
Lightweight Cryptography for FPGAs

Panasayya Yalla, Jens-Peter Kaps
Department of ECE, Volgenau School of IT&E

George Mason University
Fairfax, VA, USA

Email: pyalla, jkaps@gmu.edu

Abstract—The advent of new low-power Field Pro-
grammable Gate Arrays (FPGA) for battery powered devices
opens a host of new applications to FPGAs. In order to
provide security on resource constrained devices lightweight
cryptographic algorithms have been developed. However, there
has not been much research on porting these algorithms to
FPGAs. In this paper we propose lightweight cryptography for
FPGAs by introducing block cipher independent optimization
techniques for Xilinx Spartan3 FPGAs and applying them to
the lightweight cryptographic algorithms HIGHT and Present.
Our implementations are the first reported of these block
ciphers on FPGAs. Furthermore, they are the smallest block
cipher implementations on FPGAs using only 117 and 91
slices respectively, which makes them comparable in size to
stream cipher implementations. Both are less than half the size
of the AES implementation by Chodowiec and Gaj without
using block RAMs. Present’s throughput over area ratio of
240 Kbps/slice is similar to that of AES, however, HIGHT
outperforms them by far with 720 Kbps/slice.

Keywords-lightweight cryptography; HIGHT; Present;
FPGA;

I. INTRODUCTION

Ubiquitous computing represent the third era of com-
puting devices after mainframes and personal computer for
first and second eras. Radio frequency identification (RFID)
tags and wireless sensor network (WSN) nodes are a few
examples which are being used for automated electronic
toll systems, identification tags for food products, pets,
clothing and so on. This brings us close to the threshold
of pervasive computing. The mass deployment of these
device brings serious concerns for security and privacy. The
traditional cryptographic algorithms may not be suitable for
these device as they have limited memory and computa-
tional power along with serious power constraints. This
led to development of new branch of cryptography called
lightweight cryptography [1]. HIGHT [2] and Present [3]
were developed specifically for lightweight cryptography.
AES and Camellia, though not considered lightweight, are
also being used on these devices.

Until now, lightweight cryptography is targeted towards
application specific integrated circuits (ASICs). ASICs in-

c©2010, IEEE. Panasayya Yalla and Jens-Peter Kaps Lightweight
Cryptography for FPGAs. In International Conference on ReConFigurable
Computing and FPGAs – ReConFig’09, pages 225–230. IEEE, Dec 2009.
http://dx.doi.org/10.1109/ReConFig.2009.54

volve high non-recurring engineering cost and long time to
market where as Field Programmable Gate Arrays (FPGAs)
involve low non-recurring engineering cost and less time
to market. The dominant factor favorable to ASICs is their
lower power consumption, which is of primary concern
for lightweight cryptographic devices and their lower cost
in large volumes. With the advent of low-cost and low-
power FPGAs [4], we expect them to become popular for
battery powered applications such as WSN nodes. Hence,
they are a targeted for lightweight cryptographic applica-
tions. Reconfigurability of FPGAs allows the system to be
upgraded if ever the need arises which is not possible with
ASICs. Further more, lightweight crypto implementations
lead to area saving over traditional implementations. This
enables a designer to add crypto to an existing design at
a minimal cost or to reduce the overall area consumption
which might lead to cost saving as the design might now
fit into a smaller, cheaper FPGAs. We designed lightweight
architectures of Present and HIGHT for Xilinx Spartan-3
FPGAs. The ciphers considered are of full strength security
i.e 128-bit key length, even though traditional lightweight
cryptography considers 80-bit key length to be sufficiently
secure.

