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Abstract: Respiratory ailments are a very serious health issue and can be life-threatening, especially
for patients with COVID. Respiration rate (RR) is a very important vital health indicator for patients.
Any abnormality in this metric indicates a deterioration in health. Hence, continuous monitoring
of RR can act as an early indicator. Despite that, RR monitoring equipment is generally provided
only to intensive care unit (ICU) patients. Recent studies have established the feasibility of using
photoplethysmogram (PPG) signals to estimate RR. This paper proposes a deep-learning-based
end-to-end solution for estimating RR directly from the PPG signal. The system was evaluated on
two popular public datasets: VORTAL and BIDMC. A lightweight model, ConvMixer, outperformed
all of the other deep neural networks. The model provided a root mean squared error (RMSE), mean
absolute error (MAE), and correlation coefficient (R) of 1.75 breaths per minute (bpm), 1.27 bpm, and
0.92, respectively, for VORTAL, while these metrics were 1.20 bpm, 0.77 bpm, and 0.92, respectively,
for BIDMC. The authors also showed how fine-tuning a small subset could increase the performance
of the model in the case of an out-of-distribution dataset. In the fine-tuning experiments, the models
produced an average R of 0.81. Hence, this lightweight model can be deployed to mobile devices for
real-time monitoring of patients.

Keywords: photoplethysmogram; respiration rate; machine learning; deep learning; ConvMixer;
convolutional neural networks

1. Introduction

Heart rate, blood pressure, body temperature, and respiration rate (RR) are considered
the four primary vital signs for diagnosing any abnormality in the human body. RR is
defined as the number of breaths taken by a person in a minute (breaths/minute). Any
sudden spike or fall in RR is often seen as a sign of the body malfunctioning [1–3]. An
increase in RR can strongly indicate problems with the respiratory system [4], cardiac
arrest [5], and rapid collapse of the body resulting in death [6]. Furthermore, RR can
be used to identify pneumonia [7,8], pulmonary embolism [9,10], hypercarbia [11], and
sepsis. It is adopted by emergency departments in hospitals as a screening parameter [12].
It can also be used as an early detector for COVID-19, as some research studies [13,14]
have shown. As a result, it can be concluded that RR should be monitored by healthcare
personnel to diagnose any acute decline in a patient’s health [15]. Thus, it is logical that
patients have their RR measured regularly. This is usually done after every few hours [16].
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In light of these use cases, RR must be calculated regularly and accurately by healthcare
workers. Unfortunately, the common way of doing this is by manually counting the number
of breaths taken by the patients. This is cumbersome and is not possible when long-term
monitoring of a patient is required. On top of that, it introduces human error in estimating
RR [17,18]. A way of tackling this problem is to use capnography. This method measures the
concentration of partial pressure of carbon dioxide in respiratory gases [19]. This method
is very accurate, but the device is unwieldy in usage. Hence, this method is primarily
used in the case of anesthesia or when patients are in intensive care. Keeping all of these
factors in mind, it is thus important that other alternative methods for estimating RR should
be developed.

Current research is focused on using either electrocardiogram (ECG) or photoplethys-
mogram (PPG) for the estimation of RR. These signals are very rich in information and
have been used for many other applications ranging from blood pressure estimation to
even user authentication [20–23]. The motivation for using these signals for alternative
RR is twofold. Firstly, with the advent of wearable devices, ECG and PPG can be easily
acquired [24] and can be used by non-healthcare professionals. Secondly, these signals
allow for non-invasive RR estimation. As a result, the patient will face less discomfort
and will have a lower chance of becoming infected. There are many methods [25–27] for
estimating RR from ECG that reported good accuracy. However, in a study [28], it has been
observed that, in some ICU patients, the respiratory signals extracted from ECG were not
accurate, despite the patients still breathing. This is a major concern. Hence PPG signals
are seen as the more viable approach for estimating RR.

