
 

 

 

   
Abstract—Lightweight cryptography is a branch of the 

modern cryptography, which covers cryptographic algorithms 

intended for use in devices with low or extremely low resources. 

Lightweight cryptography does not determine strict criteria for 

classifying a cryptographic algorithm as lightweight, but the 

common features of lightweight algorithms are extremely low 

requirements to essential resources of target devices. In this 

paper we propose generalized approaches to lightweight 

algorithms design. Also, we highlight some constraints and 

recommendations for implementation of lightweight algorithms. 

Finally, we anticipate several trends in lightweight 

cryptography. 

 
Index Terms—Lightweight cryptography; symmetric block 

ciphers; RFID; matching ciphertext attacks; side-channel 

attacks  

 

I. INTRODUCTION 

Information technologies widely penetrate into people’s 

day-to-day activity. This is one of the main trends of 

present-day society. An average man’s life cannot be 

imagined without various gadgets. A lot of households use 

devices with an embedded operating system (besides usual 

personal computers), which can be connected to the Internet 

and can even be united into a wireless network. Everywhere 

people are surrounded by a variety of terminals, readers, 

sensors etc. 

Such expansion of smart technologies crucially raises data 

security problems. However, now it is impossible to suggest 

a cryptographic primitive that can be implemented in all 

types of target devices. We can tell that AES [1] is a really 

strong algorithm with good performance. It is absolutely 

advisable to use AES in high-end devices, in a large variety 

of embedded systems or in some low-end devices (with 

several constraints). But it is impossible to use common 

cryptographic algorithms in specific devices with extremely 

constrained resources. The examples of such devices include: 

• RFIDs; 

• low-end smart cards (including wireless); 

• wireless sensors; 

• indicators, measuring devices, custom controllers etc. 

The underlying principles and approaches to the design of 
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algorithms intended for use in devices with extremely low 

resources are slightly different from the design criteria of 

commonly used cryptographic algorithms. This very specific 

field is covered by a branch of modern cryptography – 

lightweight cryptography. Lightweight cryptography does 

not determine strict criteria for classifying a cryptographic 

algorithm as lightweight, but the common features of 

lightweight algorithms are extremely low requirements to 

essential resources of target devices, including the following: 

• size required for hardware implementation; 

• computational power of microprocessors or 
microcontrollers; 

• random access memory (RAM); 

• read-only memory (ROM) etc. 

In this paper we propose a review of a set of lightweight 

block ciphers. Also, we have tried to analyze and generalize 

the main approaches to the design of lightweight algorithms, 

the constraints of their use and the trends of lightweight 

cryptography. 

 

II. EXAMPLES OF LIGHTWEIGHT BLOCK CIPHERS 

This section contains a brief review of several lightweight 

block ciphers. 

A. DESL & DESXL 

DESL was proposed in [2]. DESL is based on the classical 

DES algorithm [3]. Unlike DES, DESL uses a single S-box 

instead of 8 S-boxes of DES. The design criteria of the single 

DESL S-box make DESL resistant to most common 

cryptanalytic attacks [2]. This allows to save a part of ROM 

for tables storage. 

DESXL is a lightweight version of the DESX algorithm [4, 

5], which is one of widely used variants of DES. In contrast 

to DES, DESX performs input and output data whitening 

with the specific sub keys. Like DESL, DESXL uses the 

same single S-box instead of 8 DESX S-boxes. 

Relatively low resource requirements of DESL/DESXL 

are just the result of eightfold reduction of ROM 

requirements for tables storage (since this is the only 

difference between DESL/DESXL and the classical 

algorithms). The authors of DESL/DESXL asserted in [2] 

that such reduction in requirements is enough to use the 

proposed algorithms in devices with constrained resources 

with an example of passive RFIDs. 
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Fig. 1.  Structure of KATAN/KTANTAN 

B. Curupira 

Curupira is a variant of the family of algorithms using the 

Wide Trail strategy by Joan Daemen [6]. Other examples of 

such algorithms are AES [1], Anubis [7], and Khazad [8]. 