II. LIGHTWEIGHT CIPHERS

A. HIGHT

The block cipher HIGHT [2] was developed by a group
from Korea University, National Security Research Institute
(NSRI) and Korea Information Security Agency (KISA) in
2006. HIGHT (HIGH security and light weighT) is a 64-
bit block cipher with 128-bit key length. It uses generalized
Feistel structure with 32-rounds containing simple opera-
tions such as XOR, modular addition in the group of 28

elements, and bitwise rotation. The absence of traditional
substitution layer, its Feistel structure and byte oriented
operations make it suitable for low-cost, low-power and
lightweight implementations. The original design presented
in [2] was implemented on ASICs with 3048 gates. The
HIGHT algorithm was modified [5] to reduce the critical
path in the key scheduler which also reduced the area to 2608
gates. The initial security analysis presented in [2] showed
that HIGHT only 19 rounds is secure. Subsequent analysis
[6] increased the rounds required to 28.

FF FF FF FF6bits 2bits

12 5 4 3 0SRL16 SRL16

Figure 1. 12-bit Shift Register

B. Present

Present is an ultra-lightweight block cipher proposed by
A. Bogdanov, L.R. Knuden and G. Leander et al. [3].
Present is a 31-round Substitution-Permutation (SP) network
with a block size of 64-bit and 80-bit or 128-bit key
lengths. In this paper a 128-bit key length is considered.
Present was designed by incorporating some features of
Serpent [7] and Data Encryption Standard (DES) [8] which
demonstrated excellent performance in hardware. The non-
linear substitution layer, i.e. S-box in Present is similar to
that of Serpent and the linear permutation layer to that of
DES. The original Present proposal provides a basic security
analysis [3]. Further-more, analysis was performed in [9], [6]
and [10] showing that 31-round Present with 31-rounds is
considered secure.

III. OPTIMIZATION TECHNIQUES

Designing compact architectures in FPGAs depends on
effective use of architectural features provided in the targeted
FPGAs. Xilinx Spartan-3 FPGAs have features such as Look
Up Table (LUT) based 16-bit shift register (SRL16) and
Distributed Random Access Memory (DRAM) which can be
employed to improve the performance and decrease the area
of a given design by an order of magnitude. Our techniques
can be adapted to similar features provided by other FPGA
vendors.

A. Xilinx Spartan-3 FPGA Architecture

1) FPGA Structure: The fundamental logic unit in Xilinx
FPGAs is a slice, which contains mainly two four input
LUTs and two flipflops. Half the slices of a chip are called
SLICEMs. Their LUTs can be configured as 16-bit shift
registers (SRL16) or as 16-bit distributed RAMs called
DRAMs.

2) Shift Register (SRL16): The number of slices required
for implementing a shift register depends on the number of
bits to be stored and the number of taps. Taps are positions
of a shift register where data can be written to or read from.
Each tap is configured as a flipflop. Fig. 1 shows an example
of a 12-bit shift register with taps at bits 5, 4, 3, and 0.
The synthesis tool infers SRL16s when a shift register is
described in hardware descriptive language (HDL) without
reset. Otherwise it builds a shift register from flipflops.

3) Distributed RAM (DRAM): DRAMs offer fast and
localized memory. They can be cascaded for realizing deeper
memories with minimal penalty on timing. Distributed RAM
supports two types of memories: single-port RAM and
dual-port RAM. Both have synchronous write and either
synchronous or asynchronous read. The area depends on

the number of output bits and memory depth. Depending
on the specific logic synthesis tool used, DRAMs can
be instantiated directly or inferred based on the hardware
description of RAMs with no reset.

B. Plaintext and Key Storage

The most area consuming components of cryptographic
algorithms are data and key storage. DRAM and shift reg-
ister are two options for efficient memory implementation.
In order to develop lightweight architectures, the algorithm
implementations are scaled down to use either an 8-bit or
a 16-bit datapath. Key and data are loaded either 8-bits or
16-bits depending on the implementation. Loading into shift
register is simpler as the number of control bits needed are
less as compared to DRAM which needs addressing. The
size of the address increases with the number of words to
be stored in DRAM. On the other hand, the control bits of
shift register are independent of size of the data it stores.
However, some ciphers require intermediate data values.
For example in the case of Camellia [11], multiple values
from disparate locations are required to perform a single
computation. This makes use of DRAM more appropriate.
In our cipher implementations of Present, plaintext is stored
in a shift register as data is needed in a regular order. In
case of HIGHT, plaintext is stored in DRAM due to its
generalized feistel structure. The key scheduling in ciphers
Camellia, HIGHT and Present involve shifting of key which
make use of shift register more apt. However, the key
in HIGHT is need in a different order during initial and
final transformations compared to round operations which
is difficult to accomplish with a shift register. In this case,
a DRAM is used to store the key.

