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Abstract
Variable-angle filament-wound (VAFW) cylinders are herein optimized for minimum mass under manufacturing constraints, 
and for various design loads. A design parameterization based on a second-order polynomial variation of the tow winding 
angle along the axial direction of the cylinders is utilized to explore the nonlinear steering-thickness dependency in VAFW 
structures, whereby the thickness becomes a function of the filament steering angle. Particle swarm optimization coupled 
with three Kriging-based metamodels is used to find the optimum designs. A single-curvature Bogner–Fox–Schmit–Castro 
finite element is formulated to accurately and efficiently represent the variable stiffness properties of the shells, and veri-
fications are performed using a general purpose plate element. Alongside the main optimization studies, a vast analysis of 
the design space is performed using the metamodels, showing a gap in the design space for the buckling strength that is 
confirmed by genetic algorithm optimizations. Extreme lightweight while buckling-resistant designs are reached, along with 
non-conventional optimum layouts thanks to the high degree of thickness build-up tailoring.

Keywords Design · Lightweight · Mass minimization · Metamodeling · Variable stiffness · Variable-angle · Filament 
winding · Buckling

1 Introduction

The development of new concepts for lightweight struc-
tures has been overwhelmingly exploited in several fields, 
mainly in aeronautical and aerospace structures, to com-
ply with Green Aviation for enhancing fuel efficiency and 
decrease aviation emissions towards reaching carbon-neutral 
air transportation. A practical and direct manner to improve 
the energy efficiency and reduce the fuel consumption of an 
aircraft is by reducing the mass of its components (Zhu et al. 
2018), achieving carbon footprint reduction and better flight 
performance. Both aeronautical and space industries have 
been continuously developing new concepts for lightweight 
structures to pursue these benefits, where fiber-reinforced 
composite materials play a major role. Figure 1 illustrates 
the evolution of the use of composites in aeronautics over 
the last 60 decades.

In 2017, NASA designed, optimized, manufactured 
and tested a variable-angle tow (VAT) wing for opti-
mal passive load alleviation, proving that the use of fiber 
steering through automated fiber placement (AFP) manu-
facturing is more structurally efficient than conventional 
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straight-fiber-reinforced composite wings (Brooks and Mar-
tins 2018).

Liguori et al. (2019) optimized a wingbox section using 
genetic algorithms (GA) including manufacturing con-
straints of the AFP process. They achieved a wingbox 6.48% 
lighter, with higher buckling strength when compared with 
the initial straight-fiber baseline structure. Tailoring a 
particular property for laminated composites by means of 
in-plane fiber angle variation is proven to be efficient for 
variable-angle tow (VAT) composites. For example, in the 
first attempt to develop such VAT composites, Hyer and Lee 
(1991) obtained higher buckling loads for simply supported 
open-hole laminates under uni-axial compression loading. 
Thenceforth, several approaches have been developed based 
on the advancement of both computational approaches and 
manufacturing techniques for composite materials.

Modern aircraft have their fuselages made of carbon 
fiber-reinforced polymer (CFRP) composites, which makes 
cylindrical unstiffened shells (Degenhardt et al. 2014) of 
particular importance towards understanding and further 
reducing aircraft overall mass. In spacecraft, monocoque 
structures are commonly built of unstiffened shells, requir-
ing conservative knock-down factors to account for the high 
sensitivity of the buckling strength towards geometric and 
load imperfections (Castro et al. 2014a). The full potential 
of CFRP composites in these components is still under-
explored, and an efficient strategy to take full advantage 
of these materials consists of reducing their masses while 
keeping their structural performance. The state-of-the-art 
on mass minimization of composite shells is scarce, as 

discussed next, with most of the studies focusing on optimi-
zation problems that seek minimum compliance for a given 
mass. Pelletier and Vel (2006) developed a multi-objective 
optimization of composite cylinders for strength, stiffness 
and minimal mass via the layerwise tailoring of fiber angles 
and fiber volume fraction. Although some enhancements 
were found, it was difficult to find a layout with reasonable 
compromise among the three objective functions utilized. 
Sadeghifar et al. (2010) optimized stiffened cylindrical shells 
for minimum mass and maximum axial buckling load using 
a GA, finding that I-section stiffeners are more effective than 
rectangular ones to achieve panels with reduced mass. Gha-
semi and Hajmohammad (2017) proposed a multi-objective 
optimization of composite shells under external pressure for 
minimum mass and maximum buckling pressure using GA. 
They reached a mass reduction of 12% while respecting the 
desired buckling pressure.

In general, optimizations based on GA require thou-
sands of function evaluations, becoming therefore lim-
ited due to the high computational cost. An appropriate 
strategy to improve the efficiency of these optimizations 
is to employ metamodels, which are computationally effi-
cient surrogate models that approximate the high-fidelity 
response using approximated functions, such as hyper-
surfaces. Rouhi et al. (2015) optimized VAT cylindri-
cal shells for maximizing the buckling load using radial 
basis functions as surrogates and GA to find the opti-
mum in the surrogate model. Blom et al. (2009) used 
design explorer tools (Booker et al. 1999) as surrogates to 
minimize the buckling load of VAT composite cylinders. 
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Fig. 1  Utilization of fiber-reinforced composites in aircraft over the last decades
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Recently, Wang et al. (2020) developed a new acceler-
ated Kriging metamodeling scheme to restrict the area of 
interest within an optimization framework to maximize 
the buckling load of VAT composite cylinders manufac-
tured by filament winding, designated as variable-angle 
filament-wound—VAFW.

This non-extensive state-of-the-art revealed that:

– no work on mass minimization for VAT composite cyl-
inders manufactured by filament winding (FW), the 
most suitable and fastest manufacturing process for 
composite cylinders;

– lack of works using metamodels for training FE mod-
els for minimizing mass under buckling constraints of 
VAT cylinders;

– lack of exploitation of several metamodels to find the 
most suitable one for VAFW cylinders; and

– no reports exploiting the tow overlapping feature of 
the FW process.

To fulfill these gaps, the present work proposes an opti-
mization framework to minimize the mass of VAFW 
cylinders constrained by design loads for uni-axial 
buckling strength. Three Kriging-based metamodels are 
developed to approximate the buckling load and mass 
of the VAFW cylinders, namely: classical Kriging, Co-
Kriging, and Accelerated-Kriging. The finite element 
analyses used to accurately calculate the buckling load 
and mass are performed using a single-curvature Bog-
ner–Fox–Schmit–Castro (BFSC) (Castro and Jansen 
2021), consisting of an enriched rectangular four-node 
element with ten degrees-of-freedom per node to achieve 
third-order interpolation for the displacement field. The 
high-order approximation combined with 16 integration 
points makes this element a suitable and fast-converging 
approximation to represent shells with variable stiffness. 
The FE model takes into consideration the manufactur-
ing characteristics of the FW process, and can accurately 
represent the variable stiffness properties according to 
the proposed design parameterization. The FE predic-
tions from the single-curvature BFSC model for different 
design loads are verified against a general purpose shell 
element of a commercial FE software. The design opti-
mizations are performed using Particle Swarm Optimiza-
tion (PSO) coupled with the Kriging metamodels, and 
the optimum designs are verified against a conventional 
GA optimization coupled with the BFSC finite element 
models. A vast analysis on the design space is performed 
using Kriging-based metamodels, showing the ranges of 
mass and buckling strength for different number of layers; 
with the possible mass range for different design loads 
also determined.

