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Abstract

Software subsystems can often be designed and imple-
mented in a clear, succinct, and aesthetically pleasing
way using specialized linguistic formalisms. In cases
where such a formalism is incompatible with the prin-
cipal language of implementation, we have devised spe-
cialized lightweight languages. Such cases include the
use of repeated program code or data, the specification of
complex constants, the support of a complicated devel-
opment process, the implementation of systems not di-
rectly supported by the development environment, mul-
tiparadigm programming, the encapsulation of system
level design, and other complex programming situations.
We describe applications and subsystems that were im-
plemented using this approach in the areas of user in-
terface specification, software development process sup-
port, text processing, and language implementation. Fi-
nally, we analyze a number of implementation techniques
for lightweight languages based on the merciless ex-
ploitation of existing language processors and tools, and
the careful choice of their syntax and semantics.

1 Introduction

Software subsystems can often be designed and imple-
mented in a clear, succinct, and aesthetically pleasing
way using specialized linguistic formalisms. In cases
where such a formalism is incompatible with the prin-
cipal language of implementation, we have devised spe-
cialized lightweight languages. The soundness of this
approach is amply demonstrated by the use of declar-
ative languages for specialized applications [Hug90,
Mos91], the attention given to very high level lan-
guages [Use94], and multiparadigm programming re-
search [Hai86, SDE94]. The optimum formalism for im-
plementing a subsystem is often incompatible with the
language used for the rest of the system. In such cases,
we propose the use of specialized lightweight languages,

designed to closely match the formalism of the problem
and to be easy to implement. In this way, the linguistic
distance between the specification of the problem and the
implementation of its solution can be minimized, result-
ing in cost reductions and improved project quality. In the
following sections, we analyze our method’s application
domain, provide a number of representative case studies,
outline the techniques we use, and list its advantages and
associated problem areas.

2 Application Domain and Related Tech-
niques

Lightweight languages are particularly helpful in cases
where a classical implementation would require:

Repetitive sequences of code or data In many cases,
one observes very similar sequences of code re-
peated within the program without the possibility
of avoiding the repetition by the use of procedures
or macros due to limitations of the programming
language. In this case, the repetitive structure
can be parametrically defined as a program in a
specialized language. The language’s compiler
translates with suitable parameter substitutions
the necessary parts. In [BH95], a specialized
language is used to create procedures for the Ingres
relational database parameterized for a given table
and in [Spi93a] parameterized C code is used for
the semi-automatic implementation of Haskell
library functions. Section 3.3.2 describes separately
compiled and interpreted filters

Specification of complex constants The constants in-
cluded in a program are often the result of calcu-
lations that can be performed by a specialized lan-
guage based on some basic input, or can be experi-
mentally deduced. As an example, the size and po-
sitioning of screen objects can be calculated using



an imperative or declarative specification of the re-
quired positioning. The implementation of the lan-
guage converts the screen description into code or
variable initializationconstants. In section 3.1.1, we
describe a simple language for defining GUI prop-
erty boxes.

Communication with differing subsystems When the
implemented system must communicate with sub-
systems that are based on different programming
paradigms or technologies (e.g. PLCs, Postscript
printers, MIDI instruments, SQL servers) a spe-
cialized language can be used as middleware to
bridge the mismatch between the two parts. In
section 3.3.1, we describe the implementation of a
functional Postscript interpreter used for the com-
munication between a relational database and a
Postscript-based video titler. In section 3.4.2, we de-
scribe another Postscript-like language developed as
a processing engine for CNCs.

In addition to the above application domains,
lightweight languages can be beneficially employed
to support:

The software development process When developing
a large system, some parts of the process may not
be directly supported by the development environ-
ment. Examples are the control of additional tools
not covered by the system’s development environ-
ment, cross-platform configuration options, and the
semi-automatic production of documentation. Us-
ing specialized languages, these processes can be
automated in a simple and concise way. These lan-
guages can be compiled into input for another tool
(e.g. a series of makefiles), or they can be directly
executed (e.g. to create test vectors). In section
3.2.1 we describe a simple language for defining the
distribution layout of a software product using regu-
lar expression pattern matching, and in section 3.2.2,
a hand crafted language for defining a project build
process.