C. Control Logic

Finite State Machines (FSM) are used for realizing the
control logic of complex systems. Traditionally, FSMs are
implemented using flipflops and combinational logic. How-
ever, this type of FSM implementation is complex and
not efficient. The use of RAM blocks for sequential logic
led to ROM-based FSM implementations which have been
shown to be efficient [12], [13], [14]. The control signals
for each operation are combined to one control word. These
control words are stored in a memory location which can
be accessed by an address. DROMs are inferred by holding
the write signal low for DRAMs. ROM- based FSMs have
additional advantages. The maximum frequency at which a
ROM-based FSM operate is independent of the complexity
of the circuit. This method is also proved to save power [15].
For our HIGHT and Present architectures, the control signals
are generated by a counter and some additional logic. The
size of the control word is reduced by removing any control
signals which repeat a short sequence of values many times,
such as control signals for round operations, from the main
controller and assigning them to a sub-controller. We use

F1 F1F0F0WK
3

WK
7

SK
4i

SKSK
4i+1

SK
4i+24i+3

a) Initial Transformation b) Round Function c) Final Transformation

X
0,0

X
0,1

X
0,2

X
0,3

X
0,4

X
0,5

X
0,6

X
0,7

P
0

P
1

P
2

P
3

P
4

P
5

P
6

P
7

X
32,0

X
32,1

X
32,3

X
32,4

X
32,5

X
32,6

X
32,7

C
0

C
1

C
3

C
4

C
5

C
6

C
7

X
32,2

C
2

X
i,0

X
i,1

X
i+1,0

X
i+1,1

X
i+1,2

X
i+1,3

X
i+1,4

X
i+1,5

X
i,2

X
i,3

X
i,4

X
i,5

X
i,6

X
i,7

X
i+1,7

X
i+1,6

WK
0

WK
2

WK
1

WK
4

WK
5

WK
6

Figure 2. HIGHT

this technique for camellia where the control signals for
round function f are generated by a sub-controller called
F-controller.

IV. HIGHT

A. Algorithm

The HIGHT algorithm consists of 32-rounds with initial
and final transformations before the first and after the last
rounds respectively. The plaintext P and ciphertext C are
split into eight 8-bit blocks P7, · · · , P0 and C7, · · · , C0 and
the original key K into sixteen 8-bit blocks K15, · · · ,K0.

The initial transformation uses the four whitening key
bytes WK0, WK1, WK2, and WK3 to transform a plain
text P into the input of first round function, X0 = X0,7 ‖
· · · ‖ X0,0. In the final transformation, the data is shifted
towards right and transforms X32 = X32,7 ‖ · · · ‖ X32,0 into
cipher text C by with the four whitening keys WK4, WK5,
WK6 and WK7. Both transformations performs a XOR or
modular addition as shown in Fig. 2a) and Fig. 2c). The
eight 8-bit whitening keys for initial and final transformation
WK7, · · · ,WK0 are generated using Eq. (1).

For 0 ≤ l,m ≤ 7

WKl ← K12+l, WKl+4 ← Kl (1)
SK16∗l+m ← K(m−l) mod 8 � δ16∗l+m (2)

SK16∗l+m+8 ← K((m−l) mod 8)+8 � δ16∗l+m+8 (3)

The round function uses two auxiliary functions F0 and
F1 described in Eq. (4) and (5) respectively, along with
XOR and modular addition operations. The two functions
F0 and F1 provide bitwise diffusion which is similar to
linear transformation from GF (2)8 to GF (2)8. The round
function transforms the input Xi = Xi,7 ‖ · · · ‖ Xi,0 into
Xi+1 = Xi+1,7 ‖ · · · ‖ Xi+1,0 for i = 0, · · · , 31, which is
shown in Fig. 2b).