The recent developments in estimating RR from ECG and PPG are reviewed thor-
oughly in [29–31]. In [30,31], more than 100 algorithms have been proposed for the es-
timation of RR from PPG and ECG. The central theme is to extract a representation of
the respiratory signal and then estimate RR from it. The authors in [7] put forward a
new method of estimating RR from PPG. They derived three respiratory-induced varia-
tions (frequency, period, and amplitude) from PPG. The estimations from these variations
were fused in a process called smart fusion to obtain a better approximation of RR. They
achieved a root mean square error (RMSE) of 3.0 breaths per minute (bpm), which was
better than the RR estimation from individual respiratory-induced variations. Another
study [32] investigated new algorithms for estimating RR from children in the emergency
department. Segments of PPG signals that were contaminated by motion artifacts were
removed automatically. Their algorithm was performed with a mean absolute error (MAE)
of 5.2 bpm.

Zhang et al. [33] introduced an algorithm that uses joint sparse signal reconstruction
and spectra fusion to estimate RR from PPG. Another study [34] investigated the use of
amplitude variability of finger PPG and compared it to the approach of using four time–
frequency signal representations cascaded with a particle filter to estimate RR. In [35], ten
subjects following intensive care unit (ICU) discharge were studied. RR was estimated
from PPG signals and accelerometry data. In [36], the authors investigated the difference
in RR estimated from PPG at various body sites for different breathing conditions. RR
was estimated via spectral power density from 36 healthy subjects. In [37], the authors
estimated the RR of 201 patients in the ICU. Respiration-induced frequency components
were used for estimating RR. Ensemble empirical mode decomposition (EEMD) was used
to estimate RR on two different datasets in [38]. A smart fusion method based on ensemble
empirical mode decomposition was used to improve the estimation of RR from PPG [39].
Rathore et al. [40] used a U-net model with residual-inception blocks to synthesize a
respiration signal from which they estimated RR. They used a very deep model with six
layers for this task, which makes it non-suitable for portable devices. Lampier et al. [41]
used deep neural networks that include convolution and long short-term memory (LSTM)
layers to estimate RR from PPG.

The different RR estimation algorithms from PPG are summarized in Supplementary
Table S1. Very little work has been performed using ML or deep learning in estimating



Bioengineering 2022, 9, 558 3 of 14

RR from PPG. With the availability of large, annotated datasets [29,42], it is viable to use
deep learning to estimate RR. In our previous study [43], we used feature extraction and
classical machine learning to estimate RR. The major motivation behind this study is to use
more sophisticated technologies, such as deep neural networks, to estimate RR robustly.

The major contributions of this work are as follows:

• a lightweight deep neural network for estimating RR, which will enable deployment
in various devices;

• evaluation of the model in both intra-dataset and inter-dataset settings to ensure
generalization capabilities;

• the ability of the deep learning model to estimate the RR of an out-of-distribution
dataset by fine-tuning a small subset;

• robust error analysis of the results to ensure the reliability of the models.

This paper is divided into four sections. Section 1 provides an overview of the use of
PPG in RR estimation as well as a summary of the current research work in this domain.
Section 2 describes the dataset used, preprocessing steps, the models trained, as well as
the training methodology. Section 3 shows the results from the various experiments and
discusses the implication of the results. The performance of this work is then compared
to the current state-of-the-art methods in the same section. Section 4 wraps up the whole
paper as a conclusion.

