontroller

These implementations can be downloaded free of charge from the website http://www.

lightweightcrypto.org/present.

16 bit target platform and development environment

We chose the Infineon C167CR microcontroller as the target 16-bit platform [111] due to its
widespread usage in the embedded systems community. Figure 5.12(a) depicts a top-level
view of the complete architecture (on the left) as well as a more detailed view to the CPU
architecture (on the right). The C167 architecture combines design elements of RISC as well
CISC features and consists of 32 KB to 128 KB mask-programmable ROM, 2 KB of internal
RAM (IRAM) and 2 KB extension RAM (XRAM). All memories (as well as the I/O ports) share
the same address space, therefore the C167 microcontroller has a Von Neumann memory ar-
chitecture. Beside the 16-bit arithmetic and logic unit (ALU), the C167CR features dedicated

75

Chapter 5. Implementation Results of PRESENT

Table 5.10: Performance results of PRESENT-80 on the 8 bit ATmega163 microcontroller.

enc/ opt. Profile ROM RAM Cycles Cycles/bit Throughput
dec goal [bytes] [bytes] @4MHz

[Kbps]

enc

speed
I 1,494 272 10,089 157.64 25.4

V 2,398 528 9,595 149.92 26.7

size
II 854 16 646,272 10,098 0.4

VI 1,474 32 646,166 10,096 0.4

dec

speed
III 1,532 280 10,310 161.1 24.8

V 2,398 528 9,820 153.44 26.1

size
IV 948 40 634,823 9,919 0.4

VI 1,474 32 634,614 9,916 0.4

better is: less less less less more

Table 5.11: Comparison of software implementations of ciphers on different 8-bit micro controllers.

Key Block Enc. T’put Dec. Code SRAM
Size Size [Cycles/ at 4MHz [Cycles/ Size Size
[bit] [bit] Block] [Kbps] Block] [byte] [byte]

PRESENT

profile V
80 64

9,595 26.7 9,820 2,398 528

[68] 10,723 23.7 11,239 936 0

Hardware Oriented Block Ciphers

DES [68] 56 64 8,633 29.6 8,154 4,314 0
DESXL [68] 184 64 8,531 30.4 7,961 3,192 0
HIGHT [68] 128 64 2,964 80.3 2,964 5,672 0

Software Oriented Block Ciphers
AES [68] 128 128 6,637 77.1 7,429 2,606 224
IDEA [68] 128 64 2,700 94.8 15,393 596 0
TEA [68] 128 64 6,271 40.8 6,299 1,140 0
SEA [68] 96 96 9,654 39.7 9,654 2,132 0

Software Oriented Stream Ciphers
Salsa20 [68] 128 512 18,400 111.3 N/A 1,452 280
LEX [68] 128 320 5,963 214.6 N/A 1,598 304

76

5.4. Software Implementations

(a) The C166 16 bit microcontroller. (b) The C166 CPU core.

Figure 5.12: Architecture of the C166 microcontroller, source: [111].

special function registers (SFR), a separate multiply and dive unit and a barrel shifter. In con-
junction with its four stage instruction pipeline this allows to execute most of the instructions
within one clock cycle. It is noteworthy that—independent of the shifting amount—all shift
and rotate instructions can be executed in one machine cycle. The C167CR requires a voltage
supply between 4.5 V and 5.5V and its maximum operating frequency is between 25 MHz and
33 MHz. Its current consumption depends on the operating frequency and can be calculated
for active (IDD) and for idle (IID) mode by the following equations:

IDD = 15 + 2.5 · f

IID = 10 + f

where f denotes the frequency in MHz. In power down mode the current consumption is
IPD = 50µA. The interested reader is referred to the data sheet [111] and the instruction set
manual [108] for further details about the C167 microcontroller.

We used Altiums Tasking VX-Toolset v2.2r3 [3], which is integrated into the Eclipse frame-
work [222]. It features a debugger (Crossview Pro) and a high speed simulator for C/C++,
assembly and mixed code. There are four optimization levels available:

Level 0 no optimization,

Level 1 optimize without affecting debug-ability,

Level 2 optimize, this is the default level and

Level 3 maximum optimization.

There are different memory models: near, far, (segmented) huge and huge. Out of these al-
ternatives the near memory model results in the fastest code, because it does not access Flash
memory, while the far memory model yields the smallest code.

Speed optimized implementation

The state is stored as a long long variable that has 64 bits. Since the key has 80 bits, it has
to be stored as two long long variable keyhigh and keylow. Though it would have been
possible to use a variable type with just 16 bits, we decided to use the long long variable,
because this is advantageous for the 61 bit rotation of the key schedule. The S-box of the key

77

Chapter 5. Implementation Results of PRESENT

schedule S4×64 is realized as a look-up table with 16 entries, each of which is 64 bits wide. The
S-box output is the most significant nibble, while the remainder of the output is padded with
zeros, i.e.

S4×64(x) = S(x)||0x000000000000000.

For speed optimization we have implemented PRESENT-80 with key pre-computation. For
profiles I (encryption only) and V (encryption and decryption) we merged the S-layer and
the P-layer into a single look-up. For this purpose the divide-and-conquer approach (see Sec-
tion 5.4.3) has been applied and 8 new look-up tables have been computed. Since each table
outputs 64 bits the memory requirement for the merged S/P-layer is 8 · 28 · 64 = 16K bytes.
The look-up values are concatenated by an OR operation. For profile III (decryption only) how-
ever it is not possible to merge the inverse S-layer and the inverse P-layer, due to the reverse
execution order.

Size optimized implementation

For size optimization it is wise to use on-the-fly key scheduling in order to save memory of
the round keys. We use on-the-fly key scheduling for profiles II and VI, while for profile IV we
use pre-computation (see Section 5.4.3). Since we operate on 64 bit variables (long long) the
61 bit left rotation can be performed within one instruction. Another difference compared to
the speed optimized version is the usage of a 4 × 16 S-box S4×16 which in this case gives the
following output:

S4×16(x) = 0x000||S(x).

S4×16 is used both for the key schedule as well a for the data path of the size optimized version,
hence the P-layer has to be implemented separately. Similar to the code size optimized 8-bit
implementations (see Section 5.4.3), we use the arithmetic representation of the P-layer for
profiles II, IV and VI.

Performance results

Table 5.12 shows the implementation results for the Infineon C166 16-bit microcontroller. In-
terestingly implementation figures of all profiles are significantly worse on a 16-bit platform
compared to an 8-bit platform.

5.4.5 Software implementations on a 32-Bit CPU

These implementations can be downloaded free of charge from the website http://www.

lightweightcrypto.org/present.

78

5.4. Software Implementations

Table 5.12: Performance results of PRESENT-80 on the 16 bit C166 microcontroller.

enc/ opt. Profile HEX Cycles Cycles/bit Throughput
dec goal code @4MHz

[Kbytes] [Kbps]

enc

speed
I 45.9 19,460 304.06 13.2

V 92.2 19,464 304.13 13.2

size
II 8.17 1,439,296 22,489 0.2

VI 9.67 1,442,556 22,540 0.2

dec

speed
III 51.9 33,354 521.16 7.7

V 92.2 33,352 521.13 7.7

size
IV 8.44 1,328,714 20,716 0.2

VI 9.67 1,332,062 20,813 0.2

better is: less less less more

Target platform and development environment

We used Microsoft Visual Studio 2008 Professional Edition [155] as the integrated development
environment. Visual Studio features a compiler and a debugger as well as outstanding doc-
umentation by the MSDN library. The compiler has several optimization goals, which are
bundled to two options: O1 for minimal size and O2 for maximum speed. The implementation
was done on a laptop PC equipped with 512 MB RAM and an Intel Pentium III M processor,
clocked at 1, 600 MHz.

Speed optimized implementation

Similar to the speed optimized 16-bit implementations (profiles I, III, V, see Section 5.4.4) we
stored the 80-bit key in two 64-bit variables (__int64) in order to exploit performance benefits
in the 61-bit key schedule rotation. Also similar to the 16-bit implementations, the S-box in the
key schedule is realized as a 4×16 S-box with 64-bit output values that consist of the S-box look-
up value which is padded with 15 zeros to the right, i.e. S4×64(x) = S(x)||0x000000000000000.
The S-box and permutation of the datapath have been merged and the divide-and-conquer ap-
proach has been applied with k = 8 (see Section 5.4.3) for profiles I and V. As we have pointed
out for the 16-bit implementation (see Section 5.4.4) it is not possible to merge S-box and per-
mutation for the decryption routine. For the 32-bit implementation however it is possible to
exploit an interesting property of the permutation layer. As described in Section 4.7 it is possi-
ble to re-arrange the S-boxes of the datapath such that the permutation layer actually consists
of four instances of a permutation layer P16(x) that permutes only 16 bits (see Figure 4.6(b)).
Now it is possible to merge 4 adjacent S-boxes and one instance of the reduced permutation
layer (see Figure 5.13) into a new look-up table SP16×16 = P16(S(x)||S(x)||S(x)||S(x)). SP16

has 216 64-bit entries. As one can see, the major benefit is that the expensive permutation layer
P (or better P ′) now only every second round has to be processed, which leads to an estimated
clock cycle reduction of 25%. However, since every second round key has to be re-ordered as

79

Chapter 5. Implementation Results of PRESENT

SP
16x16

P
16

P
16

P
16

P
16

P
16

P
16

P
16

P
16

P'

SP
16x16

SP
16x16

SP
16x16

P'

SP
16x16

SP
16x16

SP
16x16

SP
16x16

Figure 5.13: Re-ordering and merging of S-boxes with the permutation layer.

well, the saving is less. Figure 5.13 depicts details of the re-ordering and the merging of the
S-boxes with the permutation layer.

Finally, we advised the compiler to use the /O2 option for the speed optimized profiles I, III
and V.

Size optimized implementation

For profiles II, IV and VI we implemented the key schedule similar to the 16-bit size optimized
implementation. However, since we operate on 64-bit variables (__int64) we use the 4 × 64
S-box S4×64 which was introduced above. The permutation layer was implemented using the
arithmetic description (see Section 4.3.3). Furthermore we advised the compiler to use the /O1
option for the code size optimized profiles II, IV and VI.

Performance results

Table 5.13 summarizes the implementation results of all variants for the 32-bit Pentium III. We
derived the memory requirements from the file size of the assembly file which is created by the
compiler. For each profile we measured 100, 000 times the required clock cycles with the RDTSC
command. Out of the 100, 000 values we chose the minimum to keep external influences of the
PC (such as network card activity etc.) to a minimum.

5.4.6 Other software implementations of PRESENT

Korte provides a PRESENT plugin for Microsofts .NET framework [133]. He also implemented
a GUI based implementation of PRESENT in Microsoft Silverlight for educational purposes.
Figure 5.14 depicts selected screenshots of his implementation. Oosterlynck implemented
PRESENT in Python. Both the .NET and the pyton implementations can be downloaded free
of charge from the website www.lightweightcrypto.org/present.

80

5.4. Software Implementations

Table 5.13: Performance results of PRESENT-80 on the 32 bit Pentium III CPU.

enc/ opt. Profile src Cycles Cycles/bit Throughput
dec goal code @1GHz

[Kbytes] [Mbps]

enc

speed
I 67.6 1,037 16.2 61.7

V 1,669 1,082 16.9 59.1

size
II 4.1 64,012 1,000.2 1

VI 9 74,593 1,166 0.9

dec

speed
III 1,628 1,443 22.5 44.4

V 1,669 1,445 22.6 44.3

size
IV 4.5 63,651 994.6 1

VI 9 75,399 1,178 0.8

better is: less less less more

(a) The educational Silverlight implementation of
PRESENT.

(b) The .NET plugin of PRESENT within the cryptool
framework.

Figure 5.14: Screenshots of selected implementations of PRESENT.

81

Chapter 5. Implementation Results of PRESENT

5.5 Conclusions

In this Chapter we have explored implementations of PRESENT on a wide variety of different
platforms, ranging from ASICs and FPGAs, over hardware-software co-design approaches to
plain software implementations. The serialized ASIC implementation constitutes with 1, 000
GE the smallest published ASIC implementation of a cryptographic algorithm with a rea-
sonable security level. Also the FPGA-implementation leads to a very compact result (202
slices), while providing a maximum frequency of 254 MHz. ASIC and FPGA figures high-
light that though PRESENT was designed with a minimal hardware footprint in mind, i.e. tar-
geted for low-cost devices such as RFIDs, PRESENT is also well suited for high-speed and high-
throughput applications. Especially its hardware efficiency, i.e. the throughput per slice or
GE, respectively, is noteworthy. Furthermore, interestingly the old-fashioned Boolean mini-
mization tool espresso lead to an FPGA implementation that was significantly smaller than a
standard LUT based implementation.

If we only consider crypto cores in a HW/SW co-design environment, the energy consumption
of PRESENT seems to be not so promising compared to the AES. However, if we also take the
I/O commuication overhead between the microcontroller and the co-processor into account,
PRESENT is more energy efficient and also the power and area (7 times smaller) requirements of
PRESENT are very low compared to the AES. Together with the gained speed-up factor of 44.6
for a HW/SW co-design approach compared to a plain software implementation, these figures
underline PRESENTs suitability for low-area and low-cost hardware implementations.

On the software side we exploited the lightweight structure of PRESENT and especially its 4-bit
S-boxes by implementing PRESENT on a 4-bit microcontroller. Due to the low-power nature of
the ATAM893-D microcontroller it is also thinkable that 4-bit microcontroller will be employed
in low-cost RFID tags. To the best of our knowledge up to now there are no implementation
results of cryptographic algorithms for 4-bit microcontrollers published. In this Chapter we
have closed this gap and provided the first implementation results of this kind. We therefore
presented a proof-of-concept that state-of-the-art cryptography is feasible on ultra-constrained
4-bit microcontrollers. Our implementation draws a current of 6.7µA at a supply voltage of
1.8V and a frequency of 500 KHz. Together with the observation that the processing of one
data block requires less than 200 ms we conclude that this implementation is interesting for
passively powered RFID tags. In this Chapter we also provided implementation figures for
PRESENT with different optimization goals (speed or code size) for 8-, 16- and 32-bit processors.
We also showed that the regular structure of the permutation layer of PRESENT can be exploited
to obtain a faster implementation by re-ordering the S-boxes.

82

6 Lightweight Hash Functions

In this Chapter lightweight hash functions are investigated. First, the work is motivated in Sec-
tion 6.1 and related work is treated in Section 6.2. Then our design decisions are presented in
Section 6.3 and subsequently information about general hash function constructions are given
in Section 6.4. Since current hash functions of dedicated design are either too large or bro-
ken, we first consider hash functions that are built around block ciphers. In particular we use
the compact block cipher PRESENT (see Sections 4 and 5) as a building block and we consider
the implementation of a range of hash functions offering 64-bit (see Section 6.5) and 128-bit
outputs (Section 6.6) using established techniques. We also consider hash functions that offer
larger outputs and we highlight some design directions along with their potential hardware
footprint in Section 6.7. Finally, the Chapter is concluded in Section 6.8. Please note that parts
of this chapter are based on joint work with Andrey Bogdanov, Gregor Leander, Christof Paar,
Matt Robshaw and Yannick Seurin. Especially the design and security assessment of DM-
PRESENT-80, DM-PRESENT-128, H-PRESENT-128 and C-PRESENT-192 contain significant con-
tributions from Matt Robshaw and Yannick Seurin, whereas Andrey Bogdanov and Gregor
Leander significantly contributed to the design of PROP-1 and PROP-2.

6.1 Motivation

With RFID tags on consumer items, the potential for wired-homes, and large-scale sensor net-
works becoming a reality, we are on the threshold of a pervasive computing environment.
But along with these new applications come new, and demanding, security challenges. The
cryptographic research community has been quick to identify some of the issues, and device
authentication and privacy have received considerable attention. As a result a variety of new
protocols have been proposed and in many of them, particularly ones intended to preserve
user privacy and to anonymize tag interactions, it is assumed that a cryptographic hash func-
tion will be used on the tag.

However, which hash function might be used in practice is rarely identified. Looking at dedi-
cated hash functions from the last 20 years, we have become used to their impressive hashing
speed (though this is a view that we might have to change in the future). This fast throughput
might lead some designers to believe that hash functions are “efficient” in other regards and
that they can be routinely used in low-cost environments. This is a mistake, a point that was
convincingly made in a paper by Feldhofer and Rechberger [72]. Generally speaking, current
hash functions are not at all suitable for constrained environments. They require significant
amounts of state and the operations in current dedicated designs are not hardware friendly.
This is not surprising since modern hash functions were designed with 32-bit processors in
mind, but it means that very few RFID-oriented protocols appealing to a hash function could
ever be used on a modestly-capable tag.

In this Chapter we consider RFID tag-enabled applications and the use of hash functions in
RFID protocols. We then turn our attention to the design of hash functions and we explore

Chapter 6. Lightweight Hash Functions

whether a block cipher makes an appropriate starting point for a compact hash function in-
stead of a dedicated design.1

In Sections 6.5 and 6.6 we instantiate lightweight hash functions using literature-based con-
structions and the compact block cipher PRESENT [33]. This allows us to implement a range
of representative constructions that, for their given parameter sets, are the most compact hash
functions available today. In Section 6.7 we then look at some challenging problems in design-
ing hash functions with greater hash output lengths. While the paper reveals positive results,
our work also serves to highlight the difficult issue of compact hash functions; we therefore
close the paper with problems for future research.

To consider the efficiency of our proposals, we implemented two different architectures, i.e.
round-based and serialized, for each proposal in VHDL. We describe these architectures and
the implementation results in the corresponding subsection in detail. For functional and post-
synthesis simulation we used Mentor Graphics Modelsim SE PLUS 6.3a [92] and Synopsys Design-
Compiler version Z-2007.03-SP5 [219] was used to synthesize the designs to the Virtual Silicon
(VST) standard cell library UMCL18G212T3, which is based on the UMC L180 0.18µm 1P6M
logic process and has a typical voltage of 1.8 Volt [233]. We used Synopsys Power Compiler
version Z-2007.03-SP5 [220] to estimate the power consumption of our implementations. For
synthesis and for power estimation we advised the compiler to use a clock frequency of 100
KHz, which is a widely used operating frequency for RFID applications. For the power simu-
lation an appropriate wire-load model was chosen that fits to the size of the actual design. We
give details about this in the corresponding subsection.

6.2 Related Work

For RFID tag-based applications, the protocols in question are often focused on authentication
or on providing some form of anonymity and/or privacy [5, 14, 61, 77, 100, 142, 176]. These
protocols use a cryptographic hash function and it is assumed that these can be efficiently
implemented in hardware. However, Feldhofer and Rechberger have pointed out that current
hash functions are not all suited for use in hardware constrained environments, because the
area and power requirements of standard hash functions, e.g. MD4 [197], MD5 [196], SHA-
1 [166] and SHA-256 [166] are too large [72]. In particular, their implementations require 7, 350
GE and 456 cycles for MD4, 8, 400 GE and 612 cycles for MD5, 8, 120 and 1, 274 cycles for SHA-
1 and 10, 868 GE and 1, 128 cycles for SHA-256. This is far away from the 2, 000 GE barrier and
so they identified the design of new lightweight hash functions as future work.

A new lightweight compression function named MAME was proposed by Yoshida et al. at
CHES 2007 [95]. Though their hardware implementation requires only 96 clock cycles, the area
requirement remains still too large with 8, 100 GE. At FSE 2008 Shamir proposed a new MAC
named SQUASH that is tailored for RFID tags [207]. There have been no ASIC implementa-
tions published so far, but Gosset et al. have assessed the hardware efficiency of SQUASH on
a Xilinx Virtex-4 FPGA device [90]. Their area optimized implementation of SQUASH with an
output size of 32 bits requires 63, 250 clock cycles and 377 slices and 104, 114 clock cycles and
378 slices for a 64-bit output variant. These figures are translated into 6, 303 GE and 6, 328 GE,
respectively, by the synthesis tool Xilinx ISE. Please note that the amount of GE derived from
a number of slices is typically significantly larger than a plain ASIC implementation would

1This relates to proposals for future work identified in [72].

84

6.3. Design decisions

require and also depends on the target device. Consequently Gosset et al. proposed to see their
results as an upper bound.

Recent attacks on standard hash functions [236, 237] have triggered a public competition for a
new hash algorithm by NIST [165]. However, since the aim is to design a general purpose hash
algorithm, it is no wonder that the requirements do not fit well for constrained environments
such as passive RFID tags. Especially the digest sizes of 224- to 512-bit will most probably lead
to high area requirements for any candidates.

6.3 Design decisions

Informally, a cryptographic hash function H takes an input of variable size and returns a hash
value of fixed length while satisfying the properties of preimage resistance, second preimage
resistance, and collision resistance [153]. For a hash function with n-bit output, compromising
these should require 2n, 2n, and 2n/2 operations respectively. These properties make hash
functions very appealing in a range of protocols. For tag-based applications, the protocols in
question are often focused on authentication or on providing some form of anonymity and/or
privacy [5, 14, 61, 77, 100, 142, 176]. However, some estimates suggest that no more than 2, 000
GE are available for security in low-cost RFID tags [116] but implementation results show that
the hash functions available are unsuitable in practice [72]. When we consider what we need
from a hash function in an RFID tag-based application the following issues can be identified:

(1) In tag-based applications we are unlikely to hash large amounts of data. Most tag proto-
cols require that the hash function processes a challenge, an identifier, and/or perhaps a
counter. The typical input is usually much less than 256 bits.

(2) In many tag-based applications we do not need the property of collision resistance. Most
often the security of the protocol depends on the one-way property. In certain situations,
therefore, it is safe to use hash functions with smaller hash outputs.

(3) Applications will (typically) only require moderate security levels. Consequently 80-bit
security, or even less, may be adequate. This is also the position taken in the eSTREAM
project [175]. An algorithm should be chosen according to the relevant security level and
in deployment, where success depends on every dollar and cent spent, there is no point
using extra space to get a 256-bit security level if 64-bit security is all that is required.

(4) While the physical space for an implementation is often the primary consideration, the
peak and average power consumption are also important. The time for a computation
will matter if we consider how a tag interacts with higher-level communication and anti-
collision protocols.

(5) Some protocols use a hash function to build a message authentication code (MAC), often by
appealing to the HMAC construction [164]. When used as a MAC a number of interesting
issues arise such as choosing an appropriate key length and understanding whether keys
will be changed, something that will almost certainly be impossible in most tag-enabled
applications. There might also be the possibility of side-channel analysis on the MAC.
However, such attacks will rarely be worthwhile for cheap tag-enabled applications and
we do not consider this issue further.

Taking account of these considerations allows us to make some pragmatic choices. There will
be applications that just require one-wayness and the application may only require 80-bit or

85

Chapter 6. Lightweight Hash Functions

64-bit security. Note that this is the view adopted by Shamir in the proposal SQUASH for use
in RFID tags [207]. For other applications we might like to see 80-bit security against collision
attacks.

6.4 Background on hash function constructions

Hash functions in use today are built around the use of a compression function and appeal to
the theoretical foundations laid down by Merkle and Damgård [55, 154]. The compression
function h has a fixed-length input, consisting of a chaining variable and a message extract,
and gives a fixed-length output. A variety of results [58, 114, 118] have helped provide a
greater understanding of this construction and while there are some limitations there are some
countermeasures [24]. Since our goal is to obtain representative performance estimates, we will
not go into the details of hash function designs. Instead we will assume that our hash function
uses a compression function in an appropriate way and that the compression function takes
as input some words of chaining variable, represented by Hi, and some words of (formatted)
message extract, represented by Mi. We then restrict our focus to the cost of implementing the
compression function.

In the hash function literature it is common to distinguish between two popular ways of build-
ing a compression function. The first is to use a compression function of a dedicated design
and the second is to use an established, and trusted, block cipher.

6.4.1 Dedicated hash function constructions

The separation of dedicated constructions from block cipher-based constructions tends to dis-
guise the fact that even dedicated hash functions like SHA-1 [163] and MD5 [196] are them-
selves built around a block cipher. Remove the feed-forward from compression functions in
the MD-family and we are left with a reversible component that can be used as a block cipher
(such as SHACAL [98] in the case of SHA-1). However, the underlying block cipher we are
left with is rather strange and has a much larger-than-normal block and key size combination.
The problem with dedicated hash functions is that recent attacks [236, 237] have shown that
there is much to learn in designing block ciphers with such strange parameter sizes. There is
therefore some value in considering approaches that use a more “classical” block cipher as the
basis for a compression function.

6.4.2 Block cipher constructions

The use of a block cipher as a building block in hash function design [49] is as old as DES [159].
The topic has been recently revisited and Black et al. [30] have built on the work of Preneel [187]
to present a range of secure 2n- to n-bit compression functions built around an n-bit block
cipher that takes an n-bit key. Among these are the well-known Davies-Meyer, Matyas-Meyer-
Oseas, and Miyaguchi-Preneel constructions.

A hash function with an output of n bits can only offer a security level of 2n operations for
pre-image and second pre-image attacks and 2n/2 operations against finding collisions. While
a security level of 128-bit is typical for mainstream applications, 80-bit security is often a
reasonable target for RFID tag-based applications. Either way, there is a problem since the

86

6.5. Compact hash functions with a digest size of 64 bits

hash functions we need cannot always be immediately constructed out of the block ciphers
we have to hand. This is not a new problem. But it is not an easy one to solve either, and
there has been mixed success in constructing 2n-bit hash functions from an n-bit block ci-
pher [36, 49, 129, 136, 137, 188, 189]. While limitations have been identified in many construc-
tions, work by Hirose [103, 105] has identified a family of double-block-length hash functions
that possess a proof of security. These use block ciphers with a key length that is twice the block
length. Such a property is shared by AES-256 [161] and PRESENT-128 [33] and so in Section 6.6
we consider the performance of an Hirose-style construction instantiated using PRESENT-128.

When it comes to providing a replacement for SHA-1, the parameter sizes involved provide a
difficult challenge. If we are to use a 64-bit block cipher like PRESENT-128, then in arriving at a
hash function with an output of at least 160 bits we need a construction that delivers an output
three times the block size (thereby achieving a 192-bit hash function). There are no “classical”
constructions for this and so Sections 6.7.1 and 6.7.3 illustrate two possible design directions.
These give representative constructions and we use them to gauge the hardware requirements
of different design approaches. We hope that this will be of interest to future hash function
designers.

6.5 Compact hash functions with a digest size of 64 bits

In this section we will consider two approaches to compact hashing with a digest size of 64 bits
when we use the block cipher PRESENT [33] as a building block. We start with the description
and security analysis of DM-PRESENT-80 and DM-PRESENT-128 in Section 6.5.1. Subsequently,
we describe different implementation results of both proposals in Section 6.5.2 (DM-PRESENT-
80) and Section 6.5.3 (DM-PRESENT-128).

6.5.1 Description of DM-PRESENT-80 and DM-PRESENT-128

There are a variety of choices for building a 64-bit hash function from a 64-bit block cipher. We
will illustrate these with the Davies-Meyer mode where a single 64-bit chaining variable Hi is
updated using a message extract Mi according to the computation H ′

i = E(Hi, M)⊕Hi.

In our case E denotes encryption with either PRESENT-80 or PRESENT-128, see Figure 6.1. Such
hash functions will only be of use in applications that require the one-way property and 64-bit
security.2 At each iteration of the compression function 64 bits of chaining variable and 80
bits (resp. 128 bits) of message-related input are compressed. Therefore the two proposals DM-
PRESENT-80 and DM-PRESENT-128 provide a simple trade-off between space and throughput.
We also provide figures for a serial and parallel implementation of PRESENT, see Table 6.5.

While we have focused on using Davies-Meyer, it is important to note that these figures are
a good indication of the cost for any single block-length hash function construction. If one
prefers to implement Matyas-Meyer-Oseas or Miyaguchi-Preneel based on PRESENT (instead of
Davies-Meyer) then the cost of DM-PRESENT-80 will be a reasonable guide. Moving away from
PRESENT to a different block cipher will almost certainly cause an increase to the space required
for an implementation.

2These properties are identical to those offered by the proposal SQUASH [207].

87

Chapter 6. Lightweight Hash Functions

!

"
#

"$
#

%

Figure 6.1: Compression function for the 64-bit hash functions DM-PRESENT-80 and DM-PRESENT-128.

6.5.2 Implementation results of DM-PRESENT-80

We first describe the round-based implementation DM-PRESENT-80/64 with a 64-bit datapath
and then subsequently the serialized implementation DM-PRESENT-80/4 with a 4-bit datapath.

Implementation results of DM-PRESENT-80 with a 64-bit datapath

Figure 6.3 depicts the architecture of the DM-PRESENT-80 module with a datapath of 64 bits
and its input and output signals are depicted in Figure 6.2(a). As one can see this architecture
consists of the 64-bit gated register Temp, a finite state machine (FSM), a 64-bit XOR and a
round-based PRESENT-80 implementation. The latter one contains a 64-bit and an 80-bit regis-
ter, a 64-bit XOR, 17 S-boxes (16 in the datapath and one in the key schedule), the P-Layer and
a 61-bit rotation and the 5-bit counter XOR in the key schedule.

We used the finite state machine (FSM) depicted in Figure 6.2(b) to control our implementation
of DM-PRESENT-80 with a datapath of 64 bits. As can be seen the FSM consists of the six states
S_IDLE, S_INIT_TEMP, S_INIT_DATA, S_PRESENT, S_H_UPDATE, and S_DONE. Upon re-
setting the ASIC the FSM starts in the S_IDLE state. The following two states S_INIT_TEMP
and S_INIT_DATA both last for one clock cycle and do not have a condition for transition, i.e.
after one clock cycle the FSM transitions to the following state. During the S_INIT_TEMP state
the initial chaining variable H is loaded into the Temp register and during the S_INIT_DATA
state it is forwarded to the State register. The S_PRESENT state lasts for 31 cycles, during
which a complete PRESENT encryption is performed. After the encryption the FSM transi-
tons to the S_H_UPDATE state, where the result of the PRESENT encryption is XORed with the
chainig variable H and the result is stored in the Temp register. This takes one clock cycle and
if all message chunks are processed the FSM transitions to the S_DONE state, otherwise to the
S_INIT_DATA state. During the S_DONE state the done signal is active indicating that the
correct result is ready.

It takes 33 clock cycles to process one message chunk of 80 bits. At a frequency of 100 KHz
this is equivalent to a throughput of 242.42 Kbps. After synthesis our implementation requires

88

6.5. Compact hash functions with a digest size of 64 bits

!"#$%&'&()#*+,-.

/01

2345657

89793:2
-.

15;
*+

89793<=7
-.

8<25

(a) Input and output signals.

!"#$#%"%&'(!"#)*& !"#$#%")+%+

!","-()+%& !"(.&!&$%!")/$&

012345678
9::;<=23>5;413?

?:5?
?:5?

(b) Finite state machine.

Figure 6.2: I/O and FSM of the DM-PRESENT-80 module with a datapath of 64 bits.

!"#$
%&'"&()*+)*,

-./.0123

4"5

)*

)*

6/./"
%77()*,

8"5
%77(9:,

6(;<=">
)*

?(@.5"A

9:

8"536BC"-DE"

)*

)*

9:

)*

)*

)*

%FGHI),

9:

-./.0<D/3

76J

K B<D2/"A

20A">"/

-<2"

3LJ(?'M6MN!(9:+)*3

Figure 6.3: Architecture of the DM-PRESENT-80 module with a datapath of 64 bits.

89

Chapter 6. Lightweight Hash Functions

unit module area (GE) %
PRESENT-80 data state 384 17.35

S-boxes 448 20.24
P-layer 0 0
key XOR 171 7.73
key state 480 21.69
61 bit rotation 0 0
S-box 28 1.27
counter XOR 13 0.59

overhead temp state 384 17.35
XOR 171 7.73
other (e.g. FSM) 134 6.06

sum 2,213 100

Table 6.1: Area requirements of components of DM-PRESENT-80/64.

2, 213 GE and a breakdown of its components is given in Table 6.1. As one can see more than
half of the area is required for storage of the state (56.4 %). The hardware efficiency is 109.5
bps/GE. At a frequency of 100 KHz and with the suggested wire-load model of 10, 000 GE the
estimated power consumption is 6.28 µW, which is equivalent to 3.49 µA.

Implementation results of DM-PRESENT-80 with a 4-bit datapath

The architecture of a serialized implementation with a datapath of 4 bits is depicted in Fig-
ure 6.4 and its input and output signals are shown in Figure 6.5(a). This architecture comprises
of a gated register Temp with 4- and 64-bit inputs and outputs, a 4-bit XOR, a 4-bit MUX, and
a serialized PRESENT-80 implementation. The latter one consists of a gated register with 4-
and 64-bit input and output, one gated register with 4- and 80-bit input and output, two 4-bit
MUXes, a 4-bit XOR, two S-boxes (each one for the datapath and the key schedule), the P-Layer,
a 61-bit rotation, the 5-bit counter XOR in the key schedule and a finite state machine (FSM).
Please note that this serialized PRESENT-80 implementation is similar to the one described in
Section 5.1.1.