The ith round key RKi consists of four 8-bit subkeys
SK4∗i, SK4∗i+1, SK4∗i+2, and SK4∗i+3 which are gener-
ated through Eq. (2) and (3). The 7-bit constants δ0, · · · , δ127
are generated by the 7-bit LFSR h. The characteristic poly-
nomial of h is x7+x3+1 in Z2 with a period of 27-1=127.
The initial value of h is set to 10110102.

F0(x) = x≪1 ⊕ x≪2 ⊕ x≪7 (4)
F1(x) = x≪3 ⊕ x≪4 ⊕ x≪6 (5)

B. Lightweight Architecture of HIGHT

We reduce the area consumption for HIGHT by scaling
the 64-bit algorithm to 8-bit and apply optimizations de-
scribed in Section III. This reduction does not come at the
cost of temporary storage or multiplexers.

1) Data Storage : The round function involves shifting
which suggest that a shift register is the most efficient
solution for data storage. However, the generalized Feistel
structure of HIGHT leads to a misalignment of data when
a shift register is used. Realignment requires additional
clock cycles. This reduces the throughput and the more
complex logic increases the area consumption. Therefore,
we use a DRAM which is more efficient both in terms of
area and latency. A dual-port DRAM is used as the round
function requires two 8-bit blocks of data for computing
one 8-bit block. The shifting involved in round function is
accomplished by addressing. The addresses needed for all
operations are generated by using three 3-bit multiplexers
M6, M7, and M8, 2-bit and 3-bit adders, 12-bit shift register
SR and a 3-bit counter C3 shown in Fig 3. The address from
M8 is used for both reading and writing while M7 is used
only for reading. The control signals for all operations are
generated by using a 5-bit counter and some logic functions.

2) Round Function, Initial and Final Transformations:
The addresses for round function are generated by shift reg-
ister (SR) and a 3-bit adder. The initial values of SR required
for first round are computed by using 2 LSB bits of C3. The
addresses for the next round are generated by loading the
result of 3-bit adder into SR. This way of generating the
addresses reduces the complexity of the control logic and
avoids extra clock cycles needed for shifting of data. Each
round operation requires 4 clock cycles. The initial and the
final transformations are performed by using the datapath
of the round function with use of two extra multiplexers
M2 and M3. The addresses for both transformations are
generated by C3. The initial transformation is performed
while the data is being loaded into the shift register which
save clock cycles.

3) Key Storage and Scheduling: The 128-bit key is stored
in a single-port DRAM. The subkeys and whitening keys
are generated by using two 3-bit counter C1 and C2 and a
2x1 multiplexer M5. The MSB bit of the key address which
is also used as selection bit for M5 is generated from the
output of the 5-bit counter used in control logic. The two

F0

F1+1

+1

8
8

8 SK WK

Key88
4

3

3

datain

83

3

3

Dual−port DRAM

Single−port

DRAM

7

LFSR
8SR

3

2

8

3

1
0

3

8

1
add

M3

M5

M2M1
M4

M6
M8

M7

C1

C2

3

31

3

2

3 C33

X
0

X
1

X
3

X
4

X
5

X
6

X
7

X
2

Figure 3. Top level block diagram of HIGHT

3-bit counters are used for addressing instead of one 4-bit
counter to accomplish shifting involved in key scheduling.

V. PRESENT

A. Algorithm

The initial state of Present b63 · · · b0 is defined by the
64-bit plaintext P . The round function changes this state in
every iteration i for 0 ≤ i ≤15 through its three stages:
addRoundkey, sBoxLayer and pLayer. The addRoundkey
operation XORs the current state bi,63 · · · bi,0 with the ith

round key RKi = rki,63 · · · rki,0 as follows:

For 0 ≤ j ≤ 63 : bi,j ← bi,j ⊕ rki,j .

