
Lightweight Management of Resource Constrained
Sensor Devices in Internet-of-Things
Zhengguo Sheng, Member, IEEE, Hao Wang, Changchuan Yin, Member, IEEE,

Xiping Hu, Student Member, IEEE, Shusen Yang, Member, IEEE, and Victor C. M. Leung, Fellow, IEEE

Abstract—It is predicted that billions of intelligent devices and
networks, such as wireless sensor networks (WSN), will not be
isolated but connected and integrated with computer networks
in future Internet-of-Things (IoT). In order to well maintain
those sensor devices, it is often necessary to evolve devices
to function correctly by allowing device management entities
to remotely monitor and control devices without consuming
significant resources. In this paper, we propose a lightweight
RESTful web service approach to enable device management
of wireless sensor devices. Specifically, motivated by the recent
development of IPv6 based open standards for accessing wire-
less resource constrained networks, we consider to implement
6LoWPAN/RPL/CoAP protocols on sensor devices and propose a
CoAP based device management solution to allow easy access and
management of IPv6 sensor devices. By developing a prototype
cloud system, we successfully demonstrate the proposed solution
in efficient and effective management of wireless sensor devices.

Index Terms—Internet-of-Things, Device management, CoAP,
Wireless sensor networks, IPv6.

I. INTRODUCTION

The concept of IoT can be traced back to the pioneering
work done by Kevin Ashton in 1999 and it is initially linked
to the new idea of using RFID in supply chain [1]. Since
recently, this term became popular and is well known as a new
communication system where the Internet is connected to the
physical world via ubiquitous wireless sensor networks. Gener-
ally, sensing devices are with common features of constrained
energy resources, limited processing capability, vulnerable
radio conditions, real time nature of applications and no direct
human interaction, etc. By inter-connecting sensor devices
using low cost wireless communication technologies, which is
usually named as wireless sensor networks, a new ecosystem
with a large number of smart applications has been formed.

With the development of IoT technologies in the past few
years, a number of major standardization alliances are gradu-
ally formed based on their interests in technology selections
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and commercial markets. Technically speaking, current IoT
solutions can be categorized as non-IP based and IP based
solutions. Most of off-the-shelf solutions belong to the former,
especially for some well-known standard alliances, such as
ZigBee [2] and WAVE2M [3] for office and manufacturing
automation, and WirelessHart [4] and PROFIBUS [5] for real-
time industrial control systems, etc. However, most of these
non-IP solutions are isolated within their own verticals, which
hinders the IoT development due to the incompatible nature
across heterogeneous communication systems.

Motivated by the fact that the TCP/IP protocol is the
de-facto standard for computer communications in today’s
networked world, IP based solution could be the future for IoT
networks. etc. IP Smart Object Alliance (IPSO) [6] actively
promotes IPv6 embedded devices for Machine-to-Machine
(M2M) applications. PROFINET, a promising real-time Eth-
ernet standard, also adapts Ethernet to the next generation of
industrial automation [7]. In order to tackle the technical chal-
lenges, such as extensive protocol overheads against memory
and computational limitations of sensor devices, IETF1 takes
the lead to standardize communication protocols for resource
constrained devices and develop a number of Internet proto-
cols, including IPv6 over Low power wireless personal area
networks (6LoWPAN) [8], Routing Protocol for Low Power
and Lossy Network (RPL) [9] and Constrained Application
Protocol (CoAP) [10], etc.

Although a wide range of intelligent and tiny sensing
devices have been massively deployed in a variety of applica-
tion environments, many open challenges remain, which are
mostly due to the complex deployment characteristics of such
systems and the stringent requirements imposed by various
services wishing to make use of such complex systems [11].
In order to well maintain a large scale of wireless sensor
networks, for example, dynamic registration of sensor devices
or monitoring sensor performance, IoT device management
(DM) authorities should be able to provide a reliable and
efficient way to remotely monitor and control sensor devices
without consuming significant resources. This also provides a
motivation to recent global IoT/M2M related standardisations.
In particular, the oneM2M Global Initiative [12], [13] has been
formed in order to develop one globally agreed specifications
for common service layer, which can be the basis of horizontal

1The Internet Engineering Task Force (IETF) is a large open international
community of network designers, operators, vendors and researchers con-
cerned with the developments and promotions of Internet standards of the
Internet protocol suite (TCP/IP).
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management platform. The IoT-A project [14], which is an
European research project addressing the Reference model
of IoT, is to develop IoT architectures in an interoperable
manner. The project has derived entities and resources, which
are subject for management functions, and provides various
functions to orchestrate and manage collaboration of IoT
devices.

