

Abstract—Lightweight cryptography is a branch of the

modern cryptography, which covers cryptographic algorithms

intended for use in devices with low or extremely low resources.

Lightweight cryptography does not determine strict criteria for

classifying a cryptographic algorithm as lightweight, but the

common features of lightweight algorithms are extremely low

requirements to essential resources of target devices. In this

paper we propose generalized approaches to lightweight

algorithms design. Also, we highlight some constraints and

recommendations for implementation of lightweight algorithms.

Finally, we anticipate several trends in lightweight

cryptography.

Index Terms—Lightweight cryptography; symmetric block

ciphers; RFID; matching ciphertext attacks; side-channel

attacks

I. INTRODUCTION

Information technologies widely penetrate into people’s

day-to-day activity. This is one of the main trends of

present-day society. An average man’s life cannot be

imagined without various gadgets. A lot of households use

devices with an embedded operating system (besides usual

personal computers), which can be connected to the Internet

and can even be united into a wireless network. Everywhere

people are surrounded by a variety of terminals, readers,

sensors etc.

Such expansion of smart technologies crucially raises data

security problems. However, now it is impossible to suggest

a cryptographic primitive that can be implemented in all

types of target devices. We can tell that AES [1] is a really

strong algorithm with good performance. It is absolutely

advisable to use AES in high-end devices, in a large variety

of embedded systems or in some low-end devices (with

several constraints). But it is impossible to use common

cryptographic algorithms in specific devices with extremely

constrained resources. The examples of such devices include:

• RFIDs;

• low-end smart cards (including wireless);

• wireless sensors;

• indicators, measuring devices, custom controllers etc.

The underlying principles and approaches to the design of

Manuscript received April 20, 2011; revised July 20, 2011.

Dr. S. Panasenko, head of software development department, ANCUD

Ltd., Moscow, Russia. E-mail: serg@panasenko.ru.

S. Smagin, senior software developer, ANCUD Ltd., Moscow, Russia.

E-mail: serg@ochacovo.ru.

algorithms intended for use in devices with extremely low

resources are slightly different from the design criteria of

commonly used cryptographic algorithms. This very specific

field is covered by a branch of modern cryptography –

lightweight cryptography. Lightweight cryptography does

not determine strict criteria for classifying a cryptographic

algorithm as lightweight, but the common features of

lightweight algorithms are extremely low requirements to

essential resources of target devices, including the following:

• size required for hardware implementation;

• computational power of microprocessors or
microcontrollers;

• random access memory (RAM);

• read-only memory (ROM) etc.

In this paper we propose a review of a set of lightweight

block ciphers. Also, we have tried to analyze and generalize

the main approaches to the design of lightweight algorithms,

the constraints of their use and the trends of lightweight

cryptography.

II. EXAMPLES OF LIGHTWEIGHT BLOCK CIPHERS

This section contains a brief review of several lightweight

block ciphers.

A. DESL & DESXL

DESL was proposed in [2]. DESL is based on the classical

DES algorithm [3]. Unlike DES, DESL uses a single S-box

instead of 8 S-boxes of DES. The design criteria of the single

DESL S-box make DESL resistant to most common

cryptanalytic attacks [2]. This allows to save a part of ROM

for tables storage.

DESXL is a lightweight version of the DESX algorithm [4,

5], which is one of widely used variants of DES. In contrast

to DES, DESX performs input and output data whitening

with the specific sub keys. Like DESL, DESXL uses the

same single S-box instead of 8 DESX S-boxes.

Relatively low resource requirements of DESL/DESXL

are just the result of eightfold reduction of ROM

requirements for tables storage (since this is the only

difference between DESL/DESXL and the classical

algorithms). The authors of DESL/DESXL asserted in [2]

that such reduction in requirements is enough to use the

proposed algorithms in devices with constrained resources

with an example of passive RFIDs.

Lightweight Cryptography: Underlying Principles and

Approaches

Sergey Panasenko and Sergey Smagin

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

516

Fig. 1. Structure of KATAN/KTANTAN

B. Curupira

Curupira is a variant of the family of algorithms using the

Wide Trail strategy by Joan Daemen [6]. Other examples of

such algorithms are AES [1], Anubis [7], and Khazad [8].