2. Materials and Methods

In this section, the methodology of this work is discussed. Two publicly available
datasets are considered in this study. The datasets are first preprocessed before any model
training. The signals are resampled, denoised, and segmented into smaller windows. The
preprocessed data are then used to train deep learning models. A cross-validation scheme
is used to train and evaluate the models. The overall process is depicted in Figure 1, and
the processes are explained in this section.
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2.1. Preprocessing

The signals of both datasets are first resampled to a fixed sample rate so that the
model can be trained and evaluated on both datasets. In normal conditions, it is very
common to have motion artifacts (MAs) and high-frequency noise in the acquired PPG
signal. The motion artifacts can range from spikes in data to distortion of the signal’s
fiducial points. These corruptions will obstruct the deep neural networks from learning
meaningful features from the signals. To rectify that, a low-pass filter is used to remove the
noise. A low-pass Butterworth infinite impulse response (IIR) zero-phase filter [44] was
implemented in MATLAB. The filter was of the sixth order and had a cut-off frequency
of 25 Hz. Supplementary Figure S1 depicts the effect of the low-pass filter. The blue
color line represents the raw signal, and the orange color line represents the filtered data.
Supplementary Figure S1a shows a 16 s segment of the signal, but it is difficult to see the
effect properly. In Supplementary Figure S1b, a zoomed-in version of 2 s is shown. It can
be seen that some of the high-frequency noise is removed owing to the low pass filter.

To remove motion artifact (MA) from the signal, variational mode decomposition
(VMD) [45,46] has been found to be robust and quite effective [43]. In [43], it has been
shown that the last mode out of the five modes extracted from a PPG signal contains most
of the MA. The same configuration was used in this work as well. The signals are then
segmented to 16 s windows with an overlap of 50%. This is done because it is very difficult
for a deep learning model to work on a very large signal segment.

2.2. Neural Network Architectures

In this work, five neural network architectures were considered: ResNet [47],
DenseNet [48], Inception_v1 [49], MobileNet [50], and ConvMixer [51]. These networks
were proposed for two-dimensional (2D) problems or image domain problems. As an
image can be thought of as a 2D signal, these networks were adapted for this 1D problem
of estimating the RR.

ResNet: ResNet is a type of neural network that introduces the concept of skip connec-
tions. A ResNet model usually contains a multiple-layer skip connection with nonlinearities
and batch normalization in between. The idea behind skip connection is to avoid the prob-
lem of vanishing gradients in deeper models.

DenseNet: In DenseNet, within a dense block, the output of each layer is connected
to the output of every other layer. In other words, for each layer, the outputs of previous
layers are considered separate inputs, and their own output is passed as an input for the
next layers. A DenseNet consists of multiple such dense blocks.

Inception_v1: Inception_v1 or GoogleNet introduced the concept of concatenating
convolution layers with different kernel sizes. This is because it allows the model to “view”
the data from different perspectives.

MobileNet: MobileNets were proposed as neural network architectures that were
able to perform usual deep learning tasks with very low parameter counts. As a result,
they are ideal for use cases that require low latency and low power. This architecture uses
depthwise separable convolutions, which significantly reduces the number of parameters
when compared with the network with normal convolutions with the same depth in the
networks. The normal convolution is replaced by depthwise convolution, followed by
pointwise convolution, which is called depthwise separable convolution.

ConvMixer: The ConvMixer architecture was proposed to investigate whether patches
are the reason for improved performance in vision tasks. Hence, the first layer of ConvMixer
is a patch embedding layer. This is achieved with the help of a convolution layer, where
the kernel size and stride are equal to the patch size. This converts a signal with L length
and C channels to a projection of L/P length and H channels, where P refers to the patch
size. This is followed by a nonlinearity and a batch normalization layer. The nonlinearity
or activation layer used is the Gaussian error linear unit or GELU. The second part of the
model is a ConvMixer block. This block consists of a residual block containing depthwise
convolution, an activation layer, and a batchnorm layer. The inputs are concatenated with
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the output of the batchnorm layer. The concatenated output is then followed by pointwise
convolution, an activation layer, and a batchnorm layer. The ConvMixer block is repeated
Depth times. The final part of the model contains a global average pooling layer and a fully
connected layer. RR is then calculated using linear activation. The network architecture is
shown in Figure 2.
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2.3. Dataset Description

Two datasets were used in this study: VORTAL [29] and BIDMC [42]. Both datasets
contain PPG, ECG, and ground truth RR. The BIDMC dataset is a subset of the MIMIC-II
dataset [52], where data were collected from ICU patients. BIDMC contains data from
53 subjects. The VORTAL dataset contains data from 39 subjects. The PPG signals were
acquired in resting conditions. The datasets are summarized in Table 1.