We used the finite state machine (FSM) depicted in Figure 6.5(b) to control our implemen-
tation of DM-PRESENT-80/4. As can be seen the FSM consists of the seven states S_IDLE,
S_INIT_DATA, S_INIT_KS, S_SBOX, S_PLAYER_KS, S_FINISHED, and S_DONE. Upon re-
setting the ASIC the FSM starts in the S_IDLE state and transistions after one clock cycle into
the next state S_INIT_DATA. During each of the next 16 cycles a 4-bit chunk of the 64-bit
chaining variable H is loaded into both the Temp and the State register. At the same time
also the 64 MSB of the 80-bit message M are loaded into the Key register. Then the FSM tran-
sitions to the S_INIT_KS state, which loads the remaining 16 bits of the message M into the
Key register. Thus it takes another 4 clock cycles before the FSM transitions to the next state
S_SBOX. During each of the 16 cycles of this state, a 4-bit chunk of the state is XORed with a
4-bit chunk of the roundkey, and then subsequently processed by the S-box. Once all 64 bits are
processed, the FSM transitions to the S_PLAYER_KS state. During this state the whole State
is permuted by the P-layer, and the Key register is updated with the new roundkey within one
clock cycle. Since PRESENT features 31 complete rounds (i.e. a round consisting of key XOR,
S-box lookup and permutation), the FSM returns back to the S_SBOX state 31 times. At the

90

6.5. Compact hash functions with a digest size of 64 bits

!"#$
%&'"&()*+),

-./.0123
4"5

)

6/./"
%&'"&()*+),

7"5
%&'"&()*89,

6(:;<"=

>(?.5"@

)

AA+B

)

)

89

+)

)

+)

89

-./.0;C/3

D6E
F

G;C2/"@
20@"="/

-;2"

3HE(>'I6IJ!(89*)3

)

)

)

)

)

)

)

)

KB

F

)

)

Figure 6.4: Architecture of the DM-PRESENT-80 module with a datapath of 4 bits.

!"#$%&'&()#*+,-

./0

1234546

7868291
-

04:
-

78682;<6
-

7;14

(a) Input and output signals.

!"#$#%"&'%'!"#&() !"#$#%"*!

!"+#$#!,)&

!"!-./

!"&.$)

011234567829:6;

!"<('=)>"*!

8;?@01ABC 8;?@01AD

8;?@01ABC?:569AEF

;18; ;18;

;18;

;18;;18;

8;?@01ABC

;18;

(b) Finite state machine.

Figure 6.5: I/O and FSM of the DM-PRESENT-80 top module with a datapath of 4 bits.

91

Chapter 6. Lightweight Hash Functions

!"#$%&'&()#*+,-./

012

3456768

9:8:4;3
./

26<
*+,

9:8:4=>8
./

9=36

Figure 6.6: Input and output signals of the DM-PRESENT-128 top module with a datapath of 64 bits.

32nd time the FSM transitions to the S_FINISHED state. Within each of its 16 clock cycles it
computes both the final round of PRESENT and then the XOR addition of the chaining variable
H and the output of PRESENT, 4 bits at a time. Also the done signal is set to 1 to indicate that
the result is output. Finally, the FSM transitions to the S_DONE state in order to set the done
signal to 0.

It takes 547 clock cycles to process one message chunk of 80 bits. At a frequency of 100 KHz this
is equivalent to a throughput of 14.63 Kbps. After synthesis our implementation requires 1, 600
GE. Unfortunately a detailed breakdown of its components is not possible in this case, because
the synthesis result does not provide the required information. However, our serialized ar-
chitecture of DM-PRESENT-80 consists of a serialized PRESENT-80 (1, 075 GE), as described in
Section 5.1.1), the Temp register (384 GE), a 4-bit MUX (9 GE), and a 4-bit XOR (11 GE), which
sums up to 1, 479 GE. The missing 121 GE may be required by the more complex FSM. The
hardware efficiency is 9.1 bps/GE. At a clock frequency of 100 KHz and with the suggested
wire-load model of 10, 000 GE DM-PRESENT-80/4 consumes 1.83 µW which is equivalent to
1.02 µA.

6.5.3 Implementation results of DM-PRESENT-128

First we describe the round-based implementation DM-PRESENT-128/64 with a 64-bit data-
path and then subsequently the serialized implementation DM-PRESENT-128/4 with a 4-bit
datapath.

Implementation results of DM-PRESENT-128 with a 64-bit datapath

Figure 6.7 depicts the architecture of the DM-PRESENT-128 module with a datapath of 64 bits
and its input and output signals are depicted in Figure 6.6. Similar to the DM-PRESENT-
80 implementation with a 64 bits datapath it contains a 64-bit gated register Temp, a fi-
nite state machine (FSM) and a 64 bit XOR. The main difference lies in the round-based
PRESENTimplementation, which in this case is PRESENT-128 and not PRESENT-80. It consists
of a 64-bit and a 128-bit register, a 64-bit XOR, 18 S-boxes (16 in the datapath and two in the
key schedule), the P-Layer and a 61-bit rotation and the 5-bit counter XOR in the key schedule.

We used the same finite state machine (FSM) as for DM-PRESENT-80/64 (see Figure 6.2(b)) and
refer to the description above for further details. Similar to the DM-PRESENT-80/64 implemen-
tation it also takes 33 clock cycles to process one message chunk. Contrary to the DM-PRESENT-
80/64 implementation one message chunk now has 128 bits instead of 80 bits. Therefore the
throughput at a frequency of 100 KHz is a factor of 128

80 = 1.6 higher and now achieves 387.88

92

6.5. Compact hash functions with a digest size of 64 bits

!"#$
%&'"&()*+)*,

-./.0123

4"5

)*

)*

6/./"
%77()*,

8"5
%77(9:;,

6(<=>"?
)*

@(A.5"B

9:;

8"536CD"-EF"

)*

)*

9:;

)*

)*

)*

%9:GH)*,

9:;

-./.0=E/3

76I

J C=E2/"B

20B"?"/

-=2"

3KI(@'L6LM!(9:;+)*3

Figure 6.7: Architecture of the DM-PRESENT-128 module with a datapath of 64 bits.

unit module area (GE) %
PRESENT-128 data state 384 15.18

S-boxes 448 17.71
P-layer 0 0
key XOR 171 6.76
key state 768 30.36
61 bit rotation 0 0
S-boxes 56 2.21
counter XOR 13 0.51

overhead temp state 384 15.18
XOR 171 6.76
other (e.g. FSM) 135 5.3

sum 2,530 100

Table 6.2: Area requirements of components of DM-PRESENT-128/64.

93

Chapter 6. Lightweight Hash Functions

!"#$%&'&()#*+,-.

/01

2345657

89793:2
.

15;
.

89793<=7
.

8<25

Figure 6.8: Input and output signals of the DM-PRESENT-128 top module with a datapath of 4 bits.

!"#$
%&'"&()*+),

-./.0123
4"5

)

6/./"
%&'"&()*+),

7"5
%&'"&()*89:,

6(;<=">

?(@.5"A

)

BB+8

:

)

89:

+)

)

+)

89:

-./.0<C/3

D6E
F

G<C2/"A
20A">"/

-<2"

3HE(?'I6IJ!(89:*)3

)

:

)

)

)

)

)

)

88F

F

)

)

Figure 6.9: Architecture of the DM-PRESENT-128 module with a datapath of 4 bits.

Kbps. After synthesis our implementation requires 2, 530 GE and a breakdown of its compo-
nents is given in Table 6.2. As one can see more than 60 % of the area is required for storage
of the state. Compared to the plain PRESENT-128 core the implementation of DM-PRESENT-
128/64 requires 689 additional GE. The hardware efficiency is 153.3 bps/GE. At a frequency
of 100 KHz and with the suggested wire-load model of 10, 000 GE DM-PRESENT-128/64 has
an average power consumption of 7.49 µW, which relates to an average current consumption
of 4.16 µA.

Implementation results of DM-PRESENT-128 with a 4-bit datapath

The architecture of a serialized implementation with a datapath of 4 bits is depicted in Fig-
ure 6.9 and its input and output signals are shown in Figure 6.8. Similar to the DM-PRESENT-
80/4 implementation this architecture comprises of a gated register Temp with 4- and 64-bit
inputs ad outputs, a 4-bit XOR and one 4-bit MUX. The main difference lies in the serialized
PRESENT implementation, which in this case is PRESENT-128 and not PRESENT-80. It consists
of a gated register with 4- and 64-bit input and output, one gated register with 4- and 128-bit
input and output, three 4-bit MUXes, a 4-bit XOR, two S-boxes, the P-Layer, a 61-bit rotation,
the 5-bit counter XOR in the key schedule and a finite state machine (FSM).

94

6.6. Compact hash functions with a digest size of 128 bits

!"#$#%"&'%'!"#&() !"#$#%"*!

!"+#$#!,)&

!"!-./

!"&.$)

011234567829:6;

!"<('=)>"*!

8;?@01ABC 8;?@01ABC

8;?@01ABC?:569ADB

;18; ;18;

;18;

;18;;18;

8;?@01ABC

;18;

Figure 6.10: Finite state machine of the DM-PRESENT-128 module with a datapath of 4 bits.

We used a slightly modified version of the finite state machine (FSM) for DM-PRESENT-80/4
to control our implementation of DM-PRESENT-128/4, see Figure 6.10. As can be seen, the
FSM consists of the same seven states, i.e. S_IDLE, S_INIT_DATA, S_INIT_KS, S_SBOX,
S_PLAYER_KS, S_FINISHED, and S_DONE. The only difference occurs during the S_INIT_KS
state. Since now PRESENT with a 128-bit key is used, it requires 12 more cycles to load the whole
key into the Key register. Therefore the FSM transitions after 16 clock cycles to the next state
and not after just four clock cycles. The remainder of the FSM is identical and we refer to the
description above for more details.

It takes 559 clock cycles to process one message chunk of 128 bits. At a frequency of 100 KHz
this is equivalent to a throughput of 22.9 Kbps. After synthesis our implementation requires
1, 886 GE. Unfortunately a detailed breakdown of its components is not possible in this case,
because the synthesis result does not provide the required information. However, our serial-
ized architecture of DM-PRESENT-128 consists of a serialized PRESENT-128, the Temp register
(384 GE), a 4-bit MUX (9 GE), and a 4-bit XOR (11 GE), which sums up to 1, 886 GE. The
hardware efficiency is 12.1 bps/GE. At a frequency of 100 KHz and with the suggested wire-
load model of 10, 000 GE DM-PRESENT-128/4 has an average power consumption of 2.94 µW,
which relates to an average current consumption of 1.63 µA.

6.6 Compact hash functions with a digest size of 128 bits

When designing a 128-bit hash function from the 64-bit output block cipher PRESENT, we have
to appeal to so-called double-block-length hash function constructions. Natural candidates
are MDC-2 [49] and Hirose’s constructions [103, 105]. These schemes possess security proofs
in the ideal cipher model, where the underlying block cipher is modeled as a family of random
permutations, one permutation being chosen independently for each key. However, MDC-2
is not an ideal construction [214] and so we base our 128-bit hash function H-PRESENT-128 on
the construction studied in [105]. We start with a description and security ananlysis of our
proposal H-PRESENT-128 in Section 6.6.1. Subsequently, we present different implementation
results for the proposal in Section 6.6.2.

95

Chapter 6. Lightweight Hash Functions

!

"
#

"$
#

%

!

"
#

"$
&

'

"
&

Figure 6.11: Compression function for the 128-bit hash function H-PRESENT-128.

6.6.1 Description of H-PRESENT-128

The scheme H-PRESENT-128 is illustrated in Figure 6.11. The compression function takes
as input two 64-bit chaining variables and a 64-bit message extract, denoted by the triple
(H1, H2, M), and outputs the pair of updated chaining variables (H ′

1, H
′
2) according to the

computation

H ′
1 = EH2‖M (H1)⊕H1 and H ′

2 = EH2‖M (H1 ⊕ c)⊕H1

where E denotes PRESENT-128 and c is a non-zero constant that needs to be fixed [40]. Thus
the chaining variable H1‖H2 is 128 bits long and 64 bits of message-related input are hashed
per iteration.

Hirose showed that, in the ideal cipher model, an adversary has to make at least 2n queries
to the cipher in order to find a collision with non-negligible advantage, where n is the block
size of the cipher. It is possible to make the same kind of analysis for preimage resistance (see
proof of Theorem 4 in [104]) and to show that any adversary has to make at least 22n queries to
the cipher to find a preimage. As for Section 6.5 our implementation results are presented for
both a parallel and serial implementation of PRESENT-128, see Table 6.5. These results should
be viewed as indicative of the cost of a double-block-length construction using PRESENT. Since
only one key schedule needs to be computed per iteration of the compression function, the
Hirose construction is probably one of the most efficient constructions of this type, e.g. in the
case of PRESENT around 1, 000 GE can be saved in this way.

6.6.2 Implementation results of H-PRESENT-128

First we describe the architecture and the implementation results of a round-based H-PRESENT-
128 with a 128-bit datapath and subsequently the architecture of a serialized H-PRESENT-128
with an 8-bit datapath.

96

6.6. Compact hash functions with a digest size of 128 bits

!"#$%&%'(")*+,)*+

-./

0123435

6344783190
:;

<) :;

=7571>?5
)*+

=>03

<* :;

(a) Input and output signals.

!"#$#%!"#&'(!")*(!($%

+,,-./0123-4516-7-850149:; 6,36

(b) Finite state machine.

Figure 6.12: I/O and FSM of the H-PRESENT-128 module with a datapath of 128 bits.

!"#"$%&
'(()*+,

-$.
'(()/01,

!)234$5

6)7#.$8

99*/

1

/01

/01

(!:

;3<="$8

=>8$5$"

?3=$

%@)6AB!BCD)/01E/01%

1

//F

F

*+

G$55#H$>I=%

!)234$5

D$GJ
'HA$H)*+E*+,

!"#"$%&&
'(()*+,

6)7#.$8
*+

!)234$5

;%

K/%

?#"#>3<"%

K0%

/01 *+

*+

*+
*+

++

*+

*+

F

*+

*+

*+

++

/01

Figure 6.13: Architecture of the H-PRESENT-128 module with a datapath of 128 bits.

Implementation results of H-PRESENT-128 with a 128-bit datapath

Figure 6.13 depicts the architecture of the round-based H-PRESENT-128 implementation with
a datapath of 128 bits. The H-PRESENT-128/128 implementation consists of a gated regis-
ter with 64-bit input and output for the chaining variable (384 GE), two 64-bit MUXes (298
GE), two 64-bit XOR gates (342 GE), a finite state machine, a modified PRESENT-128 core and
an additional PRESENT data path (1, 000 GE). Note that since the constant c was chosen as
0x00000000 00000001, the XOR with the constant is actually only a NOT gate, which requires
0.5 GE.

We used the finite state machine (FSM) depicted in Figure 6.12(b) to control our implemen-
tation of H-PRESENT-128/128. As can be seen, the FSM consists of the three states S_IDLE,
S_INIT and S_PRESENT. Upon resetting the ASIC the FSM starts in the S_IDLE state. During
the following state S_INIT the chaining variable h1 is stored in the Temp register. In the same
clock cycle also the second chaining variable h2 and the first message chunk M are concate-
nated and loaded into the Key register. The FSM directly transitions without any condition

97

Chapter 6. Lightweight Hash Functions

unit module area (GE) %
PRESENT-128 2× data state 853 20.06

2× S-boxes 896 21.07
2× P-layer 0 0
2× key XOR 342 8.04
key state 768 18.06
61-bit rotation 0 0
S-boxes 56 1.32
counter XOR 13 0.31

overhead temp state 384 9.03
XOR 342 8.04
MUXes 298 7.01
other (e.g. FSM) 301 7.08

sum 4,253 100

Table 6.3: Area requirements of components of H-PRESENT-128/128.

to the S_PRESENT state. The S_PRESENT state lasts for 32 cycles, during which a complete
PRESENT encryption (including the final round) is performed. Both outputs of the two PRESENT

datapathes are XORed with the initial chaining variable h1 and serve as the new chaining vari-
ables h′

1 and h′
2. h′

1 is stored in the Temp register and h′
2 is concatenated with the next message

chunk and stored in the Key register. Once all message chunks are processed the done signal
is set to 1 indicating that the correct result is ready and the FSM transitons to the S_IDLE state.

It takes 32 clock cycles to process one message chunk of 64 bits. At a frequency of 100 KHz this
is equivalent to a throughput of 200 Kbps. After synthesis our implementation requires 4, 256
GE and a breakdown of its components is given in Table 6.3. As one can see more than half of
the area is required for storage of the state (56.4 %). The hardware efficiency is 109.5 bps/GE.
At a frequency of 100 KHz and with the suggested wire-load model of 10, 000 GE H-PRESENT-
128/128 has an average power consumption of 8.09 µW, which relates to an average current
consumption of 4.49 µA.

Implementation results of H-PRESENT-128 with an 8-bit datapath

Figure 6.14 depicts the architecture of the serialized H-PRESENT-128 implementation with
a datapath of 8 bits. The H-PRESENT-128/8 implementation basically consists of the DM-
PRESENT-128/4 implementation (1, 886 GE, see above for details) with some additional logic.
In particular this is a gated register with 4-bit and 64-bit input and output for the second
PRESENT state (384 GE), two 4-bit MUXes (20 GE), two 4-bit XOR gates (22 GE)3 and an addi-
tional 4-bit MUX for the S-box input (10 GE).4

We used the same finite state machine (FSM) as for DM-PRESENT-128/4 (see Figure 6.10) to
control our implementation of H-PRESENT-128/8, hence we refer to the description above for

3Because the roundkey is XORed to both PRESENT states and both results are then XORed with the chaining
variable. Therefore, H-PRESENT-128/8 requires two 8-bit XORes and not two 4-bit XORes as DM-PRESENT-
128/4.

4H-PRESENT-128/8 has two serialized PRESENT datapathes, hence 8 bits are processed by the S-boxes, while
DM-PRESENT-128/4 has only one PRESENT datapath, hence only 4 bits are processed at once. Since in both
architectures the S-boxes are also used by the key schedule the input has to be multiplexed.

98

6.6. Compact hash functions with a digest size of 128 bits

!"#

$

%&'&"())
*+,"+-$./$0

1"#
*+,"+-$.2340

%-567"89-:'#";

$

<</2

4

$

234

4

234

='&'>6?&(

@%A
B

C6?D&";
D>;"8"&

=6D"

(E-9,F%FGH-234.4(

4

$

$

$

4

$

$

22B

B

4

H"IJ
*+,"+-$./$0

%&'&"()
*+,"+-$./$0

9-:'#";

/$

$

4

$

$

$

='&'>KD(

C(
$

4

4

/$ $4
$

4

*LM$0(
4

$

*LM$0(

*NMO0($

4

='&'>KD(

$

Figure 6.14: Architecture of the H-PRESENT-128 module with a datapath of 8 bits.

!"#$%&%'(")*+,+

-./

0123435

6757180
9

/3:
9

67571;<5
+

6;03

Figure 6.15: Input and output signals of the H-PRESENT-128 top module with a datapath of 8 bits.

99

Chapter 6. Lightweight Hash Functions

more details. It takes 559 clock cycles to process one data chunk of 64 bits. Since DM-PRESENT-
128/4 processes data chunks of 128 bits while requiring the same amount of clock cycles,
H-PRESENT-128/8 gains exactly half of its throughput, i.e. 11.45 Kbps at a frequency of 100
KHz. After synthesis our implementation requires 2, 330 GE. Again for this architecture a
detailed breakdown of its components is not possible. The hardware efficiency is 4.9 bps/GE.
At a frequency of 100 KHz and with the suggested wire-load model of 10, 000 GE H-PRESENT-
128/8 has an average power consumption of 6.44 µW, which relates to an average current
consumption of 3.58 µA.

6.7 Compact hash functions with a digest size of ≥ 160 bits

In some cases tag-enabled applications might need collision-resistance at a security level of 280

operations. For this we need a hash output of 160 bits or greater. However, this is where the
problems really begin and we consider two directions.

For the first, we continue the approach to consider building a hash function with a hash output
greater than 160 bits from PRESENT as is. So in Section 6.7.1 we try to use PRESENT in this way
and, using established results in the literature, we make a proposal. However, at the same
time, we use the very same results to demonstrate that this approach is unlikely to be success-
ful, a sentiment that is supported by our implementation results in Section 6.7.2. Instead, for
the second direction that is described in Section 6.7.3, we move towards a dedicated hash func-
tion though we keep elements of PRESENT in our constructions. Our dedicated proposals are
deliberately simple and obvious, and in this way we aim to provide some first results on the
impact different design choices might have in moving towards a new, compact, hash function.

6.7.1 Description of C-PRESENT-192

We aim to design a hash function that is based on PRESENT and has a digest size of at least 160
bits. Since PRESENT has a 64-bit block size, this means that we are forced to consider a triple-
block-length construction and we will obtain a 192-bit hash function. Unfortunately very few
designs for l-block length hash function with l ≥ 3 have been studied so far. However, Peyrin et
al. [179] have identified some necessary conditions for securely combining compression functions
to obtain a new compression function with a longer output. We can use these results and
so, in the case we consider here, our constituent compression functions will be based around
PRESENT-128, i.e. we will use DM-PRESENT-128 as the building block.

More background to the construction framework is given in [179]. However, within this frame-
work, efficiency demands that we keep to a minimum the number of compression functions
that we need to use, where each compression function is instantiated by DM-PRESENT-128. For
reasons of simplicity and greater design flexibility we restrict ourselves to processing only a
single 64-bit message extract, and so our inputs to C-PRESENT-192, where we use C as short-
hand for “constructed”, consist of a quadruplet (H1, H2, H3, M) while the output is a triplet
(H ′

1, H
′
2, H

′
3). The compression function C-PRESENT-192 is illustrated in Figure 6.16. The out-

put is computed as:

H ′
1 = f (1)(H3, H1, H2)⊕ f (3)(H3 ⊕M, H1, H2)⊕ f (5)(H2, H3, M)

H ′
2 = f (1)(H3, H1, H2)⊕ f (4)(H1, H3, M)⊕ f (6)(H1 ⊕H2, H3, M)

H ′
3 = f (2)(M,H1, H2)⊕ f (4)(H1, H3, M)⊕ f (5)(H2, H3, M)

100

6.7. Compact hash functions with a digest size of ≥ 160 bits

!

"
#

"
$

!

%

&
$

"
'

!

&
'

!

"
' %

!

"
$

&
(

"
#

!

&
)

&
#

"*
'

"*
$

"*
#

Figure 6.16: Compression function for the 192-bit hash function C-PRESENT-192.

with f (i)(A, B,C) = E(A⊕ ci−1, B‖C)⊕A for different constants ci and E denotes encryption
with PRESENT-128.

Each inner compression function f (i) is built around PRESENT-128 in Davies-Meyer mode, and
five non-zero constants c1, . . . , c5 are used to make them independent. The constants were
chosen to be linearly independent and of low Hamming weight.

We chose the constants c0 to c5 according to the following equation

ci =

{

0, i = 0

ci = 2i−1, 1 ≤ i ≤ 5.

In other words we used the constants c0 = 0 = 000002, c1 = 1 = 000012, c2 = 2 = 000102,
c3 = 4 = 001002, c4 = 8 = 010002, c5 = 16 = 100002. In a more computer architecture oriented
description the non-zero constants c1, . . . , c5 are given by

ci = (0x00000000 00000001)≪ (i− 1).

This construction might seem too complicated, but this is exactly the point we wish to make.
The particular set of parameter values that are forced upon us when trying to build a large-
output hash function from a small block cipher means that there will be no simple construction.
More precisely, work in [179] shows that for any construction that uses a compression function
with parameters equivalent to PRESENT-128 along with linear mixing layers to combine chain-
ing variables and intermediate values, at least six compression functions are needed to resist
all currently-known generic attacks. We must therefore use at least six independent calls to
DM-PRESENT-128, which is attained by our C-PRESENT-192 construction.

101

Chapter 6. Lightweight Hash Functions

In addition, the output mapping should be a (6, 3, 3) binary linear error-correcting code, while
the input mapping must satisfy the following constraints:

(1) Every external output block must depend on all external input blocks, no matter which
invertible transformation of the external inputs and outputs is applied.

(2) Every pair of external input blocks must appear as an identified pair for every invertible
combination of external output blocks, where a pair (A, B) is said to be identified when
A and B both appear within the internal inputs to some f (i), and this no matter which
invertible transformation of the external inputs is applied.

The input mapping for our representative was selected from among those that satisfy these
conditions and that also minimize the number of key schedules used to hash one block of
message. By reducing the number of key schedules we increase the performance of the scheme
and, potentially, reduce the space required by an implementation. It can be proved that for the
parameter sets of interest to us here, the minimal number of key schedules is two.

For the results of Peyrin et al. [179] to hold, the compression functions f (i) have to be ideal com-
pression functions with respect to collision and preimage resistance (that is, finding a collision
or a preimage must require on average Θ(2n/2) and Θ(2n) evaluations of the function respec-
tively) and must behave independently. Each inner compression function f (i) is built around
PRESENT-128 in a way similar to the Davies-Meyer mode. That way, the results of Black et
al. [30] ensure that, in the ideal cipher model, finding a collision (resp. a preimage) for the com-
pression functions f (i) requires Θ(2n/2) (resp. Θ(2n)) queries to the cipher. Hence, in the ideal
cipher model, each inner compression function f (i) is ideal in the sense defined above.

Making the six compression functions f (i) independent is not so easy. The most secure way
to do this would be to “tweak” the block cipher with e.g. the XE or XEX construction of Rog-
away [198]. However, these constructions are only efficient when one has to compute cipher-
texts for the same key and many different tweaks, which is not our case. Using any known
provably secure construction of a tweakable block cipher for the C-PRESENT-192 scheme would
imply one supplementary cipher call for each key, thus increasing the number of block cipher
calls per message block to eight. Instead we might consider using the same kind of technique
that is used in the Hirose construction and we use five constants c1, . . . , c5 to make the six
instances of the compression function independent. In the absence of a structural weakness
in PRESENT this is sufficient for our purposes. Further, we are trying to estimate the space
required for a construction of this type and so this approach will help to yield conservative es-
timates. The constants were chosen to be linearly independent and of low Hamming weight.
They are given by c0 = 0 and ci = (0x0000000000000001)≪ (i− 1) for i ≥ 1. While some
limitations of this construction follow from [205], assuming we can consider the inner com-
pression functions independent, Peyrin et al. show that there is no currently-known attack
with computational complexity less than brute-force on the larger compression function.

6.7.2 Implementation results and estimations of C-PRESENT-192

When implementing C-PRESENT-192 in a round-based manner, there is a trade-off between
storage of intermediate values and additional PRESENT datapaths. A completely parallelized
approach would require six datapaths (6 × 840 GE = 5, 040 GE, see Section 5.1) and two key
schedules (2 × 1, 000 GE = 2, 000 GE, see Section 5.1) of PRESENT-128, eight 64-bit XORs with
two inputs (8 × 64 × 2.67GE = 1, 368 GE) and three 64-bit XORs with three inputs (3 × 64 ×
4.67 GE = 896 GE). Note that the XOR addition of the constants can be achieved by inverting

102

6.7. Compact hash functions with a digest size of ≥ 160 bits

the appropriate bit positions. Since we chose five constants that all have Hamming weight 1,
the area requirement for the XOR addition of the constants is about 3 GE. In total the minimal
requirement for a round-based implementation of C-PRESENT-192 would sum up to more than
9, 300 GE and these figures do not even include the finite state machine of the control logic.
This is far away from our ideal goal of around 2, 000 GEs and consequently we do not follow
this approach any further.5

However, following the above stated trade-off, it is possible to sacrifice throughput for the
benefit of area savings. Since a PRESENT datapath consists of the storage for 64 bits, the re-
quirements for the S-boxes and the key XOR, we chose to use as few datapaths as possible.
In our proposed C-PRESENT-192 the key schedule is shared by three PRESENT datapaths. In
order to benefit from the shared key schedule, at least three PRESENT datapaths are required.
Therefore, we base our estimations on three serialized PRESENT datapaths.

A serialized PRESENTdatapath basically consists of the storage for the state (384 GE), the key
XOR (11 GE) and the S-box (28 GE), which sums up to a total gate count of 384+11+28 = 423
GE. Besides three PRESENTdatapathes (3 × 423 GE = 1, 269 GE) and one PRESENT-128 key
schedule (837 GE) C-PRESENT-192 requires to store at least five additional 64-bit temporary
values (5 × 64 GE = 1, 920 GE), 13 4-bit MUXes (13 × 4 × 2.33 GE = 121 GE), which would
lead to 4, 150 GE. Additionally, several XOR gates and a finite state machine are required, so
in total we estimate the area requirements with 4, 600 GE. Such a serialized implementation
would require 3, 338 clock cycles for processing one block of 64 bits, giving it a throughput of
1.9 Kbps at 100 KHZ. In total this would lead to a hardware efficiency of 0.41 bps. From these
estimations it becomes clear that also a serialized implementation of C-PRESENT-192 requires
too much area, mostly because of the huge intermediate storage requirements.

6.7.3 Dedicated design elements inspired by PRESENT

Hash function design is notoriously difficult and so an interesting first step is to identify some
general approaches and to understand their security and performance trade-offs. In this sec-
tion we describe the results of some prototyping which tests a range of approaches and pro-
vides good background to our ongoing work. Our basic premise is to stay close to the design
elements of PRESENT and to modify the design so as to give a block cipher with a much larger
block size. We then adapt the key schedule in two alternative ways with the first being a
natural proposal and the second having strong similarities to Whirlpool [17]. We give imple-
mentation results for both approaches.

Our schemes will continue to be based on the Davies-Meyer (DM) scheme Hi+1 = E(Hi, Mi)⊕
Hi though the form of our encryption function E will now change. In general, the encryption
function E can be described as:

E : F
n
2 ×F

k
2 → F

n
2 ,

E : PLAINTEXT × KEY 7→ CIPHERTEXT.

The detailed description of PRESENT can be found in Section 4. At a top-level we can write the
r-round encryption of the plaintext STATE as:

5Note that the C-PRESENT-192/192 implementation described in [34] only uses two round-based PRESENT data-
paths and also shares XOR-gates. Technically speaking this is not a plain round-based implementation, but an
approach that uses round-based components in a serialized manner. Therefore it is no wonder that the imple-
mentation figures for C-PRESENT-192/192 given in [34] are smaller than our estimates for a plain round-based
implementation. However, this design still requires more than 8, 000 GE and hence is far too demanding for
our purposes.

103

Chapter 6. Lightweight Hash Functions

for i = 1 to r do

STATE ← STATE ⊕ eLayer(KEY, i)
STATE ← sBoxLayer(STATE)
STATE ← pLayer(STATE)
KEY ← genLayer(KEY, i)

end for

STATE ← STATE ⊕ eLayer(KEY, r + 1),

where eLayer describes how a subkey is combined with a cipher STATE, sBoxLayer and pLayer
describe how the STATE evolves, and genLayer is used to describe the generation of the next
subkey.

When used in the DM mode we recast the plaintext and ciphertext as hash function STATE and
use the (formatted) message extract as the key. For ease of design we will choose the parame-
ters k and n so that k|n and 4|n, and both our proposals will have the following (unmodified)
structure:

for i = 1 to r do

STATE ← STATE ⊕ eLayer(MESSAGE, i)
STATE ← sBoxLayer(STATE)
STATE ← pLayer(STATE)
MESSAGE ← genLayer(MESSAGE, i)

end for

STATE ← STATE ⊕ eLayer(MESSAGE, r + 1).

The following building blocks are unchanged between the two proposals and are merely gen-
eralizations of the PRESENT structure to larger 160-bit block sizes.

(1) sBoxLayer: This denotes use of the PRESENT 4× 4-bit S-box S and it is applied n/4 times
in parallel.

(2) pLayer: This is an extension of the PRESENT bit-permutation and moves bit i of STATE to
bit position P (i), where

P (i) =

{

i · n/4 mod n− 1, if i ∈ {0, . . . , n− 2}
n− 1, if i = n− 1.

It is in the specification of genLayer, which transforms the message of length k from round-to-
round, and eLayer : F

k
2 → F

n
2 , that describes how the message extract is combined with cipher

state, that the two proposals differ.

PROP-1. For ease of comparison with PRESENT we keep exactly the same 80-bit key input
and the same 80-bit key schedule. Thus we modify a 160-bit chaining variable using an 80-bit
message input and, to make an implementation estimate, we use 64 rounds. This is equivalent
to the parameters n = 160, k = 80, and r = 64. The sBoxLayer and pLayer are as above and
eLayer and genLayer are described as follows:

(1) eLayer(MESSAGE, i) = MESSAGE‖genLayer(MESSAGE, i)

(2) genLayer(MESSAGE, i) is defined as the 80-bit key schedule of PRESENT. Thus, MESSAGE

is rotated by 61-bit positions to the left, the left-most four bits are passed through the
PRESENT S-box, and the round counter i is exclusive-ored with some bits of MESSAGE.

In words, we use the key schedule of PRESENT-80 exactly as is and at each round we use what
would be two successive 80-bit round keys. At each round the key schedule is updated only

104

6.7. Compact hash functions with a digest size of ≥ 160 bits

once, so the same subkey is used once on the right-hand side and, in the following round, on
the left-hand side.

PROP-2. For the second proposal, we consider a structure that has some similarity to
Whirlpool. Our parameter set is n = 160 and k = 160 which allows us to use a longer message
extract at each iteration of the compression function. For prototyping and implementation
estimates we set r = 80. The building blocks eLayer and genLayer are specified as:

(1) eLayer(MESSAGE, i) = MESSAGE

(2) genLayer(MESSAGE, i) = pLayer(sBoxLayer(MESSAGE ⊕ i)), being just a copy of the data
path with round constant addition.

In words, we imagine that our message extract is a 160-bit key and we process the key in a
key-schedule that is identical to the encryption process.

Our proposed design elements are not intended to be specifications. Nevertheless, some pre-
liminary analysis follows from the simple structures proposed. In particular, for a fixed mes-
sage block and two different chaining values we can apply Theorem 1 of [33] directly. This
states that at least 10 active S-boxes are involved in any 5-round differential characteristic.
However, for the more important case of two different message blocks, the analysis has to be
slightly modified. The following two results on the differential behavior of the proposals can
be viewed as a first step towards a deeper analysis:

Theorem 6.1. Let P
(3)
(∆1,∆2) 7→∆ be the probability of a differential characteristic over 3 rounds of PROP-

1 with ∆2 6= 0, i.e. the probability that

PROP-13(H ⊕∆1, M ⊕∆2) = PROP-13(H,M)⊕∆,

where PROP-13 denotes three rounds of PROP-1. Then each 3-round differential characteristic of this

form has at least 4 active S-boxes and therefore P
(3)
(∆1,∆2) 7→∆ ≤ 2−8.