Device management is an integration of network, system
and application managements. In essence, it includes provi-
sioning and management, configuration of network parameters,
firmware upgrades and performance monitoring, etc. As a re-
sult, a number of device management standards are emerging,
such as TR-069 [15] for automatic configuration of set-top
box, ISO/IEC 14543-3 [16] for home and building automation
(HBA), and Field Device Integration (FDI) [17] for the unified
management for all field devices, etc. However, none of these
standards can be directly used on IoT devices, especially on
a processing and battery restricted sensor device.

We are looking at open technologies to tackle device man-
agement of WSN and the IPv6 based solution is a promising
one. Motivated by the fact that the CoAP is an application
layer protocol which is intended for use in resource con-
strained Internet devices and the simple network manage-
ment protocol (SNMP), we propose a framework of CoAP
based device management solution for WSN and develop
device management oriented functions, resource identities and
protocol, etc. Specifically, we take an approach to extend
the Representation State Transfer (REST) paradigm [18], in
which a lightweight web server can be embedded in resource
constrained sensor devices, and map DM functions into CoAP
methods. In essence, the proposed method not only integrates
IoT into the network, but also manages them via the “web”.

The following summarizes our contributions and key results:

• We implement the IPv6 protocol stack on sensor testbed
and integrate the border router of WSN into an open-
platform gateway as well as implement the HTTP-CoAP
proxy implementation to the OpenWrt to realize remote
access from an ordinary IP terminal to IPv6 sensor
devices.

• We propose a framework of efficient device management
solution for WSN based on IETF open standard CoAP
and develop device management oriented functions, nam-
ing and addressing for resource identities as well as
mappings of CoAP methods to management functions.
The performance evaluation shows that the proposed
solution can significantly reduce both packet length and
loss rate by 74% and 18.75%, respectively.

The remainder of this paper is organized as follows. Related
works is provided in Section II. The RESTful protocol stack
is introduced in Section III. The proposed DM solution is
discussed in Section IV. The prototype system is presented
in Section V and performance evaluation results are shown in
Section VI. Finally, concluding remarks and future work are
given in Section VII.

II. RELATED WORK

Recent technology trends in the Web Services (WS) are
primarily separated as Big Web Services (or WS-*) and
RESTful Web Services. In the latest work of web services in
WSN, Kyusakov et al. in [19] take an approach to deploy inter-
operable Simple Object Access Protocol (SOAP)2-based web
services directly on nodes. Moreover, the web service methods
are also widely applied in Automation industry. Cucinotta et
al. in [20] propose a service-oriented architecture (SOA) with
enhanced real-time capabilities by allowing for negotiation of
the QoS requested by clients from web services for industrial
automation. However, the above literatures prefer the WS-*
architecture which may bring extensive overheads for resource
constrained devices. Pautasso et al. in [21] compare these two
architecture choices and argue that the RESTful WS can create
a loosely coupled system which is better suited for simple and
flexible integration scenarios, whereas WS-* can provide more
advanced quality-of-service for enterprise level usages.

More recent works are dedicated for developing REST-style
IoT systems to enable easy access from application servers to
wireless sensor devices [22]–[25]. REST, a lightweight web
service implementation, is a general design style of Internet
resource access protocol. It provides a design concept that all
the objects in the Internet are abstracted as resources. REST
style can make applications as sharable, reusable and loose
coupling services. Although its simplicity, most of existing
solutions are not IP based, which means that a multipro-
tocol translation gateway is needed. As discussed in [26],
the network protocol translation can bring more complexity
than just a packet format conversion, which usually involves
semantics translation between different mechanisms and logic
for routing, quality-of-service and security [27], etc.

There are recent papers focusing on the implementation of
IPv6 protocol stack on various system platforms. Shelby in
[28] gives an overview of the web architecture and introduces
the new IETF Constrained RESTful Environments (CoRE)
standardization activity. Potsch et al. in [29] demonstrate
an intelligent container testbed where the CoAP protocol is
implemented on the embedded operating system TinyOS3.
Moreover, a couple of other implementations of CoAP are also
available on the Contiki4 platform [30]–[32]. There are also
papers on the protocol mappings from proprietary solutions or
SOAP to CoAP, e.g. [33], [34]. However, most of these papers
are either considering protocol translation to CoAP or for
the purpose of connectivity evaluations on different operation
platforms by assuming a virtual gateway.