2  Design parameterization

The pioneering work of Wang et al. (2020) on reliability-
based design optimization of variable-angle filament-wound 
(VAFW) cylinders, compared different VAFW designs and 
found that the maximum buckling load was achieved by the 
design named VAFW-P, with ”P” being an abbreviation for 
parabolic, indicating that the winding angle distribution �(x) 
varies along the longitudinal direction following the sec-
ond-order Lagrange polynomial given in Eq. 1 (de Quadros 
and Hernandes 2018). Each angle-ply layer consists of two 
plies of angles ±�(x) controlled by three design variables 
�VP
1

 , �VP
2

 and �VP
3

 that are the control points for the second-
order Lagrange polynomial. In order to produce an angle 
distribution that is symmetric about the middle cross section 
at x = L∕2 , the control points are positioned in the order 
�VP
1

 , �VP
2

 , �VP
3

 , �VP
2

 , �VP
1

 ; respectively at positions x1 = 0 , 
x2 = L∕4 , x3 = L∕2 , x4 = 3L∕4 , x5 = L . Figure 2 illustrates 
an incomplete angle-ply layer where the blue region is a 
group of adjacent filaments that create the ply with the posi-
tive angle distribution +�(x) . The gray region represents the 
ply with negative angle distribution −�(x) . Note how the 
variable-angle filaments overlap when moving from regions 
of lower �(x) to regions of larger �(x) values. In the present 
work, the VAFW-P parameterization is used to find optimum 
designs of minimum mass for different given design load 
levels, whereby the number of angle-ply layers and the wind-
ing angle distribution in each layer are the design variables 
to be determined.

where:

(1)𝜃(x) =

{
N1𝜃

VP
1

+ N2𝜃
VP
2

+ NL
3
𝜃VP
3
, x ≤ L

2

NR
3
𝜃VP
3

+ N4𝜃
VP
2

+ N5𝜃
VP
1
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,

(2)

N1 =
(x−x2)(x−x3)
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3
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3
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Fig. 2  VAFW-P parameterization with three design variables �VP
1

 , 
�VP
2

 and �VP
3

 per angle-ply layer consisting of two plies with winding 
angle distribution ±�(x)
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As explained in Wang et al. (2020), for VAFW cylin-
ders the thickness distribution of the kth ply given by hk(x) 
changes due to filament bending, filament shearing or any 
combination of both (Wang et al. 2020), and the thickness 
increase is necessary to keep a constant volume (Castro 
et al. 2019; Vertonghen and Castro 2021), leading to the 
following nonlinear dependence of hk(x) with the winding 
angle distribution �(x):

with htow being the filament thickness; and ��(x) the filament 
steering angle. The steering-thickness coupling of Eq. 3 
poses yet another challenge for the design and optimiza-
tion, where the mass of VAFW cylinders becomes not only a 
function of the number of angle-ply layers, but also depends 
on the winding angle distribution �(x) . For FW process, it 
is still unknown whether the variable-angle filaments are 
driven by either tow bending or shearing (Wang et al. 2020). 
However, this assumption does affect the variable thickness 
calculation described in Eq. 3, hence not effecting the stiff-
ness nor the inertia models. The hoop spacing between two 
adjacent filaments at a given longitudinal position over the 
cylinder is determined by Wang et al. (2020):

According to Eq. 4, when max (�(x)) is chosen to define a 
constant value for �c to be used throughout the cylinder, 
gaps appear in regions where 𝜃(x) < max (𝜃(x)) , as illustrated 
in the gap design of Fig. 3. Conversely, if min (�(x)) is used 
to calculate �c , it creates overlaps where 𝜃(x) > min (𝜃(x)) , 
as depicted in the overlap design of Fig. 3. The present study 
adopts the overlap design for all cases, meaning that the fila-
ment steering angle ��(x) of Eq. 3 is calculated with respect 
to the minimum filament angle as ��(x) = �(x) −min (�(x)) , 
for 0 ≤ x ≤ L.

The geometry of all cylinders herein optimized 
is fixed, with a radius of r = 0.15 m , and length of 
L = 0.3 m . The orthotropic material properties of the 
filaments are: E11 = 90 GPa , E22 = 7 GPa , �12 = 0.32 , 
G12 = G13 = G23 = 4.4 GPa ; with a filament thickness of 
htow = 0.4 mm . The material density is � = 1600 kg∕m3.

3  Design optimization

The VAFW designs are defined by the number of layers NL 
and the angle distribution for each layer, controlled by �VP

i,L
 

with i = 1, 2, 3 and L = 1,… ,NL . The angles at the control 
points are limited by a lower-bound value �L , being the 

(3)hk(x) =
htow

cos��(x)

(4)�c =
wtow

cos �(x)
.

minimum winding angle; and by a upper-bound value �U , 
being the maximum winding angle. The designs are opti-
mized for minimum mass M(�VP

i,L
,NL) subject to different 

design load levels �d = 50 kN , 100 kN , 200 kN , 500 kN , and 
1000 kN , and constrained by linear buckling �cr(�VPi,L

,NL) ; in 
the following optimization problem:

The proposed optimization scheme is illustrated in the flow-
chart of Fig. 4. Before the optimizations for a given design 
load, the metamodels are trained for the range of desired 
design loads to map the boundaries of linear buckling load 
and mass for each number of layers. The optimization starts 
with the definition of the design load. Next, the metamodels 
are trained to approximate M(�VP

i,L
,NL) and �cr(�VPi,L

,NL) , as 
detailed in Section 5. The training procedure is performed by 
adding new samples in every successive iteration based on 
the predicted maximum mean squared error (MSE). With the 
trained metamodels, the boundaries of linear buckling load 
for a given number of layers NL are determined by means of 
Latin Hypercube Sampling with 5000 samples.

The optimization to find the designs with minimum 
mass for a given design load is summarized as:

Part i: Find candidate cylinders ( NL = 1, 2, 3, 4) for a 
given buckling load:

(5)

Find ∶ 𝜃VP
i,L
,NL;for i = 1, 2, 3; and: L = 1,… ,NL

Minimize:M(𝜃VP
i,L
,NL)

Subject to ∶ 𝜆cr(𝜃
VP
i,L
,NL) > 𝜆d

𝜃L ≤ 𝜃VP
i,L

≤ 𝜃U;for 𝜃L = 3.3◦ and 𝜃L = 87.7◦

1 = 80°

/2

2 = 60°

/2

1 = 80°

/2

2 = 60°

/2

Fig. 3  Tow kinematics in filament winding with VAT (Wang et  al. 
2020). Top: gap design. Bottom: overlap design
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– Exploring the lower and upper boundaries in terms of 
buckling loads for cylinders with different number of 
layers ( NL = 1, 2, 3, 4);

– Find and keep candidate cylinders whose buckling 
loads are higher than the design load.

Part ii: Find the optimum design with minimum mass 
while respecting the buckling load boundaries defined in 
Part i:

– build two surface responses: buckling load and mass;
– run the PSO optimizer using the fitness function defined 

in Eq. 5, where the buckling load and mass metamodels 
are called at each iteration;

– repeat the previous step until the global minimum for the 
mass is reached.

4  Linear buckling constraint modeling

The linear buckling constraint �cr(�VPi,L
,NL) is calculated by 

means of finite element modeling based on a single-cur-
vature Bogner–Fox–Schmit–Castro element (SC-BFSC). 
This element is herein developed to combine the high-order 
interpolation of the BFSC with cylindrical shell kinemat-
ics, aiming to achieve a computationally efficient and yet 
accurate representation of the variable stiffness shells under 
investigation. The BFSC finite element (Bogner et al. 1966; 
Castro and Jansen 2021) is a C1 contiguous confirming plate 
element obtained from tensor products of cubic Hermite 
splines. With 4 nodes per element and 10 degrees-of-free-
dom per node, the BFSC approximates the in-plane and out-
of-plane displacements using third-order polynomials, being 
a fast-converging method for an accurate representation of 
the linear buckling constraint. Figure 5 illustrates a SC-
BFSC element and a global coordinate system xyz, where 
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Fig. 4  Flowchart of the proposed PSO-MM framework
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coordinate y is curvilinear following the circumferential 
perimeter, such that at y = 2�r the path closes on itself. The 
nodal connectivity is also indicated, and the mesh is built 
to keep the element edges parallel to the x, y coordinates, 
such that �x = x2 − x1 = x3 − x4 , and �y = y4 − y1 = y3 − y2 . 
Figure 6 shows the mesh closing on itself at the intersection 
of elements ein with elements ei1.