Theorem 6.2. Let P(∆1,∆2) 7→∆ be the probability of a differential characteristic such that

PROP-2(H ⊕∆1, M ⊕∆2) = PROP-2(H,M)⊕∆

for ∆2 6= 0. Then P(∆1,∆2) 7→∆ ≤ 2−400 for PROP-2.

Theorem 6.1 indicates that the probability of each 64-round differential characteristic can be
upper-bounded by (2−8)

64

3 ≈ 2−170. This observation as well as Theorem 6.2 show that the
differential properties may be strong enough to thwart pre-image, second pre-image and col-
lision attacks for both proposals. Furthermore, Theorem 6.2 indicates that one could probably
decrease the number of rounds in PROP-2 without unduly compromising the security. The
most appropriate trade-off remains an area of research.

6.7.4 Estimations of PROP-1 and PROP-2

We estimated the hardware figures for different architectures when implementing PROP-1 and
PROP-2. Our implementation estimates range from a 4-bit width data path (highly serialized)
up to a 160-bit width data path which offers one round of processing in one cycle. Since PROP-
2 uses a very similar key schedule (i.e. message path) and encryption routine, we can give a
further two different implementation options: one with a shared sBoxLayer between the data
path and the message path and one with an individual sBoxLayer. The results are summarized
in Table 6.4 with the efficiency eff. being measured in bps/GE.

105

Chapter 6. Lightweight Hash Functions

Table 6.4: Hardware estimations of PROP-1 and PROP-1 using datapath widths from 4 bit to 160 bit.

data PROP-1 PROP-2 (shared) PROP-2 (ind.)
path area cycles eff. area cycles eff. area cycles eff.

width (GE) (Kbps
GE) (GE) (Kbps

GE) (GE) (Kbps
GE)

4 2,520 5,282 1.2 3,010 6,481 0.82 3,020 3,281 1.62
16 2,800 1,322 4.33 3,310 1,621 2.92 3,380 821 5.77
32 3,170 662 7.64 3,730 811 5.11 3,860 411 10.09
80 4,270 266 14.09 4,960 325 9.29 5,300 165 18.3
160 4,830 134 24.73 5,730 163 15.29 6,420 83 30.03

6.8 Conclusion

Table 6.5 summarizes our results and compares them to other hash functions and AES-based
schemes. When the hash output length is 128 bits or lower, a construction based around
PRESENT seems to have potential. Certainly they are far more competitive than current hash
functions, the primary reason being that there exist efficient block cipher-based constructions
for this size of hash output. Even a larger block cipher such as AES makes for a more compact
hash function than current dedicated designs at this security level, though the throughput suf-
fers. Also first estimates of an ASIC implementation of SQUASH indicate significantly higher
area requirements while at the same time providing a two orders of magnitude lower through-
put.

For the area estimates of the AES-based Davies-Meyer and Hirose schemes we used the smallest
known (3,400 GE) AES implementation [71]. We estimated the area requirements for storing
one bit to be 8 GE as stated in [71]. For the AES-based Davies-Meyer scheme we assumed that at
least one additional register would be required to store the 128-bit value H1 (1,024 additional
GE), summing up to at least 4,400 GE in total.

The AES-based Hirose scheme requires an AES implementation with 256-bit key length. How-
ever, no such low-cost implementation has been reported so far. Therefore we estimate the
area requirements starting from the Feldhofer et al. [71] implementation with a 128-bit key. At
least 128 additional key bits (1,024 GE) have to be stored to achieve an AES implementation
with 256 bits key length, summing up to at least 4,400 GE. The Hirose scheme requires two in-
stantiations of the block cipher and the storage of one intermediate value H1, which has the
same size as the block size. All together we estimate the AES-based Hirose scheme to require at
least 9,800 GE. The serial variant of C-PRESENT-192 was not implemented, because the figures
for the round-based variant and the estimations indicate large area requirements with more
than 4, 600 GE. In fact this large area requirement for both variants of C-PRESENT-192 was the
main reason to look for other constructions such as PROP-1 and PROP-2.

Note that it is not easily possible to compare power consumption of designs implemented in
different technologies, hence we did not include these figures in Table 6.5. However, the figures
for SHA-256 (15.87 µW) and SHA-1 (10.68 µW) provided by Feldhofer and Rechberger [72] are
in the same range as ours.

While compact hash functions are often proposed in protocols for RFID tags, there are cur-
rently no sufficiently compact candidates to hand. Here we have explored the possibility of
building a hash function out of a block cipher such as PRESENT. We have described hash func-

106

6.8. Conclusion

Table 6.5: The performance of different hash functions based on the direct application of PRESENT. For
comparison with our hash functions with 128-bit output we include estimates for the AES-
based 128-bit hash function in Davies-Meyer mode. For comparison with MAME we include
estimates for the 256-bit hash function built from the AES in Hirose’s construction.

Hash Data Cycles Throughput Eff. Logic Area
output path per at 100KHz [bps/GE] process [GE]

size size block [Kbps]

64 bit output size

DM-PRESENT-80 64
64 33 242.42 109.5 0.18µm 2,213

4 547 14.63 9.1 0.18µm 1,600

DM-PRESENT-128 64
64 33 387.88 153.3 0.18µm 2,530

4 559 22.9 12.1 0.18µm 1,886

SQUASH [90] 64 12 104,114 0.06 0.01 ISE 6,328

128 bit output size

H-PRESENT-128 128
128 32 200 47 0.18µm 4,253

8 559 11.45 4.9 0.18µm 2,330

MD4 [72] 128 32 456 112.28 15.3 0.13µm 7,350

MD5 [72] 128 32 612 83.66 10 0.13µm 8,400

DM-AES 128 8 > 1,032 < 12.4 < 2.8 estimate > 4,400

≥ 160 bit output size

C-PRESENT-192 192
192 108 59.26 7.4 0.18µm 8,048

12 3,338 1.9 0.41 estimate 4,600

SHA-1 [72] 160 32 1,274 40.19 4.9 0.35µm 8,120
SHA-256 [72] 256 32 1,128 45.39 4.2 0.35µm 10,868

MAME [95] 256 256 96 266.67 32.9 0.18µm 8,100

H-AES 256 8 > 1,032 < 12.4 < 1.3 estimate > 9,800

107

Chapter 6. Lightweight Hash Functions

tions that offer 64- and 128-bit outputs based on current design strategies. For their param-
eter sets these are the most compact hash function candidates available today. In particular,
H-PRESENT-128 requires around 4,000 GE, which is similar to the best known AES implemen-
tation and about 50% smaller than the best reported MD5 implementation. At the same time,
H-PRESENT-128 requires between 20–30 times fewer clock cycles than compact AES and MD5
implementations, giving it a major time-area advantage.

Obviously 128-bit hash functions are relevant for applications where a security-performance
trade-off is warranted. To obtain larger hash outputs there are severe complications and we
suspect that dedicated designs could be more appropriate.

Understanding the best trade-offs for the different approaches is not easy. As one can see,
all three estimations of PROP-1 and PROP-2 scale nicely, though it seems that PROP-2 is more
efficient in terms of throughput per area when compared to PROP-1. On the other hand PROP-
1 offers a lower minimal achievable gate count, though at the cost of a higher cycle count. Much
would also depend on a thorough security analysis of any final proposal and while some initial
analysis suggests the possibility of optimizations to an approach like PROP-2, this is something
to explore in future work during the design of an explicit proposal.

Clearly there are many areas of open research, not least the design of very compact hash func-
tions. In parallel, it might also be worth revisiting tag-based protocols that use hash functions
to see if the same goals can be achieved in a different way.

108

7 Lightweight Public-Key Cryptography

In this Chapter first the usage of lightweight public-key cryptography is motivated in Sec-
tion 7.1 and related work is treated in Section 7.2. Subsequently, a brief introduction to the
crypto-GPS identification scheme is given in Section 7.3. Then a prototype board that contains
a proof-of-concept ASIC implementation of crypto-GPS is decribed in Section 7.4. The compo-
nent of the ASIC, three different variants of the crypto-GPS scheme, are described subsequently.
First two round-based variants are describe in Section 7.5 and a serialized implementation is
detailed in Section 7.6.

7.1 Motivation

The automotive production process nowadays is very sophisticated with a widely distributed
division of tasks. Consequently it is also referred to as a supply chain [97] or even more pre-
cise a supply network. On the different steps in the production process different supplier and
sub-supplier deliver components or modules just-in-time (JIT). Some modules, such as dash-
boards or seats are delivered just-in-sequence (JIS). It is of paramount importance to identify
components cheaply and reliably in order to guarantee to have the right part at the right place
of the assembly line at the right point in time (JIT) in the right order (JIS). Since many different
players are here involved, this kind of scenarios for RFID applications is also referred to as
open systems. An overview of potentials and risks for automotive supply-chains that use RFID
tags from an economic perspective is provided in [183]. One conclusion is that there are great
optimization potentials, but also severe security threats if RFID tags are used in open systems.

The former chapters dealt with symmetric cryptographic primitives, which have the drawback
of the key-distribution problem. In closed systems RFID tags, readers and the backend system
are controlled by a single player. However, this poses no great difficulty, but for open systems
it does. Lightweight public-key cryptography may be suitable to address these problems.

7.2 Related Work

There exists a rich literature on low-area implementations of public key cryptography based
on elliptic curves (ECC). Comparison of different ECC implementations is not always easy,
because the choice of the underlying curve determines both efficiency and security of the algo-
rithm. However, no implementation has been published so far that comes close to the goal of
2, 000 GE, but several publications—with a significantly lower security level than 80-bit—exist
that are in the range of 10, 000 GE or above [18, 68, 75]. Gaubatz et al. [76] have investigated the
hardware efficiency of the NTRUencrypt algorithm [174, 106] with the following parameters
(N, p, q) = (167, 3, 128) that offer a security level of only 57 bits. Though their implementation
requires only 2, 850 GE, it takes 29, 225 clock cycles, which translates to 292 ms, for the re-
sponse to be computed. However, it is noteworthy that more than 80% of the area is occupied

Chapter 7. Lightweight Public-Key Cryptography

with storage elements and that already a bit serial datapath is used, which implies that the
chance of future improvements is very limited. Oren et al. propose a public key identification
scheme called WIPR [177] that is based on the randomized variant [87] of the Rabin crypto
system [190]. Their ASIC implementation requires 5, 705 GE and 66, 048 clock cycles, which is
still significantly larger than 2, 000 GE.

7.3 The GPS identification scheme

In this Section first a brief historical overview of GPS is given, before relevant parameters and
optimization tricks are presented.

7.3.1 History

In 1991 Girault describes self-certified public keys in [81] and 1998 Poupard and Stern analyzed
the security of practical “on-the-fly” authentication and signature systems [185]. In 2006 Marc
Girault, Guillaume Poupard and Jacques Stern proposed an “On the Fly Authentiction and
Signature Scheme Based on Groups of Unknown Order” in [85].1 In the remainder we focus
on the identification scheme. Nowadays, crypto-GPS is standardized within the international
standard ISO/IEC 9798-5 [112]. Furthermore it is listed within the final NESSIE recommenda-
tions [113].

7.3.2 Parameters and optimizations

Since crypto-GPS offers a variety of parameters for different security-performance trade-offs,
optimizations have been widely discussed in the literature. In the following we will focus on
the optimizations that have actually been chosen for our implementation. Starting with the el-
liptic curve-based variant, we will discuss coupons, low Hamming weight (LHW) challenges,
compact encoding of the LHW challenge, and the usage of a PRNG.

Elliptic curve-base

Though there are variants of the crypto-GPS scheme that are based on RSA-like moduli, we use
a variant that uses elliptic curve operations, because it allows smaller keys. Brute-force attacks
require a square-root work effort [84], consequently for a security level of 80 bits a secret s with
σ = |s| = 160 bits is required.

Coupons

In [82] Girault described a storage-computation trade-off for the crypto-GPS scheme that uses
t coupons, each consisting of a pair (ri, xi) for 1 ≤ i ≤ t. These coupons are stored on the tag
before deployment. The on-tag computation then can be reduced to y = ri + (s× c), where c is
a challenge of δ = |c| bits length provided by the reader and s is a σ-bit secret that is stored on
the tag. Figure 7.1 shows a general overview of the elliptic curve-based variant of crypto-GPS
that we used. Here h denotes the length from an arbitrary hash function HASH.

1In the following we refer to this asymmetric identification scheme as crypto-GPS in order to not confuse with the
widespread Global Positioning System.

110

7.3. The GPS identification scheme

Keys and Parameters:

Curve C and base point P

Secret key s ∈r {0,...,2
σ

-1}

Public key V = -sP
Secret PRF key k

Keys and Parameters:

Curve C and base point P

Secret key s ∈r {0,...,2
σ

-1}

Public key V = -sP

Precomputation:

For 0 ≤ i ≤ t -1
Generate ri = PRFk(i)

Compute xi = HASH(riP)

Select coupon (xi)

Check 0 ≤ c ≤ 2
δ

-1

re-generate ri = PRFk(i)

Compute y = ri + sc

Check 0 ≤ xi ≤ 2
h

-1

Choose c ∈r {0,...,2
δ

-1}

HASH(yP + cV) = xi ?

c

xi

y

Store coupon (xi)

Tag

Reader

Figure 7.1: Overview of the used elliptic curve-based variant of crypto-GPS.

Low Hamming weight challenge

In order to avoid the computationally rather demanding (σ × δ)-bit multiplication, it is possi-
ble to turn it into a series of simple additions [84]. For this purpose, it is required to turn the
challenge c into a Low Hammingweight (LHW) challenge [84] such that at least σ− 1 zero bits are
between two subsequent 1 bits. When using binary representations of the multiplicands it is
easy to see that multiplications can be performed using the basic Shift-And-Add multipli-
cation algorithm [178]. Always when a bit of the input challenge c is 0, the multiplicand s is
shifted to the left by one position. When the bit of the input challenge c is 1 the multiplicand
s is shifted to the left and the result is added (with carry) to the multiplicand s. This way a
complete multiplication can be reduced to simple shiftings and additions. Since in our case
we use a low Hamming weight challenge that has all 1 bits at least σ − 1 zero bits apart, it is
ensured that there is no overlap in subsequent additions of s. In other words, s is never added
more than once at the same time.

In our implementation we use the following parameters: σ = |s| = 160 and a challenge c
of length δ = |c| = 848 with a Hamming weight of 5. The specifications of GPS state that
the parameters are typical set to ρ = |r| = σ + δ + 80. For the chosen values this leads to
ρ = |r| = 160+848+80 = 1, 088 bits. According to [84] these parameters enable crypto-GPS to
achieve a security level equivalent to a probability of impersonation of 2−32. This combination
of coupons and LHW leads to the most efficient implementation for constrained devices as has
been pointed out in [83, 151, 152].

Compact encoding of the LHW challenge

Also in [151, 83] two encoding schemes have been proposed that allow to use only 40 bits
to encode the complete 848-bit challenge c. In our implementation we will use a modified

111

Chapter 7. Lightweight Public-Key Cryptography

variant of the encoding scheme that was proposed for the 8-bit architecture in [151]. In par-
ticular it assumes that the challenge c consists of five 8-bit chunks ni, or in other words
c = n4‖n3‖n2‖n1‖n0. Each ni consists of the 5-bit number c1 and the 3-bit number c2

(ni = ci,2‖ci,1) and encodes the exact position of one of the five non-zero bits of the 848-bit
low Hamming weight challenge.

In particular, the positions of the non-zero bits can be calculated by the following recursive
equation:

P (i) = 160 + 8 · ci,1 + ci,2 1 ≤ i ≤ 4
P (0) = 8 · c0,1 + c0,2 i = 0.

Let us consider two example challenges Ccomp,1 and Ccomp,2. A compact transmitted challenge

n4 n3 n2 n1 n0

Ccomp,1 = 00 00 00 00 00

in hexadecimal notation gives us the following ci,1 and ci,2. Now it is easy to calculate the
positions of the non-zero bits P (i) according to the above equation.

i ni ci,2 ci,1 P (i)

0 0x00 000 00000 0
1 0x00 000 00000 160
2 0x00 000 00000 320
3 0x00 000 00000 480
4 0x00 000 00000 640

Finally, it is possible to decode the whole 848-bit challenge c. For this example the whole
challenge is the following:2

864 832 800 768 736 704 672

Ccomp,1 = 00000000 00000000 00000000 00000000 00000000 00000000 00000000
640 608 576 544 512 480 448

00000001 00000000 00000000 00000000 00000000 00000001 00000000
416 384 352 320 288 256 224

00000000 00000000 00000000 00000001 00000000 00000000 00000000
192 160 128 96 64 32 0

00000000 00000001 00000000 00000000 00000000 00000000 00000001

For the second example we assume the compact challenge

n4 n3 n2 n1 n0

Ccomp,2 = 44 E3 A2 C1 20

which leads to the following table:

2Please note that throughout this example we padded the challenge with 48 zeros to the left in order to gain a
multiple of 64 (848 + 48 = 896 = 14× 64).

112

7.3. The GPS identification scheme

i ni ci,2 ci,1 P (i)

0 0x20 001 00000 8 · 0 + 1 = 1
1 0xC1 110 00001 1 + 160 + 8 · 1 + 6 = 175
2 0xA2 101 00010 175 + 160 + 8 · 2 + 5 = 356
3 0xE3 111 00011 356 + 160 + 8 · 3 + 7 = 547
4 0x44 010 00100 547 + 160 + 8 · 4 + 2 = 741

Finally, the challenge in hexadecimal notation is decoded as follows:

864 832 800 768 736 704 672

Ccomp,2 = 00000000 00000000 00000000 00000000 00000020 00000000 00000000
640 608 576 544 512 480 448

00000000 00000000 00000000 00000000 00000008 00000000 00000000
416 384 352 320 288 256 224

00000000 00000000 00000010 00000000 00000000 00000000 00000000
192 160 128 96 64 32 0

00000000 00008000 00000000 00000000 00000000 00000000 00000002

Usage of PRNG

Storing coupons cost memory space and especially in both hardware and software implemen-
tation for embedded devices memory is a significant cost factor. Hence, the size of the coupons
limits the amount of available coupons for a given amount of memory or increases the cost.
One approach considers using shorter hash length [86] to lower memory requirements. The
ISO standard 9798 [112] suggests the usage of a PRNG for regenerating ri instead of storing
it. This would lower the size of each coupon at the fixed cost of implementing a PRNG. We
chose to use PRESENT in output feedback mode (OFB) to serve as the PRNG for our crypto-GPS
implementations.

7.3.3 Design decisions

The following optimizations have been considered for this prototype:

(1) Elliptic curves-based variant rather than RSA-based allows shorter keys thus reducing
the storage requirements.

(2) Coupons/pre-computations avoid hashing and elliptic curve operations on the tag.

(3) LHW challenges reduce the on-tag (σ × δ)-bit multiplication to simple additions.

(4) Compact encoding of LHW challenge allows to reduce the transmission time.

(5) Usage of a PRNG reduces storage for the random values.

While all of these optimizations have already been considered and studied in [83, 151, 152]
the here described implementations have different features. First of all, the implementations
described in [152] assume that the 1, 088-bit random number stream r and the 160-bit secret s
are provided in 8-bit chunks on-demand and that the 848-bit challenge c is provided bit-serial,
1 bit in each cycle. This however implies that r and s have to be stored in a separate memory
on the tag. Furthermore, this assumption also implies some kind of memory addressing logic
that selects the appropriate 8-bit chunk of r and s on-demand once requested by the GPS core.

113

Chapter 7. Lightweight Public-Key Cryptography

The implementations described in [151] also assume that the 1, 088-bit random number stream
r and the 160-bit secret s are provided in 8-bit or 16-bit chunks (depending on the architecture)
on-demand. Furthermore it is assumed that the compact challenge c is input into the GPS core
in 8-bit chunks on-demand. Similar to the implementations described in [152] this implies that
r, s and c are stored in an additional memory on the tag and that there is a memory addressing
logic. Figures for the additional logic (memory controller, memory) on the tag however are
estimated (1, 000 GE for a PRNG) or not provided.

The implementations described in Sections 7.5 (GPS-64/8-F) and 7.6 (GPS-4/4-F) read in
the complete compact challenge c and a 64-bit initialization vector IV at the beginning of
the computation. Though the secret s will be fixed in practical applications, we have also
implemented a variant (GPS-64/8-V) with a variable s in order to scrutinize performance
trade-offs for different values of s. Therefore, the (GPS-64/8-V) variant also awaits an s value
at the beginning of the computation. The 64-bit IV will be used to initialize a PRESENT-80 core
in Output-Feedback-mode (OFB) that will act as the PRNG. At the end of one run, i.e. after 17
complete iterations of PRESENT (17 ·64 bit = 1, 088 bit), the ASIC also outputs the internal state
of the PRESENT core, which will act as the new IV for the next run.

Before we turn to the detailed description of the crypto-GPS implementations in Sections 7.5
and 7.6, we first describe the prototype board in the next section in order to better understand
the design constraints.

7.4 The crypto-GPS proof-of-concept prototype board

To proof the efficiency of the crypto-GPS scheme and to study different design trade-offs, Or-
ange Labs, Paris, France decided to fabricate a proof-of-concept ASIC that should be able to
respond to a challenge in less than 200 ms. We implemented three different architectures in
VHDL. The functional simulated variants were sent to IHP3, a german chip foundry. IHP offers
so-called multi-design ASICs, were a set of different designs from different customers is bun-
dled on the same wafer. This procedure ensures significant cost savings for the production of
the lithographic mask, which in turn allows us to fabricate three different designs for a limited
budget. An ATMEL ATmega323 [12] microcontroller (µC) is used to simulate the remaining
parts of an RFID tag. As such it provides the ASIC with the challenge cin and the secret s (for
some variants) and receives the output of the ASIC. In order to have a proof-of-concept proto-
type it should be possible to easily demonstrate the functionality of the crypto-GPS variants.
Therefore the board contains a serial USB interface for easy communication with a PC. The µC
converts the bit serial data stream from the USB interface to the 8-bit parallel I/O of the ASIC
and vice versa. Figure 7.2 depicts the layout of the prototype board.

7.4.1 The input and output pins of the ASIC

One requirement of the shared design ASIC was that all variants have the same I/O pins. In
order to have the possibility of using a small packaging we tried to use as few pins as possible.
Beside the mandatory pins for power supply we decided to use the following 20 I/O pins:

clk one pin is required to clock the ASIC with the right frequency.

3Innovations for High Performance, Frankfurt/Oder, Germany.

114

7.4. The crypto-GPS proof-of-concept prototype board

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

VCC

VCC

VCC

VCC

VCC_Core

Title

Size Document Number Rev

Date: Sheet of

<Doc> <RevCode>

<Title>

A

1 1Tuesday, November 18, 2008

Title

Size Document Number Rev

Date: Sheet of

<Doc> <RevCode>

<Title>

A

1 1Tuesday, November 18, 2008

Title

Size Document Number Rev

Date: Sheet of

<Doc> <RevCode>

<Title>

A

1 1Tuesday, November 18, 2008

J5SPJ5SP

2
4
6
8

10

1
3
5
7
9

Y1

8MHz

Y1

8MHz

J6

PD

J6

PD

1 2 3 4 5 6 7 8

J9

JUMPER1

J9

JUMPER1

1 2

C5
100nF
C5
100nF

DATAOUT075

DATAOUT16

DATAOUT210

DATAOUT311

DATAOUT412

DATAOUT513

DATAOUT614

DATAOUT716

D
A

T
A

IN
7

3
1

D
A

T
A

IN
6

3
2

D
A

T
A

IN
5

3
3

D
A

T
A

IN
4

3
4

D
A

T
A

IN
3

4
4

D
A

T
A

IN
2

4
5

D
A

T
A

IN
1

4
6

D
A

T
A

IN
0

4
7

VDDCore 49
GND 50

VDDPad 60

C
L

K
7

4

R
S

T
7

3

R
X

7
2

T
X

7
1

C2

100nF

C2

100nF

J2
RST_SEL

J2
RST_SEL

4 5 6

1 2 3

R1
10k
R1
10k

C8

22pF

C8

22pF

J7

P
A

_
D

O
U

T

J7

P
A

_
D

O
U

T

2
4
6
8

10
12
14
16

1
3
5
7
9
11
13
15

J10

JUMPER1

J10

JUMPER1

1 2

C6

100nF

C6

100nF

C7

22pF

C7

22pF

J4

PC_DIN

J4

PC_DIN

1
2
3
4
5
6
7
8

C1
100nF
C1
100nF

C3

100nF

C3

100nF

J8

P
B

J8

P
B

1
2
3
4
5

J1
CLK_SEL

J1
CLK_SEL

4 5 6

1 2 3

IC1

ATmega323-TQFP44

IC1

ATmega323-TQFP44

P
B

2
(I

N
T

2
/A

IN
0

)
4

2

XTAL27

XTAL18

P
B

1
(T

1
)

4
1

(INT0)PD211

(I
N

T
1

)P
D

3
1

2

(O
C

1
B

)P
D

4
1

3

(O
C

1
A

)P
D

5
1

4

G
N

D
1

8

VCC5

PB7[SCK)3
PB6[MISO)2
PB5(MOSI)1 PA4(ADC4) 33

PA5(ADC5) 32

PA6(ADC6) 31

PA7(ADC7) 30

AREF 29

P
A

3
(A

D
C

3
)

3
4

P
B

0
(T

0
/X

C
K

)
4

0

P
B

3
(O

C
0

/A
IN

1
)

4
3

P
B

4
(S

S
)

4
4

RESET4

(RxD)PD09

(TxD)PD110

(I
C

P
)P

D
6

1
5

(O
C

2
)P

D
7

1
6

P
A

0
(A

D
C

0
)

3
7

P
A

1
(A

D
C

1
)

3
6

P
A

2
(A

D
C

2
)

3
5

AVCC 27
AGND 28

(TOSC2)PC7 26

(TOSC1)PC6 25

(TDI)PC5 24

(TDO)PC4 23

(T
M

S
)P

C
3

2
2

(T
C

K
)P

C
2

2
1

(S
D

A
)P

C
1

2
0

(S
C

L
)P

C
0

1
9

G
N

D
3

9

GND6

V
C

C
1

7

V
C

C
3

8

SW1

RST

SW1

RST

C4
100nF
C4
100nF

Figure 7.2: Layout diagram of the crypto-GPS prototype board.

n_reset one pin is required to reset the ASIC.

rx this pin is required for the I/O handshake protocol as the input channel to the ASIC.

tx this pin is required for the I/O handshake protocol as the output channel of the ASIC.

data_in these eight pins are used to load values into the ASIC.

data_out these eight pins are used to output the result.

7.4.2 The handshake protocol for communication between microcontroller and
crypto-GPS ASIC

Since the microcontroller (µC) is clocked independently from the ASIC, both components have
to be synchronized when they are communicating. Therefore a handshake protocol with the
following steps was implemented (see Figure 7.3):

(1) µC sets input data

(2) wait until input data valid

(3) µC sets tx to ‘0’ indicating that input data are valid

(4) wait until ASIC notices that input is valid (IO_READ_WAIT)

(5) ASIC sets rx to ‘0’ indicating that input is being read (IO_READ_INPUT)

115

Chapter 7. Lightweight Public-Key Cryptography

Figure 7.3: Signal flow of the handshake protocol for communication between board and crypto-GPS
ASIC.

(6) ASIC reads input (IO_READ_INPUT)

(7) ASIC sets rx to ‘1’ indicating that input was successfully read (IO_READ_ACK)

(8) wait until µC notices that rx was set to ‘1’

(9) µC sets tx to ‘1’ thus finishing the input procedure

(10) ASIC computes the response

(11) ASIC sets rx to ‘0’ indicating that output data are valid (IO_WRITE_WAIT)

(12) wait until µC notices that output is valid (IO_WRITE_WAIT)

(13) µC sets tx to ‘0’ indicating that output is being read

(14) µC reads output (IO_WROTE_OUTPUT)

(15) µC sets tx to ‘1’ indicating that the output was successfully read

(16) wait until ASIC notices that tx was set to ‘1’

(17) ASIC sets rx to ‘1’ thus finishing the output procedure.

7.4.3 Different architectures of the ASIC

We implemented one crypto-GPS variant with a round-based PRESENT-80 core, an internal dat-
apath of 8 bits and a fixed secret s. We refer to this variant in the following as GPS-64/8-F and
describe the implementation in Section 7.5. Some applications might require that the secret s
is going to be updated. For this reason and in order to exploit the performance trade-offs for
different values of s we implemented a GPS variant with a round-based PRESENT-80 core, an
internal datapath of 8 bits and a variable secret s which is referred to as GPS-64/8-V. We will
also provide details about this implementation in Section 7.5. Another design trade-off is to
use a serialized PRESENT-80 core instead of a round-based one. For this variant it is advanta-
geous to use an internal datapath of 4 bits. Furthermore we decided to implement this variant
with a fixed secret s. Details for this GPS-4/4-F called variant are provided in Section 7.6. Fi-
nally, the ASIC also contains a variant that consists only of a serialized PRESENT-80 encryption
core. This implementation is similar to the serialized PRESENT-80 implementation described
in Section 5.1.1 but also contains I/O logic. Especially noteworthy is the implementation of
the handshake protocol that lead to a significant increase of the area requirements (1, 220 GE
compared to 1, 075 GE). At the time of the submission of this Thesis the ASIC has not yet been

116

7.5. Hardware implementations of round-based crypto-GPS

ControllerPRESENT-80/64 S_Storage

Addwc

8

8 8

88

8

5 10

n_reset rx

c_in

txdata_in

8IV s_in

s_outps_out

data_out

en_add

control_ps control_s

overflowround

5

GPS-64/8-F
GPS-64/8-V

Figure 7.4: Top-level architecture of the GPS-64/8-F and GPS-64/8-V variants.

returned from fabrication such that no further investigations could be performed. Since the
architecture of a serialized PRESENT-80 core was detailed already in Section 5.1.1 we do not
repeat it at this point.

7.5 Hardware implementations of round-based crypto-GPS

The architecture of GPS-64/8-F is depicted in Figure 7.4. It uses a round-based PRESENT-
80 implementation (PRESENT), a Controller component, a full-adder component (Addwc)
and a storage component (S_Storage). In the following these components are described in
detail. Since the PRESENT component is similar to the one described in Section 5.1.2 we refer
the interested reader there. Starting with the Controller component in Section 7.5.1, the
Addwc component is described in Section 7.5.2. Finally two different S_storage components
are described in Sections 7.5.3 and 7.5.4.

117

Chapter 7. Lightweight Public-Key Cryptography

!"#$%&%'$(!"#$)*&+

,-.,

,-.,

!"#$%)/+ !"#$%&%'$%0 !"#$%&%'$#

!"#$1))

2.3456
%*$7+1)$%&"8'

2.349:6
%*$7+1)$%&"8'

,-.,

2.34;2.34<= ,-.,

(a) Central FSM of all crypto-GPS variants.

!"#$%"&'#"(&)(& !"#)%"*'++!,-

!"#$%!&'#$.!&

!"#%'./#.*0!"#$%!&'#.*0

!"#%'./#$.!&

!"#%'./#!,)(&

1231

415678

1231

94:;178
1231

;<7=

1231

1231

;<7=

;<78
1231

94:;178
1231

415678

;<78
1231

(b) I/O FSM of all crypto-GPS variants.

S_INIT_C S_FINISH_ADDS_INIT

S_ADD_S

else msg=20

S_WAIT

else c=c1&en_s=1&
done_ps=1

else

else
s=4msg=5

c1=0

else

else

en_s=1&done_ps=1

c1/=0

(c) FSM of the storage component of all crypto-GPS variants.

PS_INIT_KEY_I

PS_ADD

PS_INIT_IV

PS_PRESENTPS_IV_OUTPUT

else msg=8&IO_READ_INPUT en_ps=1

PS_INIT_KEY_II

else

en_ps=1

else

round=31&en_ps=1
else

serial=8&
en_ps=1

msg=16

else

else

(d) FSM of the round-based PRESENT core of GPS-64/8-F and GPS-64/8-V.

Figure 7.5: Finite State Machines of the crypto-GPS ASIC.

118

7.5. Hardware implementations of round-based crypto-GPS

[gFF-1]

1 0

Full
Adder

sr

n

n n

rs

addwc
n = {4,8}

'0'

Figure 7.6: Architecture of the adder component of all crypto-GPS variants.

7.5.1 Implementation of the Controller component

The controller consists of four separate but interacting FSMs each one for the central control
(see Figure 7.5(a)), I/O (Figure 7.5(b)), S_STORAGE (Figure 7.5(c)) and PRESENT (Figure 7.5(d)).
It requires 64 clock cycles to initialize the ASIC and load the values IV , cin and s. In the round
based version it requires 32 cycles to create 64 pseudo random bits by the PRESENT component
and to add it with the appropriate chunk of the secret s. Due to the handshaking protocol, it
then requires 64 cycles to output the result in 8-bit chunks. Since we have to compute 1, 088
bits we have to repeat this procedure another 16 times. Finally the internal state of the PRESENT

component has to be stored outside the ASIC as the new IV for the next iteration of crypto-
GPS. So in total (including I/O overhead) it takes 17 · (32 + 64) + 64 = 1, 696 clock cycles for
one complete run of crypto-GPS.

7.5.2 Implementation of the Addwc component

Figure 7.6 depicts the ADDWC component. As one can see, it consists of a flip-flop to store the
carry bit and a standard full-adder component. For the round-based variants GPS-64/8-F and
GPS-64/8-V it has a datapath width of 8 bits, i.e. two 8-bit input values are added.