Although considerable research has been done on different
aspects of sensor networks, the management issue for sensor
devices is still little explored. Frye et al. in [35] propose to

2SOAP is a protocol specification for exchanging structured information in
the implementation of Web Services in computer networks.

3TinyOS is an open source software component-based operating system
and platform targeting WSN.

4Contiki is an open source operating system for the Internet-of-Things.
Contiki allows tiny, battery-operated low-power systems communicate with
the Internet.
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Fig. 1. An overview of IPv6 protocol stack ranging from Physical layer up
to Application layer

incorporate ontology into management of Ad Hoc networks
based on existing network management protocol, such as
SNMP. Yang et al. in [36] propose a basic concept of device
management scheme based on IEEE 1451 standard. Different
to the previous methods, Hergenroeder et al. in [37] propose a
hard way method by developing an extra hardware to support
energy management. However, those solutions are all imple-
mented using independent management protocols or hardware
which are lack of reuse with parallel communication protocols,
e.g., CoAP, and may bring extract complexity. Although there
are recent works considering to introduce management into
CoAP server, i.e., [38] proposes dedicated application protocol
on top of CoAP to map all application functions in building
automation, [39] utilizes Synchronization Markup Language
(SyncML) protocol onto CoAP for DM, and [40] proposes
the latest integration of CoAP with SNMP, they all either
build management capabilities on top of CoAP or need to
support multiple protocols simultaneously, which may bring
extra overhead for resource constrained devices.

Different to the above literatures, our contribution in this
paper is to develop an efficient and lightweight device man-
agement solution by extending the CoAP protocol without
consuming extra resources. To the best of our knowledge, this
is the first work that considers device management via CoAP
protocol and realizes ease of access and management of WSN.

III. THE IMPLEMENTED PROTOCOL STACK FOR WSN
In this section, we introduce the IETF protocol stack used in

resource constrained networks. Fig. 1 illustrates the protocol
stack ranging from physical layer up to application layer.

A. IEEE 802.15.4

IEEE 802.15.4 [41] is a radio technology standard for low
power and low data rate applications with a radio coverage of
only a few meters. It has typically a maximum data rate of 250
kbps and a maximum output power of 1 mW. The maximum
packet size is 127 bytes. Besides, in order to achieve energy
savings, radio power management (e.g., duty cycling) is an
essential part in MAC layer mechanisms. The radio transceiver
must be managed so that it can be switched off when there is
no traffic but switched on when communication is engaged.

B. 6LoWPAN

The main focus of 6LoWPAN is on protocol optimization of
IPv6 over networks using IEEE 802.15.4. In fact, there are two

reasons to apply 6LoWPAN over IEEE 802.15.4. On the one
hand, consider the maximum frame size supported by IEEE
802.15.4 is only 127 bytes and significant header space may be
taken by other layered protocols (e.g., MAC layer header, IPv6
header, security header and transport layer), the payload size
available for the application layer is very limited. On the other
hand, since the minimum value of maximum transmission unit
(MTU) specified by IPv6 is 1280 bytes which is larger than
the supported size of IEEE 802.15.4, an adaptation layer right
above the data link layer to segment the IPv6 packet into small
pieces is required by the lower layer.

C. RPL

RPL is a distance-vector routing protocol, in which nodes
construct a destination oriented Acyclic Graph (DODAG)
by exchanging distance vectors and root information with
a “controller”. Through broadcasting routing constraints, the
root node (i.e., central control point) filters out nodes that
do not meet the constraints and selects the optimum path
according to the metrics. In a stable state, each sensor node
will have a set of “parents” and will forward packets along its
parents to the “root”.

D. CoAP

CoAP is a specialized web transfer protocol for resource
constrained nodes and networks. CoAP conforms to the REST
style. It abstracts all objects in the network as resources. Each
resource corresponds to a unique Universal Resource Identifier
(URI) from which the resources can be operated stateless,
including GET, PUT, POST, DELETE and so on. The URI
is described as a Link in the CoRE link format [42]. The
CoRE link format is carried as a payload and is assigned an
Internet media type.

Unlike HTTP, CoAP adopts datagram-oriented transport
protocols, such as User Datagram Protocol (UDP). In order
to ensure reliable transmission, CoAP introduces a two-layer
structure as shown in Fig. 1: the messaging layer is used to
deal with asynchronous interactions with UDP, such as Con-
firmable (CON), Non-confirmable (NON), Acknowledgment
(ACK) and Reset (RST) messages. Whereas the Request/Re-
sponse interaction layer is used to transmit resource operation
requests and the request/response data.