The second stage is the non-linear sBoxLayer which consists
of 16 copies of a 4-bit to 4-bit S-box. Each S-box is applied
to S(wi) for w15, · · · , w0 where wi = b4∗i+3 ‖ b4∗i+2 ‖
b4∗i+1 ‖ b4∗i for 0 ≤ i ≤ 15. The linear bit permutation
pLayer is the third stage of the round operation which can
be described by Eq. (6).

For 0 ≤ i ≤ 15

bi ← b4∗i, bi+16 ← b4∗i+1,

bi+32 ← b4∗i+2, bi+48 ← b4∗i+3. (6)

The current round key RKi are the 64 most significant bits
(MSB) of the current state of the key register K. The round
key RKi+1 for the next round i+1 is generated by shifting
the key register K = k127k126 · · · k1k0 to the left by 61
bits and passing the left most 8-bits through two S-boxes of
Present. The 5-bits k66k65k64k63 are XORed with the 5-bit
round counter. The resultant 64 MSB of K form the round
key bits RKi+1 = k127 · · · k64.

B. Lightweight Architecture of Present

We achieved area reduction by scaling the 64-bit im-
plementation to a 16-bit implementation and by applying
the optimization techniques stated in Section III for several
components used in this implementation. Scaling the imple-
mentation to 8-bit would decrease the throughput drastically
and yield a very small area reduction due to the complexity
of the permutation operation. Our implementations of wider

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

S

S

S

S

4

4

4

4RK
i

SR1

SR2

15 14 13 12 11 10 9 8 7 6 5 4 23 1 0

16

16−bit shift

16
16

16
16

44 4 4

datain

16
16−bit or 4−bit shift

4 4 4 4

4 4 4 4

4 4 4 4

Figure 4. 16-bit datapath of Present

datapaths led to a significant increase in area consumption.
The top level datapath is shown in Fig. 4.

1) Data storage: The state b63 · · · b0 is stored in the shift
register SR1 for the reason specified in III. It performs a
16-bit circular left-shift per clock cycle. We consider the
64-bit shift register as a combination of sixteen 4-bit block
15,· · · ,0. The 16 MSB are tapped out of SR1 for the round
operation.

2) S-box Implementation and Permutation Layer: The
round operation starts by XORing the incoming data with
the round key RKi and applying the result to four S-boxes.
Present’s 4-bit to 4-bit S-boxes are implemented in a single
LUT each. Our architecture uses four S-boxes for round
operations and two for key scheduling. The Permutation
function is implemented by using the shift register SR2

which performs a shift by 4 bits during round operation
and by 16 bits after each round when copying its content
into SR1. Furthermore, the 16-bit output from the S-boxes
is given as input to the blocks 12, 8, 4, and 0 of SR2. During
first clock cycle of the round operation the 4-bits blocks 15,
11, 7 and 3 are computed from the 16 MSB of SR1 and
placed in position 12, 8, 4, and 0 of SR2. In the subsequent
clock cycle SR2 is shifted by 4 bits and blocks 14, 10, 6 and
2 are computed and placed in the now empty positions 12,
8, 4, and 0 of SR2. These operations repeat for another two
clock cycles to complete the round function. This results in
a total of 8 clock cycles for each round operation.

3) Key Storage and Scheduling: The key is stored in a
128-bit shift register which performs a 16-bit circular left-
shift. The first round key RK1 is obtained during the first
four clock cycles by tapping the 16 MSB from the key and
passing them to the RKGen function. However, during these
four clock cycles the key was shifted by 64-bit. Subsequent
round keys require only a shift by 61 bits which is not
possible with a 16-bit shifts. We overcome this problem by
placing three extra taps on the shift register and using two
3-bit registers A and B along with several multiplexers (see
Fig. 5). The 3 bits that were “lost” during generation of
the first round key are stored in register A. For subsequent
round keys, the value from register A and the 13 MSB from