7.5.3 Implementation of the S_Storage component with a fixed secret s

Figure 7.7(a) depicts the architecture of the S_Storage component for a fixed secret s. It
consists of an 8-bit AND gate (11 GE), an 8-bit OR gate (11 GE), a gated register with 8-
bit input (48 GE), an 8-bit 20-to-1 MUX (249 GE), and a shifting component denoted with
(“00000000”||a)«c2. First, the right 8-bit chunk of s is chosen by the MUX, which then
is ANDed with the 8-bit signal n_zero. n_zero replicates eight times a single bit of the
control_vector, hence it can either be set to “00000000” or “11111111”. This way the re-
sulting value a is either set to the corresponding 8-bit chunk of s or “00000000”, before it is
processed by the shifting component. The shifting component has a second input, namely the
shifting offset c2. Within the shifting component the input value a is appended to the string
“00000000” in order to yield the intermediate state b, i.e. in VHDL notation

b <= “00000000”&a;.

119

Chapter 7. Lightweight Public-Key Cryptography

It then rotates b by c2 positions to the left. Since c2 has three bits, the shifting offset varies
between 0 and 7. Finally, it outputs two 8-bit values c and d, which consist of the 8 MSB (c)
and the 8 LSB (d) of the internal state b. c is stored in an 8-bit gated register and d is ORed
with the output of the gated register.

7.5.4 Implementation of the S_Storage component with a variable secret s

Figure 7.7(b) depicts the architecture of the S_Storage component that is capable to process
variable secrets s. It consists of an 8-bit 4-to-1 input MUX, an 8-bit 3-to-1 output MUX, an 8-bit
AND, an 8-bit OR and 22 gated shifting registers that each store 8 bit. 20 of these shifting registers
are required to store the complete secret s and the remaining two are required to temporarily
store the shifted values for the next addition cycle.

7.6 Hardware implementation of serialized crypto-GPS

The architecture of GPS-4/4-F is depicted in Figure 7.8(a). As one can see, the general struc-
ture is very close to the architecture of the round-based variants GPS-64/8-F and GPS-64/8-
V (see Figure 7.4). It also feeds the 8-bit input value cin into the Controller component,
but contrary to the round-based variants it splits this value and feeds the higher nibble into
the S_Storage component and the lower nibble into the PRESENT component. Since it uses
an internal datapath of 4 bits, also the outputs of the PRESENT, S_Storage and the Addwc
components are only 4 bits width. Therefore the 4-bit output signal data_out is padded
with "0000" in order to fulfill the requirements of an 8 bit I/O interface. It uses a serialized
PRESENT-80 implementation (PRESENT), a Controller component, a full-adder component
(Addwc) and a storage component for fixed s (S_Storage). Since the PRESENT component
is similar to the one described in Section 5.1.1 and the Addwc component was already de-
scribed in Section 7.5.2, we refer the interested reader there. However, the Controller and
the S_Storage components are different and consequently we detail them in the remainder
of this section.

7.6.1 Implementation of the Controller component

The Controller module consists of the same four FSMs that were already described in Sec-
tion 7.5.1. Three of them (central FSM, I/O FSM and storage FSM, see Figures 7.5(a) to 7.5(c))
are similar to the ones used for the round-based variants and we refer to Section 7.5.1 for fur-
ther details. Figure 7.8(b) depicts the FSM of the serialized PRESENT-80 component. Due to
the serialized approach it is significantly more complex than the FSM for a round-based im-
plementation.

It requires 64 clock cycles to initialize the ASIC and load the values IV , cin and s. In the serial-
ized version it requires 563 cycles to create 64 pseudo random bits by the PRESENT component
and to add them to the appropriate chunk of the secret s. Due to the handshaking protocol, it
then requires 64 cycles to output the result in 4-bit chunks. Since we have to compute 1, 088 bits
we have to repeat this procedure another 16 times. Finally the internal state of the PRESENT
component has to be stored outside the ASIC as the new IV for the next iteration of crypto-
GPS. So in total (including I/O overhead) it takes 17 · (563 + 64) + 64 = 10, 723 clock cycles for
one complete run of crypto-GPS.

120

7.6. Hardware implementation of serialized crypto-GPS

!
""
#
""
$
"%
%%
"#
&
"#
'

()
!
!
!
!
!
!
!
!
)*
*+
,-
-
.
$

/0#1'2#1$3"

/042!3"

/0#12&3"

/0#1#2#553"

%%%

6789:;

0<=9<>&3

.$

&

& &

&

&&

&

&

&

&

?

&

/7;@A

/7/A;:+<97BC

(a) Architecture of the storage component of GPS-64/8-F with a fixed secret s.

Temp1
[gReg-8/1]

Temp2
[gReg-8/1]

R0
[gReg-8/1]

R0
[gReg-8/1]

R19
[gReg-8/1]

...

01 11 00 10
"0x00"

01 11 00 10

n_zero

8

s_in

'0'

8 8 8

8

8

8

8

8

8

8

88 8s_out

s_storage_var

(b) Architecture of the storage component of GPS-64/8-V with a variable secret s.

0

1

2
 .
..
 1

8
 1

9

("
0
0
0
0
0
0
0
0
"|

|a
)<

<
c
2

s[159:152]

s[7:0]

s[15:8]

s[151:144]

...

n_zero

[gReg-8]

c2

8

8 8

8

88

8

8

8

8

3

8

s_out

s_storage_fix/4

4

4 0

 1

[3:0]

[7:4]

4

(c) Architecture of the storage component of GPS-4/4-F with a fixed secret s.

Figure 7.7: Three architectures of storage components for different crypto-GPS variants.

121

Chapter 7. Lightweight Public-Key Cryptography

Table 7.1: Post-Synthesis implementation results of three different architectures of crypto-GPS.

Security Response Data Cycles Time
level size path per at 100KHz Logic Area
[bits] [bits] size block [ms] process [GE]

GPS-64/8-F 80 1,088 8 1,696 16.96
0.18 UMC 2,556

0.25 IHP 2,433

GPS-64/8-V 80 1,088 8 1,696 16.96
0.18 UMC 3,976

0.25 IHP 3,861

GPS-4/4-F 80 1,088 4 10,723 107.23
0.18 UMC 2,181

0.25 IHP 2,143

WIPR [177] 80 2,048 8 66,048 660.5 0.35 AMS 5,705

ECC-2 · 67 [18] 67 134 418,250 4,183 0.25 12,944

ECC-112 [75] 56 112 1 195,264 1,953 0.35 AMI 10,113

NTRUencrypt [76] 57 264 1 29,225 292.2 0.13 TSMC 2,850

7.6.2 Implementation of the S_Storage component with a fixed secret s

Figure 7.7(c) depicts the architecture of the S_Storage component for a fixed secret s and an
internal 4-bit datapath. As one can see, it is very similar to the S_Storage component of the
round-based variant GPS-64/8-F (see Figure 7.7(a)). In fact it just splits the 8-bit input value
into two 4-bit chunks. Dependent on a counter value it outputs either the higher or the lower
nibble.

7.7 Discussion of implementation results

For functional and post-synthesis simulation we used Mentor Graphics Modelsim SE PLUS
6.3a [92] and Synopsys DesignCompiler version Z-2007.12-SP1 [218] was used to synthesize
the designs to two different standard-cell libraries. Table 7.1 summarizes the implementa-
tion results of the three different architectures of crypto-GPS. We provide area figures from
post-synthesis for two different libraries. One is the Virtual Silicon (VST) standard cell library
UMCL18G212T3, which is based on the UMC L180 0.18µm 1P6M logic process and has a typical
voltage of 1.8 Volt [233]. Since throughout this Thesis we used this library for many other de-
signs4, we also provide area figures for crypto-GPS synthesized to the UMC library in order to
enable a fairer comparison with the other designs. On the other hand we provide area figures
for crypto-GPS for the IHP standard cell library SESAME-LP2-IHP0.25UM, which is compat-
ible to the IHP 0.25 µm Logic 1P4M Salicide process and has a typical voltage of 2.5 Volt [64].
Since we manufactured an ASIC that uses this process (see Figure 7.9 for a photograph), it is
interesting to see how the post-synthesis figures compare to the manufactured ones.

4Such as PRESENT-80 and PRESENT-128 (see Chapter 5) and all hash-functions (see Chapter 6).

122

7.7. Discussion of implementation results

ControllerPRESENT-80/4 S_Storage

Addwc

8

4 4

44

4

5 10

n_reset rx

c_in

txdata_in

8IV s_in

s_outps_out

data_out

en_add

control_ps control_s

overflowround

5

GPS-4/4-F
"0000"

8

44

[7:4][3:0]

(a) Top-level architecture of the GPS-4/4-F variant.

PS_INIT_KEY_I

PS_ADD

PS_INIT_IV

PS_PLAYER_KSPS_IV_OUTPUT

else serial=16&IO_READ_INPUT serial=4&en_ps=1

PS_INIT_KEY_II

else

en_ps=1

else

round=31&en_ps=1 else

serial=16&
en_ps=1

msg=17

else

else

PS_INIT_IV

en_ps=1

PS_SBOX

serial=16
else

(b) FSM of the serialized PRESENT core of the GPS-4/4-F variant.

Figure 7.8: Top-level architecture and FSM of the GPS-4/4-F variant.

123

Chapter 7. Lightweight Public-Key Cryptography

Figure 7.9: Photograph of the manufactured crypto-GPS ASIC.

As one can see from Table 7.1 the round-based variants GPS-64/8-F and GPS-64/8-V require
1, 696 clock cycles and the serialized variant GPS-4/4-F requires 10, 723 clock cycles for pro-
cessing one challenge. At a frequency of 100KHz this translates to 16.96 ms and 107.23 ms,
which is well below the required 200 ms. The area requirements (for the UMCL18G212T3 li-
brary) range from 3, 976 GE for GPS-64/8-V over 2, 556 GE for GPS-64/8-F to 2, 181 GE for
GPS-4/4-F. Given the more than 6 times longer processing time, it seems that a serialized
PRESENT implementation only provides a slight benefit compared to a round-based implemen-
tation. However, flexibility comes at a high price: while the fixed secret variants can hardwire
s and select the appropriate chunk with MUXes, the variable variant has to use 160 flip-flops,
which results in a significant area overhead.

Oren et al. propose a public key identification scheme called WIPR [177] that is based on the
randomized variant [87] of the Rabin crypto system [190]. Their ASIC implementation requires
5, 705 GE and 66, 048 clock cycles, which is still significantly larger than 2, 000 GE. Further-
more it takes more than 6 times longer to process one challenge compared to our serialized
implementation and 39 times longer compared to our round-based variants while being sig-
nificantly larger. While offering a significantly lower security level, even the smallest pub-
lished ECC implementations require more than 10, 000 GE and hence are far away from being
lightweight. Gaubatz et al. [76] have investigated the hardware efficiency of the NTRUencrypt
algorithm [174, 106] with the following parameters (N, p, q) = (167, 3, 128) that offer a security
level of only 57 bits. Though their implementation requires only 2, 850 GE, it takes 29, 225 clock
cycles, which translates to 292 ms, for the response to be computed. However, it is noteworthy
that more than 80% of the area is occupied with storage elements and that already a bit serial
datapath is used, which implies that the chance of future improvements is very limited.

124

8 Physical Security Aspects

In this Chapter physical security aspects and their relation to lightweight implementations are
discussed. Starting with a motivation in Section 8.1, we define a pervasive attacker model in
Section 8.2. Subsequently, pervasive devices are classified in Section 8.3 Then we provide an
evaluation of pervasive devices with regard to physical security aspects in Section 8.4. Sub-
sequently, in Section 8.5 side channel attacks and their countermeasures are introduced. Then
in Section 8.6 the cost overhead of side channel countermeasures are assessed for lightweight
hardware and software implementations of PRESENT-80. Finally this Chapter is concluded and
pointer for future work are provided in Section 8.7.

8.1 Motivation

Even though modern ciphers like AES seem to be resistant against cryptographic attacks, such
as linear or differential cryptanalysis [149, 26], it might be possible to attack the implementa-
tion of the algorithm. In the last years it became clear that an implementation of a crypto-
graphic algorithm can leak sensitive information about processed key-related data. The term
side channel analysis summarizes all possible ways of collecting this information, such as pro-
cessing time [130], power consumption [131] or electromagnetic emission [8]. Side channel
attacks pose a severe threat for pervasive devices, because of their deployment “in the field”.
If a device implements no countermeasures against tampering, an adversary may manipulate
the operation environment of the device (voltage, clock frequency) or intrude the device for
example by micro probing. An adversary may deduce from side channel information (electro-
magnetic emission, power consumption) or from the device’s behavior to her manipulations
(time delays) critical security parameters like a secret key stored inside the device.

8.2 A pervasive attacker model

For a security evaluation of pervasive devices it is important to classify the attackers, which
will be carried out in Section 8.2.1. Subsequently in Section 8.2.2 physical attacks will be clas-
sified and finally in Section 8.2.3 costs of an attack will be discussed.

8.2.1 Classification of attackers

Since the requirements in terms of cost, time, expertise and equipment differ significantly for
different attacks, it is important to classify the attackers. We adopted the classes proposed in
[1] and [6], respectively1:

1Please note that the amount of money spent by the attackers is a vague estimation that is not backed by literature.

Chapter 8. Physical Security Aspects

Class 1, Clever Outsiders: “These attackers are often very intelligent but may have insuffi-
cient knowledge of the system. They may have access to only moderately sophisticated
equipment. They often try to take advantage of an existing weakness in the system,
rather than try to create one.” We believe that clever outsider will typically not spent
more than 5,000 EUR for the whole attack including equipment and salary.

Class 2, Knowledgeable Insiders: “These attackers have substantial specialized technical
education and experience. They have varying degrees of understanding of parts of the
system but potential access to most of it. They often have highly sophisticated tools and
instruments for analysis.” Knowledgeable insiders may also spend up to 5,000 EUR for
an attack, but they can use expensive equipment free of charge.

Class 3, Funded Organizations: “These attackers are able to assemble teams of specialists
with related and complementary skills backed by great funding resources. They are
capable of in-depth analysis of the system, designing sophisticated attacks, and using
the most advanced analysis tools. They may use class 2 adversaries as part of the attack
team.” Funded organizations may spend several 100,000’s EUR for an attack. Notice that
combinations of attacker classes are also possible and bear a great security risk. Imagine
a knowledgeable insider who distributes his knowledge via the Internet to many clever
outsiders.

8.2.2 Classification of attacks

Following Anderson et al. [7], we categorize the attacks in either active or passive and either local
or remote attacks. During an active attack the adversary tries to manipulate the device, its input
or its environment to cause abnormal behavior, while during a passive attack, the adversary
works with the device as it is operated normally. Local attacks can be further separated into
invasive, semi-invasive and non-invasive attacks. Invasive attacks are classified by a direct
electrical access to the internal components of the device, for example by micro-probing [134].
Even though, semi-invasive attacks do neither require direct electrical contact nor damage the
silicon, they need a de-packaged chip. Thus, an adversary requires access to the device. An-
derson et al. [7] give the following example for a semi-invasive attack: “the attacker may use
a laser beam to ionize a transistor and thus change the state of the flip-flop that holds the de-
vice’s protection state”. Non-invasive attacks include close observation and manipulation of
the device’s operation, for example differential power analysis [131]. For this kind of attacks,
no extremely sophisticated equipment is necessary. Even class 1 attacker can organize some
second-hand equipment (like high-grade oscilloscope) for this attack. Remote attacks include
observation of the normal input and output of the device, for example timing analysis, crypt-
analysis, protocol analysis, and attacks on the application programming interface. A special
kind of remote attacks are Denial of Service (DoS) attacks. In this case an attacker’s aim is to
compromise the availability of functions of the device. As an extreme example for a Denial of
Service attack consider the following: an attacker could send lots of requests to the device, forc-
ing it to compute answers. After a certain time period the energy resources will be exhausted
and the node stops working. That is the reason why active devices are more susceptible to
Denial of Service attacks than passive devices. However, since this is not a physical security
concern, it was not considered in our evaluation.

126

8.3. Classification of pervasive devices

8.2.3 Classification of attack costs

We assume that the cost of an attack consists of two parts: initial costs Ci and cost per device
Cd. The average costs per device C to break x devices are estimated by the following equation:

C =
Ci + x · Cd

x

As one can see from this equation, with larger x, the initial cost Ci become negligible. While
high initial costs Ci put off class I and class II attackers but not class III attackers, high breaking
costs per device Cd also scare class III attackers. The optimization goal is therefore to increase
the cost per device Cd as much as possible.

8.3 Classification of pervasive devices

Resistance against tampering is used as the main characteristic to distinguish the classes, be-
cause we classify the devices with regard to security issues. The classes are:

� unprotected devices

� partly protected devices

� tamper resistant devices.

Another property which we used to classify devices is the power supply. If a device provides
not its own power supply, it is called a passive device. If a device has a built-in power supply
it is called an active device. Active devices usually have a longer range than passive devices,
but, if battery powered, they offer an additional resource, which an attacker might attack.
Therefore, we further separated each of the three classes into active and passive devices. In
our classification scheme device costs also play an important role. If millions or even billions
of devices are deployed, the price of a single device becomes a knock-out criterion. Thus, we
classified the devices on their estimated prize as follows:

low: less than 1 EUR (e.g. passive RFID label)

medium: 1 - 10 EUR (e.g. smart card)

high: more than 10 EUR (e.g. high-end smart card)

The NIST standard FIPS 140-02 [160] defines four levels of physical security for cryptographic
modules:

Level 1: devices with no special protection mechanisms

Level 2: devices, that implement tamper evidence mechanisms

Level 3: devices, that implement tamper evidence and tamper response mechanisms

Level 4: devices, that implement tamper evidence, tamper response and environmental pro-
tection mechanisms/environmental testing

Tamper evidence mechanisms provide the evidence, that an attack has been attempted (for exam-
ple a seal). Tamper response mechanisms actively react to the detection of an attack (for example a
zeroization circuit that deletes the secure key). Environmental protection mechanisms measure the
voltage and temperature of the device. Environmental testing means, that a device undergo a
testing procedure with extreme voltages and temperatures before it is deployed. According to

127

Chapter 8. Physical Security Aspects

Anderson et al. [7], there is a clear bifurcation in the smart card market between low-cost smart
cards and state of the art secure smart cards. Low-cost smart cards offer rudimentary protec-
tion such that we denote them as passive partly protected devices’. We will have a look at highly
secure smart cards in Section 8.3.3 as passive tamper resistant devices. Radio Frequency Identi-
fication (RFID) devices comprise a wide variety of devices. Because this ranges from single
bit transponders to contact-less smart cards, the term RFID is not suitable for our classification
scheme. In each case one has to classify an RFID transponder based on the properties of the de-
vice. However, we use the term RFID as an equivalent to passive low-cost RFID tags, therefore
we will use the term RFID tags synonymous to passive unprotected pervasive devices.

8.3.1 Unprotected pervasive devices

Unprotected pervasive devices typically have been developed for mass-market applications.
Furthermore, we assume that one of the main designing constraints, probably the most impor-
tant one, for this kind of devices was low production cost. As a consequence of this sharp cost
calculation, unprotected devices were not designed to provide any countermeasures against
tampering. A standard passivation layer is the top most layer of every micro-controller. If the
secret key is stored in an external memory an adversary can simply read it out and the pas-
sivation layer is useless. In this sense it is not really a countermeasure, but it can extend the
time needed for an attacker to gain access to the controller chip. Unprotected devices usually
comprise embedded processors, which are normally very cheap and hence best suited for mass
deployment. The following list summarizes the main characteristics of unprotected devices:

� low-cost

� no security driven design

� small/lightweight

� only external memory (e.g. flash memory or EEPROM)

A special subset of unprotected devices are passive unprotected devices. They do not have an
own power supply and are extremely low-cost devices. They are supposed to be very small,
lightweight and hence very mobile. Examples for this device class are RFIDs tags used as
electronic product codes for 0.55 cent. Active unprotected devices are quite similar to passive
unprotected devices. They are supposed to be cheap, small, lightweight and also mobile. The
main difference is their own power supply. Hence they are additionally susceptible to denial
of service attacks. MicaMotes [52] serve as an example for active unprotected devices.

8.3.2 Partly protected pervasive devices

With regard to physical security mechanisms partly protected devices in our classification
scheme equal Level 3 devices in FIPS 140-2. The aim of this device class is to prevent an
intruder to gain access to critical security parameters, like plaintext key, which are stored in-
side the device. This includes mechanisms that have a high probability of tamper-detection,
such as:

� top-metal sensor meshes

� light-sensors

128

8.3. Classification of pervasive devices

Nowadays high-grade smart cards have a sensor mesh implemented in the top metal layer. A
sensor mesh consists of sensor, ground and power lines in a serpentine pattern. An adversary,
who destroys a sensor line or shortens it to ground or power, causes the device to self-destruct.
For micro-probing it is necessary to open a device and remove the standard passivation layer
to gain access to the chip’s surface. Light sensors can be used to prevent an opened chip from
working. If one of these sensors detects an intrusion attempt, a tamper-response mechanism
is triggered. Usually tamper-response mechanisms are zeroization circuits that erase all crit-
ical security parameters stored on the device. Beside tamper-detection and tamper-response
mechanisms, partly protected devices may have one or more of the following countermeasures
implemented:

� glue logic

� noise generators

� internal bus hardware encryption

� password restricted software access to internal memory

Microcontrollers used to be separated in standard building-blocks, like CPU instruction de-
coder, register file, ALU and I/O circuits. These blocks could be easily identified with an op-
tical microscope. Glue logic describes a randomized ASIC-like logic design where the blocks
cannot be identified any more. For an adversary it is virtually impossible to find signals for
probing by hand in a glue logic design, hence invasive attacks based on micro-probing are
thwarted by this countermeasure [7]. Internal bus hardware encryption makes data analysis
more difficult and thus improves the security level. Password restricted software access to
internal memory is a countermeasure against simple attacks to read out the whole memory.
If the memory content is encrypted an adversary gains no advantage any more. Noise gen-
erators aim at thwarting side channel attacks like differential power analysis. They generate
noise to obscure the actual signals in the controller. It has become clear that noise generators
can not prevent side channel attacks in general, yet they can significantly increase the effort
for an adversary to succeed. The following list summarizes the main characteristics of partly
protected devices:

� medium cost

� security is a design goal

� at least one of the above listed countermeasures is implemented

Passive partly protected devices implement one or more of the above mentioned countermea-
sures against tampering attacks. Although some of these countermeasures need power to
work properly (all kind of sensors) they can be implemented as well on passive devices. An
adversary can invade a passive device without any concern as long as the device is not pow-
ered on. Once the device is powered on, the sensors detect an intrusion attempt and zeroize
all critical security parameters like the plaintext key. Hence the countermeasures work with a
delay, giving an adversary a time window where she can try to bypass the countermeasures.
In practice, the countermeasures are quite sophisticated and it is a hard and time consuming
work to bypass them. Examples for this device class are secure memory modules or basic
smart cards. Similar to passive partly protected devices active partly protected devices im-
plement one or more of the above mentioned countermeasures. Additionally, they implement
improved tamper-resistance measures compared to passive partly protected devices. Unlike
passive devices, active devices can react immediately to a detected intrusion attempt. This is

129

Chapter 8. Physical Security Aspects

an advantage over passive devices, hence active partly protected devices are able to provide a
higher security level than passive partly protected devices.

8.3.3 Tamper resistant pervasive devices

Tamper resistant devices are the most sophisticated devices in our classification scheme. They
are comparable to security level 4 devices defined in FIPS 140-2 with regard to physical security
issues. In comparison to partly protected devices, which typically implement only a few of the
aforementioned countermeasures, tamper resistant devices aim to thwart any known attacks,
even attacks from funded organisations (class 3 attackers). Therefore, tamper resistant devices
usually implement more of the above mentioned countermeasures than partly protected de-
vices. In addition to the countermeasures mentioned in Section 8.3.2, tamper resistant devices
possess environmental failure protection mechanism or undergo environmental failure testing.
In particular, FIPS 140-2 security level 4 requires the implementation of voltage and temper-
ature sensors. Additionally clock frequency sensors improve the security level. If a device
is operated in unusual environmental conditions outside of its standard operation range, this
can cause abnormal behaviour, which may result in a security risk [16]. Environmental failure
protection mechanisms include:

� internal voltage sensors

� clock frequency sensors

� temperature sensors

Power glitch attacks use under- and over-voltages to cause abnormal behavior of the device.
Internal voltage sensors protect the device against these kinds of attacks. Similar to power
glitch attacks, clock glitch attacks use a higher frequency to cause abnormal behavior of the
device. Furthermore, at a very low clock frequency it is possible to make a static analysis of the
device. Clock frequency sensors protect the device from these attacks. Static RAM contents can
persist for seconds to minutes after power is removed, when the temperature is below -20°C.
An adversary could use this fact to read out RAM content like secret keys. Furthermore, very
high temperatures can cause failures, which may be used for attacks. Temperature sensors
aim at this kind of attacks. A high security level is a basic requirement for tamper resistant
devices, hence they are the most expensive devices in our classification scheme, assumed that
devices of the same processing power are compared. The following list summarizes the main
characteristics of partly protected devices:

� most sophisticated devices

� high cost

� security is a basic requirement

� many of the aforementioned countermeasures are implemented

� environmental protection mechanisms are implemented or the devices undergo environ-
mental testing before deployment

As already mentioned in Section 8.3.2, an adversary can attack a device without any concern
as long as it is not switched on, because tamper-detection and environmental failure protection
mechanisms can only work, when the device is powered on. Passive tamper resistant devices
should therefore have been tested for environmental failure before deployment. The temper-
ature to be tested should range from -100°C to +200°C, the voltage “should range from the

130

8.4. Evaluation of pervasive devices with respect to physical security aspects

smallest negative voltage (with respect to ground) that causes the zeroization of the electronic
devices or circuitry, including reversing the polarity of the voltages.” [160]. A wide spread
example for passive tamper resistant devices are sophisticated smart cards with controllers
like the Infineon SLE88CX720P and SLE66C24PE [109, 110]. In comparison to passive tam-
per resistant devices, active tamper resistant devices can take full advantage of environmental
failure protection mechanisms, because they can continuously monitor the operating voltage
and temperature of the device. As soon as the sensors detect unusual environmental condi-
tions of fluctuations, tamper response mechanisms must be triggered. FIPS 140-2 gives two
alternatives for tamper-responding mechanisms. Either the device is shut-down or all critical
security parameters are zeroized immediately. Examples for active tamper resistant devices are
secure hardware modules used for communication between embassies or encryption devices
for telecommunication.

8.4 Evaluation of pervasive devices with respect to physical

security aspects

In this section, we evaluate the proposed device classes with regard to security issues. Starting
with unprotected pervasive devices in Section 8.4.1, we evaluate partly protected pervasive
devices in Section 8.4.2 and tamper resistant pervasive devices in Section 8.4.3.

8.4.1 Evaluation of unprotected pervasive devices

Unprotected devices are developed under tight cost constraints, hence they are not supposed
to implement any countermeasures against physical attacks. Once an attacker can achieve
unsupervised physical access to an unprotected device, she can try to tamper it with any of
the above mentioned local attacks. Neither expensive equipment nor outstanding knowledge
about the system is required for an attack of this device class. A clever outsider (class I attacker)
may spend up to 5,000 EUR for the required (second hand) equipment. Hence, even class I
attacker (clever outsiders) are supposed to be able to break unprotected pervasive devices.

8.4.2 Evaluation of partly protected pervasive devices

Partly protected devices implement one or more of the following countermeasures: top-metal
sensor meshes, light-sensors, glue logic, noise generators, internal bus hardware encryption,
and password restricted software access to internal memory. Anderson et al. state, that “no
single low-cost defence technology can protect a device against attacks” [7]. Anyway, if coun-
termeasures are prudent implemented, they can significantly raise the time and effort (red:
cost) an attacker has to spend to physically attack a single device. Furthermore, sophisticated
and, hence, expensive equipment is required, which will ultimately exclude class I attackers.
Beside this, countermeasures aim to make life hard for class II attackers and expensive for class
III attackers [6]. Passive devices are in general more vulnerable to physical attacks than active
devices, because their countermeasures need to be powered on to work. This delay provides
a time window, where the adversary may bypass the countermeasures before she powers the
device to read out critical security parameters. Therefore it is more expensive for class II and
class III attackers to break an active device rather than a passive device.

131

Chapter 8. Physical Security Aspects

8.4.3 Evaluation of tamper resistant pervasive devices

In addition to the countermeasures mentioned in the last section, tamper resistant devices im-
plement environmental failure protection mechanisms or undergo environmental failure de-
tection. Environmental failure protection mechanisms include: internal voltage sensors, clock
frequency sensors, and temperature sensors. Anderson and Kuhn refer to a senior agency offi-
cial and a senior scientist at a leading semiconductor manufacturer stating the following: “chip
contents cannot be kept from a capable motivated opponent; at most one can impose cost and
delay” [7]. Because passive tamper resistant devices provide a time window where an adver-
sary may bypass the countermeasures and the environmental failure protection mechanisms,
we think that these devices can be broken by a class III (funded organisations) opponent. By
contrast, active tamper resistant devices can implement more sophisticated tamper-detection
mechanisms, which will react immediately to a detected attack. This results in a higher secu-
rity level and, hence, even for class III attackers it is much more expensive to break an active
tamper resistant device. Note that content of static RAM, if stored for a long period, may be
burned in and, hence, easily be read out.

As we have pointed out in this Section, the security level of a cryptographic implementation
is a matter of costs and it is very expensive to deter class II and class III attackers. Since a
large share of the envisioned applications of low-cost RFID tags protects low-price values, also
a low-cost security solution is sufficient. In particular for many cases it might be sufficient
to deter class I attackers or raise the cost to break a single device above the value of the pro-
tected application. Therefore in the following we concentrate on non-invasive passive attacks,
i.e. side-channel attacks, because they only require low-cost equipment and can be mounted
without insider knowledge.

8.5 Introduction to side channel attacks and their

countermeasures

Side channel cryptanalysis has emerged as a serious threat for smart cards and other types
of pervasive devices performing cryptographic operations. It was demonstrated in a num-
ber of publications that side channel attacks are an extremely powerful and practical tool for
breaking unprotected (or insufficiently protected) implementations of crypto systems. These
attacks exploit the fact that the execution of a cryptographic algorithm on a physical device
leaks information about sensitive data (e.g. secret keys) involved in the computations. Though
these attacks have been discovered accidently already in 1943 [167], it took more than 50 years
for the first publication of power analysis attacks in 1999 [131]. Many sources of side chan-
nel information have been discovered in recent years, including the timing characteristics of a
cryptographic algorithm [130], as well as deliberately introduced computational faults [16, 27],
but most notably are power analysis attacks [131], which evolved to an own scientific sub-field
with an ever increasing amount of publications. Simple Power Analysis (SPA) uses the leaked in-
formation from a single computation, while Differential Power Analysis (DPA) utilizes statistical
methods to evaluate the information observed from multiple computations [131]. Currently,
there exists no perfect protection against DPA attacks. However, by applying appropriate
countermeasures, it is possible to make the attacker’s task more difficult and expensive. These
countermeasures can be implemented at the architectural, algorithmic, or cell level. In the

132

8.5. Introduction to side channel attacks and their countermeasures

remainder we focus on the latter two. Starting with an overview of countermeasures at the
algorithmic level, we then discuss countermeasures at the cell level.

8.5.1 Countermeasures at the algorithmic level

The two most common countermeasure principles against side channel attacks at the algorith-
mic level are hiding and masking [147]. This Section provides a brief overview over implemen-
tation possibilities of these fundamental principals.

Hiding

Hiding is a general term for countermeasures that aim to break the link between the power con-
sumption of a cryptographic device and the processed data value [147]. There are two hiding
approaches: either the device has a random power consumption such that in each clock cycle
a random amount of power is consumed or exactly the same amount of power is dissipated
in each cycle. The latter approach tries to implement single operations in a way that each op-
eration with all data values consumes the same amount of data. However, both goals are not
possible in practice, but there are several proposal to approach this goal. In the following two
proposals that use time de-synchronization are shortly presented. Subsequently two proposal
that reduce the signal-to-noise ratio (SNR) are presented.

Random insertion of dummy cycles This approach tries to de-synchronize different power
traces of the cryptographic device. It randomly inserts dummy operations before, during and
after the execution of the algorithm. For an attacker it is important to have aligned traces, such
that correlating peaks add up. The random insertion of dummy operations de-aligns measured
power traces and hence more traces are required for a successful attack. The drawback of this
approach is its longer execution time and hence its lower throughput.

Shuffling Many cryptographic algorithms use operations that only modify a part of the in-
ternal state at once. S-boxes are a good example for these kind of operations. In the case of
AES and PRESENT 16 similar S-boxes are applied in parallel to the state. Note that AES has
an internal data state of 128 bits and 8 × 8 S-boxes while PRESENT has an internal state of 64
bits and 4 × 4 S-boxes. In a serialized implementation, where in each clock cycle only one
chunk of 4 bits (in case of PRESENT) is processed by the S-box, 16 cycles are required for the
whole state. Usually the 4-bit chunks are processed subsequently and—more important—in
the same order for each round of the algorithm. Shuffling randomizes the sequence of similar
operations with different random number for each execution and round of the algorithm. As
a result the power traces of such a protected implementation are similarly randomized as by
the insertion of dummy operations, but the throughput does not suffer. Unfortunately only
a limited amount of operations are shuffle-able in an algorithm. However, in practice both
countermeasures are often combined.