IV. COAP-BASED DEVICE MANAGEMENT FOR WSN

In this section, we propose a framework of efficient device
management solution for WSN based on IETF open standard
CoAP and develop device management oriented functions,
resource identities and protocol, etc.

A. Management functions

The system architecture in Fig. 2 shows the interaction
relations between a IoT client (e.g., via cloud platform) and a
sensor device, especially the device components interfaces to
IoT client. Due to the requirements imposed to IoT services,
such as no direct human interaction, reliable remote manage-
ment/control and scalable features of applications, we propose
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Fig. 2. A system architecture of IoT device management, including
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five major device management functions which are applicable
to WSN:

1) Registration: It is a primary function to allow a sensor
device to register/de-register with a remote management
server, maintain and update registration information.

2) Provisioning: It is to initialize and synchronize essential
information of a sensor device with a remote manage-
ment server.

3) Management services: Once the sensor device is well
connected with a remote server, a number of essential
management services should take in charge to maintain
IoT services, such as parameter configuration, connec-
tion diagnose, status inquiry and remote control, etc.

4) Observing: It is the unique feature of CoAP to allow
sensor devices to “observe” resources, i.e., to retrieve a
representation of a resource and keep this representation
updated by the remote server over a period of time.

5) Application data transmission: It includes any appli-
cation data that can be collected and delivered to IoT
clients, or any other application protocols above CoAP.

Although the management functions can be defined in dif-
ferent manners, they all share common resources on one sensor
device and we abstract these resources as parameters (e.g.,
hardware and software information), status (e.g., dynamic
information for connection and faulty diagnose) and data (e.g.,
information collected from environment), which are defined as
abstract layer in Fig. 2. The interactions with IoT client can be
directly triggered with these resources via GET, PUT, POST
and DELETE methods provided by CoAP.

B. Naming and addressing of resource identities
We define a simple resource model in which resources

are logically organized into class. A class defines a group

of resources, for example the Hardware class contains all
the resources that can be used for provisioning purposes. A
resource is identified by the path:

∼ /{Class ID}.{Resource ID}.{Sub-Resource ID}.{Method ID}

where the Class ID, Resource ID and Sub-Resource ID are
with size of 1 byte. The Method ID5 is to represent access
methods available to a resource. The method ID is 4 bits
and each bit from the Most significant bit (MSB) represents
an authorized operation in a sequence of GET, PUT, POST
and DELETE. The value “1” means authorized and “0”
means non-authorized. Table I shows the detailed naming and
addressing assignment for resources on our sensor testbed.
Each class is assigned a unique identity. If a resource does
not support multiple sub-resources, the sub-resource ID is set
as 0. For example, for retrieving the operating system version
of the testbed, the resource identity should follow CoRE link
format [42]. Through the resource discovery process GET
< /.well-known/core >, the IoT device should response
with resources information, e.g., <∼ /2.1.0.1000 >. It is
noted that the proposed resource model can widely support
any resources in practical implementation.

TABLE I
NAMING AND ADDRESSING ASSIGNMENT

Class Resource Sub-Resource Method
Name ID Name ID Name ID Name ID
Hardware information (Hex→bit)
HW 1 CHIP ID 1 Null 0 Get 8→1000
HW 1 SRAM 2 Null 0 Get 8→1000
HW 1 FLASH 3 Null 0 Get 8→1000
HW 1 MAC addr 4 Null 0 Get 8→1000
HW 1 RADIO 5 Frequency 1 Get 8→1000
HW 1 RADIO 5 Channel 2 Get 8→1000
HW 1 USART0 6 Baudrate 0 Get 8→1000
Operating system information
SYS 2 CONTIKI v 1 Null 0 Get 8→1000
SYS 2 NAME 2 Null 0 Get/Put c→1100
Network protocol information
NET 3 PANID 1 Null 0 Get 8→1000
NET 3 RDC 2 Null 0 Get 8→1000
NET 3 MAC 3 Null 0 Get 8→1000
NET 3 NETWORK 4 Null 0 Get 8→1000
NET 3 IPv6 5 Prefix 1 Get 8→1000
NET 3 CoAP v 6 Null 0 Get 8→1000
Onboard resources information
RES 4 ACTUATOR 1 leds 1 Get/Put

/Post
e→1110

RES 4 SCREEN 2 Null 0 Get/Put
/Post

e→1110

RES 4 SENSOR 3 Humidity 1 Get 8→1000
RES 4 SENSOR 3 Illumination 2 Get 8→1000
RES 4 SENSOR 3 Temperature 3 Get 8→1000

C. CoAP-based management protocol

The proposed device management protocol is fully based
on IETF defined CoAP protocol with newly defined resource

5The CoAP server may assign different method IDs to a same resource as
long as clients’ access levels are different. For example, administrator may
have the full access rights of the whole IoT system, whereas some clients
may only have ”read” access to sensor devices.