Relatively low resource requirements of Curupira are 

determined by the following set of factors: 

•  the internal state of the algorithm is relatively small 
(96 bits; compared to 128 bits of AES internal state 
for example); 

• it is possible to implement 8 X 8-bit Curupira’s S-box 
S() as a composition of two 4 X 4-bit S-boxes P() and 
Q(); this possibility allows to reduce ROM 
requirements to store the S-boxes; S-boxes S(), P(), 
and Q() are entirely inherited from Anubis and 
Khazad. 

The block size of Curupira is 96 bits; it accepts several 

fixed key lengths: 96, 144, or 192 bits. Data block is 

represented as a 3 X 4 byte array (the internal state of the 

algorithm); every round of Curupira modifies the internal 

state by the following operations [9]: 

1) Nonlinear layer γ; consists of the parallel application 

of the S() S-box to all bytes of the state. 

2) Permutation layer π; swaps each column of the state 

according to the predefined rule. 

3) Linear diffusion layer θ; performs multiplication of the 

state by the predefined matrix D. 

4) Key addition layer σ(Kr); performs bitwise addition of 

an r-round key Kr. 

The number of rounds is not determined strictly: the 

algorithm defines the minimum and maximum numbers of 

rounds for each allowed key length (from 10 rounds for a 

96-bit key to 23 rounds for a 192-bit one). Input whitening is 

performed before the first round by addition of a K0 sub key. 

The final round does not perform the θ operation. 

C. Katan & Ktantan 

KATAN is a family of block ciphers: KATAN32, 

KATAN48, and KATAN64. The number in the algorithm’s 

name represents the block size of the algorithm in bits. All the 

ciphers use 80-bit keys [10]. 

KTANTAN family also contains three algorithms with the 

same block sizes and key length. KTANTAN is more 

compact in hardware – it assumes that the key is burnt into 

the target device and cannot be changed (also, the key 

schedule of KTANTAN is much simpler compared to 

KATAN). Other procedures of KATAN and KTANTAN 

ciphers are equivalent. 

The algorithms’ structure is based on the structure of 

stream cipher trivium [11] (its variant with two registers). 

The size of the internal state is equivalent to the block size 

of the algorithm. Each of KATAN algorithms loads a data 

block into two internal shift registers L1 and L2. It performs 

254 rounds; each of them uses nonlinear functions which 

form the registers’ feedback (Fig. 1). 

The registers’ sizes and the specific bits used by the 

nonlinear feedback functions are fixed for every KATAN 

and KTANTAN algorithm and determined in [10]. One of 

the nonlinear functions uses specific irregular value (IR) in 

addition to several register’s bits. This value depends on the 

round’s number. 

KATAN48 and KATAN64 share the same nonlinear 

functions with KATAN32, but they use other bits of the 

internal registers to form the feedback. KATAN48 and 

KATAN64 also use the larger sizes of the registers in 

accordance to the block sizes. KATAN32 updates the 

registers once per a round; KATAN48 and KATAN64 use 

the nonlinear functions two or three times, correspondingly. 

The key schedule of KATAN is based on the linear 

feedback shift register (LFSR). Another LFSR is used for 

counting the rounds and to stop the encryption when required. 

The most significant bit of the latter LFSR forms the above 

mentioned irregular value. 

The resource requirements of KATAN and KTANTAN 

are extremely low because of the following collection of 

factors: 

• they use the shift registers, which can be very easily 
implemented in hardware [10]; the feedback 
functions are also very simple, though they provide 
the required nonlinearity; 

• they process small blocks of data – from 32 to 64 bits; 

• their internal state is small and its size is equal to the 
block size (plus the LSFR for counting the rounds); 

• KTANTAN’s key schedule is extremely simple. 

D. Present 

PRESENT is an example of a substitution-permutation 

network. It performs 31 rounds on 64-bit data block and 

allows to use 80 or 128-bit keys [12]. 

Each round consists of the following operations: 

• round key addition by XOR operation; 

• diffusion layer (S-layer); 

• mixing transformation layer (P-layer). 

PRESENT is based on the transformation layers of Serpent 

[13] and DES [3], which have been analyzed in-depth. The 

diffusion layer performs non-linear substitution of 16 4-bit 

sub blocks of the current state using similar to Serpent 4 X 4 
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S-box in parallel. 