Increasing the noise There are two possibilities to reduce the SNR: increasing the noise or
reducing the signal. To increase the noise especially for hardware implementations there exist

133

Chapter 8. Physical Security Aspects

a variety of different approaches. The most straightforward approach is to perform several in-
dependent operations in parallel. A pipelined parallelized implementation of a cryptographic
algorithm performs several encryptions of different—and hence independent—plaintexts at
the same time. Consequently it is much harder to attack a parallelized implementation com-
pared to a round-based or serialized implementation. Dedicated noise generators are another
approach to increase the noise. These circuits are solely implemented to generate random noise
thus increasing V ar(Psn) and hence lower the SNR. Disadvantageous on both approaches is
the introduction of significant overhead in terms of area and power consumption.

Reducing the signal In order to lower the SNR it is also possible to decrease the signal.
It turned out that this a challenging task, because even the smallest deviations in the power
consumption of different operations can be exploited by DPA. However, dedicated logic styles
try to flatten the power consumption at the cell level. The goal is have a constant power
consumption for all different cells such that the overall power consumption is constant. Finally
some approaches filter the power consumption of the cryptographic device in order to remove
all data- and operation-dependent components.

Masking

Masking is a countermeasure that aims to release the link between the intermediate values of
a cryptographic algorithm and its power consumption by randomization. Masking can be
applied on the algorithmic level, i.e. there is no need to change the power characteristics of the
device. In Boolean masking the intermediate value vm is bit-wise XORed with the mask, such
that vm = v ⊕m and in arithmetic masking an arbitrary arithmetic operator is used despite the
bit-wise XOR. In the remainder of this Thesis we focus on Boolean masking and consequently
the term masking refers to Boolean masking unless it is denoted otherwise.

The idea behind masking is to blind the input at the very beginning of the cipher with a random
value (the mask) and then process the masked instead of the unmasked value. As a result,
the side channel leakage of all intermediate, key-dependent values is not correlated to the
unmasked values. Hence, side channel attacks can be effectively thwarted [204]. Finally, in
the so-called mask correction step, the mask has to be removed in order to output the correct
ciphertext. For this purpose the mask has to be processed by similar operations as the data
or key state. For linear operations, e.g. the permutation layer in PRESENT, this is simple to
implement, because P (x⊕m) = P (x)⊕m holds. However, for non-linear operations such as
S-boxes it is not trivial, because S(x ⊕ m) 6= S(x) ⊕ S(m). Therefore, the masked S-box Sm1

has to be adapted for each possible value of the mask m1, such that Sm1
(x⊕m1) = S(x)⊕m1

holds. This enables the mask to flow through the S-box, such that it can be unmasked easily
by XORing the mask to the output again. Figure 8.1(a) depicts a schematic of such a modified
S-box.

However, if the mask has to be updated in every round, the S-box can be further modified,
such that Sm2

(x⊕m′) = S(x)⊕md holds. Now the input value x⊕m′ of the S-box is concealed
by a different mask (m′) than the output of the S-box (md). Figure 8.1(b) depicts a schematic of
the masked S-box-m2 entity, which takes x⊕m′, m′ and md as inputs and outputs S(x)⊕md.
We advised the espresso tool to provide four Boolean output functions according to the
specifications. Hence S-box-m1 can be seen as an 8×4 S-box and S-box-m2 as a 12×4 S-box.

134

8.5. Introduction to side channel attacks and their countermeasures

S-box

4

4
m'

S(x)⊕m'

x⊕m'

4

4

S
-b

o
x
-m

1

4

(a) Single masked S-box.

S-box

4

4
m'

md

S(x)⊕md

x⊕m'

4

4

S
-b

o
x
-m

2

4

4

(b) Double masked S-box.

Figure 8.1: Schematics of single and double masked PRESENT S-boxes.

After synthesis the masked S-boxes Sm1
and Sm2

require 52 GE and 57 GE, which is about
twice the size of a standard PRESENT S-box (28 GE).

Both modified S-boxes S-box-m1 and S-box-m2 first remove the mask form the input, pro-
cess the unmasked value, and then mask the output again. This is an effective countermeasures
against side channel attacks that exploit the leakage of flip-flops, such as [158, 157]. However,
both S-boxes may be susceptible to side channel attacks that exploit the leakage of the combi-
natorial parts (toggle-count model).

Masking is in fact a (2,2) secret sharing scheme [206, 31], where both shares of the secret are
required to proceed. Unfortunately, higher order DPA attacks (HODPA) can break basic mask-
ing schemes. However, Chari et al. have shown in [41] that up to n-th order DPA attacks can be
prevented by using n masks. Following this direction, Nikova et al. extend the idea of mask-
ing with more than two shares in [168]. They show that non-linear functions implemented in
such a way, achieve provable security against first-order DPA attacks and also resists higher-
order attacks that are based on a comparison of mean power consumption. Estimations of a
hardware implementation of these ideas are presented in [169].

8.5.2 Countermeasures at the cell level

Sense Amplifier Based Logic (SABL), which is a Dual-Rail Precharge (DRP) logic, has been
proposed by Tiri et al. [224] as the first DPA countermeasure at the cell level. In fact, in the-
ory using a full-custom design tool enables to equalize the load capacitances of each couple of
complementary logic signals and hence to make the power consumption independent of the

135

Chapter 8. Physical Security Aspects

processed data. Afterwards, Wave Dynamic Differential Logic (WDDL) [226] has been intro-
duced in order to avoid the usage of full-custom design tools especially for the routing process.
Since some place and route methods such as [93, 227] were proposed to diminish the load im-
balances of complementary signals, the data-dependent time of evaluation and the memory
effect of WDDL cells leave it still vulnerable to DPA attacks [216, 147].

Although it has been shown that masking at the cell level can not prevent the information
leakage because of the presence of glitches [148], its combination with precharge logics led
to Random Switching Logic (RSL) [217] in order to equalize the circuit transition probability.
However, Tiri and Schaumont [225] showed that the single mask-bit in RSL just add one bit
of entropy. On the other hand, in order to use semi-custom design tools without routing con-
strains, Masked Dual-Rail Precharge Logic (MDPL) [182] was introduced. It works similar to
WDDL and employs a single mask-bit to nullify the effect of load imbalances. Moreover, Dual-
Rail Random Switching Logic (DRSL) [42] was proposed to be the dual-rail version of RSL and
to avoid the need of a central module to control the precharge signals.

Suzuki et al. showed that MDPL is susceptible to the early propagation effect [215]. The
practical evaluation of the SCARD prototype chip2 proved that the early propagation effect
which resulted in a vulnerability of CMOS circuits also exists for MDPL cells [181]. In or-
der to cope with the early propagation issues, the designers of MDPL introduced a so called
Evaluation-Precharge Detection Unit (EPDU), which consists of three (CMOS) AND gates and
two (CMOS) OR gates. The EPDU is applied to all improved MDPL (iMDPL) gates, hence it is
not surprising that the area requirements for iMDPL gates increased significantly compared to
MDPL gates.

Gierlichs [79] presented an attack on MDPL that exploits a deviation in the mask bit distri-
bution and unbalanced dual-rails in the target cell. In order to mount this attack an adver-
sary requires detailed knowledge on the layout-level of the device under attack. However, in
practice this information is not publicly available or requires insider knowledge or expensive
equipment and time-consuming efforts, such as reverse-engineering to gain it.

At that time, Schaumont and Tiri [202] showed that already slightly unbalanced complemen-
tary wires can be exploited to mount classical DPA attacks after only a simple filtering oper-
ation. Contrary to Gierlichs they did not exploit the unbalanced wires of the mask bit signal,
but rather use only the unbalanced dual-rail wires of the logical signals.

Note that the attacks of Gierlichs and of Schaumont/Tiri can also be mounted on circuits built
in iMDPL, but again require unbalanced wires and detailed knowledge of the device under at-
tack. Therefore both attacks assume a rather strong attacker model. Furthermore, both attacks
and also the attacks by Suzuki et al. [215] and Popp et al. [181] exploit leakage of the combi-
natorial part of a circuit. Contrary to this, Moradi et al. presented an attack on special circuits
built in MDPL and DRSL that exploits the leakage of the underlying flip-flops [158]. They gain
the Hamming distance of the mask bit with a Simple Power Analysis (SPA) and subsequently
attack the circuit with a Correlation Power Analysis (CPA) [35]. Note that the success rate of
any SPA strongly depends on the architecture of the attacked device. However, this attack
is focused on a special type of flip-flops and a special architecture of the circuit. In a follow-
up work [157] Moradi et al. analyzed the information leakage of CMOS flip-flops as well as
the flip-flops of some known DPA-resistant logic styles. Using a modified Hamming distance

2During the SCARD (Side-Channel Analysis Resistant Design Flow, www.scard-project.eu) project a proto-
type chip was built, that contains amongst other components three AES co-processors built in CMOS, a DRP
logic, and MDPL.

136

8.6. Cost overhead estimations of side channel countermeasures

model to find the leakage of the CMOS flip-flops used in masked flip-flops their attack does
not require any knowledge of the layout of the device3 nor unbalanced wires and hence can
be mounted even by class 1 attackers (clever outsiders). Their attack works even if a masked
dual-rail ASIC has perfectly balanced wires.

Yet, perfectly balanced loads can never be achieved in practice because electrical effects will
always cause different wire capacitances, even when the routing is done manually in a full-
custom design process. Therefore, it is questionable whether dual-rail logic approaches can
provide enough resistance against side channel attacks in practice. Hence, the design of side
channel countermeasures at the cell level remains an open research problem.

8.6 Cost overhead estimations of side channel countermeasures

In this Section the costs of side channel countermeasures for lightweight hardware and soft-
ware implementations of PRESENT-80 are assessed. The goal is to provide figures that estimate
the additional costs in terms of area and timing when implementing side channel counter-
measures. First a masked serialized PRESENT-80/4 hardware architecture is discussed in Sec-
tion 8.6.1 and subsequently a masked software implementation on a 4-bit microcontroller is
assessed in Section 8.6.2.

8.6.1 Cost overhead estimations for a masked serialized hardware
implementations of PRESENT

This section estimates the overhead costs of a masked serialized hardware implementation of
PRESENT compared to a non-masked implementation. In a masked implementation no two
values with the same mask should be stored in registers with a similar leakage model in sub-
sequent clock cycles [147]. This is especially important for lightweight hardware implementa-
tions, because the register are reduced to a minimum in order to save area. This in particular
means that as few registers or flip-flops are used as possible, which implies that updated val-
ues replace current values. For round-based implementations it is immediately clear that in
each cycle a new mask has to be applied to all data state and key state bits. A serialized
PRESENT-80/4 implementations requires a new 4-bit mask for every 4-bit chunk of the data
and the key state in every round. Hence, regardless of the architecture, a masked PRESENT-80
implementation requires in total 32 · (64 + 80) = 4, 608 mask bits, i.e. random bits.

Figure 8.2 depicts a proposal for a double masked serialized PRESENT-80 architecture. It con-
sists of a serialized PRESENT-80/4 implementation without the S-boxes component (1, 038 GE),
because it was replaced by S-box-m2 in the datapath and by S-box-m1 in the key schedule.
The initial data are input as sixteen 4-bit words W = w15 . . . w0. These words are masked
with random 4-bit words md,i ∈R {0, 1}4 before they are stored in the state registers, hence the
data state consists of the following sixteen 4-bit words wm,15 . . . wm,0 where wm,i = wi ⊕md,i

for 0 ≤ i ≤ 15. Similarly, the initial key K = k19 . . . k0 is input in 4-bit words and masked
with random 4-bit words mk,j ∈R {0, 1}4. Consequently the key state consists of the following
twenty 4 bit words km,19 . . . km,0 where km,j = kj⊕mk,j for 0 ≤ j ≤ 19. For this initial masking
step two additional 4-bit XORs with two inputs (18.64 GE) are required.

3Of course, any power analysis attack needs a brief knowledge about the architecture and intermediate values.

137

Chapter 8. Physical Security Aspects

Please note that in our notation the masks of the current round are denoted with md,i and
mk,j while the values of the masks from the previous round are denoted with m′

d,i and m′
k,j .

Therefore, after each round the following transitions occurs

m′
d,i ← md,i, for 0 ≤ i ≤ 15

m′
k,j ← mk,j , for 0 ≤ j ≤ 19

and consequently also
wm′,15 . . . wm,0 ← wm,15 . . . wm′,0

km′,19 . . . km,0 ← km,19 . . . km′,0

where wm′,i = wi⊕m′
d,i for 0 ≤ i ≤ 15 and km′,i = ki⊕m′

k,i for 0 ≤ i ≤ 19. This implies that the
mask bits have to be stored for one round, which requires 144 additional flip-flops (864 GE).

After initialization, the first 4-bit word of the data state wm′,0 is XORed with the corresponding
key nibble km′,0 and subsequently processed by the S-box-m2 before it is stored again in the
data state register. As mentioned above the data state has to be concealed with a different
mask prior to storing, which is performed by the S-box-m2 component. The S-box input
xm′,i consists of the XOR sum of the masked data state word wm′,i and the corresponding
masked key state word km′,i, i.e. xm′,i = wm′,i ⊕ km′,i = (wi ⊕m′

d,i) ⊕ (ki ⊕m′
k,i) = xi ⊕m′

i,
where xi = wi ⊕ ki and m′

i = m′
d,i ⊕ m′

k,i. Recall that S-box-m2 was designed such that
Sm2

(x ⊕ m′) = S(x) ⊕ md, hence the output of S-box-m2 is S(wi ⊕ ki) ⊕ md,i. In order to
provide m′

i a 4-bit XOR with two inputs is required (9.32 GE).

In the same cycle the key state word is fed back into the key state register. In order to update
the key mask, one 4-bit XOR with three inputs (18.68 GE) is required that XORs mk,i and m′

k,i to
the masked key word km′,i. Therefore the key state is updated with km,i = km′,i⊕m′

k,i⊕mk,i =
(ki⊕m′

k,i)⊕m′
k,i⊕mk,i = ki⊕mk,i. After 16 iterations all data state words have been processed

but four key state words have not. Therefore four additional clock cycles, during which the
data state sleeps, are required. The permutation layer is processed in a single clock cycle on
the complete data state. In total the execution of one round would require 16+4+1 = 21 clock
cycles. After repetition of 31 times in the final round the output has to be unmasked. For this
purpose a 4 bit XOR with two inputs is required (9.32 GE).

Please note that the S-boxes unit replaces the S-box component of the serialized PRESENT-
80/4 implementation while all other units from Table 8.1 require additional area. The S-box
component of the plain PRESENT-80/4 implementation consists of a 4-bit MUX (9.32 GE) and
an S-box (28 GE), which sums up to 37.2 GE. Consequently the contribution of the S-boxes
unit to the overhead was reduced by 37 GE and in the following Table 8.2 only the difference
was taken into account. As one can see a masked implementation requires less than double
the area of a non-masked one and is slightly above the 2, 000 GE barrier. Similar to the plain
implementation, the majority of the area is required for storage, because for every data and
key state bit also a mask bit has to be stored. The timing overhead is caused by the fact that the
key state is 16 bits longer than the data state. Since the mask bits are provided in 4-bit chunks,
4 additional clock cycles are required per round in order to update the mask of the key state.
Since also the plain implementation requires 20 clock cycles to read in the key at the beginning
of each new message block, this overhead occurs only during 31 rounds. In total 31 · 4 = 124
additional clock cycles would be required for a masked implementation.

As a next step this proposal needs to be implemented and its power consumption has to be
simulated to assess the achieved resistance against side channel attacks. Then if the results are

138

8.6. Cost overhead estimations of side channel countermeasures

data_in

key

State
[gReg-4/64]

Key
[gReg-4/80]

S-box-m2

P-Layer

4

<<61

4

4

80

64

64

80

data_out

FSM
5

counter n_reset

done

 PRESENT-80/4-m

4

4

4 4
4

4

4

71

5

4

4

4

Data mask
[gReg-4/64]

P-Layer

64

Key mask
[gReg-4/80]

<<61

S-box-m1

md

4

4
mk

4 4

80

m'k mk

m'd⊕m'k

m'd⊕m'k

md

m'k

4

m'd

Figure 8.2: Proposal for a serialized double masked PRESENT-80 architecture.

unit module area [GE] %

S-boxes
S-box-m1 52 5.05
S-box-m2 57 5.54

XORs

init data mask 9.32 0.91
init key mask 9.32 0.91
md ⊕mk 9.32 0.91
data unmask 9.32 0.91
key mask update 18.68 1.82

flip-flops
data mask 384 37.32
key mask 480 46.65

sum 1,029 100

Table 8.1: Estimated area requirements of masking components for serialized PRESENT-80/4.

139

Chapter 8. Physical Security Aspects

area clock cycles
component unit [GE] rel. [CLK] rel.

PRESENT-80/4 1,075 1 547 1

masking overhead
S-boxes 72 0.07

124 0.23XORs 56 0.05
flip-flops 864 0.80

total sum 2,067 1.92 671 1.23

Table 8.2: Estimated area and timing overhead of masking components for a serialized PRESENT-80/4
implementation.

ROM Stack Init. Cycles / block
[lines of code] rel. [EXP/RET] rel. [cycles] rel. [cycles] rel.

umasked 841 1 25/4 1/1 230 1 55,734 1

masked 2,699 3.21 25/4 1/1 640 2.78 92,498 1.66

Table 8.3: Code size and cycle count overhead of a masked PRESENT-80 implementation on the
ATAM893-D 4-bit microcontroller.

promising, a real ASIC should be manufactured and attacked in order to assess the security
level more realistically.

8.6.2 Cost overhead estimations for a masked 4 bit software implementations
of PRESENT

In Section 5.4.2 a software implementation of PRESENT-80 on a 4-bit microcontroller was pre-
sented. This implementation was strengthened using Boolean masking in a straightforward
manner and a coding style that achieves a constant runtime. Further implementation details
can be found in [234]. Table 8.3 shows the performance of the masked implementation in com-
parison with the non-masked implementation. As one can see the masked implementation
requires more than three times of ROM while the stack requirements stay the same. This is
mainly caused by the masked S-box, which is 16 times larger than the unmasked S-box. At the
same time the initialization phase is nearly three time as long and the encryption of one data
blocks requires 66% more clock cycles. However, with 92, 498 clock cycles the masked imple-
mentation can encrypt one message block below 200 ms when clocked at 500 KHz, where the
current consumption is still below 10 µA (see Section 5.4.2).

8.7 Conclusions

The structural problem of most of todays SCA countermeasures is that they significantly in-
crease the area, timing and power consumption of the implemented algorithm compared to
a non-protected implementation. Furthermore, many countermeasures require random num-

140

8.7. Conclusions

bers, hence also a TRNG or a PRNG4 has to be available. Since this will also increase the cost
of an implementation of the algorithm, it will delay the break-even point and hence the mass
deployment of some applications. For ultra-constrained applications, such as passive RFID
tags, some countermeasures pose an impregnable barrier, because the power consumption of
the protected implementation is much higher than what is available.

Power optimization techniques are an important tool for lightweight implementations of spe-
cific pervasive applications and might ease the aforementioned problem. On the one hand they
also strengthen implementations against side channel attacks, because they lower the power
consumption (the signal), which decreases the signal to noise ratio (SNR). However, on the
other hand power saving techniques also weaken the resistance against side channel attacks.
One consequence of the power minimization goal is that in the optimal case only those parts
of the data path are active that process the relevant information. Furthermore, the width of the
data path, i.e. the amount of bits that are processed at one point in time, is reduced by serializa-
tion. This however implies that the algorithmic noise is reduced to a minimum, which reduces
the amount of required power traces for a successful side channel attack. Even worse, the seri-
alized architecture allows the adversary a divide-and-conquer approach which further reduces
the complexity of a side channel attack. Summarizing, it can be concluded that lightweight im-
plementations greatly enhance the success probability of a side channel attack. The practical
side channel attack [67] on KeeLoq applications [171] impressively underline this conclusions.

A different approach that combines power saving and SCA resistance is taken by Khatir
and Moradi. They propose to use adiabatic logic styles as a countermeasure against SCA at-
tacks [121]. Adiabatic logic uses a time-varying voltage source and its slopes of transition are
slowed down. This reduces the energy dissipation of each transition to:

EAdiabatic = ξ
RC

T
CV 2

dd

where T denotes the charging/discharging time, Vdd the voltage swing value ξ is the shaping
factor for the power wave form. Recall that the energy dissipation of a CMOS circuit is given
by the following equation:

ECMOS =
1

2
CV 2

dd

where C denotes the associated capacitance and Vdd the supply voltage. In short the idea of
adiabatic logic is to use a trapezoidal power-clock voltage rather than fixed supply voltage.
As a consequence the power consumption of a circuit is reduced while at the same time its
resistance against side-channel attacks is greatly enhanced. Especially for pervasive devices
adiabatic logic styles seem to be a promising SCA countermeasure and future publications on
this topic will be worth reading.

4True Random Number Generator, Pseudo Random Number Generator.

141

9 Conclusion

As we have pointed out in this Thesis, the attacker model is different for pervasive devices
compared to traditional computers. Especially the access to and the control over the pervasive
devices opens the whole field of physical attacks for a potential adversary. On the other side,
pervasive devices are typically very constrained in terms of computing capabilities, memory
capacitance, and available power supply. These requirements lead to the need of specifically
tailored security solutions for pervasive devices. Furthermore, due to the cost-constraints in-
herent in mass-deployment always the cheapest, i.e. most constrained, device that fulfills the
requirements will be chosen for deployment. Consequently, there is a constant or even increas-
ing demand for lightweight cryptography.

In Chapter 2 we introduced the notation, metrics and further background information as well
as the design approaches and trade-offs for lightweight cryptography. We started with the
approach of implementing a standardized algorithm with the optimization goal of minimal
hardware requirements in Chapter 3. We chose DES, because it is one of the very few al-
gorithms that was designed with a strong focus on hardware efficiency and is probably the
best investigated algorithm. As a result we presented the smallest known hardware imple-
mentation of DES in Section 3.4.1. The next step was to have a closer look on the hardware
requirements of the single components and it turned out that the substitution layer of DES is
very demanding in terms of area requirements. Consequently we thought about further opti-
mizations and we decided to slightly and very carefully change the substitution layer of DES.
The literature study revealed that so far there was no DES variant published that uses a single
S-box repeated eight times. Therefore we studied the design criteria of DES’ S-boxes and the
various publications that deal with cryptographic properties of S-boxes.

In Section 3.3 we stated eight conditions which a single S-box has to fulfill in order to be re-
sistant against certain types of linear and differential cryptanalyses, and the Davies-Murphy
attack. We presented a strengthened S-box, which is used in the single S-box DES variants
DESL and DESXL. Furthermore, we showed, that a differential cryptanalysis with character-
istics similar to the characteristics used by Biham and Shamir in [25] is not feasible anymore.
We also showed, that DESL is more resistant against the most promising types of linear crypt-
analysis than DES due to the improved non-linearity of the S-box. In order to expand the key
space we also proposed DESXL, which is a DESX variant based on DESL rather than on DES.
Due to the low current consumption and the small chip size required for our DESL design, it is
especially suited for resource limited applications, for example RFID tags and wireless sensor
nodes. DESL and DESXL are two examples for the approach where a well trusted algorithm is
slightly and very carefully modified. In order to gain an even more hardware efficient imple-
mentation of a cryptographic algorithm, it is required to design a new lightweight algorithm
from scratch.

This approach was followed in Chapter 4, where the new lightweight block cipher PRESENT

was proposed. Well-known design principles (substitution-permutation network) were used
to optimize its structure and every component for lightweight hardware implementation with

Chapter 9. Conclusion

a minimal area footprint, hence so to say PRESENT is an engineered cipher. The design phi-
losophy of PRESENT was to keep it straight and simple wherever possible, because this eases
implementation, while at the same time encourages researchers to scrutinize the security of
PRESENT. In Section 4.6 we have presented our cryptanalytic results that show that PRESENT

resists all (at the time of publication) known cryptanalytic attacks. Furthermore we also have
discussed recent cryptanalytic results from other researchers that to some extent propose new
cryptanalytic techniques. Interestingly all results underline the strength of PRESENT against
these attacks.

In this Thesis we have also intensively explored implementations of PRESENT on a wide variety
of different platforms, ranging from ASICs and FPGAs, over hardware-software co-design ap-
proaches to plain software implementations. The serialized ASIC implementation constitutes
with 1, 000 GE the smallest published ASIC implementation of a cryptographic algorithm with
a reasonable security level. Also the FPGA-implementation leads to a very compact result (202
slices), while providing a maximum frequency of 254 MHz. ASIC and FPGA figures highlight
that though PRESENT was designed with a minimal hardware footprint in mind, i.e. targeted for
low-cost devices such as RFIDs, PRESENT is well suited for high-speed and high-throughput
applications. Especially its hardware efficiency, i.e. the throughput per slice or GE, respec-
tively, is noteworthy. Furthermore, interestingly the old-fashioned Boolean minimization tool
espresso lead to an FPGA implementation that was significantly smaller than a standard LUT
based implementation. Besides this, we have also discussed recently published HW/SW co-
design implementation results from other researchers that all underline PRESENTs suitability
for low-cost and low-power applications that only process small amounts of data.

On the software side we exploited the lightweight structure of PRESENT and especially its 4-bit
S-boxes by implementing PRESENT on a 4-bit microcontroller. To the best of our knowledge
up to now there are no implementation results of cryptographic algorithms for 4-bit microcon-
trollers published. In Chapter 5 we have closed this gap and provided the first implementation
results of this kind. We therefore presented a proof-of-concept that state-of-the-art cryptogra-
phy is feasible on ultra-constrained 4-bit microcontrollers. Our implementation draws a cur-
rent of 6.7 µA at a supply voltage of 1.8V and a frequency of 500 KHz. Together with the
observation that the processing of one data block requires less than 200 ms we conclude that
this implementation is interesting for passively powered RFID tags.

While compact hash functions are often proposed in protocols for RFID tags, there are cur-
rently no sufficiently compact candidates to hand. In Chapter 6 we have explored the possibil-
ity of building a hash function out of a block cipher such as PRESENT. We have described hash
functions that offer 64- and 128-bit outputs based on current design strategies. For their param-
eter sets these are the most compact hash function candidates available today. In particular,
H-PRESENT-128 requires around 4, 000 GE, which is similar to the best known AES implemen-
tation and about 50% smaller than the best reported MD5 implementation. At the same time,
H-PRESENT-128 requires between 20–30 times fewer clock cycles than compact AES and MD5
implementations, giving it a major time-area advantage. Obviously 128-bit hash functions are
relevant for applications where a security-performance trade-off is warranted. To obtain larger
hash outputs there are severe complications and we suspect that dedicated designs could be
more appropriate.

Lightweight public-key cryptography was investigated in Chapter 7. There we have described
a proof-of-concept prototype board that simulates an RFID tag and contains a crypto-GPS
ASIC. Several well-known optimizations of crypto-GPS have been described and three dif-
ferent hardware architectures of the crypto-GPS scheme have been presented. The implemen-

144

tation figures show that public key cryptography with a security level equivalent to 80 bits can
be implemented with as few as 2, 181 GE including also memory and PRNG components. For
375 additional GE a more than 6 times faster implementation (1, 696 vs. 10, 723 clock cycles)
can be realized. Both of these variants have a fixed secret s and an implementation with a
variable secret s requires 3, 976 GE and takes 1, 696 clock cycles.

The area and power minimization goals of lightweight cryptographic implementations also
bear security risks with regard to physical attacks. While on the one hand power saving tech-
niques reduce the signal, which in turn decreases the signal to noise ratio (SNR), on the other
hand together with a serialized datapath they decrease the algorithmic noise to a minimum,
thus increasing the SNR. This in turn greatly increase the success probability of side channel
attacks. Therefore in Chapter 8 we classified pervasive devices with respect to physical secu-
rity aspects. Furthermore, we have estimated the costs of masking for lightweight hardware
and software implementations of PRESENT. One observation from previously published coun-
termeasures against side channel attacks is that each countermeasure introduces a significant
overhead in area, clock cycles, and/or power consumption. Even more interesting, though the
relative overhead stays the same for different algorithms, the total overhead in terms of area
and power consumption (and also the costs) decreases with a more efficient algorithm. Espe-
cially with regard to the adapted Moore’s law this can be a strong argument for or against a
certain algorithm. Under this assumption area and power minimization becomes ever more
important and adiabatic logic seems to be a very promising logic style for pervasive devices.

In short, the implementation results that have been described in this Thesis lead to the follow-
ing conclusions:

(1) The widespread assumption that stream-ciphers can be implemented more efficiently
in hardware compared to block ciphers does not hold anymore, since the block cipher
PRESENT requires only 1, 000 GE.

(2) Consequently, hash functions with a digest size of 64 or 128 bits that are based on block
ciphers can be implemented efficiently in hardware as well. Though it is not easy to
obtain lightweight hash functions with a digest size of greater or equal to 160 bits. Given
the required parameters, it is very unlikely that the NIST SHA-3 hash competition will
lead to a lightweight approach. Hence, lightweight hash functions with a digest size of
greater or equal to 160 bits remain an open research problem.

(3) It is possible to implement the asymmetric cryptographic identification scheme crypto-
GPS with only 2, 181 GE including storage and PRNG. However, crypto-GPS has a lim-
ited (though configurable) amount of pre-computed coupons. It would be interesting to
see lightweight implementations of asymmetric identification schemes that do not have
this constraints.

145

Bibliography

[1] D.G. Abraham, G.M. Dolan, G.P. Double, and J.V. Stevens. Transaction Security System.
IBM Systems Journal, 30(2):206–229, 1991.

[2] M. Albrecht and C. Cid. Algebraic Techniques in Differential Cryptanalysis. In Fast Soft-
ware Encryption 2009 – FSE 2009, Lecture Notes in Computer Science. Springer-Verlag, to
appear., 2009.

[3] Altium Limited. TASKING VX-Toolset for C166 User Guide. Available via http://

tinyurl.com/pwtlra, September 2008.

[4] AMI Semiconductors. MTC45000 Standard Cell Design Data Book 0.35 µm CMOS, De-
cember 1996.

[5] Y. An and S. Oh. RFID System for User’s Privacy Protection. In IEEE Asia-Pacific Confer-
ence on Communications, pages 16–519. IEEE Computer Society, 2005.

[6] R. Anderson. Security Engineering: A Guide to Building Dependable Distributed Systems.
John Wiley & Sons, Inc. New York, NY, USA, 2001.

[7] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov. Cryptographic Processors - a
Survey. Proceedings of the IEEE, 94(2):357–369, 2006.

[8] R. Anderson and M. Kuhn. Tamper Resistance - a Cautionary Note. In Second Usenix
Workshop on Electronic Commerce, pages 1–11, November 1996.

[9] Atmel. 8-bit AVR Instruction Set. Available via http://www.atmel.com/dyn/

resources/prod_documents/doc0856.pdf.

[10] Atmel. AVR Studio 4.13. Available via http://www.atmel.com/dyn/products/

tools_card.asp?tool_id=2725.

[11] Atmel. Datasheet of ATMega163, an 8-bit AVR Microcontroller with 16K Bytes In-System
Programmable Flash. Available via http://www.atmel.com/dyn/resources/

prod_documents/doc1142.pdf, 2003.

[12] Atmel. Datasheet of ATMega323, an 8-bit AVR Microcontroller with 32K Bytes In-System
Programmable Flash. Available via http://www.atmel.com/dyn/resources/

prod_documents/doc1457.pdf, 2003.

[13] Atmel. Flash Version for ATAR080 ATAR090/890 ATAR092/892 and ATAM893-
D . Available via http://www.atmel.com/dyn/resources/prod_documents/

doc4680.pdf, 2005.

[14] G. Avoine and P. Oechslin. A Scalable and Provably Secure Hash-based RFID Protocol.
In 3rd IEEE Conference on Pervasive Computing and Communications Workshops — PerCom
2005, pages 110–114. IEEE Computer Society, 2005.

[15] D. Bailey and A. Juels. Shoehorning Security into the EPC Standard. In R. De Prisco
and M. Yung, editors, Security in Communication Networks — SCN 2006, volume 4116 of
Lecture Notes in Computer Science, pages 303–320, Maiori, Italy, September 2006. Springer-
Verlag.

Bibliography

[16] H. Bar-El, H. Choukri, D. Naccache, M. Tunstall, and C. Whelan. The Sorcerer’s Appren-
tice Guide to Fault Attacks. Proceedings of the IEEE, 94(2):370–382, 2006.

[17] P. Baretto and V. Rijmen. The Whirlpool Hashing Function. Available via http://www.
larc.usp.br/~pbarreto/WhirlpoolPage.html.

[18] L. Batina, J. Guajardo, T. Kerins, N. Mentens, P. Tuyls, and I. Verbauwhede. An Elliptic
Curve Processor Suitable For RFID-Tags. Cryptology ePrint Archive, Report 2006/227,
available via http://eprint.iacr.org/, 2006.

[19] G. Bertoni, L. Breveglieri, P. Fragneto, M. Macchetti, and S. Marchesin. Efficient Software
Implementation of AES on 32-Bit Platforms. In C.D. Walter, Ç.K. Koç, and C. Paar, edi-
tors, Cryptographic Hardware and Embedded Systems — CHES 2003, volume 2779 of Lecture
Notes in Computer Science, pages 159–171. Springer-Verlag, 2003.

[20] E. Biham. New Types of Cryptanalytic Attacks Using Related Keys. In T. Helleseth,
editor, EUROCRYPT 1993, volume 765 of Lecture Notes in Computer Science, pages 398–
409. Springer-Verlag, 1994.

[21] E. Biham. A Fast New DES Implementation in Software. In Fast Software Encryption 1997
– FSE 1997, volume 1267 of Lecture Notes in Computer Science, pages 260–272. Springer-
Verlag, 1997.

[22] E. Biham and A. Biryukov. How to Strengthen DES Using Existing Hardware. In Ad-
vances in Cryptology — ASIACRYPT 1994. Lecture Notes in Computer Science, Springer-
Verlag, 1994. Available via citeseer.ist.psu.edu/biham94how.html.