The linear buckling problem consists of finding the value 
of � that leads to:

where KKK and KG0
KG0KG0 are respectively the constitutive and geo-

metric stiffness matrices of the system, described in detail 
in Appendix 1. For a system with n unknown degrees-of-
freedom, there are n eigenvalues that are roots of the char-
acteristic polynomial obtained with Eq. 6. In practice, the 
eigenvalues and corresponding buckling modes are solved 
using generalized eigenvalue solvers that are able to effi-
ciently extract only a desired number of eigenvalues and 
buckling modes, and in the present work the locally optimal 
block preconditioned conjugate gradient method (Knyazev 
2001) implemented in SciPy (Virtanen et al. 2020) is used.

The integration of the constitutive and geometric stiff-
ness matrices over the finite element domain are per-
formed numerically using standard Gauss-quadrature with 
4 × 4 integration points per element. The authors verified 
that this amount of integration points leads to a converged 
behavior that is capable to accurately represent the vari-
able stiffness of the VAFW cylinders. For each integra-
tion point, the local shell constitutive properties given 
by matrices AAA,BBB,DDD are calculated based on the winding 
angle distribution �(x) of each angle-ply layer. While 
computing the constitutive matrices, the local thickness 
of each ply is consistently calculated according to Eq. 3. 

(6)det
(
KKK + �KG0

KG0KG0

)
= 0,

The elements of the constitutive matrices are functions of 
x, given by Aij(x) , Bij(x) , Dij(x) , and are calculated with:

where n is the number of plies; Qij(x) is the ply stiffness 
rotated by the local winding angle �(x) (Reddy 2003); zk(x) 
defines the position of the outward face of the kth ply. For a 
correct representation of the filament winding process, the 
inner face of the filament-wound cylinder must coincide 
with the mandrel radius. Therefore, the values of zk(x) are 
offset by a quantity d(x) such that zk−1 = 0 for the first ply, 
as illustrated in Fig. 7. The correct d(x) value is half of the 
total thickness:

where hk(x) is the local thickness of each ply as per Eq. 3. 
Appendix 3 presents a verification of the proposed finite 
element formulation compared with the multipurpose shell 
element S4R from Abaqus Smith (2019).

(7)

Aij(x) =
n∑

k=1

Qij(x)
�
zk(x) − zk−1(x)

�

Bij(x) =
n∑

k=1

Qij(x)
1

2

�
zk(x)

2 − zk−1(x)
2
�

Dij(x) =
n∑

k=1

Qij(x)
1

3

�
zk(x)

3 − zk−1(x)
3
�
,

(8)d(x) =
1

2

n∑
k=1

hk(x),

Fig. 5  Single-curvature BFSC element and the global coordinate sys-
tem xyz 

Fig. 6  SC-BFSC mesh for the VAFW cylinders
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5  Kriging metamodels

Three Kriging metamodels are considered, namely: classi-
cal Kriging, co-Kriging, and accelerated-Kriging; aimed to 
approximate the buckling load and mass of the VAFW cyl-
inders possessing different number of layers NL and different 
winding angles ±� . After an initial Latin Hypercube Sampling 
(LHS), the first metamodel is assembled and further trained 
until all convergence requirements are satisfied, and this con-
vergence depends on the number of variables and the degree 
of nonlinearity of the response surface. For all metamodels 
of the present study, two convergence criteria, CC1 and CC2, 
are adopted:

CC1: The predicted response error of both lower and upper 
boundaries must be less than a given threshold c. Then, CC1 
is determined as:

where Errori
lower

 and Errori
upper

 are the errors of the lower and 
upper boundaries in the ith training process, respectively. 
The Error is then defined as:

(9)Errori
lower

< c and Errori
upper

< c,

(10)Error =
||ŷ(𝜃c) − y(𝜃c)

||
y(𝜃c)

,

where ŷ(𝜃c) and y(�c) are the predicted response and the 
true response of the candidate sample �c in design region, 
respectively. Three thresholds c are set to 5%, 3%, 1% and 
applied to find the buckling load and mass limits of all cyl-
inders. Each threshold generates particular limits and they 
will be useful to select the threshold with the widest range in 
terms of both buckling load and mass to enlarge the design 
space, therefore, increasing the chances of reaching higher 
improvements.

CC2: The error for both lower and upper boundaries in 
two consecutive iterations should be less than the given 
threshold c, which is determined as:

The training process stops if the two converge criteria are 
met. Then, the lower and upper boundaries of the buckling 
load and mass can be estimated as:

In the following sub-sections, each metamodel is explained 
in detail.

5.1  Classical Kriging

For the classical Kriging metamodel, the spatial association 
between the design variables and the responses is expressed 
as:

where x̂ is the predicted response, 
[
h1(xxx), h2(xxx),… , hn(xxx)

]
 

is a vector of regression function which is also known as 
the trend of the prediction based on available samples, [
v1, v2,… , vn

]
 is a vector of coefficients, and �(xxx) is a Gauss-

ian process with zero mean and covariance cov
(
�
(
xxxi
)
,�

(
xxxj
))

.
The initial random sample space generated through LHS 

has a population size of ten times the number of design 
variables, as recommended by Forrester et al. (2007). After 
that, the true responses for buckling load and mass are 
calculated by the FE analysis (FEA) described in Sect. 4. 
Then, the initial samples and responses are used to con-
struct the initial Kriging metamodel (Lophaven et al. 2002). 
A training process follows to locate and add new samples 
into the metamodel, with new training samples selected as 
the design space location with maximum estimated MSE, 
being the estimated MSE calculation detailed in Appendix 

(11)

{
Errori

lower
< c and Errori

upper
< c

Errori−1
lower

< c and Errori−1
upper

< c

(12)

{
Blower = min

[
pi−1
lower

, pi
lower

]
Bupper = max

[
pi−1
upper

, pi
upper

]

(13)f̂ (xxx) = hhh(xxx)Tvvv + 𝛥(xxx),

(a) Incorrect ply distribution

(b) Correct ply distribution

Fig. 7  a Incorrect ply distribution with a constant mid-surface at 
z = 0 ; and b correct ply distribution with a varying offset d(x) applied 
to the mid-surface. The outward face position of all plies zk(x) for 
k = 1, 2,… , 6 are shown
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2. The training is repeated until the convergence criteria of 
Eqs. 9 and 11 are satisfied. In addition, the lower and upper 
boundaries of the response in the design region are deter-
mined by Eq. 12. A detailed description of the procedure is 
given in Table 1.

5.2  Co‑Kriging

In co-Kriging, the metamodel is built with two sets of data, 
one set named expensive data (�e, ye) that are more computa-
tionally costly, while the other set is called cheap data (�c, yc) 
(Zhou et al. 2020). These two sets of data are independent 
of each other. The response ye at �e is supposed to be more 
accurate than the cheap data yc at �c . The required total data 
are combined as:

where �r are the required samples of random variables; �e 
and �c are random samples from expensive and cheap data, 
respectively; ne and nc are the number of expensive and 
cheap data, respectively. In this work, the number of data ne 
and nc are defined as

where n is the number of random variables.
The responses corresponding to the random samples �r 

are shown in Eq. 16, and the combined data (�
r
, y

r
) are the 

required data to build the co-Kriging metamodel.

(14)�
r
=

(
�e

�c

)
=
(
�(1)
e
,… , �

(ne)
e , �(1)

c
,… , �(nc)

c

)T

,

(15)ne = 2 × n;nc = 10 × n,

(16)
y
r
=
(
ye
(
�(1)
e

)
,… , ye

(
�
(ne)
e

)
, yc

(
�(1)
c

)
,… , yc

(
�
(nc)
c

))T

.

Similarly to the classical Kriging approach, co-Kriging 
realizes the response surface with the required data through 
Eqs. 14,16. With the cheap data (�c, yc) , the response of the 
cheap function is described as a Gaussian process fc(�) in 
the total sample space (Lophaven et al. 2002). Then, the 
expensive response surface is defined as:

where fe(�) is the prediction at � , � is a scaling factor esti-
mated by the data, and fd(�) is the difference between expen-
sive and cheap responses.

The initial independent cheap �c and expensive �e sam-
ples of random variables are generated via LHS. The buck-
ling loads �c of samples �c are obtained from the classical 
Kriging metamodel (Sect. 5.1), and the buckling loads �e of 
samples �e are calculated by FEA. Then, the metamodel can 
be built with the initial required data: (�c, �c) and (�e, �e).