7 6 5 4 3 2 1 0

RK
i

A B

33 16 2 0

3
1315

16RKgen
19

1618

16
datain

3

3
3 16

2 0
15

0

16Key

0

12
02

15

3

3

Figure 5. Key scheduling of Present

the key are passed to RKGen. However, when generating
the round key RK2 we are facing the same problem of
shifting by 64-bit again and compensate by storing three
bits in register B. From now on, RKgen gets the value from
registers B||A||11 MSB from key. When we write the round
keys back into the shift register we take the 3-bit difference
into account. Therefore, no additional registers are required
for subsequent rounds. The RKgen function consists of two
S-boxes for S-box operation, a 5-bit XOR to compute the
XOR with the round counter, and multiplexers to choose the
appropriate bits for round key generation. The output of the
RKgen function is the round key.

VI. IMPLEMENTATION RESULTS

Our designs of HIGHT and Present were described
in VHDL, synthesized for the Xilinx Spartan-3 FPGA-
XC3S50-5 device using Xilinx ISE 9.2i and simulated with
Active HDL 7.2. All results are after place and route. All
our cipher implementations operate in electronic code book
mode (ECB), are not pipelined, and generate all round keys
on the fly without requiring additional clock cycles.

Table I shows the detailed results of our implementations
of HIGHT and Present. We also included the implementation
results of Camellia and TinyXTEA which were done by
our group previously [11], [16]. The results for AES were
obtained by using the VHDL code for the ASIC implementa-
tion reported in [17] and synthesizing it for our target FPGA.
We like to note that this implementation is not optimized for
FPGAs. Camellia and AES encrypt blocks of 128-bit data,
whereas the other algorithms operate on 64-bit data blocks.
Therefore, AES and Camellia implementations require more
storage. Furthermore, AES and Camellia have 8x8 S-boxes
which occupy 64 slices or 16% and 20% respectively of the
total design area in our implementations. Present’s 4x4 S-
box occupies only 2 slices. Our implementation of Present
uses six S-boxes which occupy 10% of the total design area.
AES and TinyXTEA-3 use registers (i.e. flipflops) for data
and key storage. Even though the total number of flipflops
needed is far smaller than the number of LUTs used, the
addressing logic contributes to the area consumption. The
Camellia implementation uses 88 SRL-16 elements, which
would be capable of storing a maximum of 1,408 bits, to

Table I
LIGHTWEIGHT IMPLEMENTATION RESULTS FOR XILINX XC3S50-5

Fl
ip

flo
ps

L
U

T
s

D
R

A
M

s

SR
L

-1
6s

Sl
ic

es Implementation
Choices for

Block Cipher Data Key
Present 114 159 0 16 117 SRL SRL
HIGHT 25 132 24 3 91 DRAM DRAM

Camellia [11] 164 420 16 88 318 DRAM SRL
TinyXTEA-3 [16] 226 424 0 0 254 FF FF

AES [17] 338 531 0 0 393 FF FF

store its two 128-bit keys. Unfortunately, the round key gen-
eration shifts the key by 15 and 17 bits. This irregular shift
requires many additional tapings causing the high number
of SRL-16 elements. Implementing shifts in multiples of 8
require less area. The same can be observed in Present’s
key schedule as its involves 61-bit shifts. HIGHT makes
extensive use of DRAM elements for both, data and key
storage and uses SRL-16s in its control logic. Present uses
SRL-16s for both. DRAM and SRL-16 elements are an ideal
choice for storing data and key provided that the algorithm
is regular which leads to a simple control logic. Camellia is
an example for an algorithm with high irregularity, therefore
DRAM and SRL-16 elements cannot be used to full effect.
Implementing permutation functions that span more than 8
or 16 bits also increases the area consumption and latency
for lightweight implementations in FPGAs.