Table 1. Dataset summary of VORTAL and BIDMC.

Median Range

VORTAL

Sex (female) 54% -

Age (years) 29 18–39

BMI (kg/m2) 23 -

RR (bpm) - 5–32

PPG Sample Rate (Hz) 500 -

BIDMC

Sex (female) 60% -

Age (years) - 19–90+

RR (bpm) - 5–25

PPG Sample Rate (Hz) 125 -

The signals from the dataset were segmented into windows of 16 seconds with 50%
overlap. This ensures that there is enough time for breaths to take place without sacrificing
the number of samples for training the deep learning models. The PPG signals from
VORTAL were resampled to 125 Hz to maintain parity with BIDMC. Here, 2981 and
2980 signals were collected from VORTAL and BIDMC, respectively.

2.4. Training Methodology

The neural networks described in this work were implemented using Tensorflow
and Keras. The networks were trained for 500 epochs with a batch size of 128. Early
stopping criteria were introduced to prevent overfitting by stopping the training if the
validation loss diverged for more than 50 epochs. Mean squared error loss was minimized
in this experiment. An Adam optimizer with a learning rate of 1 × 10−3 was used to
optimize the networks. The models were evaluated using fivefold cross-validation. That
is to say, for each fold, 20% of data were reserved for testing, and 80% were reserved for
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“training + validation”. The “training + validation” data were then split further into 80%
and 20% for the training set and validation set, respectively.

2.5. Evaluation Criteria

Five evaluation criteria were utilized in this investigation. Here, Xp indicates the pro-
jected data, X is the ground truth data, and n denotes the number of samples or recordings.

• Mean absolute error (MAE): MAE is the average of the absolute errors. This is one of
the standard metrics for regression problems.

MAE =
1
n∑n

∣∣Xp − X
∣∣ (1)

• RMSE (root mean squared error): RMSE is the square root of the mean of squared
errors. This metric is very harsh when the predictions and ground truth differ largely.

RMSE =

√
∑
∣∣Xp − X

∣∣2
n

(2)

• Correlation coefficient (R): R is used to calculate the degree to which two variables
(prediction and ground truth) are linked. This is a scale-invariant metric that allows
for reliable comparison between multiple datasets.

R =

√
1− MSE(Model)

MSE(Baseline)
(3)

where MSE (baseline) = ∑|X−mean(X)|2
n

• 2SD: Standard deviation (SD) is a statistical technique that measures the spread of
data relative to its mean. 2SD is significant as it indicates the 95% confidence interval.

2SD = 1.96 × SD = 1.96

√
∑ error−mean(error)2

n
(4)

where error = Xp − X
• Limit of agreement (LOA): LOA allows for errors resulting from random and system-

atic events. Hence, it is helpful to assess the reliability of the predictions of the models.
In this work, 95% LOAs were calculated.

In this study, R was prioritized as the main metric for evaluation. A paired sample
ttest was conducted to find if the performance of a specific model is significant compared
with the other models.

3. Results and Discussion

This section contains the numerical results of the experiments and the implication
behind the results. The intra-dataset results are first discussed, then some possible inter-
dataset evaluation settings are investigated, and the results are compared with the recent
works published.

3.1. Intra Dataset Evaluation
3.1.1. VORTAL

Five models were trained on the VORTAL dataset. Table 2 shows the fivefold cross-
validation results on the dataset. It can be seen that ConvMixer significantly outperforms
the other models (Supplementary Figure S2). Furthermore, the model also has the fewest
parameters compared with other models. Hence, this model is used for further investigation.
The ConvMixer model has a kernel size of 7, a patch size of 10, a channel of 256, and a
depth of 8.
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Table 2. Evaluation of five convolution neural networks using fivefold cross-validation.