Multiparadigm programming Often a subsystem can
be implemented using a different paradigm from
the main application programming paradigm (e.g.
functional, logic programming, CSP-based). In this
case, it is often easy to implement a littlecompiler or
interpreter to provide exactly the features required
for the realization of the specific subsystem. In sec-
tion3.4.1 we describe a rule rewrite system compiler
which was inter alia used for the implementation
of a functional and a logic programming language.
In [CP85] a specialized, event-based language is
described. Section 3.4.2 also describes an experi-
mental Prolog engine implemented over a Postscript

base, that allowed one to combine object oriented
and logic programming paradigms.

In other cases, a system’s application environment
may impose unnatural restrictions on the way a
user interface is implemented e.g. by requiring that
parts of a given command functionalitybe dispersed
among different event procedures, resource declara-
tions, and icon/help text definitions. A simple lan-
guage can be used to define the functionality in an
organized way and automatically create the code in
the format required by the application environment.

Encapsulation of System Level Design It is often the
case that an application’s system level design can
be best expressed in a specialized language. A
lightweight language can be used in this case to en-
capsulate the design in a compact, intuitive, and
maintainable formalism.

The specialized language can be implemented as an in-
terpreter or as a compiler. The compiler is usually im-
plemented as code generator whose target language is the
main implementation language (examples 3.1.1, 3.4.1),
but it can also be implemented as a subsystem that per-
forms the translation at runtime as in example 3.3.1. Fur-
thermore, the language can be implemented as a built-
in interpreter as in example 3.3.1 aiding the easy modi-
fication of a system’s parameters at runtime. The Unix
termcap database and the application described in section
3.3.2 are examples of implementations as data stream fil-
ters.

Building interpreters and compilers for one-time use
makes it a routine skill that becomes easy to apply again
and again in different ways. It also helps in developing
the analytical ability for dividing and conquering prob-
lems, and for orchestrating available tools, as illustrated
in [SK97] and sections 3.1.2 and 3.1.3.

3 Representative Examples

In this section we outline a number of representative sys-
tems where we utilized the described methods. The ex-
amples are divided in the areas of:

� user interface specification,

� software development process support,

� text processing,

� multiparadigm programming, and

� language implementation.



3.1 User Interface Specification

The implementation of user interfaces can benefit from
the use of lightweight languages for the following rea-
sons:

� User interfaces being close to the surface of the
program receive the largest amount of modification
pressure. The specification of the interface in a spe-
cialized language makes such changes easier.

� Modern user interface design guidelines require the
realization of modeless environments. However,
structured programming is best suited for imple-
menting modal environments. This clash can be
liftedby using a lightweight language as a bridge be-
tween the two design philosophies.

� User interfaces gather input from an ordered set of
command generators such as menus, toolbars, and
dialog boxes, and scatter it to various processing
modules. This gather/scatter operation can be eas-
ily described using a lightweight language.

In the following sections we provide some representa-
tive examples of user interface implementations that ben-
efited from the use of lightweight languages.

3.1.1 CAD User Interface

When implementing a large CAD program [Spi93b] we
faced the difficulty of organizing and maintaining all
user-interface elements of the system in an productive
and coherent way. The system currently comprises:

� 30 distinct drawable entities (such as line, or text),

� 40 selectable visible layers,

� 655 user prompts,

� 457 entity properties (such as the color or width of a
line),

� 103 GUI string resources,

� 130 global commands,

� 98 types of tabular data, and

� 428 entity commands.

All the above are associated with help text and there-
fore need to be specified in more than one language. The
system implementation, maintenance, and evolution was
greatly simplified by specifying the above elements and
their associations using lightweight languages. Some of
the languages were very simple (the specification of the
user prompts involves only the definition of the prompt

Task Source Compiler Output
(lines) (lines) (lines)

GUI Strings 468 67 771
User Messages 2490 65 4345
Layer Control 91 244 711
Table Contents 266 618 1901
Toolbars 373 187 1568
Menus 42 81 401
Serialization 1174 297 6191
Commands 1214 248 7367
Properties 1093 839 14632
Total 7211 2646 37887

Table 1: CAD user interface specification: source, com-
piler, and generated code

code and the text for each language) while others were
moderately complex. In all cases however the gap be-
tween the special purpose language and the resulting C
code was larger than what could be effectively bridged by
the use of data driven code, C macros, and encapsulation.
Table 1 contains a summary of the system parts that were
specified using a lightweight language, the source code
lines in that language, the compiler size (in lines of Perl
[WS90] code), and the resultant C++ code. The compila-
tion from the specialized language source code to C++ re-
sulted in code increases ranging from 44% to 657% with
the mean increase being 284%. Of the total project size
of about 135,000 lines, more than 37,000 were automat-
ically generated. A representative example of the imple-
mentation style is outlined below.