The mixing transformation layer performs the predefined 

bit-level permutation. It is based on the mixing 

transformation layer of DES and seems to be the simplest one 

to be realized. In software the P-layer can be realized as bit 

operations or using the according “P-box” table. 

Also PRESENT performs the output data whitening after 

the final round. 

E. Hummingbird 

Hummingbird encrypts 16-bit blocks of data using a 

256-bit key. 

The underlying architecture of Hummingbird is original 

and hybrid (with elements of block and stream ciphers). The 

encryption procedure can be represented as a continuously 

working rotor-based machine. Four identical internal block 

ciphers play a role of virtual rotors. They perform a set of 

operations on short 16-bit data blocks. 

The main components of Hummingbird are (Fig. 2) [14]: 

• the internal 16-bit block cipher E(): 4-round 
SP-network with the key addition, S-box application, 
and linear transformation layers; the final round of the 
internal block cipher is shortened, but it contains the 
output whitening procedure; 

• four registers of the internal state RSi; 

• 16-bit LFSR. 

Hummingbird actively uses 216 modulo addition to mix the 

internal state registers with the data block to be processed. 

Alternatively, the high-level structure of the algorithm can be 

presented as 4-round block cipher with the feedback 

operations, which allow to use internal cipher blocks 

chaining as an additional advantage of the algorithm’s 

structure. 

 

 

Fig. 2. High-level structure of Hummingbird 

Relatively low resource requirements of Hummingbird can 

be achieved due to simple arithmetic and logic operations and 

extremely short data blocks. 

 

III. MAIN APPROACHES TO THE DESIGN OF LIGHTWEIGHT 

ALGORITHMS 

One of the trends of common cryptography assumes 

cryptographic primitives to be more complex and 

“heavyweight”. Main parameters of the block ciphers (block 

size, key length, internal state size etc.) are being increased 

continuously. This compensates for endless increasing of 

computer systems’ computational power and an avalanche 

increase in amounts of processed data. Therefore the resource 

requirements (and complexity of their realization) of the 

block ciphers grow inevitably to make the block ciphers 

stronger and more efficient. 

This approach is inadequate in principle for embedded 

systems, especially for systems with extremely low resources. 

Lightweight cryptography makes implementation cost the 

most important criterion. The security level and performance 

of the algorithms should also be adequate, i.e. it is highly 

desirable to find a compromise between these three 

characteristics; and such compromise highly depends on the 

resources of target devices [15]. 

Using the algorithms reviewed above as an example, we 

can try to summarize the main methods, which are used by 

the authors of lightweight algorithms to find the required 

balance: 

• decrease of the main algorithm’s parameters: block 
size, key length (within reasonable limits), and the 
algorithm’s internal state; 

• attempts to base the lightweight algorithms upon 
elements (arithmetic and logic operations, linear or 
nonlinear transformations etc.) which are widely in 
use and thoroughly analyzed; this can compensate for 
some forced decrease of cryptographic strength of the 
lightweight algorithms; 

• simplifying layers of transformations, e. g. decreasing 
ROM requirements by using 4 X 4 S-boxes (ideally – 
a single 4 X 4 S-box) or by using their composition to 
substitute larger sub blocks; 

• using low-cost (in implementation) but effective 
elements, such as data-dependent bit permutations, 
shift registers etc.; 

• designing key schedules that can derive sub keys 
in-place (i.e. the sub keys do not need to be 
precomputed) forward or backward; 

• using operations that allow implementation trade-offs 
according to the resources available on the target 
platform. 

 

IV. CONSTRAINTS AND COMPROMISES OF LIGHTWEIGHT 

ALGORITHMS 

As stated above, the design goal of a lightweight algorithm 

is finding a compromise between low resource requirements, 

performance, and cryptographic strength of the algorithm 

(including secure use of the target device with the algorithm 

inside). 

Resource constraints force cryptographers to design 

lightweight algorithms with small or relatively small block 

size and key length. In particular, this allows an adversary to 
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attack the lightweight algorithm using the matching cipher 

text attack: for an m-bit block cipher equal cipher text blocks 

can be expected after the encryption of 2m/2 data blocks 

(according to the birthday paradox); this can be concerned as 

a leakage of information about plaintext blocks [16]. The 

adversary can compose a comprehensive dictionary of the 

blocks for the current key after the encryption of 2m data 

blocks. Thus, the matching cipher text attack is effective 

against, for example, 16-, 32-, and 48-bit block ciphers. 