[23] E. Biham and A. Biryukov. An Improvement of Davies’ Attack on DES. Journal of Cryp-
tology, 10(3):195–205, Summer 1997. Available via citeseer.ist.psu.edu/467934.
html.

[24] E. Biham and O. Dunkelman. A Framework for Iterative Hash Functions - HAIFA. Pre-
sented at Second NIST Cryptographic Hash Workshop, available via csrc.nist.gov/
groups/ST/hash/, August 2006.

[25] E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In A.J.
Menezes and S.A. Vanstone, editors, Advances in Cryptology — CRYPTO 1990, volume
Lecture Notes in Computer Science 537, pages 2–21. Springer-Verlag, 1991.

[26] E. Biham and A. Shamir. Differential Cryptanalysis of the Full 16-Round DES.
In Advances in Cryptology — CRYPTO 1992, volume 740 of Lecture Notes in Com-
puter Science, pages 487–496, 1992. Available via citeseer.ist.psu.edu/

biham93differential.html.

[27] E. Biham and A. Shamir. Differential Fault Analysis of Secret Key Cryptosystems. In B. S.
Kaliski, editor, Advances in Cryptology — CRYPTO 1997, volume 1294 of Lecture Notes in
Computer Science, pages 513–525. Springer-Verlag, 1997.

[28] A. Biryukov, S. Mukhopadhyay, , and P. Sarkar. Improved time-memory trade-offs with
multiple data. In B. Preneel and S. Tavares, editors, Selected Areas in Cryptography — SAC
2005, volume 3897 of Lecture Notes in Computer Science, pages 110–127. Springer-Verlag.

[29] A. Biryukov and D. Wagner. Advanced Slide Attacks. In B. Preneel, editor, Eurocrypt
2000, volume 1807 of Lecture Notes in Computer Science, pages 589–606. Springer-Verlag,
2000.

148

Bibliography

[30] J. Black, P. Rogaway, and T. Shrimpton. Black-Box Analysis of the Block-Cipher-Based
Hash-Function Constructions from PGV. In M. Yung, editor, Advances in Cryptology —
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 320–335. Springer-
Verlag, 2002.

[31] G. R. Blakley. Safeguarding Cryptographic Keys. In National Computer Conference, pages
313–317, 1979.

[32] A. Bogdanov. Attacks on the KeeLoq Block Cipher and Authentication Systems. In RFID
Security — RFIDsec 2007, Workshop Record, 2007.

[33] A. Bogdanov, G. Leander, L.R. Knudsen, C. Paar, A. Poschmann, M.J.B. Robshaw,
Y. Seurin, and C. Vikkelsoe. PRESENT - An Ultra-Lightweight Block Cipher. In P. Pail-
lier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems — CHES
2007, number 4727 in Lecture Notes in Computer Science, pages 450–466. Springer-
Verlag, 2007.

[34] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. J.B. Robshaw, and Y. Seurin. Hash
Functions and RFID Tags: Mind the Gap. In E. Oswald and P. Rohatgi, editors, Crypto-
graphic Hardware and Embedded Systems — CHES 2008, number 5154 in Lecture Notes in
Computer Science, pages 283–299. Springer-Verlag, 2008.

[35] E. Brier, C. Clavier, and F. Olivier. In M. Joye and J.-J. Quisquater, editors, Cryptographic
Hardware and Embedded Systems — CHES 2004.

[36] L. Brown, J. Pieprzyk, and J. Seberry. LOKI - A Cryptographic Primitive for Authen-
tication and Secrecy Applications. In J. Pieprzyk and J. Seberry, editors, Advances in
Cryptology — AUSCRYPT 1990, volume 453 of Lecture Notes in Computer Science, pages
229–236. Springer-Verlag, 1990.

[37] P. Bulens, F.-X. Standaert, J.-J. Quisquater, P. Pellegrin, and G. Rouvroy. Implementation
of the AES-128 on Virtex-5 FPGAs. In S. Vaudenay, editor, Progress in Cryptology —
AFRICACRYPT 2008, pages 16–26, 2008.

[38] C. Lim and T. Korkishko. mCrypton - A Lightweight Block Cipher for Security of Low-
cost RFID Tags and Sensors. In J. Song, T. Kwon, and M. Yung, editors, Workshop on
Information Security Applications — WISA 2005, volume 3786 of Lecture Notes in Computer
Science, pages 243–258. Springer-Verlag, 2005.

[39] Cast Inc. Cast AES32-C. Available via www.cast-inc.com.

[40] D. Chang. A Practical Limit of Security Proof in the Ideal Cipher Model : Possibility
of Using the Constant As a Trapdoor In Several Double Block Length Hash Functions.
IACR Cryptology ePrint Archive, Report 2006/481. Available via http://eprint.

iacr.org/2006/481, 2006.

[41] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards Sound Approaches to Counteract
Power-Analysis Attacks. In M. Wiener, editor, Advances in Cryptology — CRYPTO 1999,
volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer-Verlag, 1999.

[42] Z. Chen and Y. Zhou. Dual-Rail Random Switching Logic: A Countermeasure to Reduce
Side Channel Leakage. In L. Goubin and M. Matsui, editors, Cryptographic Hardware and
Embedded Systems — CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages
242–254. Springer-Verlag, 2006.

149

Bibliography

[43] P. Chodowiec and K. Gaj. Very Compact FPGA Implementation of the AES Algorithm.
In C.D. Walter, Ç.K. Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Sys-
tems — CHES 2003, number 2779 in Lecture Notes in Computer Science, pages 319–333.
Springer-Verlag, 2003.

[44] C. Cid and G. Leurent. An Analysis of the XSL Algorithm. In B. Roy, editor, Advances in
Cryptology — ASIACRYPT 2005, volume 3788 of Lecture Notes in Computer Science, pages
333–352. Springer-Verlag, 2005.

[45] C. Cid, S. Murphy, and M.J.B. Robshaw. Small Scale Variants of the AES. In H. Gilbert
and H. Handschuh, editors, FSE 2005, volume 3557 of Lecture Notes in Computer Science,
pages 145–162. Springer-Verlag, 2005.

[46] B. Collard. http://www.dice.ucl.ac.be/crypto/people/show/217.

[47] B. Collard and F.-X. Standaert. A Statistical Saturation Attack against the Block Cipher
PRESENT. In Topics in Cryptology — CT-RSA 2009, to appear.

[48] D. Coppersmith. The Data Encryption Standard (DES) and its Strength Against Attacks.
Technical report rc 186131994, IBM Thomas J. Watson Research Center, December 1994.

[49] D. Coppersmith, S. Pilpel, C.H. Meyer, S.M. Matyas, M.M. Hyden, J. Oseas, B. Brachtl,
and M. Schilling. Data Authentication Using Modification Detection Codes Based on a
Public One Way Encryption Function. U.S. Patent No. 4,908,861, March 13 1990.

[50] N. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient Algorithms for Solving
Overdefined Systems of Multivariate Polynomial Equations. In B. Preneel, editor, Ad-
vances in Cryptology — EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Sci-
ence, pages 392–407. Springer-Verlag, 2000.

[51] N. Courtois and J. Pieprzyk. Cryptanalysis of Block Ciphers with Overdefined Systems
of Equations. In Y. Zheng, editor, Advances in Cryptology — ASIACRYPT 2002, volume
2501 of Lecture Notes in Computer Science, pages 267–287. Springer-Verlag, 2002.

[52] Crossbow Technology Inc. MPR-MIB Users Manual. Available via http://www.xbow.
com/Support/Support_pdf_files/MPR-MIB_Series_Users_Manual.pdf,
June 2007.

[53] J. Daemen, L. Knudsen, and V. Rijmen. The Block Cipher Square. In E. Biham, editor,
Fast Software Encryption — FSE 1997, volume 1267 of Lecture Notes in Computer Science,
pages 149–165. Springer-Verlag, 1997.

[54] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag, Berlin, Germany, 2002.

[55] I. Damgård. A Design Principle for Hash Functions. In G. Brassard, editor, Advances
in Cryptology — CRYPTO 1989, volume 435 of Lecture Notes in Computer Science, pages
416–427. Springer-Verlag, 1989.

[56] D. Davies and S. Murphy. Pairs and Triplets of DES S-Boxes. Journal of Cryptology, 8(1):1–
25, 1995.

[57] C. de Cannière and B. Preneel. Trivium. Available via www.ecrypt.eu.org/stream.

[58] R.D. Dean. Formal Aspects of Mobile Code Security. PhD thesis, Princeton University, 1999.

[59] S. Devadas and S. Malik. A survey of optimization techniques targeting low power VLSI
circuits. In ACM/IEEE Conference on Design Automation, pages 242–247, 1995.

150

Bibliography

[60] C. Diem. The XL-Algorithm and a Conjecture from Commutative Algebra. In P.J. Lee,
editor, Advances in Cryptology — ASIACRYPT 2004, volume 3329 of Lecture Notes in Com-
puter Science, pages 323–337. Springer-Verlag, 2004.

[61] T. Dimitriou. A lightweight rfid protocol to protect against traceability and cloning at-
tacks. In IEEE International Conference on Security and Privacy of Emerging Areas in Com-
munication Networks (SecureComm 2005), pages 59–66. IEEE Computer Society, 2005.

[62] T. Dimitriou. A Secure and Efficient RFID Protocol that could make Big Brother (par-
tially) Obsolete. In International Conference on Pervasive Computing and Communications –
PerCom 2006, pages 269–275, Pisa, Italy, March 2006. IEEE Computer Society.

[63] I. Dinur and A. Shamir. Cube Attacks on Tweakable Black Box Polynomials. Cryp-
tology ePrint Archive, Report 2008/385, available via http://eprint.iacr.org/

2008/385, 2008.

[64] Dolphin Integration. SESAME-LP2 – Description of the Standard Cells for the Process
IHP 0.25 µm – ViC Specifications, December 2005.

[65] S. Dominikus, E. Oswald, and M. Feldhofer. Symmetric authentication for RFID systems
in practice. RFID and Lightweight Crypto — RFIDsec 2005, Workshop Record, July 2005.

[66] T. J. Donohue. The State of American Business 2007. Technical report, United States
Chamber of Commerce, 2007.

[67] T. Eisenbarth, T. Kasper, A. Moradi, C. Paar, M. Salmasizadeh, and M. T. M. Shalmani.
On the power of power analysis in the real world: A complete break of the keeloqcode
hopping scheme. In CRYPTO, pages 203–220, 2008.

[68] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel. A Survey of
Lightweight Cryptography Implementations. IEEE Design & Test of Computers – Special
Issue on Secure ICs for Secure Embedded Computing, 24(6):522 – 533, November/December
2007.

[69] J. C Faugère. A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure
and Applied Algebra, 139(1):61 – 88, June 1999.

[70] M. Feldhofer. An Authentication Protocol in a Security Layer for RFID Smart Tags. In The
12th IEEE Mediterranean Electrotechnical Conference — MELECON 2004, volume 2, pages
759–762, Dubrovnik, Croatia, May 2004. IEEE.

[71] M. Feldhofer, S. Dominikus, and J. Wolkerstorfer. Strong Authentication for RFID Sys-
tems Using the AES algorithm. In M. Joye and J.-J. Quisquater, editor, Cryptographic
Hardware and Embedded Systems — CHES 2004, volume 3156 of Lecture Notes in Computer
Science, pages 357–370. Springer-Verlag, 2004.

[72] M. Feldhofer and C. Rechberger. A Case Against Currently Used Hash Functions in
RFID Protocols. In First International Workshop on Information Security — IS 2006, volume
4277 of Lecture Notes in Computer Science, pages 372–381. Springer-Verlag, 2006.

[73] M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. AES Implementation on a Grain of Sand.
Information Security, IEE Proceedings, 152(1):13–20, 2005.

[74] K. Finkenzeller. RFID Handbook : Fundamentals and Applications in Contactless Smart Cards
and Identification. John Wiley and Sons, 2003.

[75] F. Fürbass and J. Wolkerstorfer. ECC Processor with Low Die Size for RFID Applications.
In IEEE International Symposium on Circuits and Systems 2007 – ISCAS 2007, pages 1835–
1838, 2007.

151

Bibliography

[76] J.-P. Kaps G. Gaubatz and B. Sunar. Public Key Cryptography in Sensor Networks—
Revisited. In C. Castellucia, H. Hartenstein, C. Paar, and d. Westhoff, editors, Proceeding
of the 1st European Workshop on Security in Ad-Hoc and Sensor Networks – ESAS 2004, vol-
ume 3312 of Lecture Notes in Computer Science, pages 2–18. Springer-Verlag, 2004.

[77] X. Gao, Z. Xian, H. Wang, J. Shen, J. Huang, and S. Song. An Approach to Security and
Privacy of RFID System for Supply Chain. In IEEE International Conference on E-Commerce
Technology for Dynamic E-Business, pages 164–168. IEEE Computer Society, 2004.

[78] X. Gao, Z. Xiang, H. Wang, J. Shen, J. Huang, and S. Song. An Approach to Security
and Privacy of RFID System for Supply Chain. In Conference on E-Commerce Technology
for Dynamic E-Business — CEC-East2004, pages 164–168, Beijing, China, September 2005.
IEEE, IEEE Computer Society.

[79] B. Gierlichs. DPA-Resistance Without Routing Constraints? – A Cautionary Note About
MDPL Security. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and
Embedded Systems — CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages
107–120. Springer-Verlag, 2007.

[80] H. Gilbert and M. Minier. A Collision Attack on 7 Rounds of Rijndael. In 3rd AES
Candidate Conference, pages 230–241, 2000.

[81] M. Girault. Self-Certified Public Keys. In D. W. Davies, editor, Advances in Cryptology
— EUROCRYPT 1991, volume 547 of Lecture Notes in Computer Science, pages 490–497.
Springer-Verlag, 1991.

[82] M. Girault. Low-Size Coupons for Low-Cost IC Cards. In J. Domingo-Ferrer, D. Chan,
and A. Watson, editors, 4th Working Conference on Smart Card Research and Advanced Ap-
plications on Smart Card Research and Advanced Applications, pages 39–50, Norwell, MA,
USA, 2001. Kluwer Academic Publishers.

[83] M. Girault, L. Juniot, and M.J.B. Robshaw. The Feasibility of On-the-Tag Public Key
Cryptography. In RFID Security 2007 — RFIDsec 2007, Workshop Record, 2007.

[84] M. Girault and D. Lefranc. Public Key Authentication with One (Online) Single Addi-
tion. In M. Joye and J.-J. Quisquater, editor, Cryptographic Hardware and Embedded Systems
- CHES 2004, volume 3156 of Lecture Notes in Computer Science, pages 967–984. Springer-
Verlag, 2004.

[85] M. Girault, G. Poupard, and J. Stern. On the Fly Authentication and Signature Schemes
Based on Groups of Unknown Order. Journal of Cryptology, 19:463–487, 2006.

[86] M. Girault and J. Stern. On the Length of Cryptographic Hash-Values Used in Identifi-
cation Schemes. In Y. Desmedt, editor, Advances in Cryptology — CRYPTO 1994, volume
893 of Lecture Notes in Computer Science, pages 202–215. Springer-Verlag, 1994.

[87] S. Goldwasser and S. Micali. Probabilistic Encryption & How to Play Mental Poker
Keeping Secret All Partial Information. In ACM Symposium on Theory of Computing —
STOC 1982, pages 365–377, New York, NY, USA, 1982. ACM.

[88] T. Good and M. Benaissa. AES on FPGA from the Fastest to the Smallest. In J.R. Rao and
B. Sunar, editors, Cryptographic Hardware and Embedded Systems — CHES 2005, number
3659 in Lecture Notes in Computer Science, pages 427–440. Springer-Verlag, 2005.

[89] T. Good and M. Benaissa. Hardware Results for Selected Stream Cipher Candidates.
State of the Art of Stream Ciphers 2007 (SASC 2007), Workshop Record, February 2007.
Available via www.ecrypt.eu.org/stream.

152

Bibliography

[90] F. Gosset, F.-X. Standaert, and J.-J. Quisquater. FPGA Implementation of SQUASH. In
Twenty-ninth Symposium on Information Theory in the Benelux, 2008.

[91] P. Grabher, J. Großschädl, and D. Page. Light-Weight Instruction Set Extensions for Bit-
Sliced Cryptography. In E. Oswald and P. Rohatgi, editors, Cryptographic Hardware and
Embedded Systems — CHES 2008, number 5154 in Lecture Notes in Computer Science,
pages 331–345. Springer-Verlag, August 2008.

[92] Mentor Graphics. ModelSim SE User’s Manual. Available via http://www.model.

com/resources/resources_manuals.asp.

[93] S. Guilley, P. Hoogvorst, Y. Mathieu, and R. Pacalet. The "Backend Duplication" Method.
In J.R. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded Systems — CHES
2005, volume 3659 of Lecture Notes in Computer Science, pages 383–397. Springer-Verlag,
2005.

[94] X. Guo, Z. Chen, and P. Schaumont. Energy and Performance Evaluation of an FPGA-
Based SoC Platform with AES and PRESENT Coprocessors. In Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation, volume 5114 of Lecture Notes in Computer
Science, pages 106–115. Springer-Verlag, 2008.

[95] H. Yoshida, D. Watanabe, K. Okeya, J. Kitahara, J. Wu, O. Kucuk, and B. Preneel. MAME:
A Compression Function With Reduced Hardware Requirements. In P. Paillier and
I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems — CHES 2007,
volume 4727 of Lecture Notes in Computer Science, pages 148–165. Springer-Verlag, 2007.

[96] P. Hämäläinen, T. Alho, M. Hännikäinen, and T. D. Hämäläinen. Design and Implemen-
tation of Low-Area and Low-Power AES Encryption Hardware Core. In DSD, pages
577–583, 2006.

[97] R. B. Handfield and E. L. Nichols. Introduction to Supply Chain Management. Prentice-Hall,
Upper Saddle River, NJ, 1999.

[98] H. Handschuh, L.R. Knudsen, and M.J.B. Robshaw. Analysis of SHA-1 in Encryption
Mode. In D. Naccache, editor, Topics in Cryptology — CT-RSA 2001, volume 2020 of
Lecture Notes in Computer Science, pages 70–83, 2001.

[99] M. Hell, T. Johansson, A. Maximov, and W. Meier. A Stream Cipher Proposal: Grain-128.
In IEEE International Symposium on Information Theory—ISIT 2006, 2006. Also available
via www.ecrypt.eu.org/stream.

[100] D. Henrici, J. Götze, and P. Müller. A Hash-based Pseudonymization Infrastructure for
RFID Systems. In P. Georgiadis, J. Lopez, S. Gritzalis, and G. Marias, editors, SecPerU
2006, pages 22–27. IEEE Computer Society Press, 2006.

[101] H. Heys. A Tutorial on Differential and Linear Cryptanalysis. Available via www.engr.
mun.ca/~howard/PAPERS/ldc_tutorial.pdf.

[102] H. M. Heys and S. E. Tavares. Substitution-Permutation Networks Resistant to Differen-
tial and Linear Cryptanalysis. Journal of Cryptology, 9(1):1–19, 1996.

[103] S. Hirose. Provably Secure Double-Block-Length Hash Functions in a Black-Box Model.
In C. Park and S. Chee, editors, ICISC 2004, volume 3506, pages 330–342. Springer-Verlag,
2004.

[104] S. Hirose. How to Construct Double-Block-Length Hash Functions. In Second Crypto-
graphic Hash Workshop, Santa Barbara, Aug 2006.

153

Bibliography

[105] S. Hirose. Some Plausible Constructions of Double-Block-Length Hash Functions. In
M.J.B. Robshaw, editor, Fast Software Encryption 2006 – FSE 2006, volume 4047 of Lecture
Notes in Computer Science, pages 210–225, 2006.

[106] J. Hoffstein, J. Pipher, and J. Silverman. NTRU: A Ring-based Public Key Cryptosystem.
In J. Buhler, editor, Algorithmic Number Theory (ANTS III), volume 1423 of Lecture Notes
in Computer Science, pages 267–288. Springer-Verlag, 1998.

[107] D. Hong, J. Sung, S. Hong, J. Lim, S. Lee, B. S. Koo, C. Lee, D. Chang, J. Lee, K. Jeong,
H. Kim, J. Kim, and S. Chee. HIGHT: A New Block Cipher Suitable for Low-Resource
Device. In L. Goubin and M. Matsui, editors, Cryptographic Hardware and Embedded Sys-
tems — CHES 2006, number 4249 in Lecture Notes in Computer Science, pages 46–59.
Springer-Verlag, 2006.

[108] Infineon Technologies. Instruction Set Manual for the C166 Family of Infineon 16-
Bit Single-Chip Microcontrollers. Available via http://www.keil.com/dd/docs/

datashts/infineon/c166ism.pdf, March 2001.

[109] Infineon Technologies. Security & Chip Card ICs - SLE 88CX720P, 2001. Available
via http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/

DSA-262009.pdf.

[110] Infineon Technologies. Security & Chip Card ICs - SLE 66C24PE, 2004. Available
via http://www.datasheetarchive.com/pdf-datasheets/Datasheets-14/

DSA-262009.pdf.

[111] Infineon Technologies. Data Sheet for C167CR/C167SR 16-Bit Single-Chip Microcon-
troller. Available via http://tinyurl.com/qvyxqs, February 2005.

[112] ISO/IEC. International Standard ISO/IEC 9798 Information technology – Security tech-
niques – Entity authentication – Part 5: Mechanisms using Zero-Knowledge Techniques.
Available via http://tinyurl.com/o24jwv.

[113] IST-1999-12324. Final Report of European Project IST-1999-12324: New European
Schemes for Signatures, Integrity, and Encryption (NESSIE). Available via https:

//www.cosic.esat.kuleuven.be/nessie/, April 2004.

[114] A. Joux. Multi-Collisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In M. Franklin, editor, Advances in Cryptology — CRYPTO 2004, volume 3152
of Lecture Notes in Computer Science, pages 306–316. Springer-Verlag, 2004.

[115] A. Juels. RFID Security and Privacy: a Research Survey. Selected Areas in Communications,
IEEE Journal on, 24(2):381–394, Feb. 2006.

[116] A. Juels and S. A. Weis. Authenticating pervasive devices with human protocols. In
V. Shoup, editor, Advances in Cryptology — CRYPTO 2005, volume 3126 of Lecture Notes
in Computer Science, pages 293–198. Springer-Verlag, 2005.

[117] Keithley Instruments. 7.5-Digit High Performance Multimeter. Available via http:

//www.keithley.com/data?asset=361, 2005.

[118] J. Kelsey and B. Schneier. Second Preimages on n-bit Hash Functions for Much Less than
2n Work. In R. Cramer, editor, Advances in Cryptology — EUROCRYPT 2005, volume 3494
of Lecture Notes in Computer Science, pages 474–490. Springer-Verlag, 2005.

[119] J. Kelsey, B. Schneier, and D. Wagner. Related-key Cryptanalysis of 3-WAY, Biham-
DES,CAST, DES-X, NewDES, RC2, and TEA. In G. Goos, J. Hartmanis, and J. van

154

Bibliography

Leeuwen, editors, Information and Communications Security, volume 1334 of Lecture Notes
in Computer Science, pages 233–246. Springer-Verlag, 1997.

[120] A. Kerckhoff. La Cryptographie Militaire. Journal des Sciences Militaires, IX:5–38, Feb.
1883. Available via http://tinyurl.com/qgb56g.

[121] M. Khatir and A. Moradi. Secure Adiabatic Logic: a Low-Energy DPA-Resistant Logic
Style. Cryptology ePrint Archive, Report 2008/123, available via http://eprint.

iacr.org/2008/123, 2008.

[122] K. Kim, S. Lee, S. Park, and D. Lee. DES can be Immune to Linear Cryptanalysis. In
Workshop on Selected Areas in Cryptography – SAC 1994, pages 70–81, May 1994. Available
via citeseer.csail.mit.edu/kim94des.html.

[123] K. Kim, S. Lee, S. Park, and D. Lee. Securing DES S-boxes Against Three Robust Crypt-
analysis. In Workshop on Selected Areas in Cryptography – SAC 1995, pages 145–157, 1995.
Available via citeseer.ist.psu.edu/kim95securing.html.

[124] K. Kim, S. Park, and S. Lee. Reconstruction of s2-DES S-Boxes and their Immunity
to Differential Cryptanalysis. In Korea-Japan Joint Workshop on Information Security and
Cryptology – JW-ISC 1993, October 1993. Available via citeseer.csail.mit.edu/

kim93reconstruction.html.

[125] L. Knudsen and D. Wagner. Integral Cryptanalysis. In Fast Software Encryption — FSE
2002, volume 2365 of Lecture Notes in Computer Science, pages 112–127. Springer-Verlag,
2002.

[126] L. R. Knudsen and T. A. Berson. Truncated Differentials of SAFER. In D. Gollmann,
editor, Fast Software Encryption — FSE 1996, volume 1039 of Lecture Notes in Computer
Science, pages 15–26. Springer-Verlag, 1996.

[127] L. R. Knudsen, M. J. B. Robshaw, and D. Wagner. Truncated Differentials and Skipjack.
In M. Wiener, editor, Advances in Cryptology — CRYPTO 1999, volume 1666 of Lecture
Notes in Computer Science, pages 165–180. Springer-Verlag, 1999.

[128] L.R. Knudsen. Iterative Characteristics of DES and s2-DES. In E. F. Brickell, editor,
Advances in Cryptology — CRYPTO 1992, volume 740 of Lecture Notes in Computer Science,
pages 497–511. Springer-Verlag, 1992.

[129] L.R. Knudsen and X. Lai. New Attacks on all Double Block Length Hash Functions of
Hash Rate 1, Including the Parallel-DM. In A. De Santis, editor, Advances in Cryptology
— EUROCRYPT 1994, volume 950 of Lecture Notes in Computer Science, pages 410–418.
Springer-Verlag, 1994.

[130] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In N. I. Koblitz, editor, Advances in Cryptology — CRYPTO 1996, volume
1109 of Lecture Notes in Computer Science, pages 104–113. Springer Verlag, 1996.

[131] P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
Advances in Cryptology — CRYPTO 1999, volume 1666 of Lecture Notes in Computer Science,
pages 388–397. Springer Verlag, 1999.

[132] R. Könighofer. A Fast and Cache-Timing Resistant Implementation of the AES. In Topics
in Cryptology — CT-RSA 2008, volume 4964, pages 187–202. Springer-Verlag, 2008.

[133] T. Korte. Silverlight Implementation of PRESENT. M.sc. thesis, Embedded Security Group,
Ruhr University Bochum, February 2009.

155

Bibliography

[134] M. Kuhn and O. Kömmerling. Design Principles for Tamper-resistant Smartcard Proces-
sors. In USENIX Workshop on Smartcard Technology, 1999.

[135] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking Ciphers with CO-
PACOBANA - A Cost-Optimized Parallel Code Breaker. In L. Goubin and M. Matsui,
editors, Cryptographic Hardware and Embedded Systems — CHES 2006, number 4249 in
Lecture Notes in Computer Science, pages 101–118. Springer-Verlag, 2006.

[136] X. Lai and J.L. Massey. Hash Functions Based on Block Ciphers. In R. A. Rueppel, editor,
Advances in Cryptology — EUROCRYPT 1992, volume 658, pages 55–70. Springer-Verlag,
1992.

[137] X. Lai, C. Waldvogel, W. Hohl, , and T. Meier. Security of Iterated Hash Functions Based
on Block Ciphers. In D.R. Stinson, editor, Advances in Cryptology — CRYPTO 1993, vol-
ume 773 of Lecture Notes in Computer Science, pages 379–390. Springer-Verlag, 1993.

[138] S. K. Langford and M. E. Hellman. Differential-Linear Cryptanalysis. In Y. G. Desmedt,
editor, Advances in Cryptology — CRYPTO 1994, volume 94 of Lecture Notes in Computer
Science, pages 17–25. Springer-Verlag, 1994.

[139] G. Leander. Re-Ordering of PRESENTs S-boxes. Personal Communication., November
2007.

[140] G. Leander and A. Poschmann. On the Classification of 4-Bit S-boxes. In C. Carlet and
B. Sunar, editors, Arithmetic of Finite Fields — WAIFI 2007, volume 4547 of Lecture Notes
in Computer Science. Springer-Verlag, 2007.

[141] S. Lee, T. Asano, and K. Kim. RFID Mutual Authentication Scheme based on Synchro-
nized Secret Information. In Symposium on Cryptography and Information Security, Hi-
roshima, Japan, January 2006.

[142] S. Lee, Y. Hwang, D. Lee, and J. Lim. Efficient Authentication for Low-Cost RFID Sys-
tems. In O. Gervasi, M.L. Gavrilova, V. Kumar, A. Laganà, H.P. Lee, Y. Mun, D. Taniar,
and C.J.K. Tan, editors, Computational Science and Its Applications — ICCSA 2005, volume
3480 of Lecture Notes in Computer Science, pages 619–627. Springer-Verlag, 2005.

[143] M. Lehtonen, T. Staake, F. Michahelles, and E. Fleisch. From Identification to Authentica-
tion - A Review of RFID Product Authentication Techniques. RFID Security — RFIDsec
2006, Workshop Record, July 2006.

[144] F. Mace, F.-X. Standaert, and J.-J. Quisquater. ASIC Implementations of the Block Cipher
SEA for Constrained Applications. In RFID Security — RFIDsec 2007, Workshop Record,
pages 103 – 114, Malaga, Spain, 2007.

[145] F. Macé, F.-X. Standaert, and J.-J. Quisquater. FPGA implementation(s) of a Scalable
Encryption Algorithm. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
16(2):212–216, 2008.

[146] MAGMA. Magma v2.12. Computational Algebra Group, School of Mathematics and
Statistics, University of Sydney, available via http://magma.maths.usyd.edu.au,
2005.

[147] S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the Secrets of Smart
Cards. Springer-Verlag, 2007.

[148] S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS Gates.
In Topics in Cryptology — CT-RSA 2005, volume 3376 of Lecture Notes in Computer Science,
pages 351–365. Springer-Verlag, 2005.

156

Bibliography

[149] M. Matsui. Linear Cryptanalysis of DES Cipher. In T. Hellenseth, editor, Advances in
Cryptology — EUROCRYPT 1993, volume 0765 of Lecture Notes in Computer Science, pages
286 – 397, Berlin, Germany, 1994. Springer-Verlag.

[150] A. Maximov and A. Biryukov. Two trivial attacks on trivium. Cryptology ePrint Archive,
Report 2007/021, 2007. Available via http://eprint.iacr.org/.

[151] M. McLoone and M. J. B. Robshaw. New Architectures for Low-Cost Public Key Cryp-
tography on RFID Tags. In IEEE International Conference on Security and Privacy of Emerg-
ing Areas in Communication Networks — SecureComm 2005, pages 1827–1830. IEEE, 2007.

[152] M. McLoone and M.J.B. Robshaw. Public Key Cryptography and RFID Tags. In M. Abe,
editor, Topics in Cryptology — CT-RSA 2007, volume 4377 of Lecture Notes in Computer
Science, pages 372–384. Springer-Verlag, 2007.

[153] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography.
CRC Press, Boca Raton, Florida, USA, first edition, 1996.

[154] R.C. Merkle. One Way Hash Functions and DES. In G. Brassard, editor, Advances in
Cryptology — CRYPTO 1989, volume 435 of Lecture Notes in Computer Science, pages 428–
446. Springer-Verlag, 1989.

[155] Microsoft. Visual Studio 2008 Product Information. Available via http://tinyurl.
com/q9j9po.

[156] D. Molnar, A. Soppera, and D. Wagner. A Scalable, Delegatable, Pseudonym Protocol
Enabling Ownership Transfer of RFID Tags. RFID and Lightweight Crypto — RFIDsec
2005, Workshop Record, July 2005.

[157] A. Moradi, T. Eisenbarth, A. Poschmann, C. Rolfes, C. Paar, M. T. M. Shalmani, and
M. Salmasizadeh. Information Leakage of Flip-Flops in DPA-Resistant Logic Styles.
Cryptology ePrint Archive, Report 2008/188, available via http://eprint.iacr.

org/, 2008.

[158] A. Moradi, M. Salmasizadeh, and M. T. M. Shalmani. In K.-H. Nam and G. Rhee, editors,
Information Security and Cryptology — ICISC 2007, Lecture Notes in Computer Science,
pages 259–272. Springer-Verlag.

[159] National Institute of Standards and Technology. FIPS 46-3: Data Encryption Standard
(DES). Available via http://csrc.nist.gov, October 1999.

[160] National Institute of Standards and Technology. FIPS 140-2: Security Requirements for
Cryptographic Modules. Available via http://csrc.nist.gov/publications/

fips/, 2001.

[161] National Institute of Standards and Technology. FIPS 197: Advanced Encryption Stan-
dard. Available via http://csrc.nist.gov/publications/fips/, 26. November
2001.

[162] National Institute of Standards and Technology. SP800-38A: Recommendation for Block
Cipher Modes of Operation, December 2001.

[163] National Institute of Standards and Technology. FIPS 180-2: Secure Hash Standard.
Available via http://csrc.nist.gov, August 2002.

[164] National Institute of Standards and Technology. FIPS 198: The Keyed-Hash Message
Authentication Code. Available via http://csrc.nist.gov, March 2002.

157

Bibliography

[165] National Institute of Standards and Technology. Announcing Request for Candidate Al-
gorithm Nominations for a New Cryptographic Hash Algorithm (SHA-3) Family. Federal
Register, 72(212):62212 – 62220, November 2007.

[166] National Institute of Standards and Technology. FIPS 180-3: Secure Hash Standard.
Available via http://csrc.nist.gov, October 2008.

[167] National Security Agency. TEMPEST: A Signal Problem. Cryptologic Spectrum, 2(3), 1972
(declassified 2007).