One of the specifications for the system called for a
property dialog box similar to the one found in the Del-
phi, MS-Access, and Visual Basic programming environ-
ments. The system supports 457 properties divided into
30 groups. Every property was given a property type such
as number, angle, color, menu selection, yes/no, dialog
box, and file name. We then formulated the properties in
the language as illustrated in the example in Figure 1. A
compiler translates the property definitions into three C
code files. One of the files contains the variable and pro-
cedure definitions, the other, the procedures for initializ-
ing the supporting data structures, and the third one con-
tains code for displaying the properties.

The compiler consists of 839 lines of Perl code and
produces 14632 lines of C code. Before the compilation,
the source code is passed through the C language pre-
processor allowing the use of macro instructions at a min-
imal cost.

The description file is compiled into C in a single pass
by writing the declarations and the code definitions into
two distinct files; the definition file includes the declara-



// Standardized selections
#define ANGLE 0;45;90;135;180;225;270;315
#define TSIZE 6;8;10;12;14;16;20;24

// Text object property selection
#ifdef TEXT
//Type Caption Variable Range Fmt Sel
menu :Text :prop_text
double:Size :cb->size :0 :100:%.3f:TSIZE
angle :Angle :cb->theta :0 :90 : :ANGLE
bool :Enhance:cb->enhance: :
color :Color :cb->color : :
separator
selres:Font :cb->font :3 :font_dir
sel :Allign :cb->allign :Left;Right;Center
dialog:More...:CTextDialog:textdlg
#endif

Figure 1: Specification of a property dialog box

tion file using the C #include mechanism. In implement-
ing the above example we made extensive use of Perl’s
variable substitution facility for creating customized and
efficient C code.

3.1.2 Voice Shell

In a transportation management application, a voice shell
(vsh) was developed to interface incoming telephone
calls to an online database, prompted by the highly repet-
itive nature of code in a previously existing applica-
tion. Vsh incorporated a termcap-like stack, arithmetic,
voice prompts, keystroke data entry, shell escapes, and
submenu invocation control, compactly representing the
logic of a complete voice response system comprising
about 75 speech files and 50 database access scripts
within a 24x80 ASCII screen with ample space for com-
ments. Not only was development time reduced for sim-
ilar applications, but, in addition, the database accesses
were simplified to short lightweight scripts. To com-
pare, prior versions of the application would each contain
10000 or more lines of C with deeply nested ”if”s, and
would be generally inflexible and difficult to debug.

3.1.3 Web-based System

Reduction to lightweight languages and scripts is again
a key aspect of the Papyrus online conference paper re-
view system [Gur96]. The system comprises mostly
ksh scripts; entire subsystems can be easily customized,
thrown away or replaced. The flexibility was critical in
the evolution of the package with the live requirements of
an actual conference (PACT’96). The system has been or
is in the process of being adopted for at least two other in-

ternational conferences this year. Language components
include review questionnaires parsed and evaluated us-
ing awk and author response form letters generated using
nroff to format the email text.

3.2 Software Development Process Sup-
port

The software development process is a less mature field
than programming in the small. The requirements,
organization techniques, procedures, and development
tools vary widely between organizations and projects.
Lightweight languages can provide support for the above
by automating repetitive work, organizing complicated
tasks such as configuration control, and forcing ill-
defined processes onto a formal specification vehicle.
The following paragraphs outline two representative ex-
amples in the area of software development process sup-
port.

3.2.1 File Disk Layout

In a large application that we developed we had to specify
the ordering of 530 files in the installationdisks as well as
the associated parameters. Some of the files were needed
only during the setup stage and should be placed in the
first disk, some of them should, additionally, not be com-
pressed. Other files had to be installed into specific sys-
tem directories while others had to be installed only as an
installation option. This layout is typically specified by
a GUI tool provided as part of the Microsoft Windows
software development kit. The tool then distributes the
files to disks and creates the installation driver program.
In our case, the GUI tool could not handle the number
of files needed by our application, and, in addition, had
only limited grouping capabilities. We thus implemented
a little language based on regular expressions that defines
file sets and their installation specifications together with
some global settings. Part of this specification can be
seen in Figure 2.