5

identities to identify management resources and mappings of
CoAP methods to management functions.

The CoAP is based on the exchange of short messages
which, by default, are transported over UDP (i.e. each CoAP
message occupies the data section of one UDP datagram). The
protocol has a registered scheme of < coap : // ∼> with
a default port of 5683. Reliability over the UDP transport is
provided by the built-in retransmission mechanism of CoAP,
e.g., confirmable message defined by the Type field in the
header. It could also be used over other transport protocols
such as TCP or SMS. CoAP messages are encoded in a simple
binary format. The message format starts with a fixed-size 4-
Byte header. This is followed by a variable-length Token value
which can be between 0 and 8 bytes long. Following the Token
value, it comes a sequence of zero or more CoAP Options in
Type-Length-Value (TLV) format, optionally followed by a
payload which takes up the rest of the datagram.

Table II shows the detailed CoAP methods mapping to
device management functions. We should note that each
management function can be abstracted as a recall process to
conduct with resources on sensor device, thus the RESTful
approach provided by CoAP protocol can be adopted as
a lightweight method to access from application servers to
wireless sensor devices. Especially, the Uri-Path Option is to
indicate management resource identities and the Location-Path
Option is to indicate the address of remote registration server
for future update and delete operations.

TABLE II
COAP METHODS MAPPING TO DEVICE MANAGEMENT FUNCTIONS

Function Direction Logical op-
eration

CoAP
method

Uri-
Path
Opt.

Location
-Path
Opt.

Registration
Uplink Register POST

√ √

Uplink De-register DELETE
√ √

Uplink Update PUT
√ √

Provisioning Down/
uplink Configuration GET

√

Management
services

Down/
uplink

Read GET
√

Write PUT
√

Execute POST
√

Creat POST
√

Observing Downlink Observe GET with
observe
opt.

√

Uplink Notify Response
to observe

√ √

App. data
transmis-
sion

Downlink Collect GET
√

V. PROTOTYPING SYSTEM

In this section, we present our prototyping system to imple-
ment the RESTful DM methods to IPv6 WSN. The network
topology is shown in Fig. 3, where a laptop acts as a client to
retrieve sensor resources via the RESTful gateway.

A. Sensor nodes

We deploy wireless sensor devices to monitor indoor envi-
ronment. The sensor platform is equipped with CC2530 MCU

Remote Access Wireless Connection

Fig. 3. Network topology of the prototype system: a laptop acts as a client
to retrieve sensor resources via the RESTful gateway.
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with 8051 CPU core running at 32MHz, 8KB SRAM and
256KB flash block to support IEEE 802.15.4-compliant radio
transceiver. To support IPv6 connectivity, all sensor devices are
running Contiki v2.6 operating system with implementation of
6LoWPAN, IPv6 and RPL protocols based on IEEE 802.15.4.
The web service running on the sensor devices relies on the
application protocol CoAP.

B. RESTfull Gateway

In order to ease the access from Internet applications to
sensor resources, especially for those of Internet users who
cannot speak CoAP, we integrate IEEE 802.15.4 connectivity
into an open-platform gateway and port the HTTP-CoAP (HC)
proxy to the OpenWrt, the operation system of the gateway, to
access from an ordinary IP terminal to an IPv6 sensor device.

In our prototype gateway, the HC proxy is imple-
mented based on libcoap [43] which is an open-source C-
Implementation of CoAP and conforms to GPL v2 or higher
licenses. The interaction process of the HC proxy is shown in
Fig. 4. Specifically, for each of the HC proxy layers, we have
the following implementations:

1) libcoap layer: It defines message structure and methods
to implement the CoAP messages layer based on UDP.

2) CoAP Request/Response layer: CoAP Request/Response
layer encapsulates the data structure and methods relevant to
CoAP Requests and Responses. It is to transmit CoAP request
in the form of CoAP message through the messages layer and
generate CoAP response based on received CoAP messages.