[168] S. Nikova, C. Rechberger, and V. Rijmen. Threshold Implementations Against Side-
Channel Attacks and Glitches. In P. Ning, S. Qing, and N. Li, editors, International Con-
ference in Information and Communications Security — ICICS 2006, volume 4307 of Lecture
Notes in Computer Science, pages 529–545. Springer-Verlag, 2006.

[169] S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementations of Non-Linear
Functions in the Presence of Glitches. In P.J. Lee and J.H. Cheon, editors, International
Conference in Information and Communications Security — ICICS 2008, volume 5461 of Lec-
ture Notes in Computer Science, pages 218–234. Springer-Verlag, 2008.

[170] N.N. Espresso. Available via http://tinyurl.com/o7qh6w, November 1994.

[171] N.N. Keeloq Algorithm. Available via http://en.wikipedia.org/wiki/KeeLoq,
November 2006.

[172] N.N. Havocscope Illicit Market News. Available via http://www.havocscope.com,
January 2008.

[173] K. Nohl and H. Ploetz. Mifare - Little Security, Despite Obscurity. Talk at the 24th Chaos
Communication Congress, December 2007.

[174] NTRU Cryptosystems. NTRUencrypt. Available via www.ntru.com.

[175] ECRYPT Network of Excellence. The Stream Cipher Project: eSTREAM. Available via
www.ecrypt.eu.org/stream.

[176] M. Ohkubo, K. Suzuki, and S. Kinoshita. Cryptographic Approach to Privacy-Friendly
Tags. In RFID Privacy Workshop, 2003.

[177] Y. Oren and M. Feldhofer. WIPR – Public-Key Identification on Two Grains of Sand. In
RFID Security — RFIDsec 2008, Workshop Record, July 2008. Available via http://iss.
oy.ne.ro/WIPR.

[178] B. Parhami. Computer Arithmetic: Algorithms and Hardware Designs. Oxford University
Press, September 1999.

[179] T. Peyrin, H. Gilbert, F. Muller, and M. J. B. Robshaw. Combining Compression Functions
and Block Cipher-Based Hash Functions. In X. Lai and K. Chen, editors, Advances in
Cryptology — ASIACRYPT 2006, volume 4284 of Lecture Notes in Computer Science, pages
315–331. Springer-Verlag, 2006.

[180] H. Pfister and A. E. Kaufman. Cube-4 - A Scalable Architecture for Real-Time Volume
Rendering. In IEEE Symposium on Volume Visualization — VVS 1996, pages 47–54, 1996.

[181] T. Popp, M. Kirschbaum, T. Zefferer, and S. Mangard. Evaluation of the Masked Logic
Style MDPL on a Prototype Chip. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems — CHES 2007, volume 4727 of Lecture Notes in Computer
Science, pages 81–94. Springer-Verlag, 2007.

158

Bibliography

[182] T. Popp and S. Mangard. Masked Dual-Rail Pre-charge Logic: DPA-Resistance without
Routing Constraints. In J.R. Rao and B. Sunar, editors, Cryptographic Hardware and Em-
bedded Systems — CHES 2005, volume 3659 of Lecture Notes in Computer Science, pages
172–186. Springer-Verlag, 2005.

[183] A. Poschmann. Potenziale der RFID-Technologie zur Steuerung der Produktionsprozesskette in
der Automobilindustrie. M.Sc. Thesis in Business Studies, Fernuniversität in Hagen, April
2008.

[184] A. Poschmann, G. Leander, K. Schramm, and C. Paar. New Lightweight Crypto Algo-
rithms for RFID. In IEEE International Symposium on Circuits and Systems 2007 – ISCAS
2007, pages 1843–1846, 2007.

[185] G. Poupard and J. Stern. Security Analysis of a Practical “on the fly” Authentication and
Signature Generation. In K. Nyberg, editor, Advances in Cryptology - EUROCRYPT 1998,
volume 1403 of Lecture Notes in Computer Science, pages 422–436. Springer-Verlag, 1998.

[186] N. Pramstaller, S. Mangard, S. Dominikus, and J. Wolkerstorfer. Efficient AES Imple-
mentations on ASICs and FPGAs. In AES Conference, pages 98–112, 2004.

[187] B. Preneel. Analysis and Design of Cryptographic Hash Functions. PhD thesis, Katholieke
Universiteit Leuven, 1993.

[188] B. Preneel, A. Bosselaers, R. Govaerts, and J. Vandewalle. Collision-Free Hash Func-
tions Based on Block Cipher Algorithms. In International Carnahan Conference on Security
Technology, pages 203–210. IEEE, 1989.

[189] J.-J. Quisquater and M. Girault. 2n-bit Hash-Functions Using n-bit Symmetric Block
Cipher Algorithms. In J.-J. Quisquater and J. Vandewalle, editors, Advances in Cryptology
— EUROCRYPT 1989, volume 434 of Lecture Notes in Computer Science, pages 102–109.
Springer-Verlag, 1989.

[190] M. Rabin. Digitalized Signatures and Public-key Functions as Intractable as Factoriza-
tion. Technical report, Massachusetts Institute of Technology, Cambridge, MA, USA,
1979.

[191] H. Raddum. Cryptanalytic Results on Trivium. Available via http://www.ecrypt.
eu.org/stream/trivium.html, October 2006.

[192] W. Rankl and W. Effing. Smart Card Handbook. Carl Hanser Verlag, München, Germany,
second edition, 2002.

[193] K. Rhee, J. Kwak, S. Kim, and D. Won. Challenge-Response based RFID Authentication
Protocol for Distributed Database Environment. In D. Hutter and M. Ullmann, editors,
Security in Pervasive Computing — SPC 2005, volume 3450 of Lecture Notes in Computer
Science, pages 70–84, Boppard, Germany, April 2005. Springer-Verlag.

[194] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. De Win. The Cipher Shark. In
D. Gollmann, editor, Fast Software Encryption — FSE 1996, volume 1039 of Lecture Notes
in Computer Science, pages 99–111. Springer-Verlag, 1996.

[195] S. Rinne, T. Eisenbarth, and C. Paar. Performance Analysis of Contemporary Light-
Weight Block Ciphers on 8-bit Microcontrollers. In Software Performance Enhancement for
Encryption and Decryption — SPEED 2007, 2007.

[196] R. L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Available via http:

//www.ietf.org/rfc/rfc1321.txt, April 1992.

159

Bibliography

[197] R.L. Rivest. The MD4 Message Digest Algorithm. In A.J. Menezes and S.A. Vanstone,
editors, Advances in Cryptology — CRYPTO 1990, volume 537 of Lecture Notes in Computer
Science, pages 303–311. Springer-Verlag, 1991.

[198] P. Rogaway. Efficient Instantiations of Tweakable Blockciphers and Refinements to
Modes OCB and PMAC. In P.J. Lee, editor, Advances in Cryptology — ASIACRYPT 2004,
volume 3329 of Lecture Notes in Computer Science, pages 16–31. Springer-Verlag, 2004.

[199] C. Rolfes, A. Poschmann, G. Leander, and C. Paar. Ultra-Lightweight Implementations
for Smart Devices - Security for 1000 Gate Equivalents. In G. Grimaud and F.-X. Stan-
daert, editors, Smart Card Research and Advanced Application — CARDIS 2008, volume
5189 of Lecture Notes in Computer Science, pages 89–103. Springer-Verlag, 2008.

[200] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat. Compact and Efficient En-
cryption/Decryption Module for FPGA Implementation of the AES Rijndael Very Well
Suited for Small Embedded Applications. In International Conference on Information Tech-
nology: Coding and Computing — ITCC 2004, pages 583–587. IEEE Computer Society, 2004.

[201] A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A Compact Rijndael Hardware Ar-
chitecture with S-Box Optimization. In C. Boyd, editor, Advances in Cryptology — ASI-
ACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages 239–254. Springer-
Verlag, 2001.

[202] P. Schaumont and K. Tiri. Masking and Dual-Rail Logic Don’t Add Up. In P. Paillier and
I. Verbauwhede, editors, Cryptographic Hardware and Embedded Systems — CHES 2007,
volume 4727 of Lecture Notes in Computer Science, pages 95–106. Springer-Verlag, 2007.

[203] P. Schaumont and I. Verbauwhede. A Component-Based Design Environment for ESL
Design. Design & Test of Computers, IEEE, 23(5):338–347, 2006.

[204] K. Schramm. Advanced Methods in Side Channel Cryptanalysis. PhD thesis, Ruhr University
Bochum, 2006.

[205] Y. Seurin and T. Peyrin. Security Analysis of Constructions Combining FIL Random
Oracles. In A. Biryukov, editor, Fast Software Encryption 2007 – FSE 2007, volume 4593 of
Lecture Notes in Computer Science, pages 119–136. Springer-Verlag, 2007.

[206] A. Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613, 1979.

[207] A. Shamir. SQUASH–A New MAC with Provable Security Properties for Highly Con-
strained Devices Such as RFID Tags. In K. Nyberg, editor, Fast Software Encryption 2008
– FSE 2008, volume 5086, pages 144–157. Springer-Verlag, 2008.

[208] C.E. Shannon. Communication Theory of Secrecy Systems. Bell System Technical Journal,
28-4:656–715, 1949.

[209] T. Staake, F. Thiesse, and E. Fleisch. Extending the EPC Network: the Potential of RFID
in Anti-Counterfeiting. ACM Symposium on Applied Computing, pages 1607–1612, 2005.

[210] F. Stajano. Security for Ubiquitous Computing. Wiley, 1st edition, June 2002.

[211] F.-X. Standaert, G. Piret, G. Rouvroy, and J.-J. Quisquater. FPGA Implementations of the
ICEBERG Block Cipher. The VLSI Journal, 40(1):20–27, 2007.

[212] F.-X. Standaert, G. Piret, G. Rouvroy, J.-J. Quisquater, and J.-D. Legat. ICEBERG: an In-
volutional Cipher Efficient for Block Encryption in Reconfigurable Hardware. In B. Roy
and W. Meier, editors, Fast Software Encryption — FSE 2004, pages 279–298. Springer-
Verlag, 2004.

160

Bibliography

[213] F.X. Standaert, G. Piret, N. Gershenfeld, and J.-J. Quisquater. SEA: A Scalable Encryption
Algorithm for Small Embedded Applications. In J. Domingo-Ferrer, J. Posegga, and
D. Schreckling, editors, Smart Card Research and Applications, Proceedings of CARDIS 2006,
volume 3928 of Lecture Notes in Computer Science, pages 222–236. Springer-Verlag, 2006.

[214] J. P. Steinberger. The Collision Intractability of MDC-2 in the Ideal-Cipher Model. In
M. Naor, editor, Advances in Cryptology — EUROCRYPT 2007, volume 4515 of Lecture
Notes in Computer Science, pages 34–51. Springer-Verlag, 2007.

[215] D. Suzuki and M. Saeki. Security Evaluation of DPA Countermeasures Using Dual-Rail
Pre-charge Logic Style. In L. Goubin and M. Matsui, editors, Cryptographic Hardware and
Embedded Systems — CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages
255–269. Springer-Verlag, 2006.

[216] D. Suzuki, M. Saeki, and T. Ichikawa. DPA Leakage Models for CMOS Logic Circuits.
In J.R. Rao and B. Sunar, editors, Cryptographic Hardware and Embedded Systems — CHES
2005, volume 3659 of Lecture Notes in Computer Science, pages 366–382. Springer-Verlag,
2005.

[217] D. Suzuki, M. Saeki, and T. Ichikawa. Random Switching Logic: A New Countermeasure
against DPA and Second-Order DPA at the Logic Level. IEICE Transactions on Fundamen-
tals of Electronics, Communications and Computer Sciences, E90-A(1):160–168, 2007. Also
available via http://eprint.iacr.org/2004/346.

[218] Synopsys. Design Compiler User Guide - Version A-2007.12. Available via http://

tinyurl.com/pon88o, December 2007.

[219] Synopsys. Design Compiler User Guide - Version Z-2007.3. Available via http://

tinyurl.com/qnskxf, March 2007.

[220] Synopsys. Power Compiler User Guide - Version Z-2007.03. Available via http://

tinyurl.com/pnwhuh, March 2007.

[221] Temic Semiconductors. MARC4 4-Bit Microcontrollers - Programmers Guide. Available
via http://www.atmel.com/dyn/resources/prod_documents/doc4747.pdf,
2004.

[222] The Eclipse Foundation. Eclipse IDE for C/C++ Developers. Available via http://

www.eclipse.org.

[223] S. Tillich, M. Feldhofer, and J. Großschädl. Area, Delay, and Power Characteristics of
Standard-Cell Implementations of the AES S-Box. In S. Vassiliadis, S. Wong, and T.D.
Hämäläinen, editors, Embedded Computer Systems: Architectures, Modeling, and Simula-
tion – SAMOS 2006, volume 4917 of Lecture Notes in Computer Science, pages 457–466.
Springer-Verlag, 2006.

[224] K. Tiri, M. Akmal, and I. Verbauwhede. A Dynamic and Differential CMOS Logic with
Signal Independent Power Consumption to Withstand Differential Power Analysis on
Smart Cards. In European Solid-State Circuits Conference — ESSCIRC 2002, pages 403–406,
2002.

[225] K. Tiri and P. Schaumont. Changing the Odds Against Masked Logic. In E. Biham and
A.M. Youssef, editors, Selected Areas in Cryptography — SAC 2006, volume 4356 of Lecture
Notes in Computer Science, pages 134–146. Springer-Verlag, 2006.

161

Bibliography

[226] K. Tiri and I. Verbauwhede. A Logic Level Design Methodology for a Secure DPA Resis-
tant ASIC or FPGA Implementation. In Design, Automation and Test in Europe Conference
- DATE 2004, pages 246–251, 2004.

[227] K. Tiri and I. Verbauwhede. Place and Route for Secure Standard Cell Design. In Smart
Card Research and Advanced Applications — CARDIS 2004, pages 143–158. Kluwer, 2004.

[228] J.R.R. Tolkien. The Lord of the Rings, The Fellowship of the Ring. George Allen Unwin, 1954.

[229] P. Tuyls and L. Batina. RFID-tags for Anti-Counterfeiting. In D. Pointcheval, editor,
Topics in Cryptology — CT-RSA 2006, volume 3860, pages 115–131. Springer-Verlag, 2006.

[230] United Nations Office on Drugs and Crime. World Drug Report 2005, June 2005. Avail-
able via http://tinyurl.com/owteuf.

[231] A. Vachoux. Top-down Digital Design Flow. Microelectronic Systems Lab, EPFL, 3.1 edi-
tion, November 2006.

[232] I. Verbauwhede, F. Hoornaert, J. Vandewalle, and H. De Man. Security and Performance
Optimization of a New DES Data Encryption Chip. IEEE Journal of Solid-State Circuits,
23(3):647–656, 1988.

[233] Virtual Silicon Inc. 0.18 µm VIP Standard Cell Library Tape Out Ready, Part Number:
UMCL18G212T3, Process: UMC Logic 0.18 µm Generic II Technology: 0.18µm, July 2004.

[234] M. Vogt. Side Channel Attack Resistant Implementation of Lightweight Cryptography on Ultra-
Constrained 4-bit Microcontroller. M.sc. thesis, Embedded Security Group, Ruhr Univer-
sity Bochum, March 2009.

[235] M. Wang. Differential Cryptanalysis of Reduced-Round PRESENT. In S. Vaudenay,
editor, Progress in Cryptology — AFRICACRYPT 2008, number 5023 in Lecture Notes in
Computer Science, pages 40–49. Springer-Verlag, 2008.

[236] X. Wang, Y.L. Yin, and H. Yu. Finding Collisions in the Full SHA-1. In V. Shoup, editor,
Advances in Cryptology — CRYPTO 2005, volume 3621 of Lecture Notes in Computer Science,
pages 17–36. Springer-Verlag, 2005.

[237] X. Wang and H. Yu. How to Break MD5 and Other Hash Functions. In R. Cramer, editor,
Advances in Cryptology — EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 19–35. Springer-Verlag, 2005.

[238] M. Weiser. The computer for the 21st century. ACM SIGMOBILE Mobile Computing and
Communications Review, 3(3):3–11, 1999.

[239] D. Wheeler and R. Needham. TEA, a Tiny Encryption Algorithm. In B. Preneel, editor,
Fast Software Encryption — FSE 1994, volume 1008 of Lecture Notes in Computer Science,
pages 363–366. Springer-Verlag, 1994.

[240] D. Wheeler and R. Needham. TEA extensions. October 1997. Available via www.ftp.
cl.cam.ac.uk/ftp/users/djw3/. (Also Correction to XTEA. October, 1998.).

[241] WinAVR. Suite of Executable, Open Source Software Development Tools for the Atmel
AVR Series of RISC Microprocessors Hosted on the Windows Platform. Available via
http://winavr.sourceforge.net.

[242] Xilinx. Spartan-3 FPGA Family Data Sheet. Available via http://www.xilinx.com,
June 2008.

[243] Y. Yu, Y. Yang, Y. Fan, and H. Min. Security Scheme for RFID Tag. Technical report,
Auto-ID Labs white paper WP-HARDWARE-022.

162

Bibliography

[244] M.R. Z’Aba, H. Raddum, M. Henricksen, and E. Dawson. Bit-Pattern Based Integral
Attack. In K. Nyberg, editor, Fast Software Encryption — FSE 2008, volume 5086 of Lecture
Notes in Computer Science, pages 363–381. Springer-Verlag, 2008.

163

List of Figures

2.1 Design trade-offs for lightweight cryptography. 8
2.2 Top-down digital semi-custom standard cell design flow, source [231]. 9

3.1 Eight conditions to be fulfilled by the S-box of DESL in order to thwart differen-
tial, linear, and the Davies-Murphy attack. 20

3.2 Datapath of the serialized DES ASIC with original S-boxes. 28
3.3 Finite State Machine of the ASIC architecture for DES, DESX, DESL, and DESXL. 28
3.4 Datapath of the serialized DESL ASIC with the improved S-box. 30

4.1 A top-level algorithmic description of the encryption routine of PRESENT. 36
4.2 A top-level algorithmic description of the decryption routine of PRESENT. 39
4.3 The key schedule of PRESENT-80. 41
4.4 The key schedule of PRESENT-128. 41
4.5 The grouping of S-boxes in PRESENT for the purposes of cryptanalysis. The in-

put numbers indicate the S-box origin from the preceeding round and the output
numbers indicate the destination S-box in the following round. 42

4.6 Two rounds of PRESENT . 49

5.1 Bit positions of the PRESENT state arranged in a 4× 4× 4 bit cube. 52
5.2 Exemplary 4× 4× 4 bit state cube. 52
5.3 Datapath of the serialized PRESENT architecture. 53
5.4 Datapath of the round-based PRESENT-80 architecture. 54
5.5 Datapath of the pipelined parallelized PRESENT-80 architecture, source [199]. . . 55
5.6 I/O interfaces and FSM of the PRESENT-80 FPGA implementation. 58
5.7 Block diagram of PRESENT-128 co-processor with 32-bit interface. 61
5.8 Development environment for the MARC4 4 bit microcontroller. 66
5.9 Blockdiagram of the ALU and size comparison of MARC4. 66
5.10 Architecture of the ATmega163 8 bit microcontroller, source: [11]. 72
5.11 Time-memory trade-off for look-up tables. 74
5.12 Architecture of the C166 microcontroller, source: [111]. 77
5.13 Re-ordering and merging of S-boxes with the permutation layer. 80
5.14 Screenshots of selected implementations of PRESENT. 81

6.1 Compression function for the 64-bit hash functions DM-PRESENT-80 and DM-
PRESENT-128. 88

6.2 I/O and FSM of the DM-PRESENT-80 module with a datapath of 64 bits. 89
6.3 Architecture of the DM-PRESENT-80 module with a datapath of 64 bits. 89
6.4 Architecture of the DM-PRESENT-80 module with a datapath of 4 bits. 91
6.5 I/O and FSM of the DM-PRESENT-80 top module with a datapath of 4 bits. 91
6.6 Input and output signals of the DM-PRESENT-128 top module with a datapath

of 64 bits. 92

List of Figures

6.7 Architecture of the DM-PRESENT-128 module with a datapath of 64 bits. 93
6.8 Input and output signals of the DM-PRESENT-128 top module with a datapath

of 4 bits. 94
6.9 Architecture of the DM-PRESENT-128 module with a datapath of 4 bits. 94
6.10 Finite state machine of the DM-PRESENT-128 module with a datapath of 4 bits. . 95
6.11 Compression function for the 128-bit hash function H-PRESENT-128. 96
6.12 I/O and FSM of the H-PRESENT-128 module with a datapath of 128 bits. 97
6.13 Architecture of the H-PRESENT-128 module with a datapath of 128 bits. 97
6.14 Architecture of the H-PRESENT-128 module with a datapath of 8 bits. 99
6.15 Input and output signals of the H-PRESENT-128 top module with a datapath of

8 bits. 99
6.16 Compression function for the 192-bit hash function C-PRESENT-192. 101

7.1 Overview of the used elliptic curve-based variant of crypto-GPS. 111
7.2 Layout diagram of the crypto-GPS prototype board. 115
7.3 Signal flow of the handshake protocol for communication between board and

crypto-GPS ASIC. 116
7.4 Top-level architecture of the GPS-64/8-F and GPS-64/8-V variants. 117
7.5 Finite State Machines of the crypto-GPS ASIC. 118
7.6 Architecture of the adder component of all crypto-GPS variants. 119
7.7 Three architectures of storage components for different crypto-GPS variants. . . . 121
7.8 Top-level architecture and FSM of the GPS-4/4-F variant. 123
7.9 Photograph of the manufactured crypto-GPS ASIC. 124

8.1 Schematics of single and double masked PRESENT S-boxes. 135
8.2 Proposal for a serialized double masked PRESENT-80 architecture. 139

166

List of Tables

2.1 Area requirements and corresponding gate count of selected standard cells of
the UMCL18G212T3 library. 13

3.1 Number of Degree two and Degree three Equations 26
3.2 Improved DESL S-box . 26
3.3 Hardware implementation results of DES, DESX, DESL and DESXL. All figures

are obtained at or calculated for a frequency of 100KHz. 30
3.4 Software implementation results of DESL and DESXL. 31

4.1 The PRESENT S-box. 37
4.2 Differential distribution table of the PRESENT S-box. 38
4.3 The permutation layer of PRESENT. 38
4.4 The inverse PRESENT S-box. 39
4.5 The inverse permutation layer of PRESENT. 40
4.6 The reduced permutation layer P16(x). 48

5.1 Hardware implementation results of PRESENT-80 and PRESENT-128 with an en-
cryption only datapath for the UMCL18G212T3 standard-cell library. All figures
are obtained at or calculated for a frequency of 100KHz. Please be aware that
power figures can not be compared adequately between different technologies. . 56

5.2 Performance results for encryption and decryption of one data block with
PRESENT for different key sizes and S-box implementation techniques on a
Spartan-III XC3S400 FPGA. 59

5.3 Performance comparison of FPGA implementations of cryptographic algorithms. 60
5.4 Implementation results of the co-processor architectures of a PRESENT-80 ASIC [199]. 61
5.5 Co-processor implementation results of AES and PRESENT within a System-on-

Chip platform based on a low-cost FPGA [94]. 62
5.6 Performance of ISE for bit-sliced implementations of AES, serpent and PRESENT. 64
5.7 The different profiles for the software implementations. 65
5.8 Code size and cycle count of PRESENT-80 on the ATAM893-D 4-Bit microcontroller. 70
5.9 Throughput and energy results of PRESENT-80 on the ATAM893-D 4-Bit micro-

controller. 70
5.10 Performance results of PRESENT-80 on the 8 bit ATmega163 microcontroller. . . . 76
5.11 Comparison of software implementations of ciphers on different 8-bit micro

controllers. 76
5.12 Performance results of PRESENT-80 on the 16 bit C166 microcontroller. 79
5.13 Performance results of PRESENT-80 on the 32 bit Pentium III CPU. 81

6.1 Area requirements of components of DM-PRESENT-80/64. 90
6.2 Area requirements of components of DM-PRESENT-128/64. 93
6.3 Area requirements of components of H-PRESENT-128/128. 98

List of Tables

6.4 Hardware estimations of PROP-1 and PROP-1 using datapath widths from 4 bit
to 160 bit. 106

6.5 The performance of different hash functions based on the direct application of
PRESENT. For comparison with our hash functions with 128-bit output we in-
clude estimates for the AES-based 128-bit hash function in Davies-Meyer mode.
For comparison with MAME we include estimates for the 256-bit hash function
built from the AES in Hirose’s construction. 107

7.1 Post-Synthesis implementation results of three different architectures of crypto-
GPS. 122

8.1 Estimated area requirements of masking components for serialized PRESENT-80/4.139
8.2 Estimated area and timing overhead of masking components for a serialized

PRESENT-80/4 implementation. 140
8.3 Code size and cycle count overhead of a masked PRESENT-80 implementation

on the ATAM893-D 4-bit microcontroller. 140

168

Appendix

A testvector generator for PRESENT-80 and PRESENT-128 is available free of charge from
www.lightweightcrypto.org/present. It creates all intermediate values for both en-
cryption and decryption and also allows to vary the amount of rounds. In the following each
one testvector including all intermediate values is provided for encrypting the all “0” message
under the all “0” key for PRESENT-80 and PRESENT-128. Please note that besides also gener-
ating testvectors the PRESENT cryptool2 plugin1 provides a nice visualization of PRESENT for
educational purposes.

1Available online via http://cryptool2.vs.uni-due.de

Appendix

Testvectors for PRESENT-80

P l a i n t e x t : 0000000000000000
Given Key (80 b i t) : 0000000000000000 0000

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 1
Subkey : 0000000000000000

Text a f t e r . . .
. . . Key−Xor : 0000000000000000
. S−Box : c c c c c c c c c c c c c c c c
. P−Box : f f f f f f f f 0 0 0 0 0 0 0 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 2
Subkey : c000000000000000

Text a f t e r . . .
. . . Key−Xor : 3 f f f f f f f 0 0 0 0 0 0 0 0
. S−Box : b2222222cccccccc
. P−Box : 80 f f 0 0 f f f f 0 0 8 0 0 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 3
Subkey : 5000180000000001

Text a f t e r . . .
. . . Key−Xor : d 0 f f 1 8 f f f f 0 0 8 0 0 1
. S−Box : 7 c22532222cc3cc5
. P−Box : 4036 c837b7c88c09

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 4
Subkey : 60000 a0003000001

Text a f t e r . . .
. . . Key−Xor : 2036 c237b4c88c08
. S−Box : 6 cba46bd894334c3
. P−Box : 73 c2cd26b6192359

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 5
Subkey : b0000c0001400062

Text a f t e r . . .
. . . Key−Xor : c3c2c126b759233b
. S−Box : 4 b46456a8d0e6bb8
. P−Box : 41 d7be58531e4446

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 6
Subkey : 900016000180002 a

Text a f t e r . . .
. . . Key−Xor : d1d7a858529e446c
. S−Box : 757 df30306e199a4
. P−Box : 182 ef861ad62fd1c

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 7
Subkey : 0001920002 c00033

Text a f t e r . . .
. . . Key−Xor : 182 f 6 a 6 1 a f a 2 f d 2 f
. S−Box : 5362 a f a 5 f 2 f 6 2 7 6 2
. P−Box : 0 ea0a5b67ef fc5a4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 8
Subkey : a000a0003240005b

Text a f t e r . . .
. . . Key−Xor : ae a005b6 4cbf c 5 f f
. S−Box : f1 fcc08a94824022
. P−Box : bba0b848a113e080

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 9
Subkey : d000d4001400064c

Text a f t e r . . .
. . . Key−Xor : 6 ba06c48b513e6cc
. S−Box : a8fca493805b1a44
. P−Box : fa943423a9142338

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 10
Subkey : 30017 a001a800284

Text a f t e r . . .
. . . Key−Xor : ca954e23b39421bc
. S−Box : 4 fe0916b8be96584
. P−Box : 69 f2e22d63684d54

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 11
Subkey : e01926002f400355

Text a f t e r . . .

. . . Key−Xor : 89 ebc42d4c284e01

. S−Box : 3 e184967946391c5

. P−Box : 548 a4b63c330a59d
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 12
Subkey : f00a1c0324c005ed

Text a f t e r . . .
. . . Key−Xor : a4805760e7f0a070
. S−Box : f93c0dac1d2cfcdc
. P−Box : d75f955fa228e4ca

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 13
Subkey : 800 d5e014380649e

Text a f t e r . . .
. . . Key−Xor : 5752 cb5ee1a88054
. S−Box : 0 d06480115f33c09
. P−Box : 44255864103841 f9

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 14
Subkey : 4017 b001abc02876

Text a f t e r . . .
. . . Key−Xor : 0432 e865bbf8698f
. S−Box : c9b613a08823ae32
. P−Box : e2cc9004363f6c12

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 15
Subkey : 71926802 f 6 0 0 3 5 7 f

Text a f t e r . . .
. . . Key−Xor : 935 ef806c03f596d
. S−Box : eb0123ca4cb20ea7
. P−Box : c36682c5cd375421

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 16
Subkey : 10 a1ce324d005ec7

Text a f t e r . . .
. . . Key−Xor : d3c74cf780370ae6
. S−Box : 7 b4d942d3cbdcf1a
. P−Box : 597 db55cc2a5d9b6

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 17
Subkey : 20 d5e21439c649a8

Text a f t e r . . .
. . . Key−Xor : 79 a85748fb63901e
. S−Box : def30d9328abec51
. P−Box : e67ce40e71b8b713

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 18
Subkey : c17b041abc428730

Text a f t e r . . .
. . . Key−Xor : 2707 e014cdfa3023
. S−Box : 6 dcd1c59472fbc6b
. P−Box : 751 df6d6807b5b59

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 19
Subkey : c926b82f60835781

Text a f t e r . . .
. . . Key−Xor : bc3b4ef9e0f80cd8
. S−Box : 84 b8912e1c23c473
. P−Box : b948414e23332c93

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 20
Subkey : 6 a1cd924d705ec19

Text a f t e r . . .
. . . Key−Xor : d354986af436c08a
. S−Box : 7 b09e3af29ba4c3f
. P−Box : 5 b75890dcfb3d563

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 21
Subkey : bd5e0d439b249aea

Text a f t e r . . .
. . . Key−Xor : e62b844e54974f89
. S−Box : 1 a68399109ed923e
. P−Box : 5679203168278 f5a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 22
Subkey : 07 b077abc1a8736e

Text a f t e r . . .
. . . Key−Xor : 51 c9579aa98f f c34
. S−Box : 054 e0deffe3224b9
. P−Box : 17 c377c413fa45a3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

170

Appendix

Round 23
Subkey : 426 ba0f60ef5783e

Text a f t e r . . .
. . . Key−Xor : 55 a8d7321d0f3d9d
. S−Box : 00 f37db657c2b7e7
. P−Box : 262 a2de73b5f3ecd

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 24
Subkey : 41 cda84d741ec1d5

Text a f t e r . . .
. . . Key−Xor : 67 e 7 8 5 a a 4 f 4 1 f f 1 8
. S−Box : ad1d30ff92952253
. P−Box : d3a053128b4d7bb3

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 25
Subkey : f5e0e839b509ae8f

Text a f t e r . . .
. . . Key−Xor : 2640 bb2b3e44d53c
. S−Box : 6 a9c8868b19970b4
. P−Box : 7 db29209c28a20fa

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 26
Subkey : 2 b075ebc1d0736ad

Text a f t e r . . .
. . . Key−Xor : 56 b5ccb5df8d1657
. S−Box : 0 a80448072375a0d
. P−Box : 62050 c9940f400b9

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 27
Subkey : 86 ba2560ebd783ad

Text a f t e r . . .
. . . Key−Xor : e4bf29f9ab238314
. S−Box : 19826 e2ef86b3b59
. P−Box : 65 d50da21fbcc09f

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 28
Subkey : 8 cdab0d744ac1d77

Text a f t e r . . .
. . . Key−Xor : e90fbd755b10dde8
. S−Box : 1 ec287d0085c7713
. P−Box : 6 a50663c540d862f

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 29
Subkey : 1 e0eb19b561ae89b

Text a f t e r . . .
. . . Key−Xor : 745 ed7a702176eb4
. S−Box : d9017dfdc65da189
. P−Box : c79b8f f00a48df35

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 30
Subkey : d075c3c1d6336acd

Text a f t e r . . .
. . . Key−Xor : 17 ee4c31dc7bb5f8
. S−Box : 5 d1194b574d88023
. P−Box : 4 a38c5e00283fba1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 31
Subkey : 8 ba27a0eb8783ac9

Text a f t e r . . .
. . . Key−Xor : c19abfeebafbc168
. S−Box : 45 ef82118f2845a3
. P−Box : 38 d2f04c34635345

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

F i n a l Round

Subkey : 6 dab31744f41d700
Text : 5579 c1387b228445

* *

PRESENT-80 key schedule
Input : 0000000000000000 0000

Subkey Round 1 : > >0000000000000000 < <

. . . a f t e r S h i f t : 0000000000000000 0000

. . . a f t e r S−Box : c000000000000000 0000
Subkey Round 2 (a f t e r S a l t) :
>>c000000000000000 << 8000

. . . a f t e r S h i f t : 1000180000000000 0000

. . . a f t e r S−Box : 5000180000000000 0000
Subkey Round 3 (a f t e r S a l t) :
> >5000180000000001 < < 0000

. . . a f t e r S h i f t : 20000 a0003000000 0000

. . . a f t e r S−Box : 60000 a0003000000 0000
Subkey Round 4 (a f t e r S a l t) :
>>60000 a0003000001 << 8000

. . . a f t e r S h i f t : 30000 c0001400060 0000

. . . a f t e r S−Box : b0000c0001400060 0000
Subkey Round 5 (a f t e r S a l t) :
>>b0000c0001400062 << 0000