The specification file is then translated into a file com-
patible with the one created by a GUI tool. In our case,
the regular expression-based specification file is 66 lines
long and creates a 560 line specification. The short length
of our specification makes it comprehensible, readable,
and ammendable to processing by other tools.

A 55 line Perl program handles the translation, identi-
fies simple mistakes, and prints warnings for the files that
fall into the default, the most general specification case,
so that the user can verify that the files are given valid in-
stallation specifications.



# Anchor =
/distrib/
# The following are copied verbatim
=SRC = \distrib
=WRITEABLE = 1
=DISKLABEL = Application Disk 1
# Installation files (do not compress)
>DISK1,!COMPRESS,!VERSION,!READONLY,

!DECOMPRESS,SECTION=Setup,.
+setup.exe
+setup.lst
# Library files
>ANYDISK,COMPRESS,!VERSION,!READONLY,

DECOMPRESS,SECTION=LibFiles,.
+lib/*
# All other files (application files)
>ANYDISK,COMPRESS,!VERSION,!READONLY,

DECOMPRESS,SECTION=AppFiles,.
+*.exe
+helplib.dll
+*

Figure 2: Installation file layout specification

3.2.2 Generation of Makefiles

A very simple rule-based interpreter called archmake
provided such effective documentation and control of the
build process for a 1986 project involving a few hun-
dred source files, that it was quickly adopted as the self-
documenting in-house build tool for several other multi-
programmer projects before CASE tools became avail-
able. Unlike make [Fel79] and imake, the interpreter had
no built-in expertise, but provided a concise and easy-to-
read representation of the target object name, the com-
ponent source list, the dependency generation command
script, and the unit compilation script, in the following
form:

%S description of step
# list component files to work on
%L a.c b.c c.c ...
%D mkdepend.sh %s
...
%M $(CC) -c $@ $*.c
...

3.3 Text Processing

As processor speeds increase, text is increasingly used as
a common communication format between different sub-
system parts in a quest for portabilityand maintainability.
However, most compiled programming languages lack
functionality for dealing efficiently and intuitively with
text strings. The design of a small lightweight language
to be embedded in a system can be used to ameliorate

this deficiency by providing an efficient implementation
of the facilities needed for using the specific textual inter-
face. Two representative examples are described in the
following paragraphs.

3.3.1 Video Typesetting

A statistical data relational database program we devel-
oped had to interface to a specialized video typesetting
device. The device was controlled using Postscript
[Inc85]. Structuring all the resulting code around
Postscript was not feasible as Postscript is a rela-
tively low-level language. Embedding large blocks of
Postscript into the program was inelegant. We therefore
defined a Postscript variant as a lightweight language
that allowed for the embedding of meta-variable names.
These names (all starting with the $ sign) were sub-
stituted at the runtime interpretation phase with the
SQL query results. In order to allow for the definition
of tabular data with variables of the same name the
semantics of the language mimic linear logic in allowing
each variable substitution to happen exactly once. An
external loop within the code thus calls the interpreter
multiple times for the same code body, each time setting
the variable names to the values of the particular table
row. After the implementation, all Postscript code
that was embedded within the rest of the program was
easily moved into external files. When a particular page
needs to be displayed the file is loaded, interpreted, and
downloaded into the Postscript typesetter. Most of the
Postscript code of the deployed release was generated
by experienced artists using specialized graphic design
tools.

3.3.2 Rendering Indian languages

The Prototext language [Gur88] was designed to provide
runtime filters for working with Indian language scripts
using unmodified text editors and word processors. In-
dian scripts comprise a near-isomorphic family of pho-
netic scripts with strict rules for the graphic composi-
tion of syllabic glyphs from vowel and consonant com-
ponents, and are precursors to the simpler syllabic alpha-
bets of the Far East. The interpreter allowed the repet-
itive bitmap operations and the script-specific composi-
tion rules to be efficiently and compactly implemented in-
dependently of text processing code. It also facilitated the
development of the fonts and composition rules on ASCII

terminals before graphic editing facilities became avail-
able, and provided slightly higher performance than the
not-so-optimized C code performing the same function.