Model Parameters (Millions) R MAE (bpm) RMSE (bpm)

Resnet18 0.93 0.6462 2.6926 3.4274

Inception_v1 3.40 0.8239 1.8698 2.5463

Mobilenet_v1 2.01 0.7349 2.4252 3.1651

Densenet121 277.36 0.7494 2.2265 2.9825

ConvMixer 0.56 0.9209 1.2702 1.7450

In Figure 3, we can see the results of ConvMixer visualized on the Vortal dataset.
Figure 3a shows the regression plot where the predictions are plotted against the ground
truth. It can be seen that most of the data are clustered along the ideal trendline (y = x line).
This suggests that the model has a high correlation, which is verified by the R-value of
0.92. The trendline of the scatterplot is also very close to the ideal trendline. In Figure 3b,
the Bland–Altman plot is depicted. The Bland–Altman plot shows the spread of the error
and the 95% confidence interval (CI) of the error. The 95% CI is from −3.48 bpm to 3.35
bpm. This shows that the predictive ability of the model within the VORTAL dataset
is remarkable.
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3.1.2. BIDMC

As ConvMixer was the best performer on the VORTAL dataset, this model was used
to train on BIDMC data from scratch. Other models were also trained for BIDMC, and
their results are summarized in Supplementary Table S2. All of the hyperparameters for
ConvMixer were the same as before. The model’s predictions had an RMSE of 1.2039 bpm
and an MAE of 0.7656 bpm. The correlation between the ground truth and the predictions
(R) was 0.9155. The results are visualized in Figure 4. It can be seen that, in the regression
plot, the trendline is very close to the ideal trendline (as proved by the R of 0.9155), and the
95% CI in the Bland–Altman plot is from−2.34 bpm to 2.38 bpm. The model has performed
very well in BIDMC as well.
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3.2. Inter Dataset Evaluation
3.2.1. Combined Dataset

To test the robustness of the models, the model trained on BIDMC was tested on
VORTAL and vice versa. The results were not good. The model trained on BIDMC, when
tested on VORTAL, gave an RMSE of 4.98 bpm. On the other hand, the model trained on
VORTAL and tested on BIDMC gave an RMSE of 5.78 bpm. These are poor prediction
performances when compared with the intra-dataset performance. This makes some sense
as the VORTAL dataset consists of healthy patients, while BIDMC consists of ICU patients.
The difference in their physiology is likely making one dataset out of the distribution of
the other.

To investigate whether this is the case, both datasets were combined and were trained
and tested in a fivefold cross-validation scheme. The training hyperparameters were the
same as those for individual dataset training. The results for the combined dataset are
depicted in Figure 5. In Figure 5a, it can be observed that the trendline is very close to
the ideal trendline, which results in a correlation coefficient of 0.9183 between the ground
truth and predictions. The Bland–Altman plot in Figure 5b shows an LOA from 2.95 bpm
to −3.03 bpm. This means that the errors are within a very small range. The RMSE and
MAE for this scenario were 1.5246 bpm and 1.0417 bpm, respectively. This shows a massive
boost in performance. Hence, when possible, the dataset in training should always have a
good spread of different types of subjects.

To further study the robustness of the neural network in an inter-dataset setting,
fine-tuning of the models were studied.