Therefore it is very insecure to use algorithms with small 

block sizes in the modes like ECB [17] – it is required to 

provide some constraints for usage of such algorithms: use 

them in complex modes, change the key routinely etc. 

Unfortunately such constraints or recommendations produce 

an additional load to the target device; adherence to the 

recommendations can be impossible for a specific algorithm 

(e. g. KTANTAN family of algorithms does not allow to 

change the key by design). 

Consequently, it is required to understand that lightweight 

cryptographic primitives are targeted at systems with 

relatively low or medium security requirements or systems, 

which can take into consideration the specifics of the 

algorithm to be used, that allow to find the desirable 

compromise. 

The internal state of lightweight algorithms is also 

designed to be as small as possible. Designers use simpler 

(compared to classical algorithms) mixing and diffusion 

transformations. So the internal structures of lightweight 

algorithms are designed without adequate security margin. 

This allows crypt analytics to publish a lot of papers with 

analysis of lightweight algorithms. The analysis of 

lightweight algorithms is in progress: any algorithm with 

adequate strength can be broken fully or partially in the 

not-too-distant future. 

Hummingbird is an illustrative example of such algorithms. 

It uses intensively analyzed structures and operations, but all 

of the structures are adopted or truncated to meet the 

requirements of lightweight cryptography. Hummingbird is 

considered a strong algorithm by its designers [14] and 

exterior researchers [18]. However, recently Markku-Juhani 

Saarinen proposed several attacks at Hummingbird’s 

components, which can be used in complex to compromise 

the whole cipher [19]. 

Another problem is that a possibility of side-channel 

attacks against realizations of some lightweight algorithms is 

not examined at all. For example, the designers of PRESENT 

stated the following: “Side-channel and invasive hardware 

attacks are likely to be a threat to PRESENT, as they are to all 

cryptographic primitives. For the likely applications, 

however, the moderate security requirements reflect the very 

limited gain any attacker would make in practice. In a risk 

assessment, such attacks are unlikely to be a significant 

factor” [12]. Nevertheless, practical possibility and 

adaptability of side-channel attacks against RFID are shown 

in several papers, e. g. [20, 21]. Therefore it is required to use 

countermeasures against side-channel attacks (see e. g. [22]) 

when implementing any lightweight algorithm whose 

structure is potentially susceptible to side-channel attacks. 

The countermeasures also produce an additional load for the 

target device. 

V. POSSIBLE TRENDS IN LIGHTWEIGHT CRYPTOGRAPHY 

It can be supposed that the evolution of lightweight 

cryptography will be active in the nearest future, because 

lightweight algorithms are highly required. Also we can 

suppose the following trends in designing of lightweight 

algorithms: 

1) Separation of ultra-lightweight algorithms into a 

specific branch of lightweight cryptography. The spectrum of 

devices with constrained resources is wide enough: from 

passive RFIDs to smart-cards with significantly higher 

resources. After designing a single lightweight algorithm for 

a whole spectrum of such devices, it can be both technically 

complicated to implement the algorithm in low-end devices 

and pointless to use it in high-end devices of the spectrum. 

Using the algorithms reviewed above as an example, we can 

see that such separation is already in progress: e. g. 

KATAN/KTANTAN algorithms require from 2 to 4 times 

less resources than DESL (when implementing in hardware) 

[10]. 

2) Deepening the divergence between software- and 

hardware-oriented lightweight algorithms. The fundamental 

difference between the requirements to minimize resources in 

software and hardware was demonstrated by Axel 

Poschmann in [15]. He examined PRESENT as an example: 

its round is extremely simple in hardware implementation 

(Fig. 3), but requires significant resources in software. 

Fig. 3.  Structure of PRESENT 

 

VI. CONCLUSIONS 

In this paper we consider lightweight block ciphers and 

propose generalized approaches to lightweight algorithms 

design. We highlight some constraints and recommendations 

for implementation of lightweight algorithms. Also, we 

describe compromises which should be reached by designers 

of lightweight cryptographic primitives. Finally, we 

anticipate several trends in lightweight cryptography. 
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