3.4 Multiparadigm Programming and
Language Implementation

Either in response to a genuine need, or through the
occupation of individuals with domain specific knowl-
edge, the area of programming language implementa-
tion has traditionally been a hotbed for lightweight lan-
guages. The increasing use of multiparadigm and mixed-
language programming, and the possible adoption of
lightweight language tools that we advocate, increase the
requirements for an efficient process of language imple-
mentation. We believe that the proliferation of languages
used for implementing languages stems from the need
to specify formal transformation rules for a wide vari-
ety of domains that occur in a language realization. The
use of a special purpose (for mature tasks such as pars-
ing) or a lightweight language can aid the specification
— and a subsequent implementation — of tokens, gram-
mars, type systems, tree transformations, optimizations,
and machine code generators. Below we outline three
representative examples from our own work.

3.4.1 Rule-based Programming

We designed and implemented term as a lightweight lan-
guage for the realization of the blueprint multiparadigm
environment [SDE94]. For that environment we needed
to implement a functional and a logic programming lan-
guage. Such languages are easily implemented using
declarative rules as meta-interpreters in their own lan-
guage [SS86, p. 150] [FH88, pp. 193–195]. This prac-
tice is unfortunately associated with serious bootstrap-
ping and performance issues. Based on the intuition that
with only a moderate increase in code size the above lan-
guages can be implemented in a language that does not
support important features of functional and logic pro-
gramming such as deep unification, input/output parame-
ters, backtracking, and higher order functions, we defined
term as a simple tuple pattern matching, rule-rewrite sys-
tem. Term is implemented in 2300 lines of term, yacc,
and lex as a compiler from term to C. It was bootstrapped
using a Prolog interpreter since the syntax of term is very
similar to that of Prolog, lacking however many of Pro-
log’s logical features. The use of term as an implemen-
tation vehicle proved to be a good choice, since we were
then able to implement the functional and the logic lan-
guages in just 1300 lines of structured term code that was
then compiled into efficient C code.

3.4.2 CNC extensions to Postscript

Faced with developing a complete APT (Automatically
Programmed Tools) language system for CNC applica-
tions [Kra86, CM89], we found it expedient to parti-
tion the problem into a simple 22-rule Yacc-based parser

front-end to translate APT to a lightweight, Postscript-
like back-end language, 4th, with minimal syntax check-
ing. The semantic validation and N-D path geometry
was developed directly in 4th, which even had a goto
to match the Fortran-ish flavor of the APT source lan-
guage. The path profiling code was later reduced to a
C-based extension to the interpreter, which remained as
the base engine. The 4th core was inspired by good mi-
croprocessor design: it had a control and status word,
provided traps, single-stepping and call tracing, and al-
lowed object-oriented programming support using soft-
ware traps in 4th itself. The design achieved portability,
scalability, capability for backending to CAD tools, and
extendibility since builtin operator table could be easily
added to. This approach allowed the reduction of our pro-
filing algorithm to three operators, implemented in 1200
lines of C and using about 1000 lines of supporting code
in 4th for full 2-1/2 D APT geometry.

An experimental Prolog extension was also built us-
ing the dictionary objects as independent “knowledge do-
mains”, unlike most implementations of Prolog, which
provide only a default namespace for the functors, and
provided 4th escapes like:

% 4th.logic init file
{
% escape to perform inits in true 4th
(/usr/lib/4th.init) ldsrc
% push to logic domain stack
/lathe_rules load beginlogic
}
% Note-- :n means n-th from top of stack.
=(X,X) :- { :0 :1 unify }.

The logic programming feature could be used, for in-
stance, to integrate tool-specific reasoning in factory au-
tomation.

3.4.3 Haskell Implementation

Haskell [HF92] is a complete general purpose purely
functional programming language. When building
a Haskell system [Spi93a] we utilized a number of
lightweight languages for implementing:

� an efficient character classification interface based
on regular expressions used for lexical analysis,

� routines for reversing, printing, and copying arbi-
trary parse trees,

� the language library functions in a high level form,
and

� a generic machine description interface.