In each iteration of the co-Kriging training, three new 
training samples are added to the current metamodel. Dur-
ing the ith iteration ( i = 1, 2, ..., n ), the first training sample 
is the point at where the predicted MSE is the highest in the 
whole design region, expressed as �i , with the correspond-
ing estimated buckling load �i . The second and third new 
training samples are determined as the samples at the current 
lower and upper boundaries of the ith metamodel, which are 
expressed as (�L

i
, �L

i
) and (�U

i
, �U

i
) , respectively. Once the 

new training samples are available, they are added to the ith 
metamodel to improve the accuracy of the predictions. The 
first sample (�i, �i) in the ith iteration is added to the expen-
sive data since it is likely to be accurate. The expensive data 
in the (i + 1)th iteration is then updated as:

where 
(
��� i+1

e
,���i+1

e

)
 is the expensive data in the (i + 1)th itera-

tion, and 
(
��� i

e
,���i

e

)
 is the expensive data in the ith iteration.

Then, the other new training samples (�L
i
, �L

i
) and 

(�U
i
, �U

i
) are added to the cheap data. The cheap data in the 

(i + 1)th iteration is then updated as:

where 
(
��� i+1

c
,���i+1

c

)
 is the cheap data in the (i + 1)th iteration, 

and 
(
��� i

c
,���i

c

)
 is the cheap data in the (i)th iteration.

After the updated expensive and cheap data are avail-
able, the metamodel is then trained. The lower and upper 
boundaries (�L

i+1
, �L

i+1
) and (�U

i+1
, �U

i+1
) are estimated by the 

extreme value optimization algorithm. In this work, the Par-
ticle Swarm Optimization (PSO) algorithm is employed, as 
explained in section 6. The training process evolves until 
both convergence criteria CC1 and CC2 are met. Finally, 
the lower and upper boundaries of the buckling load in the 
design space can be calculated by Eq. 12.

(17)fe(�) = �fc(�) + fd(�)

(18)
(
��� i+1

e
,���i+1

e

)
=
([
��� i

e
,�i

]
,
[
���i
e
, �i

])

(19)
(
��� i+1

c
,���i+1

c

)
=
([
��� i

c
,�L

i
,�U

i

]
,
[
���i
C
, �L

i
, �U

i

])

Table 1  Detailed procedure of the classical Kriging metamodel for an 
arbitrary cylinder with one ±�(x) layer

Step Procedure

1: Design variables [ �1, �2, �3 ] and N = 3 , set i = 1

2: Generate 10 initial samples ( �initial)
3: Obtain the buckling load of initial samples
4: Construct initial metamodel with DACE tool, MK

i−1

5: Train the metamodel
5.1: Locate sample �i with maximum MSE
5.2: Obtain the buckling load �i of �i

5.3: Add �i and �i to model MK

i−1

6: Estimate the boundaries �i
lower

 and �i
upper

6.1: If CC1 and CC2 are satisfied, go to Step 7
6.2: Else, i = i + 1 , go back to Step 5
7: Obtain the boundaries with Eq. 12.
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Table 2 summarizes the procedure to find the buckling 
load boundaries through co-Kriging approach, in which the 
VAFW-P design with one ±�(x) layer is taken as a mere 
example.

5.3  Accelerated Kriging

The accelerated Kriging metamodel was first introduced by 
Wang et al. (2020) and has shown a higher computational 
efficiency, accuracy and better convergence properties than 
the classical Kriging. With an increasing number of vari-
ables or an increase in the nonlinearity of the response, there 
is a larger probability that the sample with largest estimated 
MSE is located at a design space region that is outside from 
the region of interest, negatively affecting the convergence 
of the classical Kriging and Co-Kriging methods during 
the training phase. The proposed accelerated Kriging meta-
model is an extension of the classical Kriging approach, 
whereby a moving search window, or hyper-cube, is used 
during the training phase. The addition of a new sample 
near the current optimum can accelerate the convergence, 
whereas keeping the robustness of the original method.

The training process starts similarly to the classical Krig-
ing metamodeling explained in Sect. 5.1. Next, for each 
training iteration, two points are added being the first train-
ing point the one with largest estimated MSE, similarly to 
the other two Kriging metamodels previously described. The 
second training point of the accelerated Kriging approach is 
added based on the largest estimated MSE within an adap-
tive moving search window centered at the current optimum. 
The adaptive moving search window is defined as:

where �L
i+1

 and �U
i+1

 are the lower and upper boundaries of the 
(i + 1)th adaptive window, respectively; The �i

opt
 is the ith 

optimal design in the ith iteration of the training procedure; 
W is the range of the window, which is determined as:

where �L and �U are respectively the lower and upper bound-
aries of the design space, while q is a scale factor, which 
ranges from 0 to 1.

Considering that the center of the window is the previous 
optimal result (Eq. 20), the search window adapts itself by 
moving during the training iterations. In this work, a con-
stant window width of q = 0.25 is used. The lower and upper 
boundaries of the ith adaptive moving window is replaced by 
the corresponding lower and upper boundaries of the design 
space if the ith window moves out of the design space, as 
follows:

With the first and second training samples determined, the 
corresponding responses are calculated by FEA. The itera-
tions are repeated until the convergence criteria CC1 and 
CC2 are met. Table 3 describes a summary of the proposed 
accelerated Kriging approach for a VAFW-P cylinder with 
one ± layer.

(20)
[
�L
i+1

, �U
i+1

]
=
[
�i
opt

− 0.5W, �i
opt

+ 0.5W
]
,

(21)W = q ⋅
(
�L + �U

)
,

(22)
{

𝜃L
i
= 𝜃L, if 𝜃L

i
< 𝜃L

𝜃U
i
= 𝜃U , if 𝜃U

i
> 𝜃U

Table 2  Detailed procedure of the co-Kriging metamodel for an arbi-
trary cylinder with one ±�(x) layer

Step Procedure

1: Design variables [ �1, �2, �3 ] and N = 3 , set i = 1

2: Generate 10 initial samples ( �initial)
3: Obtain the buckling load of initial samples
4: Construct initial co-Kriging metamodel MK

i−1

5: Train the metamodel
5.1: Locate sample �i with maximum MSE
5.2: Locate sample �L

i
 and �U

i
 of the boundaries of MC

i−1

5.3: Obtain buckling loads �i , �Li  , �
U

i
 of �i , �L

i
 , �U

i

5.4: Add [ �i , �i ] to samples [ �e , �e]
5.5: Add [ �L

i
 , �L

i
 ] and [ �U

i
 , �U

i
 ] to samples [ �c , �c]

5.6: Obtain new model MC

i

6: Estimate the boundaries �i
lower

 and �i
upper

 of MC

i

6.1: If CC1 and CC2 are satisfied, go to Step 7
6.2: Else, i = i + 1 , go back to Step 5
7: Obtain the boundaries with Eq. 12.

Table 3  Detailed procedure of the accelerated-Kriging metamodel for 
an arbitrary cylinder with one ±�(x) layer

Step Procedure

1: Design variables [ �1, �2, �3 ] and N = 3 , set i = 1

2: Generate 10 initial samples ( �initial)
3: Obtain buckling load of initial samples
4: Construct initial Kriging metamodel MA

i−1

5: Train the metamodel
5.1: Locate sample �i with maximum MSE
5.2: Locate sample �W

i
 with the adaptive moving window

5.3: Obtain buckling loads �i , �Wi  of �i , �W

i

5.4: Add [ �i , �i ] and [ �w

i
 , �w

i
 ] to the training samples

5.5: Obtain new model MA

i

6: Estimate the boundaries �i
lower

 and �i
upper

 of MA

i

6.1: If CC1 and CC2 are satisfied, go to Step 7
6.2: Else, i = i + 1 , go back to Step 5
7: Obtain the boundaries with Eq. 12.