. . . a f t e r S h i f t : 4000160001800028 000 c

. . . a f t e r S−Box : 9000160001800028 000 c
Subkey Round 6 (a f t e r S a l t) :
> >900016000180002a<< 800 c

. . . a f t e r S h i f t : 5001920002 c00030 0005

. . . a f t e r S−Box : 0001920002 c00030 0005
Subkey Round 7 (a f t e r S a l t) :
> >0001920002 c00033 << 0005

. . . a f t e r S h i f t : 6000 a00032400058 0006

. . . a f t e r S−Box : a000a00032400058 0006
Subkey Round 8 (a f t e r S a l t) :
>>a000a0003240005b << 8006

. . . a f t e r S h i f t : 7000 d40014000648 000b

. . . a f t e r S−Box : d000d40014000648 000b
Subkey Round 9 (a f t e r S a l t) :
>>d000d4001400064c << 000b

. . . a f t e r S h i f t : 80017 a001a800280 00 c9

. . . a f t e r S−Box : 30017 a001a800280 00 c9
Subkey Round 10 (a f t e r S a l t) :
>>30017 a001a800284 << 80 c9

. . . a f t e r S h i f t : 901926002 f400350 0050

. . . a f t e r S−Box : e01926002f400350 0050
Subkey Round 11 (a f t e r S a l t) :
>>e01926002f400355 << 0050

. . . a f t e r S h i f t : a00a1c0324c005e8 006a

. . . a f t e r S−Box : f00a1c0324c005e8 006a
Subkey Round 12 (a f t e r S a l t) :
>>f00a1c0324c005ed << 806a

. . . a f t e r S h i f t : b00d5e0143806498 00bd

. . . a f t e r S−Box : 800 d5e0143806498 00bd
Subkey Round 13 (a f t e r S a l t) :
>>800d5e014380649e << 00bd

. . . a f t e r S h i f t : c017b001abc02870 0 c93

. . . a f t e r S−Box : 4017 b001abc02870 0 c93
Subkey Round 14 (a f t e r S a l t) :
>>4017b001abc02876 << 8 c93

. . . a f t e r S h i f t : d1926802f6003578 050 e

. . . a f t e r S−Box : 71926802 f6003578 050 e
Subkey Round 15 (a f t e r S a l t) :
>>71926802 f600357f << 050 e

. . . a f t e r S h i f t : e0a1ce324d005ec0 06 af

. . . a f t e r S−Box : 10 a1ce324d005ec0 06 af
Subkey Round 16 (a f t e r S a l t) :
>>10a1ce324d005ec7 << 86 af

. . . a f t e r S h i f t : f0d5e21439c649a0 0bd8

. . . a f t e r S−Box : 20 d5e21439c649a0 0bd8
Subkey Round 17 (a f t e r S a l t) :
>>20d5e21439c649a8 << 0bd8

. . . a f t e r S h i f t : 017 b041abc428738 c935

. . . a f t e r S−Box : c17b041abc428738 c935
Subkey Round 18 (a f t e r S a l t) :
>>c17b041abc428730 << 4935

. . . a f t e r S h i f t : 0926 b82f60835788 50 e6

. . . a f t e r S−Box : c926b82f60835788 50 e6
Subkey Round 19 (a f t e r S a l t) :
>>c926b82f60835781 << 50 e6

. . . a f t e r S h i f t : 2 a1cd924d705ec10 6 af0

. . . a f t e r S−Box : 6 a1cd924d705ec10 6 af0
Subkey Round 20 (a f t e r S a l t) :
>>6a1cd924d705ec19 << eaf0

. . . a f t e r S h i f t : 3 d5e0d439b249ae0 bd83

. . . a f t e r S−Box : bd5e0d439b249ae0 bd83

171

Appendix

Subkey Round 21 (a f t e r S a l t) :
>>bd5e0d439b249aea << bd83

. . . a f t e r S h i f t : 57 b077abc1a87364 935d

. . . a f t e r S−Box : 07 b077abc1a87364 935d
Subkey Round 22 (a f t e r S a l t) :
>>07b077abc1a8736e << 135d

. . . a f t e r S h i f t : c26ba0f60ef57835 0e6d

. . . a f t e r S−Box : 426 ba0f60ef57835 0e6d
Subkey Round 23 (a f t e r S a l t) :
>>426 ba0f60ef5783e << 0e6d

. . . a f t e r S h i f t : c1cda84d741ec1de af07

. . . a f t e r S−Box : 41 cda84d741ec1de af07
Subkey Round 24 (a f t e r S a l t) :
>>41cda84d741ec1d5 << 2 f07

. . . a f t e r S h i f t : a5e0e839b509ae83 d83a

. . . a f t e r S−Box : f5e0e839b509ae83 d83a
Subkey Round 25 (a f t e r S a l t) :
>>f5e0e839b509ae8f << d83a

. . . a f t e r S h i f t : fb075ebc1d0736a1 35d1

. . . a f t e r S−Box : 2 b075ebc1d0736a1 35d1
Subkey Round 26 (a f t e r S a l t) :
>>2b075ebc1d0736ad << b5d1

. . . a f t e r S h i f t : b6ba2560ebd783a0 e6d5

. . . a f t e r S−Box : 86 ba2560ebd783a0 e6d5
Subkey Round 27 (a f t e r S a l t) :
>>86ba2560ebd783ad << e6d5

. . . a f t e r S h i f t : bcdab0d744ac1d7a f075

. . . a f t e r S−Box : 8 cdab0d744ac1d7a f075
Subkey Round 28 (a f t e r S a l t) :
>>8cdab0d744ac1d77 << 7075

. . . a f t e r S h i f t : ee0eb19b561ae895 83 ae

. . . a f t e r S−Box : 1 e0eb19b561ae895 83 ae
Subkey Round 29 (a f t e r S a l t) :
>>1e0eb19b561ae89b << 83 ae

. . . a f t e r S h i f t : 7075 c3c1d6336ac3 5d13

. . . a f t e r S−Box : d075c3c1d6336ac3 5d13
Subkey Round 30 (a f t e r S a l t) :
>>d075c3c1d6336acd << dd13

. . . a f t e r S h i f t : bba27a0eb8783ac6 6d59

. . . a f t e r S−Box : 8 ba27a0eb8783ac6 6d59
Subkey Round 31 (a f t e r S a l t) :
>>8ba27a0eb8783ac9 << 6d59

. . . a f t e r S h i f t : 2 dab31744f41d70f 0759

. . . a f t e r S−Box : 6 dab31744f41d70f 0759
Subkey Round 32 (a f t e r S a l t) :
>>6dab31744f41d700 << 8759

Testvectors for PRESENT-128

P l a i n t e x t : 0000000000000000
Given Key (128 b i t) : 0000000000000000 0000000000000000

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 1
Subkey : 0000000000000000

Text a f t e r . . .
. . . Key−Xor : 0000000000000000
. S−Box : c c c c c c c c c c c c c c c c
. P−Box : f f f f f f f f 0 0 0 0 0 0 0 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 2
Subkey : cc00000000000000

Text a f t e r . . .
. . . Key−Xor : 33 f f f f f f 0 0 0 0 0 0 0 0
. S−Box : bb222222cccccccc
. P−Box : c 0 f f 0 0 f f f f 0 0 c 0 0 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 3
Subkey : c300000000000000

Text a f t e r . . .
. . . Key−Xor : 03 f f 0 0 f f f f 0 0 c 0 0 0
. S−Box : cb22cc2222cc4ccc
. P−Box : cc378c3f73c04000

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 4
Subkey : 5 b30000000000000

Text a f t e r . . .
. . . Key−Xor : 97078 c3f73c04000
. S−Box : edcd34b2db4c9ccc
. P−Box : f2dff4b78b405ac8

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 5
Subkey : 580 c000000000001

Text a f t e r . . .
. . . Key−Xor : aad3f4b78b405ac9
. S−Box : f f7b298d389c0f4e
. P−Box : d775e117f885f5a4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 6
Subkey : 656 cc00000000001

Text a f t e r . . .
. . . Key−Xor : b2192117f885f5a5
. S−Box : 865 e655d233020f0
. P−Box : 91027 f0258ea2762

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 7
Subkey : 6 e60300000000001

Text a f t e r . . .
. . . Key−Xor : f f 624 f 0258e a2763
. S−Box : 22 a692c6031f6dab
. P−Box : 2 a17131cf55b0875

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 8
Subkey : b595b30000000001

Text a f t e r . . .
. . . Key−Xor : 9 f82a01cf55b0874
. S−Box : e236fc542008c3d9
. P−Box : 8 c1b9f0af8842a07

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 9
Subkey : beb980c000000002

Text a f t e r . . .
. . . Key−Xor : 32 a21fcaf8842a05
. S−Box : b6 f6524f23396fc0
. P−Box : a1167b0ef5eca974

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 10
Subkey : 96 d656cc00000002

Text a f t e r . . .
. . . Key−Xor : 37 c02dc2f5eca976
. S−Box : bd4c67462014feda
. P−Box : d00f7f1e8d8dc42a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 11
Subkey : 9 f fae60300000002

Text a f t e r . . .
. . . Key−Xor : 4 ff5991d8d8dc428
. S−Box : 9220 ee5737374963
. P−Box : 8 c040f5a6df383f5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 12
Subkey : 065 b595b30000002

Text a f t e r . . .
. . . Key−Xor : 8 a5f56015df383f7
. S−Box : 3 f020ac5072b3b2d
. P−Box : 46154341 d47ec15d

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 13
Subkey : 0 f7feb980c000003

Text a f t e r . . .
. . . Key−Xor : 496 aa8d9d87ec15e
. S−Box : 9 eaff37e73d14501
. P−Box : f 9 2 0 5 b a c 7 f c 0 9 e f 5

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 14
Subkey : ac196d656cc00003

Text a f t e r . . .
. . . Key−Xor : 553936 c913009ef6
. S−Box : 00 beba4e5bcce12a
. P−Box : 3 d7913b83d4b28c4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 15
Subkey : a33dffae60300003

Text a f t e r . . .

172

Appendix

. . . Key−Xor : 9 e44ec165d7b28c7

. S−Box : e199145a07d8634d

. P−Box : b131866b814c7a65
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 16
Subkey : d6b065b595b30003

Text a f t e r . . .
. . . Key−Xor : 6781 e3de14f f7a66
. S−Box : ad351b715922dfaa
. P−Box : c 4 4 f 5 2 8 c a 6 3 7 7 f c c

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 17
Subkey : df8c f7 feb980c004

Text a f t e r . . .
. . . Key−Xor : 1 bc3a5721fb7bfc8
. S−Box : 584 bf0d6528d8243
. P−Box : 5 a38ab9219459a91

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 18
Subkey : 3 b5ac196d656cc04

Text a f t e r . . .
. . . Key−Xor : 61626 a04cf135695
. S−Box : a5a6afc9425b0ae0
. P−Box : af1656a2bc564530

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 19
Subkey : 387 e33dffae60304

Text a f t e r . . .
. . . Key−Xor : 9768657 d46b04634
. S−Box : eda3a0d79a8c9ab9
. P−Box : eaf fc310b946538b

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 20
Subkey : eced6b065b595b34

Text a f t e r . . .
. . . Key−Xor : 0612 a816e21f08bf
. S−Box : ca56f35a1652c382
. P−Box : c90aba685d552ea4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 21
Subkey : e 3 e 1 f 8 c f 7 f e b 9 8 0 9

Text a f t e r . . .
. . . Key−Xor : 2 aeb42a722beb6ad
. S−Box : 6 f1896fd66818af7
. P−Box : 5 b2ec7c3c6c76b13

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 22
Subkey : 6 bb3b5ac196d6569

Text a f t e r . . .
. . . Key−Xor : 309 d726fdfaa0e7a
. S−Box : bce7d6a272f fc1df
. P−Box : ea3b7cbbb7f198b7

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 23
Subkey : bb8f87e33dffae65

Text a f t e r . . .
. . . Key−Xor : 51 b4fb588a0e36d2
. S−Box : 058928033 fc1ba76
. P−Box : 346 c406309cf51da

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 24
Subkey : 80 aeced6b065b590

Text a f t e r . . .
. . . Key−Xor : b4c28eb5b9aae44a
. S−Box : 894631808 e f f 1 9 9 f
. P−Box : c2 f7307118714c3f

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 25
Subkey : c 1 e e 3 e 1 f 8 c f 7 f e b f

Text a f t e r . . .
. . . Key−Xor : 03190 e6e9486b280
. S−Box : cb5ec1a1e93a863c
. P−Box : dad9b88552b66562

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 26
Subkey : 2602 bb3b5ac196d0

Text a f t e r . . .
. . . Key−Xor : fcdb03be0877f3b2
. S−Box : 2478 cb81c3dd2b86
. P−Box : 1 eb668b1a44d2574

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 27
Subkey : cb07b8f87e33df fc

Text a f t e r . . .
. . . Key−Xor : d5b1d049da7efa88
. S−Box : 70857 c9e7fd12f33
. P−Box : 27649 de489cf9af7

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 28
Subkey : 34980 aeced6b065d

Text a f t e r . . .
. . . Key−Xor : 13 fc970864a49caa
. S−Box : 5 b24edc3a9f9e4f f
. P−Box : 4 efb9e2f69abc573

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 29
Subkey : 8 b2c1ee3e1f8c f78

Text a f t e r . . .
. . . Key−Xor : c5d780cc88530a0b
. S−Box : 407 d3c44330bcfc8
. P−Box : 141 fb70e28d438d4

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 30
Subkey : 54 d2602bb3b5ac1e

Text a f t e r . . .
. . . Key−Xor : 40 cdd7259b6194ca
. S−Box : 9 c477d60e8a5e94f
. P−Box : c4ed7e9b1aa99c15

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Round 31
Subkey : 4 a2cb07b8f87e33a

Text a f t e r . . .
. . . Key−Xor : 8 e c 1 c e e 0 9 5 2 e 7 f 2 f
. S−Box : 3145411 ce061d262
. P−Box : 018839 aa80a7d618

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

F i n a l Round

Subkey : 97534980 aeced6b7
Text : 96 db702a2e6900af

* *

PRESENT-128 key schedule
Input : 0000000000000000 0000000000000000

Subkey Round 1 : > >0000000000000000 < <

. . . a f t e r S h i f t : 0000000000000000 0000000000000000

. . . a f t e r S−Box : cc00000000000000 0000000000000000
Subkey Round 2 (a f t e r S a l t) :
>>cc00000000000000 << 4000000000000000

. . . a f t e r S h i f t : 0800000000000000 1980000000000000

. . . a f t e r S−Box : c300000000000000 1980000000000000
Subkey Round 3 (a f t e r S a l t) :
>>c300000000000000 << 9980000000000000

. . . a f t e r S h i f t : 1330000000000000 1860000000000000

. . . a f t e r S−Box : 5 b30000000000000 1860000000000000
Subkey Round 4 (a f t e r S a l t) :
>>5b30000000000000 << d860000000000000

. . . a f t e r S h i f t : 1 b0c000000000000 0 b66000000000000

. . . a f t e r S−Box : 580 c000000000000 0 b66000000000000
Subkey Round 5 (a f t e r S a l t) :
>>580 c000000000001 << 0 b66000000000000

. . . a f t e r S h i f t : 216 cc00000000000 0 b01800000000000

. . . a f t e r S−Box : 656 cc00000000000 0 b01800000000000
Subkey Round 6 (a f t e r S a l t) :
>>656 cc00000000001 << 4 b01800000000000

. . . a f t e r S h i f t : 2960300000000000 0 cad980000000000

. . . a f t e r S−Box : 6 e60300000000000 0 cad980000000000
Subkey Round 7 (a f t e r S a l t) :
>>6e60300000000001 << 8 cad980000000000

. . . a f t e r S h i f t : 3195 b30000000000 0 dcc060000000000

. . . a f t e r S−Box : b595b30000000000 0 dcc060000000000
Subkey Round 8 (a f t e r S a l t) :
>>b595b30000000001 << cdcc060000000000

. . . a f t e r S h i f t : 39 b980c000000000 16 b2b66000000000

. . . a f t e r S−Box : beb980c000000000 16 b2b66000000000

173

Appendix

Subkey Round 9 (a f t e r S a l t) :
>>beb980c000000002 << 16 b2b66000000000

. . . a f t e r S h i f t : 42 d656cc00000000 17 d7301800000000

. . . a f t e r S−Box : 96 d656cc00000000 17 d7301800000000
Subkey Round 10 (a f t e r S a l t) :
>>96d656cc00000002 << 57 d7301800000000

. . . a f t e r S h i f t : 4 afae60300000000 12 dacad980000000

. . . a f t e r S−Box : 9 f fae60300000000 12 dacad980000000
Subkey Round 11 (a f t e r S a l t) :
>>9ffae60300000002 << 92 dacad980000000

. . . a f t e r S h i f t : 525 b595b30000000 13 f f5cc060000000

. . . a f t e r S−Box : 065 b595b30000000 13 f f5cc060000000
Subkey Round 12 (a f t e r S a l t) :
>>065b595b30000002 << d3ff5cc060000000

. . . a f t e r S h i f t : 5 a7feb980c000000 00 cb6b2b66000000

. . . a f t e r S−Box : 0 f7feb980c000000 00 cb6b2b66000000
Subkey Round 13 (a f t e r S a l t) :
>>0f7feb980c000003 << 00 cb6b2b66000000

. . . a f t e r S h i f t : 60196 d656cc00000 01 effd7301800000

. . . a f t e r S−Box : ac196d656cc00000 01 effd7301800000
Subkey Round 14 (a f t e r S a l t) :
>>ac196d656cc00003 << 41 effd7301800000

. . . a f t e r S h i f t : 683 dffae60300000 15832 dacad980000

. . . a f t e r S−Box : a33dffae60300000 15832 dacad980000
Subkey Round 15 (a f t e r S a l t) :
>>a33dffae60300003 << 95832 dacad980000

. . . a f t e r S h i f t : 72 b065b595b30000 1467 bf f5cc060000

. . . a f t e r S−Box : d6b065b595b30000 1467 bf f5cc060000
Subkey Round 16 (a f t e r S a l t) :
>>d6b065b595b30003 << d467bff5cc060000

. . . a f t e r S h i f t : 7 a8c f7 feb980c000 1 ad60cb6b2b66000

. . . a f t e r S−Box : df8c f7 feb980c000 1 ad60cb6b2b66000
Subkey Round 17 (a f t e r S a l t) :
>>df8cf7feb980c004 << 1 ad60cb6b2b66000

. . . a f t e r S h i f t : 835 ac196d656cc00 1 bf19ef fd7301800

. . . a f t e r S−Box : 3 b5ac196d656cc00 1 bf19ef fd7301800
Subkey Round 18 (a f t e r S a l t) :
>>3b5ac196d656cc04 << 5 bf19ef fd7301800

. . . a f t e r S h i f t : 8 b7e33dffae60300 076 b5832dacad980

. . . a f t e r S−Box : 387 e33dffae60300 076 b5832dacad980
Subkey Round 19 (a f t e r S a l t) :
>>387 e33dffae60304 << 876 b5832dacad980

. . . a f t e r S h i f t : 90 ed6b065b595b30 070 f c 6 7 b f f 5 c c 0 6 0

. . . a f t e r S−Box : eced6b065b595b30 070 f c 6 7 b f f 5 c c 0 6 0
Subkey Round 20 (a f t e r S a l t) :
>>eced6b065b595b34 << c 7 0 f c 6 7 b f f 5 c c 0 6 0

. . . a f t e r S h i f t : 98 e 1 f 8 c f 7 f e b 9 8 0 c 1d9dad60cb6b2b66

. . . a f t e r S−Box : e 3 e 1 f 8 c f 7 f e b 9 8 0 c 1d9dad60cb6b2b66
Subkey Round 21 (a f t e r S a l t) :
>>e3e1f8c f7 feb9809 << 1d9dad60cb6b2b66

. . . a f t e r S h i f t : 23 b3b5ac196d656c dc7c3f19ef fd7301

. . . a f t e r S−Box : 6 bb3b5ac196d656c dc7c3f19ef fd7301
Subkey Round 22 (a f t e r S a l t) :
>>6bb3b5ac196d6569 << 9 c 7 c 3 f 1 9 e f f d 7 3 0 1

. . . a f t e r S h i f t : 338 f87e33df fae60 2d7676b5832dacad

. . . a f t e r S−Box : bb8f87e33dffae60 2d7676b5832dacad
Subkey Round 23 (a f t e r S a l t) :
>>bb8f87e33dffae65 << ad7676b5832dacad

. . . a f t e r S h i f t : b5aeced6b065b595 b 7 7 1 f 0 f c 6 7 b f f 5 c c

. . . a f t e r S−Box : 80 aeced6b065b595 b 7 7 1 f 0 f c 6 7 b f f 5 c c
Subkey Round 24 (a f t e r S a l t) :
>>80aeced6b065b590 << 7771 f 0 f c 6 7 b f f 5 c c

. . . a f t e r S h i f t : 0 e e e 3 e 1 f 8 c f 7 f e b 9 9015 d9dad60cb6b2

. . . a f t e r S−Box : c 1 e e 3 e 1 f 8 c f 7 f e b 9 9015 d9dad60cb6b2
Subkey Round 25 (a f t e r S a l t) :
>> c 1 e e 3 e 1 f 8 c f 7 f e b f << 9015 d9dad60cb6b2

. . . a f t e r S h i f t : f202bb3b5ac196d6 583 dc7c3f19e f fd7

. . . a f t e r S−Box : 2602 bb3b5ac196d6 583 dc7c3f19e f fd7
Subkey Round 26 (a f t e r S a l t) :
>>2602bb3b5ac196d0 << 183 dc7c3 f19e f fd7

. . . a f t e r S h i f t : 0307 b8f87e33df fa e4c057676b5832da

. . . a f t e r S−Box : cb07b8f87e33dffa e4c057676b5832da
Subkey Round 27 (a f t e r S a l t) :
>>cb07b8f87e33dffc << 64 c057676b5832da

. . . a f t e r S h i f t : 8 c980aeced6b065b 5960 f 7 1 f 0 f c 6 7 b f f

. . . a f t e r S−Box : 34980 aeced6b065b 5960 f 7 1 f 0 f c 6 7 b f f
Subkey Round 28 (a f t e r S a l t) :
>>34980aeced6b065d << 9960 f 7 1 f 0 f c 6 7 b f f

. . . a f t e r S h i f t : b 3 2 c 1 e e 3 e 1 f 8 c f 7 f e693015d9dad60cb

. . . a f t e r S−Box : 8 b 2 c 1 e e 3 e 1 f 8 c f 7 f e693015d9dad60cb
Subkey Round 29 (a f t e r S a l t) :
>>8 b2c1ee3e1f8cf78 << e693015d9dad60cb

. . . a f t e r S h i f t : 1 cd2602bb3b5ac19 716583 dc7c3 f19e f

. . . a f t e r S−Box : 54 d2602bb3b5ac19 716583 dc7c3 f19e f
Subkey Round 30 (a f t e r S a l t) :
>>54d2602bb3b5ac1e << 316583 dc7c3 f19e f

. . . a f t e r S h i f t : c62cb07b8f87e33d ea9a4c057676b583

. . . a f t e r S−Box : 4 a2cb07b8f87e33d ea9a4c057676b583
Subkey Round 31 (a f t e r S a l t) :
>>4a2cb07b8f87e33a << 6 a9a4c057676b583

. . . a f t e r S h i f t : 4 d534980aeced6b0 6945960 f 7 1 f 0 f c 6 7

. . . a f t e r S−Box : 97534980 aeced6b0 6945960 f 7 1 f 0 f c 6 7
Subkey Round 32 (a f t e r S a l t) :
>>97534980 aeced6b7 << a 9 4 5 9 6 0 f 7 1 f 0 f c 6 7

174

Curriculum Vitae

Personal Data

Born on 25 April 1979 in Hamburg, Germany.
Contact Information:

� e-mail: axel.poschmann@gmail.com

Research Interests

� Lightweight cryptography

� side channel resistant ASIC design

� low-power and area-efficient implementations of cryptographic algorithms

� security for RFIDs and Wireless Sensor Networks

Education

01/2006 - 04/2009 Ph.D. studies
Title: Lightweight Cryptography -
Security Engineering for a Pervasive World
Supervisor: Prof. Dr.-Ing. Christof Paar
Chair for Embedded Security
Horst Görtz Institute for IT Security
Ruhr-University Bochum, Germany

10/2004 - 04/2008 Fernuniversität in Hagen, Germany
degree awarded: Diplom-Kaufmann
equivalent to M.Sc. in Business Studies

10/2000 - 12/2005 Ruhr University of Bochum, Germany
degree awarded: Diplom-Ingenieur IT-Sicherheit (1,3)
equivalent to M.Sc. in IT Security (Excellent)

10/1998 - 09/2000 Friedrich-Alexander-University of Erlangen-Nuremberg, Germany
degree awarded: Vordiplom
equivalent to intermediate Diploma in Business Studies

Curriculum Vitae

International Studies

07/2008 - 10/2008 research stay at the UC Berkeley, Berkeley, USA
supported by the German Academic Exchange Service (DAAD)

11/2004 - 02/2005 research stay at the Swiss Institute of Technology Lausanne, Switzerland

1996, 1997 Each 3 weeks exchange of students to Shanghai and Beijing, China

Experience

since 03/2009 Academic Research (Post-Doc)
School of Physical & Mathematical Sciences
Nanyang Technological University, Singapore

01/2006 - 02/2009 Research and teaching assistant
Horst Görtz Institute for IT Security
Chair for Embedded Security
Ruhr University of Bochum, Germany

2007 - 2008 Conducting a market study “New Markets for RFID-based Applications”
as an external Consultant at CardFactory AG, Oldenburg, Germany

2006 Professional training course in IT Security for the Advanced
Training Center of the Ruhr University Bochum, Germany

2002 - 2004 Student assistant at Communication Security group
Ruhr University Bochum, Germany

2003 IT security Consultant at Atelion GmbH, Hamburg, Germany

2002 8 weeks Internship at the Information Security group of the
Federal State Bank Westdeutsche Landesbank, Duesseldorf, Germany

2002 7 weeks internship at the IT security consulting company Thales
Communication GmbH (now Atelion GmbH), Hamburg, Germany

Fellowships and Awards

2008 Doctoral stipend of the German Academic Exchange Service (DAAD)

176

Curriculum Vitae

01/2007 - 04/2009 Fellow of the Research School of the Ruhr-University Bochum, Germany

2007 Stipend of the Ruth und Gert Massenberg Stiftung for travel cost

2006 Award for a particularly good grade (top 5%) of the Faculty
of Electrical Engineering and Information Technology of the
Ruhr-University Bochum, Germany

2006 2. place at the CAST-Award IT Security (award for best theses
in IT Security in Austria, Germany, and Switzerland, 2,500 EUR)

2006 VDE MS Thesis Award of the German Association for Electrical,
Electronic & Information Technologies (VDE, 500 EUR)

2002 1. Place at the 1. Crypto Challenge of the Ruhr University Bochum

1991 - 1998 Participation in special training courses for highly mathematically
skilled students at the William-Stern-Gesellschaft,
Hamburg, Germany

List of Publications

This thesis is a monograph which contains unpublished material, but is based on the following
publications. All publications are listed in (reverse) chronological order and are sorted in the
categories book chapters, peer-reviewed journal papers, peer-reviewed conference papers, and
other publications.

Book Chapters

� C. Paar, A. Poschmann, M.J.B. Robshaw. New Designs in Lightweight Symmetric En-
cryption. Chapter in P. Kitsos, Y. Zhang (eds.): RFID Security: Techniques, Protocols and
System-On-Chip Design, Springer-Verlag.

Peer-Reviewed Journal Papers

� T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, L. Uhsadel. Survey of Lightweight
Cryptography Implementations. IEEE Design & Test of Computers - Special Issue on
Secure ICs for Secure Embedded Computing vol. 24, Nr. 6, pp. 522-533, November 2007.

Peer-Reviewed Conference Papers

� C. Rolfes, A. Poschmann, G. Leander, C. Paar. Ultra-Lightweight Implementations for
Smart Devices - Security for 1000 Gate Equivalents. Proceedings of 8th Smart Card Re-
search and Advanced Application Conference, CARDIS 2008, Egham, United Kingdom.
LNCS, Springer-Verlag. 8.-11. September 2008.

177

Curriculum Vitae

� A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y. Seurin. Hash Func-
tions and RFID Tags : Mind The Gap, Proceedings of 10th Workshop on Cryptographic
Hardware and Embedded Systems, Washington, D.C. USA. LNCS, Springer-Verlag, 10.-
13. August 2008.

� B. Driessen, A. Poschmann, C. Paar. Comparison of Innovative Signature Algorithms for
WSNs. Proceedings of 1. ACM Conference on Wireless Network Security, WiSec 2008,
Alexandria, Virginia, USA. ACM Press. 31. March - 2. April 2008.

� C. Rolfes, A. Poschmann, C. Paar. Security for 1000 Gate Equivalents. Workshop on
Secure Component and System Identification, SECSI 2008, Berlin. 17.-18. March, 2008.

� A. Poschmann, C. Paar. Hardware Optimierte Lightweight Block-Chiffren fÃ¼r RFID-
und Sensor-Systeme. INFORMATIK 2007 - Informatik trifft Logistik, Workshop: Kryp-
tologie in Theorie und Praxis, 37. Jahrestagung der Gesellschaft für Informatik e. V. (GI),
LNI P-110, Bremen, 27. September, 2007.

� A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Robshaw, Y.
Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher. 9. International
Workshop on Cryptographic Hardware and Embedded Systems, CHES 2007, Vienna,
Austria, LNCS, Springer-Verlag, September 10 - 13, 2007.

� F. Regazzoni, S. Badel, T. Eisenbarth, J. Großschädl, A. Poschmann, Z. Toprak, M. Mac-
chetti, L. Pozzi, C. Paar, Y. Leblebici, and P. Ienne. A Simulation-Based Methodology
for Evaluating the DPA-Resistance of Cryptographic Functional Units with Application
to CMOS and MCML Technologies. International Conference on Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS IC 07), Samos, Greece. 16.-
19. July, 2007.

� L. Uhsadel, A. Poschmann, C. Paar. Enabling Full-Size Public-Key Algorithms on 8-
bit Sensor Nodes. European Workshop on Security and Privacy in Ad hoc and Sensor
Networks 2007, ESAS 2007, Cambridge, United Kingdom. LNCS, Springer-Verlag, 2.-3.
July, 2007.

� G. Leander and A. Poschmann. On the Classification of 4-Bit S-boxes. International
Workshop on the Arithmetic of Finite Fields (WAIFI), Madrid, Spanien. LNCS, Springer-
Verlag, 21.-22. June, 2007.

� L. Uhsadel, A. Poschmann, and C. Paar. An Efficient General Purpose Elliptic Curve
Cryptography Module for Ubiquitous Sensor Networks. Software Performance En-
hancement for Encryption and Decryption, SPEED 2007, Amsterdam, Netherlands. 11.-
12. June, 2007.

� G. Leander, C. Paar, A. Poschmann, K. Schramm. New Lightweight Crypto Algorithms
for RFID. IEEE International Symposium on Circuits and Systems 2007, ISCAS 2007, New
Orleans, Louisana, USA. IEEE Conference Proceedings ISCAS 2007, pp. 1843 - 1846, 27.-
30. May, 2007.

� G. Leander, C. Paar, A. Poschmann, K. Schramm. New Lightweight DES Variants. Fast
Software Encryption 2007, FSE 2007, Luxemburg City, Luxemburg. LNCS, Springer-
Verlag, 26.-28. March, 2007.

� A. Poschmann, D. Westhoff, and A. Weimerskirch. Dynamic Code Update for the Effi-
cient Usage of Security Components in WSNs. Workshop on Mobile Ad-Hoc Networks
2007, WMAN 2007, Bern, Switzerland. VDE-Verlag, 1.-2. March, 2007.

178

Curriculum Vitae

� A. Poschmann, G. Leander, K. Schramm, C. Paar. A Family of Light-Weight Block Ci-
phers Based on DES Suited for RFID Applications. Workshop on RFID Security 2006,
Graz, Austria, 12.-14. July, 2006.

Other Publications

� G. Acs, L. Buttyan, A. Casaca, C. Castelluccia, A. Francillon, J. Girao, A. Grilo, P. Lan-
gendoerfer, M. Nunes, E. Osipov, K. Piotrowski, A. Poschmann, J. Riihijaervi, P. Schaf-
fer, R. Silva, P. Steffen, A. Weimerskirch, D. Westhoff, UbiSec&Sens Deliverable D0.1
Scenario definition and initial threat analysis, 2006, http://www.ist-ubisecsens.
org/deliverables/D0.1_060628.pdf

� C. Castelluccia, B. Driessen, A. Hessler, M. Manulis, A. Poschmann, O. Ugus, A. Weimer-
skirch, D. Westhoff, UbiSec&Sens Deliverable D2.2 Specification and Implementation of
Re-Recognition Schemes, 2007.

� F. Armknecht, L. Buttyan, C. Castelluccia, A. Francillon, M. Manulis, A. Poschmann, O.
Ugus, D. Westhoff, UbiSec&Sens Deliverable D2.4 Specification and Simulation of Key
Pre-distribution Schemes, 2007, http://www.ist-ubisecsens.org/deliverables/
D2.4_026820.pdf

� A. Hessler, P. Langendoerfer, M. Manulis, A. Poschmann, K. Piotrowski, D. Westhoff,
UbiSec&Sens Deliverable D3.1 Specification, Implementation and Simulation of Secure
Distributed Data Storage, 2007.

� J.-M. Bohli, A. Casaca, C. Jardak, P. Langendoerfer, E. Meshkova, R. Nunes, S. Peter,
K. Piotrowski, A. Poschmann, K. Rerkrai, UbiSec&Sens Deliverable D3.3 Interfaces for
Management as well as Service and Application Support, 2008,

179