Of the project’s total of 17,268 lines 3,610 were automati-
cally generated. Table 2 summarizes the system parts that



Task Source Compiler Output
(lines) (lines) (lines)

Character classification 44 87 332
Tree inversion 527 223 441
Tree printing 527 244 1175
Tree copy 527 206 507
Library functions 178 131 410
Machine description 604 274 745
Total 1353 1165 3610

Table 2: Haskell implementation: source, compiler, and
generated code

were specified using a lightweight language, the source
code lines in that language, the compiler size (lines of
Perl code), and the resultant C code. It is important to
note that the compilers that created the tree operation rou-
tines all used the same parse tree definition C header file
as source input. In this way any changes to the parse tree
were automatically reflected by new tree handling rou-
tines.

4 Implementation Techniques

Lightweight languages are by their nature ephemeral and
limited in scope. The effort expended in implement-
ing them should be less than the effort required to build
the system without their use. In the following sections
we will outline some implementation techniques that we
have successfully used to implement the languages we
described in a robust yet economical way.

Use existing tools

Language implementation is a mature field in theory and
technology and all relevant knowledge and tools should
be capitalized when realizing a special-purpose language.
The language implementation problems, solutions, and
tools are taught at most computer science courses and
can be put to good use when building a system in this
way. Therefore, the implementation of a specially-built,
lightweight language can be a valid, realistic, and cost-
effective proposition.

Many simple interpreters can be implemented using
text processing tools such as awk [AKW88] and Perl
[WS90]. This implementation avenue can be particularly
effective if the language has been designed by follow-
ing the guidelines outlined in the following four para-
graphs. Interpreters and compilers for more complicated
languages can always be modeled using the lex/yacc
[JL87] model; often performing the translation or code

generation during parsing without a need to create an in-
termediate syntax tree.

Combine language processors

Many of the lightweight languages that we have imple-
mented are simply preprocessors that emit another high
level language. This implementation strategy is used by
yacc, lex, and the cfront C++ implementation. In addi-
tion, the semantic richness of the lightweight language
can be increased by judicious combination of a num-
ber of language processors. In many cases we pass our
lightweight language source code through the C prepro-
cessor thus adding to the language file inclusion, macro
definitions, and conditional compilation facilities.

Use the features of the target language

The compilation of lightweight languages can be made
easier by translating many statements or expressions di-
rectly into statements or expressions of the target lan-
guage. The compiler input language can allow for parts
that are not processed by the compiler, but are passed –
perhaps after some minor variable name substitutions –
directly to the compiled code. Languages that are com-
piled into C can use the #line preprocessor instruction
to make the C compiler errors refer to the source language
and not the target language. Furthermore, one pass com-
pilationof the lightweight language can often be achieved
by directing the compiled code into two files (e.g. decla-
rations and definitions), one of which includes the other.

Use the features of the implementation tool

One other way to increase the capabilities of the
lightweight language with little implementation cost is
to utilize the power of the implementation tool. As an
example, some tools have meta-linguistic capabilities
allowing the interpretation of their own language. In this
case the lightweight language source code can include
expressions or statements written in the implementation
language of the interpreter. In one of the languages
we implemented we allowed the inclusion of full Perl
expressions since these can be easily evaluated using
Perl’s eval function.

Imitate implementation tool features

Simple but robust interfaces can be easily built even with
ksh [Kor94]. We have used simple ksh loops for every-
thing ranging from compilation scaffolds and simple Web
servers to entire online services (sections 3.1.2 and 3.1.3).
Including simple features like shell escapes and I/O redi-
rection is not only convenient for Unix users, but also
helps in scripting and logging production runs.



Use simple syntax and provide lexical hints

To successfully use the techniques described above it is
important to design the lightweight language in such a
way as to make it compatible in syntax, semantics, and
form with the target language, the interpreter language,
or the C preprocessor.

By keeping the lightweight language small and limited
in scope it should be possible for a single person to de-
sign and implement it. By a judicious selection of syntax
and semantics the language can be implemented without
complicated processing. Many of the languages we have
designed are line and not free-form based. They can thus
be compiled one line at a time, sometimes by a simple
application of pattern matching and regular expressions.
Line comments are also easy to remove without compli-
cated loops and the semantic problems associated with
nested block comments. An even easier to compile form
of language syntax is table-based (as the example in sec-
tion3.1.1) and can thus be easily processed by field-based
tools such as awk. The processing of variables can often
be simplified be prefixing them with a special character
such as $.