 Z. Wang et al.

1 3

140 Page 10 of 23

5.4  Design space analysis for buckling loads

After the convergence criteria (CC1, CC2) and thresholds 
( 5% , 3% , 1% ) are met for all three Kriging-based metamod-
els, the lower and upper boundaries for the buckling loads 
are estimated. Table 4 shows the obtained boundaries and 
the required number of samples Ns used in the training 
process for the VAFW-P design with one layer ( NL = 1 ). 
It is observed that the accelerated-Kriging metamodel pro-
vides the widest ranges in terms of buckling loads for all 
thresholds applied. Focusing specifically on the threshold 
c = 1% , which provides wider boundaries, the more the 
number of layers, the higher the number of new samples 
( NS ) required to the training process, as shown in Table 5. 
Therefore, given the wider boundaries mapped by the 
accelerated-Kriging metamodel, which is an indicative 
of a higher accuracy, its results are used to estimate the 
buckling loads and mass for NL = 2, 3, 4.

Table 6 summarizes the estimated lower and upper 
boundaries of linear buckling load obtained with the accel-
erated-Kriging metamodel for the VAFW-P cylinders with 
NL = 1, 2, 3, 4 . Note the gap in the design space between 
NL = 1 and NL = 2 , with the upper boundary buckling load 
of 68, 768N for NL = 1 jumping to the lower boundary 
buckling load of 146, 190N for NL = 2.

5.5  Mass metamodeling

The mass of the cylinders is calculated as:

where m is the mass, � is the density of the carbon/epoxy 
composite material ( 1600 kg∕m3 ), x is the circumferential 
coordinate, z is the longitudinal coordinate, r is the radius 
of the cylinder, and h(x, z) is the thickness.

To calculate the mass for the cylinders with several lay-
ers, a simple function to sum of the mass of every layer is 
considered:

where mi is the mass of the ith layer, and �i is the winding 
angles in the ith layer. Once the boundaries of the mass for 
two layers is computed, the boundaries for the other cylin-
ders can be calculated by Eq. 24. Then, the lower and upper 
limits for all cylinders are listed in Table 7.

Figure 8 illustrates the hyper-surfaces of both buckling 
loads and mass for the cylinders trained with the accelerated-
Kriging metamodel using Monte Carlo sampling (MCS). 
Considering that there are three design variables, one of 
them is kept constant at 45◦ to allow a convenient graphic 
representation. Then, after both metamodels for buckling 
loads and mass are trained, the optimization follows, as 
detailed next.

Figure 9 illustrates the outcome of the trained meta-
models by plotting the buckling load � versus the mass 
for several sample sizes using MCS approach. Throughout 
the optimization procedure the samples are dynamically 
generated, as explained in Section 6. From Fig. 9 there 

(23)m = ∬xz

�h(x, z)rdxdz,

(24)M(�,NL) =

NL∑
i=1

mi(�i),NL = 1, 2, 3, 4

Table 4  Converged lower and 
upper boundaries of buckling 
loads for VAFW-P with NL = 1 
for the three Kriging-based 
metamodels

Classical Kriging Co-Kriging Accelerated-Kriging

c = 5% c = 3% c = 1% c = 5% c = 3% c = 1% c = 5% c = 3% c = 1%

�2
L
[N] 34,534 34,534 34,304 33,955 33,955 33,615 34,842 34,842 33,729

�2
U
[N] 65,914 65,914 66,160 66,733 66,733 67,901 67,946 67,946 68,768

Ns 2 2 4 6 6 21 6 6 30

Table 5  Number of required samples to train all three Kriging-based 
metamodels for a threshold of c = 1%

Metamodel Number of layers ( NL).

1 2 3 4

NS : Classical Kriging 2 25 85 102
NS : Co-Kriging 7 51 63 126
NS : Accelerated-Kriging 21 81 108 183

Table 6  Converged boundaries of buckling loads for the VAFW-P 
design using the accelerated-Kriging metamodel

Boundaries Number of layers ( NL)

1 2 3 4

�
NL

L
[N] 33,729 146,190 329,563 694,931

�
NL

U
[N] 68,768 1,852,980 2,909,814 3,496,871

Table 7  Lower and upper mass limits for all cylinder designs

Boundaries Number of layers ( NL)

1 2 3 4

M
NL

L
 kg 0.3644 0.7288 1.0932 1.4576

M
NL

U
 kg 6.9796 13.9592 20.9388 27.9184
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is a clear trend of higher buckling loads for higher mass 
values, and it can be observed a complex mass distribu-
tion created by the coupled steering-thickness coupling 
of the VAFW-P cylinder design. From the sampling with 
2000 samples of Fig.  9f, the minimum and maximum 
intervals of mass and buckling loads were identified for 
NL = 1, 2, 3, 4 , as shown in Fig. 10. Note that for design 
loads below ≈ 69 kN only designs with NL = 1 should be 
considered, whereas for a design load of ≈ 700 kN , all 
designs with NL = 2, 3, 4 might lead to optimum solutions 
and should therefore be considered by the optimization 
algorithms. Figure 10 also illustrates the gap in the design 
space between ≈ 69 kN and ≈ 146 kN , previously observed 
in Table 6.

6  Optimization framework

6.1  Particle Swarm Optimization (PSO)

PSO is a powerful meta-heuristic technique inspired on the 
swarm behavior of flocks of birds and shoals of fishes, and 
developed by Kennedy and Eberhart in 1995 (Kennedy and 
Eberhart 1995). The method is also related to evolutionary 
computation and it has some ties to GA. The key advantages 
of PSO are that it needs only primitive mathematical opera-
tions and it is computationally cheap in terms of memory 
and speed requirements.

In PSO, a swarm with particles P is placed in the design 
search space. Each ith particle in the swarm has a posi-
tion vector Xt

i
=
(
xi1, xi2, xi3,… , xin

)T and velocity vector 
Vt
i
=
(
vi1, vi2, vi3,… , vin

)T  at iteration t. Each particle is 
updated according to the dimension j, as per Eq. 25. Every 
particle is a potential candidate solution and they move 
continuously around the design space until the optimization 
meets the convergence criteria. The new particle locations 
are updated at every iteration towards finding the global opti-
mum. The velocity of the particles can be defined as:

whereas the new position is calculated as:

in which Vd
i
 Xd

i
 are the velocity and position of the ith parti-

cle, respectively; c1 and c2 are acceleration constants; rt
1
 and 

r2
2
 represent two random numbers distributed in the range 

(0,1); pbest and gbest are the best position so far of the ith 
particle and the best global position, respectively; w is the 
inertia weight, which keeps a balance between local and 
global searches.

Note that, from the sampling previously performed and 
shown in Fig. 9, it is possible to determine all possible val-
ues of NL for a given design load, as illustrated in Fig. 10, 
and for the region with a gap in the design space from 
≈ 69 kN to ≈ 146 kN it was assumed NL = 2.

The parameters utilized in the PSO-metamodeling (PSO-
MM) optimization framework are presented in Table 8.

The overall mass minimization procedure to meet desired 
buckling loads BLd can be summarized as follows: 

S1:  For any given desired buckling load, the number of 
layers is determined with the boundary analysis of the 
buckling load shown in Table 6. The candidate number 
of layers N is determined as 

 in which, 

(25)Vt+1
ij

= wVt
ij
+ c1r

t
1

(
pbestij − Xt

ij

)
+ c2r

t
2

(
gbestj − Xt

ij

)

(26)Xt+1
ij

=Xt
ij
+ Vt+1

ij

(27)N = [2i,… , 2j]

(a) Buckling load surface, kN

(b) Mass surface, kg

Fig. 8  Contour plots using the accelerated-Kriging metamodel with 
NL = 1 (one ± layer). For plotting purposes, assuming �3 = 45◦
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(a) 200 samples (b) 400 samples

(c) 600 samples (d) 800 samples

(e) 1000 samples (f) 2000 samples

Fig. 9  Design space illustrated using the buckling load � versus mass for different samples generated using the developed metamodels
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S2:  Set n = i;
S3:  The number of layers is then N = 2n and the number 

of design variables ( �optn  ) is 3n.