Relatively low resource requirements of Curupira are

determined by the following set of factors:

• the internal state of the algorithm is relatively small
(96 bits; compared to 128 bits of AES internal state
for example);

• it is possible to implement 8 X 8-bit Curupira’s S-box
S() as a composition of two 4 X 4-bit S-boxes P() and
Q(); this possibility allows to reduce ROM
requirements to store the S-boxes; S-boxes S(), P(),
and Q() are entirely inherited from Anubis and
Khazad.

The block size of Curupira is 96 bits; it accepts several

fixed key lengths: 96, 144, or 192 bits. Data block is

represented as a 3 X 4 byte array (the internal state of the

algorithm); every round of Curupira modifies the internal

state by the following operations [9]:

1) Nonlinear layer γ; consists of the parallel application

of the S() S-box to all bytes of the state.

2) Permutation layer π; swaps each column of the state

according to the predefined rule.

3) Linear diffusion layer θ; performs multiplication of the

state by the predefined matrix D.

4) Key addition layer σ(Kr); performs bitwise addition of

an r-round key Kr.

The number of rounds is not determined strictly: the

algorithm defines the minimum and maximum numbers of

rounds for each allowed key length (from 10 rounds for a

96-bit key to 23 rounds for a 192-bit one). Input whitening is

performed before the first round by addition of a K0 sub key.

The final round does not perform the θ operation.

C. Katan & Ktantan

KATAN is a family of block ciphers: KATAN32,

KATAN48, and KATAN64. The number in the algorithm’s

name represents the block size of the algorithm in bits. All the

ciphers use 80-bit keys [10].

KTANTAN family also contains three algorithms with the

same block sizes and key length. KTANTAN is more

compact in hardware – it assumes that the key is burnt into

the target device and cannot be changed (also, the key

schedule of KTANTAN is much simpler compared to

KATAN). Other procedures of KATAN and KTANTAN

ciphers are equivalent.

The algorithms’ structure is based on the structure of

stream cipher trivium [11] (its variant with two registers).

The size of the internal state is equivalent to the block size

of the algorithm. Each of KATAN algorithms loads a data

block into two internal shift registers L1 and L2. It performs

254 rounds; each of them uses nonlinear functions which

form the registers’ feedback (Fig. 1).

The registers’ sizes and the specific bits used by the

nonlinear feedback functions are fixed for every KATAN

and KTANTAN algorithm and determined in [10]. One of

the nonlinear functions uses specific irregular value (IR) in

addition to several register’s bits. This value depends on the

round’s number.

KATAN48 and KATAN64 share the same nonlinear

functions with KATAN32, but they use other bits of the

internal registers to form the feedback. KATAN48 and

KATAN64 also use the larger sizes of the registers in

accordance to the block sizes. KATAN32 updates the

registers once per a round; KATAN48 and KATAN64 use

the nonlinear functions two or three times, correspondingly.

The key schedule of KATAN is based on the linear

feedback shift register (LFSR). Another LFSR is used for

counting the rounds and to stop the encryption when required.

The most significant bit of the latter LFSR forms the above

mentioned irregular value.

The resource requirements of KATAN and KTANTAN

are extremely low because of the following collection of

factors:

• they use the shift registers, which can be very easily
implemented in hardware [10]; the feedback
functions are also very simple, though they provide
the required nonlinearity;

• they process small blocks of data – from 32 to 64 bits;

• their internal state is small and its size is equal to the
block size (plus the LSFR for counting the rounds);

• KTANTAN’s key schedule is extremely simple.

D. Present

PRESENT is an example of a substitution-permutation

network. It performs 31 rounds on 64-bit data block and

allows to use 80 or 128-bit keys [12].

Each round consists of the following operations:

• round key addition by XOR operation;

• diffusion layer (S-layer);

• mixing transformation layer (P-layer).

PRESENT is based on the transformation layers of Serpent

[13] and DES [3], which have been analyzed in-depth. The

diffusion layer performs non-linear substitution of 16 4-bit

sub blocks of the current state using similar to Serpent 4 X 4

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

517

S-box in parallel.

The mixing transformation layer performs the predefined

bit-level permutation. It is based on the mixing

transformation layer of DES and seems to be the simplest one

to be realized. In software the P-layer can be realized as bit

operations or using the according “P-box” table.