3.2.2. Fine-Tuning on a Small Subset of the New Dataset

In this case, the model trained on the BIDMC dataset was fine-tuned on a small
sample of the VORTAL dataset. Here, 10% of the available data were used for training
(fine-tuning), and another 10% were used for validation. The remaining 80% were used
for testing. The results of this scenario are depicted in Figure 6. The regression plot shows
a decent agreement between the ground truth and prediction, with an R of 0.8017. The
Bland–Altman plot shows an LOA from 5.02 bpm to −5.39 bpm. The model had an RMSE
and MAE of 2.6609 bpm and 2.0174 bpm, respectively. This shows a dramatic improvement
from the scenario where the BIDMC model was tested without fine-tuning (RMSE improved
from 4.98 bpm to 2.66 bpm). The scenario was repeated where the model was trained on
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VORTAL and fine-tuned on BIDMC to verify if this method works in the reverse scenario
as well.
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In this case, the model trained on the VORTAL dataset was fine-tuned on a small
sample of the BIDMC dataset. Here, 10% of the available data were used for training
(fine-tuning), and another 10% were used for validation. The remaining 80% were used
for testing. The results of this scenario are depicted in Figure 7. The regression plot shows
a decent agreement between the ground truth and prediction, with an R of 0.8123. The
Bland–Altman plot shows an LOA from 3.40 bpm to −3.42 bpm. The model had an RMSE
and MAE of 1.7403 bpm and 1.1838 bpm, respectively. This again shows a remarkable
improvement in prediction capability (RMSE improves from 5.78 bpm to 1.74 bpm). Hence,
there is another method of improving the performance of the model in an out-of-distribution
dataset by fine-tuning it on a small subsample of the new dataset.
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3.3. Comparison with Literature

The overall results of this work are summarized in Table 3. The intra-dataset evaluation
in this work has shown remarkable results in predicting out-of-fold samples for both
datasets. The models gave an R of 0.9209 and 0.9155 for VORTAL and BIDMC, respectively.
Combining both of the datasets to include more variation in the training set allowed us to
train models that had an R of 0.9183. Fine-tuning on small subsets of BIDMC and VORTAL
gave an R of 0.8123 and 0.8017, respectively. This metric shows that the models trained in
this work can be used for new scenarios with just a few samples for fine-tuning.

Table 3. Summary of the investigations in this work.

Scenario R RMSE (bpm) MAE (bpm) LOA (bpm) 2SD (bpm)

Fivefold cross-validation on VORTAL 0.9209 1.7450 1.2702 −3.48 to 3.35 3.42

Fivefold cross-validation on BIDMC 0.9155 1.2039 0.7656 −2.34 to 2.38 2.36

Fivefold cross-validation on the combined dataset 0.9183 1.5246 1.0417 −3.03 to 2.95 2.99

BIDMC model fine-tuned on VORTAL 0.8017 2.6609 2.0174 −5.39 to 5.02 5.21

VORTAL model fine-tuned on BIDMC 0.8123 1.7403 1.1838 −3.42 to 3.40 3.41

The recent research work in estimating RR from PPG is summarized in Table 4 and
is compared with this work in terms of the details of the dataset used, methods applied,
and the result reported. There are several practical limitations when comparing work with
the performance reported in the literature. Owing to the presence of data from a diverse
group of subjects, lack of consistent criteria for evaluating performance, and absence
of uniform algorithm implementations, it is difficult to make a like-for-like comparison.
Thus, in this work, we have evaluated our model as fairly as possible and used multiple
metrics. Pirhonen et al. [34] proposed a method of using amplitude variations of PPG
signals to predict RR. In that study, the VORTAL dataset was used along with wavelet
synchro-squeezing transform to estimate RR with an MAE and RMSE of 2.33 bpm and
3.68 bpm, respectively. Shuzan et al. [43] used machine learning models along with feature
extraction to estimate RR from the VORTAL dataset. Their best result came from using the
best features selected by a fitted Gaussian process regression (GPR) model. They achieved
RMSE, MAE, and 2SD of 2.63 bpm, 1.97 bpm, and 5.25 bpm, respectively. Our models that
were evaluated on VORTAL outperform those in the literature with an RMSE of 1.75 bpm
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(intra-dataset), beating the RMSE of 2.63 bpm of Shuzan et al. The inter-dataset result of
2.66 bpm is also very close to Shuzan et al.’s result.

Table 4. Summary of recent related works with this work, including the database, methodology, and
estimation error for RR. MAE, RMSE, and 2SD are in bpm.