  The optimization flowchart is illustrated in Fig. 4, 
starting by calling both buckling load metamodels 

(28)i, j ∈ [1,… , 4], where i ≤ j

in each iteration. Then, the PSO algorithm finds 
the minimum mass, Mmin

n
 , within the buckling 

load boundaries, as detailed in the following 
steps:

S4:  If n < j , n = n + 1 , go back to Step3. Else, go to S5;
S5:  Obtain all the candidate optimal designs and corre-

sponding masses: 

S6:  Select the sample with the minimum mass of all can-
didates using Eq. 29 as the optimum for a given design 
load BLd . Then, the final output, �opt

final
 , is generated;

6.2  Verification of the PSO‑MM framework

Genetic algorithm (GA) coupled with the developed SC-
BFSC finite element model is used to verify the PSO-MM 
optimization framework. The GA is implemented in Open-
MDAO, an open-source optimization framework (Gray 
et al. 2019). It is worth mentioning that the number of layers 
allowed is the same as in the PSO-MM optimizations, that is, 
NL = 1, 2, 3, 44 . The parameters utilized in the optimizations 
are presented in Table 9. The objective function is similar to 
Eq. 5, whereby the function is changed in accordance with 
the GA problem definition as shown in Eq. 30:

where M is the mass calculated according to Eq. 24; � is 
the buckling load of the individual; and �d is the design 
buckling load.

7  Discussion

The objective function of the optimizations is to minimize 
the cylinder mass subject to the following design loads: 
50 kN, 100 kN, 200 kN, 500 kN, and 1000 kN. The PSO-
MM results consist of optimum designs obtained per design 
load, where different optima are obtained for different num-
ber of ±� layers in the filament winding process. The GA 

(29)
[
� opt
�

,Mmin
�

]
, � = [1,… , n]

(30)

Find ∶ 𝜃,NL

Minimize ∶ M(𝜃,NL) × PF

Penalty Function(PF) ∶

{
1 if 𝜆 ≥ 𝜆d
(1 + 𝜆d∕𝜆)

2 if 𝜆 < 𝜆d
Design Space: 𝜖 [0, 90]

M
as

s 
(k

g
)

0.3644

6.9796

0.7288

13.9592

1.0932

20.9388

27.9184

1.4576

NL = 1 NLN 4=LN 3=L = 2

33,729

68,768

146,190

1,852,980

329,563

2,909,814

3,496,871

694,931

B
u

ck
li

n
g

 l
o

ad
 (

N
)

NL = 1 NLN 4=LN 3=L = 2

(a) Mass boundaries

(b) Buckling load boundaries

Fig. 10  Mass and buckling load boundaries defined by the metamod-
els using 5000 samples

Table 8  Parameters used in the PSO-MM optimization

Parameter Value

Number of variables ( NL) 1, 2, 3, 4
Minimum inertia weight ( Wmin) 0.4
Maximum inertia weight ( Wmax) 0.9
Acceleration factors ( c1 = c2) 2
Population size 20
Maximum iterations 100
Number of swarms 1

Table 9  Parameters used in the 
GA optimization

Parameter Value

Bit size ( Bs) 6
Maximum generations 100
Population size 8 × Bs

Mutation rate 0.02
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results consist of only one optimum design per design load. 
The results are given in Table 10.

From Table 10, the following characteristics of the opti-
mum designs, and the differences between the PSO-MM and 
GA results are identified:

– 50 kN: this design load is covered by candidates with 
NL = 1 , as illustrated in Fig.  10. The GA results is 
slightly heavier than the PSO-MM result;

– 100 kN: from Fig. 10 there is no design covering this 
design load, and this region represents part of a gap in the 
design space from ≈ 69 kN to ≈ 146 kN . The PSO-MM 
optimization found a candidate cylinder with NL = 2 , 
with a buckling load of 165.33 kN, expectedly higher 
than the 100 kN design load, due to the gap in the design 
space previously identified. Interestingly, the GA result 
confirmed the identified gap by finding an optimum 

solution outside the gap region, with a buckling load of 
288.15 kN, and a comparable mass with respect to the 
optimum design obtained by the PSO-MM;

– 200 kN: the only candidate for this design load level 
are those with NL = 2 . The combination of angles leads 
to shell with a mass of 0.7309 kg and buckling load of 
207.61 kN. The GA, nevertheless, does not find an opti-
mum with buckling load around the desired one. How-
ever, the optimum found by GA has a similar mass with 
a substantially higher buckling load of 242.83 kN;

– 500 kN: as per Fig. 10 this design load is covered by cyl-
inders with NL = 2 and NL = 3 , and the PSO-MM optima 
have respective masses of 1.2715 and 1.0951 kg; with 
buckling loads of 498.29 and 504.28 kN. The GA finds a 
unique optimum candidate with NL = 3 , with optimum 
mass comparable to the PSO-MM result, and a higher 
buckling load of 659.80 kN;

Table 10  Optimization results 
from both PSO-MM and GA 
approaches

Approach Design load 
(kN)

kn �VP
1
(◦) �VP

2
(◦) �VP

3
(◦) Mass (kg) � (kN)

PSO-MM 50 k1 ±46.3 ±57.8 ±57.8 0.3704 50.31
GA k1 ±41.8 ±68.0 ±49.9 0.3888 49.99
PSO-MM 100 k1 ±60.9 ±60.0 ±64.8 0.7291 165.33

k2 ±41.3 ±41.6 ±39.7

GA k1 ±22.9 ±22.9 ±21.4 0.7238 288.15
k2 ±40.0 ±40.0 ±40.0

PSO-MM 200 k1 ±6.8 ±5.2 ±6.4 0.7309 207.61
k2 ±31.0 ±38.2 ±37.0

GA k1 ±28.3 ±28.3 ±27.6 0.7238 242.83
k2 ±75.1 ±75.1 ±75.1

PSO-MM 500 k1 ±10.5 ±56.5 ±10.6 1.2715 498.29
k2 ±9.6 ±80.7 ±58.3

k1 ±54.2 ±53.9 ±53.4 1.0951 504.28
k2 ±59.8 ±65.7 ±63.7

k3 ±45.9 ±46.9 ±43.0

GA k1 ±49.6 ±48.9 ±48.2 1.0861 659.80
k2 ±83.6 ±85.0 ±85.0

k3 ±39.0 ±39.0 ±45.4

PSO-MM 1000 k1 ±72.3 ±67.5 ±6.6 1.6112 1012.51
k2 ±7.0 ±63.3 ±87.5

k1 ±62.3 ±36.0 ±52.2 1.5877 1008.79
k2 ±18.0 ±74.4 ±87.1

k3 ±76.5 ±85.6 ±34.4

k1 ±37.3 ±37.0 ±36.2 1.4586 1092.18
k2 ±62.1 ±65.7 ±65.9

k3 ±5.9 ±7.0 ±5.8

k4 ±31.3 ±33.0 ±35.7

GA k1 ±21.3 ±22.7 ±19.1 1.4487 1301.76
k2 ±53.9 ±48.9 ±51.0

k3 ±79.4 ±78.0 ±78.0

k4 ±22.7 ±19.8 ±17.7
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– 1000 kN: three candidates are found by the PSO-MM to 
respect this desired load, with 2, 3, and 4 ±� layers. They 
have masses between 1.46 and 1.61 kg with buckling 
loads within a range of 1021.5 and 1092.2 kN, respec-
tively. The GA finds only one candidate with 4 ±� layers, 
which has similar mass to the candidate with 4 layers 
found by PSO-MM framework, with 1.46 kg but with a 
higher buckling load of 1301.7 kN.

The GA optima reached considerably higher buckling loads 
without resulting in additional mass for the design loads of 
200, 500, and 1000 kN, shown in Table 10. Note that this 
is not due to the objective function of Eq. 30 utilized in the 
GA optimizations, because the buckling load � only partici-
pates in the penalty function when 𝜆 < 𝜆d , with �d being the 
design load.