Also PRESENT performs the output data whitening after

the final round.

E. Hummingbird

Hummingbird encrypts 16-bit blocks of data using a

256-bit key.

The underlying architecture of Hummingbird is original

and hybrid (with elements of block and stream ciphers). The

encryption procedure can be represented as a continuously

working rotor-based machine. Four identical internal block

ciphers play a role of virtual rotors. They perform a set of

operations on short 16-bit data blocks.

The main components of Hummingbird are (Fig. 2) [14]:

• the internal 16-bit block cipher E(): 4-round
SP-network with the key addition, S-box application,
and linear transformation layers; the final round of the
internal block cipher is shortened, but it contains the
output whitening procedure;

• four registers of the internal state RSi;

• 16-bit LFSR.

Hummingbird actively uses 216 modulo addition to mix the

internal state registers with the data block to be processed.

Alternatively, the high-level structure of the algorithm can be

presented as 4-round block cipher with the feedback

operations, which allow to use internal cipher blocks

chaining as an additional advantage of the algorithm’s

structure.

Fig. 2. High-level structure of Hummingbird

Relatively low resource requirements of Hummingbird can

be achieved due to simple arithmetic and logic operations and

extremely short data blocks.

III. MAIN APPROACHES TO THE DESIGN OF LIGHTWEIGHT

ALGORITHMS

One of the trends of common cryptography assumes

cryptographic primitives to be more complex and

“heavyweight”. Main parameters of the block ciphers (block

size, key length, internal state size etc.) are being increased

continuously. This compensates for endless increasing of

computer systems’ computational power and an avalanche

increase in amounts of processed data. Therefore the resource

requirements (and complexity of their realization) of the

block ciphers grow inevitably to make the block ciphers

stronger and more efficient.

This approach is inadequate in principle for embedded

systems, especially for systems with extremely low resources.

Lightweight cryptography makes implementation cost the

most important criterion. The security level and performance

of the algorithms should also be adequate, i.e. it is highly

desirable to find a compromise between these three

characteristics; and such compromise highly depends on the

resources of target devices [15].

Using the algorithms reviewed above as an example, we

can try to summarize the main methods, which are used by

the authors of lightweight algorithms to find the required

balance:

• decrease of the main algorithm’s parameters: block
size, key length (within reasonable limits), and the
algorithm’s internal state;

• attempts to base the lightweight algorithms upon
elements (arithmetic and logic operations, linear or
nonlinear transformations etc.) which are widely in
use and thoroughly analyzed; this can compensate for
some forced decrease of cryptographic strength of the
lightweight algorithms;

• simplifying layers of transformations, e. g. decreasing
ROM requirements by using 4 X 4 S-boxes (ideally –
a single 4 X 4 S-box) or by using their composition to
substitute larger sub blocks;

• using low-cost (in implementation) but effective
elements, such as data-dependent bit permutations,
shift registers etc.;

• designing key schedules that can derive sub keys
in-place (i.e. the sub keys do not need to be
precomputed) forward or backward;

• using operations that allow implementation trade-offs
according to the resources available on the target
platform.

IV. CONSTRAINTS AND COMPROMISES OF LIGHTWEIGHT

ALGORITHMS

As stated above, the design goal of a lightweight algorithm

is finding a compromise between low resource requirements,

performance, and cryptographic strength of the algorithm

(including secure use of the target device with the algorithm

inside).

Resource constraints force cryptographers to design

lightweight algorithms with small or relatively small block

size and key length. In particular, this allows an adversary to

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

518

attack the lightweight algorithm using the matching cipher

text attack: for an m-bit block cipher equal cipher text blocks

can be expected after the encryption of 2m/2 data blocks

(according to the birthday paradox); this can be concerned as

a leakage of information about plaintext blocks [16]. The

adversary can compose a comprehensive dictionary of the

blocks for the current key after the encryption of 2m data

blocks. Thus, the matching cipher text attack is effective

against, for example, 16-, 32-, and 48-bit block ciphers.

Therefore it is very insecure to use algorithms with small

block sizes in the modes like ECB [17] – it is required to

provide some constraints for usage of such algorithms: use

them in complex modes, change the key routinely etc.