Table II compares our implementations with Camel-
lia, TinyXTEA-3, AES and the eSTREAM portfolio ci-
phers [21]. The stream ciphers outperform all block cipher
implementations with respect to the throughput/area metric.
However, they are defined for 80-bit keys and only MICKEY
and Grain offer 128-bit versions. Stream ciphers are still
considered immature [21] and only recently the stream
cipher F-FCSR-H was removed from the portfolio. AES [19]
has the highest throughput of the block ciphers followed by
HIGHT. However, HIGHT has a better throughput to area
ratio and consumes only half the size and no block rams. For
the throughput to area ratio computation we added 300 slices
to the area of AES [19] and 140 to AES [18] to compensate
for the block ram usage [18]. We realize that AES [19]
was implemented on a Spartan II device which can not be
compared directly with a Spartan-3 implementation but we
doubt that this alone would cause a factor three difference
in delay.

VII. CONCLUSION

Lightweight implementations of cryptographic algorithms
for FPGAs is going to become an important research area
due to the introduction of FPGAs for battery powered de-
vices. In this paper we introduced the first lightweight imple-
mentations of the block ciphers HIGHT and Present on FP-
GAs. Our implementation of HIGHT consumes less than 100
slices, encrypts data at 65 Mbps and has a better throughput
over area ratio than the previously published lightweight

Table II
RESULTS FOR PRESENT AND HIGHT COMPARED TO OTHER BLOCK CIPHERS AND THE ESTREAM PORTFOLIO CIPHERS ON FPGA

Design M
ax

im
um

D
el

ay
(n

s)

C
lo

ck
C

yc
le

s
pe

r
bl

oc
k

B
lo

ck
Si

ze
(b

its
)

K
ey

Si
ze

(b
its

)

A
re

a
(s

lic
es

)

B
lo

ck
R

A
M

s

T
hr

ou
gh

pu
t

(M
bp

s)
at

f
m

a
x

T
hr

ou
gh

pu
t/

A
re

a
(M

bp
s/

sl
ic

e)

Device
Present 8.78 256 64 128 117 0 28.46 0.24 xc3s50-5
HIGHT 6.12 160 64 128 91 0 65.48 0.72 xc3s50-5

Camellia [11] 7.95 875 128 128 318 0 18.41 0.06 xc3s50-5
AES [17] 14.21 534 128 128 393 0 16.86 0.04 xc3s50-5

AES 8-bit [18] 14.93 3900 128 128 124 2 2.2 0.01 xc2s15-6
AES [19] 20.00 46 128 128 222 3 139 0.27 xc2s30-5

TinyXTEA-3 [16] 15.97 112 64 128 254 0 35.78 0.14 xc3s50-5
Grain v1 [20] 5.10 1 1 80 44 0 196 4.45 xc3s50-5

Grain 128 [20] 5.10 1 1 128 50 0 196 3.92 xc3s50-5
MICKEY v2 [20] 4.29 1 1 80 115 0 233 2.03 xc3s50-5

MICKEY 128 [20] 4.48 1 1 128 176 0 223 1.27 xc3s50-5
Trivium [20] 4.17 1 1 80 50 0 240 4.80 xc3s50-5

Trivium (x64) [20] 4.74 1 64 80 344 0 13,504 39.26 xc3s400-5

implementation of AES [19]. Furthermore, we introduced
optimization techniques for lightweight implementations
that can also be applied to other algorithms. Investigating
the robustness of lightweight implementations against side
channel analysis and implementing lightweight asymmetric
cryptosystems is future work.

REFERENCES

[1] J.-P. Kaps, G. Gaubatz, and B. Sunar, “Cryptography on a
speck of dust,” Computer, vol. 40, no. 2, pp. 38–44, Feb
2007.

[2] D. Hong et al., “HIGHT: A new block cipher suitable for
low-resource device,” in CHES 2006, ser. LNCS, L. Goubin
and M. Matsui, Eds., vol. 4249. Springer, 2006, pp. 46–59.

[3] A. Bogdanov et al., “PRESENT: An ultra-lightweight block
cipher,” in CHES 2007, ser. LNCS, vol. 4727. Springer,
2007, pp. 450–466.