The PSO-MM optimum designs listed in Table 10 are 
illustrated in Figs. 11, 12, 13, 14, 15, 16, 17, and 18. The 
illustrated layers ki are stacked in an increasing z direction 
while constructing the filament-wound structure, as illus-
trated in Fig. 7. The corresponding first linear buckling 
modes are shown in Fig. 19. When �VP

1
, �VP

2
, �VP

3
 are dif-

ferent within the same ±� layer, a variable-angle filament 
path is produced, which is well illustrated in some of the 

figures. Due to the tow bending and tow shearing mecha-
nisms discussed in Wang et al. (2020), the variable-angle 
path creates overlapping regions with higher thickness 
between the filaments, here represented by darker regions. 
This coupling between the thickness and the steering angle 
leads to interesting optimum designs, such as the ones illus-
trated in Figs. 14, 16 and 17. The predicted thickness pat-
terns showing overlapping filaments correspond to what 
has been experimentally observed by the authors in VAFW 
cylinders of smaller diameters (Castro et al. 2021; Almeida 
et al. 2021), and by Labans and Bisagni in large cylinders 
manufactured by automated fiber placement (Labans and 
Bisagni 2019).

For design loads that allow an optimum configuration for 
different values of the total number of layers NL , a general 
trend is observed, in which lower NL values can achieve the 
design load by means of more thickness build-up created 

/4

/2

3L/4

Fig. 11  PSO-MM tow path for design load of 50 kN

/4

/2

3L/4

Fig. 12  PSO-MM tow path for design load of 100 kN with 2 ±� lay-
ers

/4

/2

3L/4

Fig. 13  PSO-MM tow path for design load of 200 kN with 2 ±� lay-
ers

/4

/2

3L/4

Fig. 14  PSO-MM tow path for design load of 500 kN with 2 ±� lay-
ers
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by the variable-angle filaments. On the other hand, higher 
NL values tend to show less thickness build-up, thus with 
less variability in the filament angles. Another trend that is 
observed is that the buckling modes for the configurations 
with more thickness build-up tend to show the well-known 
diamond patterns, whereas the optima with more NL have 
more axisymmetric buckling modes.

In order to illustrate the efficiency of both heuristic opti-
mization algorithms herein used, Fig. 20 presents conver-
gence results for both optimizers for an example design load 
of 50 kN. It is noted that the PSO-MM framework takes only 

/4

/2

3L/4

Fig. 15  PSO-MM tow path for design load of 500 kN with 3 ±� lay-
ers

/4

/2

3L/4

Fig. 16  PSO-MM tow path for design load of 1000 kN with 2 ±� lay-
ers

/4

/2

3L/4

Fig. 17  PSO-MM tow path for design load of 1000 kN with 3 ±� lay-
ers

/4

/2

3L/4

Fig. 18  PSO-MM tow path for design load of 1000 kN with 4 ±� lay-
ers
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4 iterations to reach the global optimum, whereas GA takes 
17 generations.

8  Conclusion

This work focused on develop an optimization framework 
coupled with metamodels to minimize the mass of varia-
ble-angle filament-wound (VAFW) cylinders. The newly 
proposed single-curvature Bogner–Fox–Schmit–Castro 
finite element with 4 nodes and 10 degrees-of-freedom 
(DOF) per node showed to be a fast-converging element 
to simulate the buckling behavior of VAFW cylinders. The 
model converges with approximately two orders of magni-
tude less DOF than a general purpose linear shell element, 
such as the S4R available in Abaqus.

The accelerated Kriging metamodel used to represent 
the buckling behavior and the mass of VAFW cylinders 
proved to be accurate and could be trained using only 
183 finite element evaluations. This is remarkable con-
sidering the steering-thickness coupling observed in this 
variable stiffness structure. The moving search window, or 
hypercube, used during the training process enabled the 
proposed accelerated Kriging to outperform the classical 
Kriging and the co-Kriging approaches.

Particle swarm optimization was successfully used to 
drive the trained Kriging models towards different optima 
for buckling design loads of 50 kN, 100 kN, 200 kN, 
500 kN and 1000 kN. All optimum results were verified 
against GA optimizations coupled with finite elements, 
showing a excellent agreement in the obtained minimum 
mass.

Fig. 19  Buckling modes for 
all cylinders optimized by the 
PSO-MM framework

(a) 50 kN, NL=1 (b) 100 kN, NL=2

(c) 200 kN, NL=2 (d) 500 kN, NL=2

(e) 500 kN, NL=3 (f) 1000 kN, NL=2

(g) 1000 kN, NL=3 (h) 1000 kN, NL=4

Fig. 20  Convergence plots for both PSO-MM and GA for a design 
load of 50 kN
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Future studies will focus on manufacture the optimum 
cylinder configurations herein achieved through the fila-
ment winding process. In addition, the cylinders will be 
tested in axial compression and nonlinear models will be 
developed to simulate their buckling performance.

Appendix 1: Finite element model: 
formulation of the single‑curvature BFSC

The natural coordinates are defined as � = 2x∕�x − 1 and 
� = 2y∕�y − 1 , and with the proposed nodal connectivity, the 
values of �i, �i at each node, for all elements, are:

The displacements along x, y, z are respectively u, v, w and 
can be approximated within each element as:

where SSSu,v,w
i

 and ueueuei are the shape functions and the 10 
degrees-of-freedom of the ith node of the SC-BFSC element, 
being in the following order: u, �u∕�x , �u∕�y , v, �v∕�x , 
�v∕�y , w, �w∕�x , �w∕�y , �2w∕�x�y . For the SC-BFSC ele-
ment, the same shape functions of the plate BFSC element 
(Castro and Jansen 2021) can be used:

with the cubic Hermite functions Hi , Hx
i
 , Hy

i
 , Hxy

i
 calculated 

using natural coordinates (Ochoa and Reddy 1992; Tsune-
matsu 2019; Tsunematsu and Donadon 2019):

where �x,�y are respectively the finite element dimensions 
along x, y, as shown in Fig. 5. Using the proposed nodal 
connectivity for the SC-BFSC element, the nodal degrees-
of-freedom ueueuei and the respective shape functions SSSu,v,w

i
 are 

concatenated as:

(31)

Node �i �i
1 − 1 − 1

2 + 1 − 1

3 + 1 + 1

4 − 1 + 1

(32)ue, ve,we =
∑4

i=1
SSS
u,v,w

i
ueueuei

(33)

SSS
u

i
= [Hi H

x

i
H

y

i
0 0 0 0 0 0 0]

SSS
v

i
= [0 0 0 Hi H

x

i
H

y

i
0 0 0 0]

SSS
w

i
= [0 0 0 0 0 0 Hi H

x

i
H

y

i
H

xy

i
]

(34)

Hi =
1

16
(� + �i)

2(��i − 2)(� + �i)
2(��i − 2)

Hx

i
= −

�x

32
�i(� + �i)

2(��i − 1)(� + �i)
2(��i − 2)

H
y

i
= −

�y

32
(� + �i)

2(��i − 2)�i(� + �i)
2(��i − 1)

H
xy

i
=

�x�y

64
�i(� + �i)

2(��i − 1)�i(� + �i)
2(��i − 1)

with SSSu , SSSv and SSSw being matrices of shape 1 × 40.
Assuming equivalent single-layer theory (Barbero et al. 