Unfortunately such constraints or recommendations produce

an additional load to the target device; adherence to the

recommendations can be impossible for a specific algorithm

(e. g. KTANTAN family of algorithms does not allow to

change the key by design).

Consequently, it is required to understand that lightweight

cryptographic primitives are targeted at systems with

relatively low or medium security requirements or systems,

which can take into consideration the specifics of the

algorithm to be used, that allow to find the desirable

compromise.

The internal state of lightweight algorithms is also

designed to be as small as possible. Designers use simpler

(compared to classical algorithms) mixing and diffusion

transformations. So the internal structures of lightweight

algorithms are designed without adequate security margin.

This allows crypt analytics to publish a lot of papers with

analysis of lightweight algorithms. The analysis of

lightweight algorithms is in progress: any algorithm with

adequate strength can be broken fully or partially in the

not-too-distant future.

Hummingbird is an illustrative example of such algorithms.

It uses intensively analyzed structures and operations, but all

of the structures are adopted or truncated to meet the

requirements of lightweight cryptography. Hummingbird is

considered a strong algorithm by its designers [14] and

exterior researchers [18]. However, recently Markku-Juhani

Saarinen proposed several attacks at Hummingbird’s

components, which can be used in complex to compromise

the whole cipher [19].

Another problem is that a possibility of side-channel

attacks against realizations of some lightweight algorithms is

not examined at all. For example, the designers of PRESENT

stated the following: “Side-channel and invasive hardware

attacks are likely to be a threat to PRESENT, as they are to all

cryptographic primitives. For the likely applications,

however, the moderate security requirements reflect the very

limited gain any attacker would make in practice. In a risk

assessment, such attacks are unlikely to be a significant

factor” [12]. Nevertheless, practical possibility and

adaptability of side-channel attacks against RFID are shown

in several papers, e. g. [20, 21]. Therefore it is required to use

countermeasures against side-channel attacks (see e. g. [22])

when implementing any lightweight algorithm whose

structure is potentially susceptible to side-channel attacks.

The countermeasures also produce an additional load for the

target device.

V. POSSIBLE TRENDS IN LIGHTWEIGHT CRYPTOGRAPHY

It can be supposed that the evolution of lightweight

cryptography will be active in the nearest future, because

lightweight algorithms are highly required. Also we can

suppose the following trends in designing of lightweight

algorithms:

1) Separation of ultra-lightweight algorithms into a

specific branch of lightweight cryptography. The spectrum of

devices with constrained resources is wide enough: from

passive RFIDs to smart-cards with significantly higher

resources. After designing a single lightweight algorithm for

a whole spectrum of such devices, it can be both technically

complicated to implement the algorithm in low-end devices

and pointless to use it in high-end devices of the spectrum.

Using the algorithms reviewed above as an example, we can

see that such separation is already in progress: e. g.

KATAN/KTANTAN algorithms require from 2 to 4 times

less resources than DESL (when implementing in hardware)

[10].

2) Deepening the divergence between software- and

hardware-oriented lightweight algorithms. The fundamental

difference between the requirements to minimize resources in

software and hardware was demonstrated by Axel

Poschmann in [15]. He examined PRESENT as an example:

its round is extremely simple in hardware implementation

(Fig. 3), but requires significant resources in software.

Fig. 3. Structure of PRESENT

VI. CONCLUSIONS

In this paper we consider lightweight block ciphers and

propose generalized approaches to lightweight algorithms

design. We highlight some constraints and recommendations

for implementation of lightweight algorithms. Also, we

describe compromises which should be reached by designers

of lightweight cryptographic primitives. Finally, we

anticipate several trends in lightweight cryptography.

ACKNOWLEDGEMENT

We would like to thank Alexander Domoratsky for

reviewing and valuable comments on this paper.

REFERENCES

[1] FIPS Publication 197. Specification for the Advanced Encryption

Standard. National Bureau of Standards, U. S. Department of

Commerce, Washington D. C., November 26, 2001.

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

519

[2] G. Leander, C. Paar, A. Poschmann, and K. Schramm. New

Lightweight DES Variants. FSE 2007, LNCS, vol. 4593, pp. 196-210.

Springer, 2007.