[4] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A
90nm low-power FPGA for battery-powered applications,” in
FPGA ’06. New York, NY, USA: ACM, 2006, pp. 3–11.

[5] L. Young-Il, L. Je-Hoon, Y. Younggap, and C. Kyoung-Rok,
“Implementation of HIGHT cryptic circuit for RFID tag,”
IEICE Electronics Express, vol. 6, no. 4, pp. 180–186, 2009.

[6] O. Ozen et al., “Lightweight block cipher revisisted: Crypt-
analysis of reduced round PRESENT and HIGHT,” in ACISP,
ser. LNCS, vol. 5594. Springer, 2009, pp. 90–107.

[7] E. Biham, R. Anderson, and L. Knudsen, “Serpent: A new
block cipher proposal,” in FSE 1998, ser. LNCS, vol. 1372.
Springer, January 1998, pp. 222–223.

[8] Data Encryption Standard (DES), National Institute of Stan-
dards and Technology, FIPS Publication 46-3, Oct 1999.

[9] M. Wang, “Differential cryptanalysis of reduced-round
PRESENT,” in AFRICACRYPT 2008, ser. LNCS, S. Vaude-
nay, Ed., vol. 5023. Springer, 2008, pp. 40–49.

[10] B. Collard and F.-X. Standaert, “A statistical saturation attack
against the block cipher PRESENT,” in CT-RSA, ser. LNCS,
vol. 5473. Springer, 2009, pp. 195–210.

[11] P. Yalla and J.-P. Kaps, “Compact FPGA implementation of
Camellia,” in FPL 2009, M. Daněk, J. Kadlec, and B. Nelson,
Eds. IEEE, Aug. 2009, pp. 658–661.

[12] M. Rawski, H. Selvaraj, and T. Luba, “An application of func-
tional decomposition in ROM-based FSM implementation in
FPGA devices,” J. Syst. Archit., vol. 51, no. 6-7, pp. 424–434,
2005.

[13] V. Skylarov, “Synthesis and implementation of RAM-based
finite state machines in FPGAs,” in FPL ’00, ser. LNCS, R. W.
Hartenstein and H. Grünbacher, Eds., vol. 1896. Springer-
Verlag, 2000, pp. 718–728.

[14] I. Garcı́a-Vargas et al., “Rom-based finite state machine
implementation in low cost FPGAs,” in ISIE. IEEE, June
2007, pp. 2342–2347.

[15] A. Tiwari and K. A. Tomko, “Saving power by mapping
finite-state machines into embedded memory blocks in FP-
GAs,” in DATE ’04. IEEE Computer Society, 2004, p. 20916.

[16] J.-P. Kaps, “Chai-tea, cryptographic hardware implementa-
tions of xTEA,” in INDOCRYPT 2008, ser. LNCS, D. Chowd-
hury, V. Rijmen, and A. Das, Eds., vol. 5365. Springer, Dec
2008, pp. 363–375.

[17] J.-P. Kaps and B. Sunar, “Energy comparison of AES and
SHA-1 for ubiquitous computing,” in EUC-06, ser. LNCS,
vol. 4097. Springer, Aug 2006, pp. 372–381.

[18] T. Good and M. Benaissa, “AES on FPGA from the fastest
to the smallest.” in CHES 2005, ser. LNCS, J. R. Rao and
B. Sunar, Eds., vol. 3659. Springer, 2005, pp. 427–440.

[19] P. Chodowiec and K. Gaj, “Very compact FPGA implemen-
tation of the AES algorithm,” in CHES 2003, ser. LNCS, vol.
2779. Springer, Sep. 2003, pp. 319–333.

[20] D. Hwang et al., “Comparison of FPGA-targeted hardware
implementations of eSTREAM stream cipher candidates,” in
SASC Workshop 2008, Feb 2008, pp. 151–162.

[21] C. Cid and M. Robshaw, “The eSTREAM portfolio 2009
annual update,” eSTREAM, ECRYPT Stream Cipher Project,
Tech. Rep., Jul 2009.