1990; Reddy 2003), the total potential energy functional for 
one finite element �e can be expressed as:

where the membrane forces are NNN =
{
Nxx,Nyy,Nxy

}⊤ and the 
distributed moments are MMM =

{
Mxx,Myy,Mxy

}⊤ . The inte-
gration limits x1 ≤ x ≤ x2 and y1 ≤ y ≤ y4 define the domain 
of one finite element �e . The membrane ��� and rotational ��� 
strains are assumed to follow von Kármán kinematics, also 
referred to in the literature as Donnell-type (Donnell 1933, 
1934) or Kirchhoff–Love nonlinear equations, given by:

with (⋅),x = �(⋅)∕�x used as a compact notation for partial 
derivatives. At the bifurcation point, the following state of 
equilibrium exists, considering all ne elements:

Expressing the displacements within one element in terms 
of nodal coordinates ueueue as per Eq. 32, ���� and ���� can be 
calculated as:

where the partial derivatives of SSSu,v,w are directly calculated 
from the shape functions of Eq. 33 in terms of the natural 
coordinates �, � , using the following Jacobian relations:

(35)

ueueue = { ueueue1 ueueue2 ueueue3 ueueue4 }
⊤

SSS
u =

[
SSSu
1
SSSu
2
SSSu
3
SSSu
4

]

SSS
v =

[
SSSv
1
SSSv
2
SSSv
3
SSSv
4

]

SSS
w =

[
SSSw
1
SSSw
2
SSSw
3
SSSw
4

]

(36)�e =
1

2

y4

∫
y=y1

x2

∫
x=x1

(NNN��� +MMM���)dxdy,

(37)

��� =

⎧
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�xx
�yy
�xy

⎫
⎪⎬⎪⎭
=

⎧
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u,x +
1

2
w,2

x

v,y +
1

r
w +

1

2
w,2

y
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⎫⎪⎬⎪⎭

��� =
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ne∑
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The neutral equilibrium criterion also requires that �2�e = 0 
(Castro et al. 2014b), such that, from Eq. 38:

The first integral of Eq. 41 becomes the constitutive stiffness 
matrix of the element, calculated using the constitutive rela-
tions from classical laminated plate theory (Reddy 2003):

Note that the geometric nonlinearity appears in the constitu-
tive stiffness matrix due to w,x,w,y,w,xy in Eq. 39. Therefore, 
the linear constitutive stiffness matrix of a finite element 
KeKeKe is calculated by assuming w,x,w,y,w,xy = 0 , leading to a 
40 × 40 matrix:

The second integral of Eq. 41 becomes the geometric stiff-
ness matrix of the finite element KG0e

KG0eKG0e , capturing the geomet-
rically nonlinear effects of a pre-buckling membrane stresses 
N0N0N0 =

{
N0xx,N0yy,N0xy

}⊤ on the membrane stiffness. Noting 
that �2��� = 000 (Castro and Jansen 2021; Castro et al. 2014b), 
the equation for KG0e

KG0eKG0e becomes:

(40)

�
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=
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2

�
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�
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2

�

��
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)
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]
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�NNN = AAA���� +BBB����
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The contributions all ne finite element are added to build the 
global constitutive stiffness matrix KKK and geometric stiffness 
matrix KG0

KG0KG0 of the system:

The pre-buckling stress field of one BFSC finite element 
N0xx,N0yy,N0xy is calculated from the corresponding nodal 
displacements u0eu0eu0e as:

where u0eu0eu0e is directly extracted from the full pre-buckling 
displacement vector u0u0u0 that is obtained from a static analysis, 
derived from the equilibrium of Eq. 38:

with f0f0f0 representing any general pre-buckling force. When 
applying the neutral equilibrium criterion of Eq. 41, one 
assumes that at the bifurcation point there is a value of inter-
nal membrane stresses NNN based on the known pre-buckling 
stress N0N0N0 described by NNN = �N0N0N0 that leads to the condition 
�2� = 0 . Therefore, the linear buckling problem consists of 
finding the value of � that leads to:

which holds true for any variation �uuu , such that the required 
condition for the equality of Eq. 47 is the linear buckling 
equation given by:

Appendix 2: MSE estimation for the Kriging 
metamodels

For the unknown response function, f (xxx) , where xxx is a vec-
tor with the design variables, the response function can 
be approximately expressed with the Kriging metamodel 
(Lophaven et al. 2002) as:

(44)
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)
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(49)f̂ (xxx) = hhh(xxx)Tvvv + 𝛥(xxx)
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where f̂ (xxx) is the prediction from the Kriging model, [h1(xxx) , 
h2(xxx) , … , hp(xxx)] is a vector of regression function, and [v1 , v2 , 
… , vp] is a vector of unknown coefficients.

In Eq.13, h(xxx)Tvvv indicates the prediction trend, �(xxx) is a 
Gaussian process with zero mean and covariance cov(�

(
xxxi
)
, 

�
(
xxxj
)
) . This covariance is determined by:

in which �2
�
 is the variance of the Gaussian process and 

R
(
xxxi,xxxj

)
 is the correlation function of the Gaussian process.

For the Kriging meta model with nis initial samples, [
xxxi, f

(
xxxi
)]

 , where i = 1, 2,… , nis , the coefficient vector vvv in 
Eq. 49 is calculated by

where RRR is the correlation matrix whose elements are 
R
(
xxxi,xxxj

)
 , i, j = 1, 2,… , nis , HHH =

[
hhh
(
xxx1
)T
,hhh
(
xxx2
)T
,… ,hhh

(
xxxnt

)T] 
and fff =

[
f
(
xxx1
)
, f
(
xxx2
)
,… , f

(
xxxnis

)]T.
With the above equations, the predicted response for a 

new point xxxn e w can then be estimated by

where:

The MSE of the prediction at the new point is then calcu-
lated by

Appendix 3: Finite element model: 
convergence analysis and verification

The proposed SC-BFSC element is verified against the 
general shell element with reduced integration and lin-
ear displacement interpolation (S4R) from Abaqus 
FEA software (Smith 2019). To determine a converged 
mesh size in Abaqus, a VAFW cylinder design with 
6 plies is selected, whose orientations are: plies 1 and 2 
�VP
1

= ±62.3◦ , �VP
2

= ±36.0◦ , �VP
3

= ±52.2◦ ; plies 3 and 4 
�VP
1

= ±18.0◦ , �VP
2

= ±74.4◦ , �VP
3

= ±87.1◦ ; and plies 5 and 
6 �VP

1
= ±76.5◦ , �VP

2
= ±85.6◦ , �VP

3
= ±34.4◦.

Table 11 and Fig. 21 show the convergence for both finite 
elements Abaqus S4R and SC-BFSC. In all cases, an aspect 
ratio of 1:1 was kept for the finite element meshes. Note 
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that the third-order interpolation of the SC-BFSC allows 
convergence with approximately two order of magnitude less 
degrees-of-freedom (DOF) compared to Abaqus S4R. As 
expected, the first-order shear deformation theory utilized in 
the S4R formulation leads to more rotational flexibility and 
ultimately to a slightly lower buckling load. The slow con-
vergence of S4R can be attributed to the linear interpolation 

Table 11  Convergence analysis on single-curvature BFSC and 
Abaqus S4R

nx ny SC-BFSC Abaqus

�CR [kN] DOF �CR [kN] DOF

3 10 843.56 300 – –
5 15 1099.08 750 – –
7 20 1279.57 1400 – –
7 25 1339.98 1750 – –
9 30 1278.98 2700 – –
11 35 1236.49 3850 – –
13 40 1116.04 5200 – –
15 45 1008.79 6750 – –
15 50 1008.79 7500 – –
19 60 956.52 11,400 1310.00 6840
31 100 958.65 31,000 1118.90 18,600
45 140 947.91 63,000 1013.85 37,800
57 180 946.21 102,600 971.22 61,560
71 220 945.81 156,200 949.86 93,720
83 260 – – 938.40 129,480
95 300 – – 930.53 171,000
109 340 – – 925.32 222,360
121 380 – – 921.93 275,880
127 400 – – 920.38 304,800
159 500 – – 915.69 477,000
191 600 – – 913.22 687,600
223 700 – – 911.67 936,600

Fig. 21  Convergence of the critical buckling load �CR for Abaqus 
S4R and the single-curvature BFSC element. The proposed element 
converges with two order of magnitude less degrees-of-freedom than 
the S4R
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of this element that requires more elements to accurately 
describe the buckling modes, and to the fact that only one 
integration point at the center of the element is used, requir-
ing a larger number of elements when variable stiffness 
properties are modeled. For the SC-BFSC, a third-order 
interpolation is used, with 16 integration points evaluated 
for each element, thus leading to a fast convergence. Assum-
ing ny = 50 for the SC-BFSC model, the buckling load is 
1008.79 kN, compared to 920.38 kN for the S4R model with 
ny = 400 , and these are the mesh refinement levels adopted 
for the following discussions.

After the convergence analysis, the results obtained with 
Abaqus and a mesh of 4R elements with ny = 400 are used 
to verify all optimum results obtained with a mesh of SC-
BFSC elements with ny = 50 , as shown in Table 12.
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