[3] FIPS Publication 46-3. Data Encryption Standard (DES). U. S.

Department of Commerce / National Institute of Standards and

Technology. Reaffirmed 1999 October 25.

[4] J. Kilian and P. Rogaway. How to Protect DES against Exhaustive Key

Search. CRYPTO’96, LNCS, vol. 1109, pp. 252-267. Springer, 1996.

[5] P. Rogaway. The Security of DESX. RSA Laboratories’ CryptoBytes,

Vol. 2, No. 2, 1996, pp. 8-11.

[6] J. Daemen. Cipher and hash function design strategies based on linear

and differential cryptanalysis. Doctoral Dissertation, March 1995,

K. U. Leuven.

[7] P. S. L. M. Barreto and V. Rijmen. The Anubis Block Cipher. NESSIE

submission, Sept. 2000.

[8] P. S. L. M. Barreto and V. Rijmen. The Khazad Legacy-Level Block

Cipher. NESSIE submission, Sept. 2000.

[9] P. S. L. M. Barreto, M. A. Simplício Jr. CURUPIRA, a block cipher

for constrained platforms. Simpósio Brasileiro de Redes de

Computadores e Sistemas Distribuídos – SBRC’2007, 2007, Belém.

[10] C. De Cannière, O. Dunkelman, M. Knežević. KATAN & KTANTAN

– A Family of Small and Efficient Hardware-Oriented Block Ciphers.

CHES’09, LNCS, vol. 5747, pp. 272-288. Springer, 2009.

[11] C. De Cannière and B. Preneel. Trivium Specifications. Available at

http://www.ecrypt.eu.org.

[12] A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann,

M. J. B. Robshaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An

Ultra-Lightweight Block Cipher. CHES’07, LNCS, vol. 4727. Springer,

2007.

[13] R. J. Anderson, E. Biham, and L. R. Knudsen. Serpent: A Proposal for

the Advanced Encryption Standard. Available at

http://www.cl.cam.ac.uk.

[14] D. Engels, X. Fan, G. Gong, H. Hu, and E. M. Smith. Hummingbird:

Ultra-Lightweight Cryptography for Resource-Constrained Devices.

FC 2010 Workshops, LNCS, vol. 6054, pp. 3-18.

[15] A. Poschmann. Lightweight Cryptography from an Engineers

Perspective. Workshop on Elliptic Curve Cryptography (ECC 2007).

[16] S. Murphy and J. White (editors). NESSIE Public Report D13. Security

Evaluation of NESSIE First Phase. 23 September 2001.

[17] FIPS Publication 81. DES Modes of Operation. National Bureau of

Standards, U. S. Department of Commerce, Washington D. C., 1980

December 2.

[18] R. Frazer (editor). An Analysis of the Hummingbird Cryptographic

Algorithm. Available at http://www.reveresecurity.com. 26 April 2009.

[19] M.-J. O. Saarinen. Cryptanalysis of Hummingbird-1. IACR

Cryptology ePrint Archive, report 2010/612.

[20] B. Song. RFID Authentication Protocols using Symmetric

Cryptography. PhD thesis, Royal Holloway, University of London,

Egham, Surrey, United Kingdom, December 2009.

[21] M. R. Rieback. Security and Privacy of Radio Frequency Identification.

PhD thesis, Vrije Universiteit, Amsterdam, The Netherlands, 2008.

[22] A. Poschmann, A. Moradi, K. Khoo, C.-W. Lim, H. Wang, and S. Ling.

Side-Channel Resistant Crypto for less than 2,300 GE. Journal of

Cryptology (26 October 2010), pp. 1-24

Dr. S. Panasenko received his Ph.D. from Moscow

Institute of Electronic Engineering, Russia (2003).

Since 1996 he works at ANCUD Ltd. as a software

developer and (since 1999) as the head of software

development department. He is an author of two books

(in Russian) in a field of cryptography. Member of

IACSIT (2011). His fields of interest include

cryptology and security of computer systems and

networks.

S. Smagin Since 2005 he works at ANCUD Ltd. as a

senior software developer. His fields of interest include

cryptology and security of computer systems and

networks.

International Journal of Computer Theory and Engineering, Vol. 3, No. 4, August 2011

520