Author Database Subject Method Metric Result

Pirhonen et al. [34] Vortal 39 Wavelet Synchro squeezing Transform

MAE
RMSE

R
2SD

2.33
3.68

-
-

Jarchi et al. [35] BIDMC 10 Accelerometer

MAE
RMSE

R
2SD

2.56
-
-
-

Shuzan et al. [43] Vortal 39 Machine Learning

MAE
RMSE

R
2SD

1. 97
2.63
0.88
5.25

Lampier et al. [41] BIDMC 53 Deep Neural
Network

MAE
RMSE

R
2SD

3.4
6.9
-
-

This work
(Intra Dataset) Vortal 39 ConvMixer

MAE
RMSE

R
2SD

1.27
1.75
0.92
3.42

This work
(Intra Dataset) BIDMC 53 ConvMixer

MAE
RMSE

R
2SD

0.77
1.20
0.92
2.36

Jarchi et al. [35] used only 10 subjects from BIDMC to estimate RR from PPG signals
relative to the accelerometer with an MAE of 2.56 bpm. Lampier et al. [41] extracted
respiratory-induced intensity variation, respiratory-induced amplitude variation, and
respiratory-induced frequency variation signals from PPG. These signals were then fed to a
deep neural network to estimate RR. The BIDMC dataset was used to obtain an MAE of
3.4 bpm. Our models that were evaluated on BIDMC outperformed the reported results in
the literature (on BIDMC). Our models achieved an MAE of 0.77 bpm (intra-dataset) and
1.18 bpm (inter-dataset), outperforming Jarchi et al.’s result of 2.56 bpm.

The low error in the prediction of RR is a major advantage of our work over signal
processing methods. Furthermore, it can be seen that the performance of this work has
low variation in error, which means that the model is robust over multiple samples. Deep
learning models are also found to be more robust to unusual signals compared with signal
processing methods. In clinical practices, it is often the need for an accurate and robust
monitoring system that is crucial. In terms of deployability, the lightweight nature of this
model ensures that it is not hampered by the need for heavy hardware.

There is no established medical standard for estimating RR. Despite that, a review
study [29] where the authors studied 196 signal processing algorithms for RR estimation
was carried out. The authors claimed that an MAE of less than 2 bpm suggests a good
estimator. In Table 3, most of the results have an MAE of less than 2 bpm, while only the
‘BIDMC model fine-tuned on VORTAL’ has an MAE of 2.02 bpm. The difference is very
small, so it can be stated that all of the models pass this criterion.
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4. Conclusions

In this study, the authors proposed the ConvMixer architecture for estimating RR from
PPG signals. The authors leveraged previously established preprocessing techniques and
ConvMixer to achieve state-of-the-art results.

The models were evaluated in both intra-dataset and inter-dataset configurations. By
combining both datasets, the authors achieved a very high correlation coefficient between
the predictions and ground truth, thus confirming that, in the case of RR estimation, the
diversity of the training set is very important. When it is not feasible to combine such
large datasets, fine-tuning on a small subset produces acceptable results. The authors
showed that fine-tuning on just 10% of a dataset allows the model to improve the result
dramatically. In the intra-dataset configuration, the models, on average, achieved a cor-
relation coefficient of 0.92 between the predictions and ground truth. Furthermore, with
just 0.56 million parameters, the model is very light and hence suitable for deployment in
mobile devices. This state-of-the-art performance of the proposed system will ensure that
the system will work accurately when deployed and can be used for wearable remote RR
monitoring applications.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/bioengineering9100558/s1, Figure S1: Applying a low pass filter
to remove high-frequency noises. (a) Effect of filter on the whole signal (b) Zooming on 2 s data
to see the effect of low pass filter, Figure S2: Paired sample ttest results showing that ConvMixer
outperformed other models significantly, Table S1: Summary of the current research in estimating
RR, Table S2: Evaluation of Five Convolution Neural Networks using 5-fold cross validation on
BIDMC dataset.
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