Make source files self-documenting

Systems we have implemented made use of as many as
13 different languages. One cannot expect a person main-
taining the code to be familiar with all of them. For this
reason we try to make every source file self-documenting.
We try to make the language similar to well-known lan-
guages and keep its syntax and semantics simple and in-
tuitive. A comment at the beginning of each source file of
no more than a dozen lines should be all that is needed to
describe the language and its use. If this is not possible,
then something may be wrong with the language design.

Reprocess existing source code

The source code of a project, when written followingcer-
tain conventions, can be used as as an input language for
a tool that will provide additional functionality. We have
thus successfully parsed header files to create a localiza-
tion message database, tree processing functions (section
3.4.3), and, a variable load / save facility. In another ap-
plication we have embedded error messages, explanation
text, and recovery actions as comments in the source code
that was processed in a later stage to create an external er-
ror message database.

5 Problems

Project architects contemplating the use of lightweight
languages should carefully weigh the advantages out-

lined in the previous sections against a number of poten-
tial problems.

The software process covering the use of lightweight
languages is not yet mature. Issues of lightweight lan-
guage design in the areas of granularity, usability, inter-
facing, and architecture need to be examined and eval-
uated. The potential scalability limits of this approach
should also be taken into consideration. We have used
lightweight languages in projects composed of up to
200K lines of code without experiencing significant prob-
lems. Significantly larger projects may uncover prob-
lems in the areas of namespace pollution, tool portability,
performance, group coordination, and resource manage-
ment.

Furthermore, the developers and users of lightweight
languages have to support their language on their own.
Tools such as debuggers, metric analyzers, profilers, class
browsers, and context-sensitive editors will be not be
available. Users will have to do without them, handcraft
their own, or resort to the lower level facilities provided
by the underlying language. Other resources commonly
available for mainstream languages such as trained devel-
opers, courses, libraries, books, and external consultants
will also be absent. In addition, developers may need to
reinvent techniques used for formal program validation
and analysis, and re-establish metrics associated with the
development process.

6 Related Work

The problem of choosing an application’s implementa-
tion language forms part of language design research
[Wir74, Wex76, Hoa83]. In this section we examine
some representative specialized languages that justifyour
approach. The implementation of a number of special-
ized languages can be found in [AKW88] and [Ben88, pp.
83–100]. A data driven approach to structure programs
is recommended in [KP78, p. 67]: “let the data struc-
ture the program.” An example of a language with a nar-
row, specialized application domain is the one described
in [CP85]. Specialized languages and tools for compiler
construction are given in [JL87, Fra89, Spi93a]. Further-
more, specialized language dialects can be implemented
using the system described by [CHP88].

The Unix operating system follows the tradition of us-
ing a specialized language for the definition of an appli-
cation’s startup status. Some of these languages are suf-
ficiently advanced so that part of an application can of-
ten be implemented in them. As an example the send-
mail mail transfer agent only implements a simple trans-
lation engine configured by a special startup file. All
rules for routing and rewriting message headers are de-
fined in that external configuration file (the infamous
sendmail.cf file). Simpler yet useful examples of spe-



cialized languages in the Unix environment are the sys-
tem state initialization file inittab, the terminal capabil-
ity descriptions in termcap, the process schedule specifi-
cation crontab, and the Internet daemon master switch-
board inetd. The plethora of command initialization files
for tools such as the X-Window system (.xinitrc), the
ex editor (.exrc), the window manager (.twmrc), and the
mail user agent (.mailrc) prompted the development of
TCL [Ous94], an embedable, interpreted, string process-
ing language aiming to provide a single consistent tool
programming interface across all different tools. Finally,
the troff [Oss82] family of Unix-based text processing
tools, builds on small specialized languages for typeset-
ting equations (eqn [KC74]), tables (tbl [Les82]), pic-
tures (pic [Ker84]), and graphs (grap [BK86]).

Our approach builds on the ideas mentioned above by
promoting the use of specialized lightweight languages as
an integral part of the software development process.

7 Conclusions

The use of lightweight languages as software engineer-
ing tools bridges the semantic gap between the specifica-
tionand the implementation, can offer economies of scale
when implementing repetitive concepts, and can result in
code that is readable, compact, easy to maintain, and con-
cisely documents the overall structure of the application.

However, the proliferation of different languages
within a project can contribute problems related to the
poorly understood process, lack of tools, and scarcity
of related resources. All these elements need further
examination and research. We strongly believe that this
research will extend the applicabilityof our approach and
amplify the advantages brought by the use of lightweight
languages in the software development process.
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