3) HTTP-CoAP mapping layer: It is to implement mapping
from HTTP request to CoAP request and vice versa. When
converting a HTTP request to a CoAP request, the HC proxy
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needs to convert the HTTP request method, URI, header/option
and payload, respectively. If a proxy encounters an error, it has
to generate corresponding error response.

VI. PERFORMANCE EVALUATION

In this section, we provide evaluation results to illustrate the
performance of the proposed CoAP based device management
solution and its application in IoT system.

A. System Configuration

Our prototype system is composed of sensor devices, one
HC proxy gateway and one laptop for initiating tests. We
deploy the prototype system in an open office area. The HC
proxy gateway and sensor devices are connected wirelessly
via IEEE 802.15.4 and using channel 26. The laptop client
is connected to the gateway through the Wi-Fi channel. The
network topology as shown in Fig. 3 is built with a maximum
2 hops, where the camera sensor and humidity&temperature
sensor are connected to the gateway with one hop distance.

B. Latency performance of CoAP protocol

In order to manage a large scale deployment of wireless
sensor networks, it is necessary to keep the protocol overhead
as small as possible. In this evaluation, we compare the round
trip time (RTT) of CoAP ping to a sensor node with that of
Internet control message protocol (ICMP)6 ping messages to
both the border router and sensor node using Linux ping6
command. The ContikiMAC is configured as no sleep mode.
The IPv6 packet size is fixed as 52 bytes. Fig. 5 shows
the RTT comparison between the three methods over 500
independent measurements. The average RTT to the border
router and sensor node using ICMP are 49.75 ms and 79.54 ms,
respectively, and the average RTT of CoAP ping to sensor
node is 80.5 ms. It is noted that the RTT to the sensor node
is much higher than that to the border router, this is because
the processing time imposed at the gateway as well as one
extra hop to transmit to the sensor node. However, the RTT
of CoAP ping is very closed to the ICMP ping to the same
sensor node, which only claims a 1.2% increases. The result
tells that the overhead imposed by CoAP protocol is negligible
and thus the CoAP based DM is a promising solution for IoT.

C. Packet length, latency and packet loss performance of the
proposed DM solution

To further evaluate the performance of the proposed CoAP
based device management solution, we compare it with the
standard CoAP method in terms of packet length, latency and
packet loss rate. Table III shows the onboard resources defined
by both standard CoAP method (human-readable string) and
the proposed method. The URI length is calculated from the
space occupied in the RAM. It is clear that the proposed
URI representation takes far less memory space than the
standard URI representation in which the main space are

6ICMP is an Internet layer protocol to control and report message error
between a host server and a gateway to the Internet. ICMP uses Internet
Protocol (IP) datagrams, but the messages are processed by the IP software
and are not directly apparent to the application user.
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Fig. 5. RTT comparison between CoAP ping to sensor node and ICMP pings
to both border router and sensor node.

consumed by “Attributes”. Through the resource discovery
GET < /.well-known/core >, we can receive a response
with a list of available resources as shown in Table III and the
total length of transmission packets for both methods are 420
bytes and 109 bytes, respectively. Since the CoAP response
will be transmitted in a block-wise fashion, the standard
method takes 6 blocks, whereas the proposed method only
takes 2 blocks. The memory saving of 311 bytes is composed
of URI savings and 4 extra CoAP block headers. The total
transmitting packets can be reduced by 74%.

TABLE III
URI LENGTH COMPARISON BETWEEN STANDARD COAP METHOD AND

THE PROPOSED DM METHOD

Resource Standard URI Bytes Proposed URI Bytes
CoAP version CoAP v 45 3.6.0.8 8
LEDs actuators/leds 76 4.1.1.e 8
Illumination sensor/illumination 51 4.3.2.8 8
Temperature sensor/temperature 45 4.3.3.8 8
Humidity sensor/humidity 42 4.3.1.8 8
Screen Screen 57 4.2.0.e 8

To further evaluate the latency and packet loss performance
of the proposed DM solution, we setup a test to send GET
request (i.e., < /.well-known/core >) to retrieve onboard
resources. Fig. 6 shows the histogram of the request/response
delay and retransmission delay over 50 independent measure-
ments. As can be seen from Fig. 6 (a)7, the proposed method
shows a tendency of smaller delay with very high probability
that the request/response delay is below 1 s. However, the
performance of the standard method is varied from 1 s to 10 s,
because of the unreliable radio environment and a larger num-
ber of transmitting packets. Fig. 6 (b) shows the retransmission
delay caused by packet loss, the proposed method shows
smaller delay with a higher probability that the retransmission
can be ensured as 0. A careful reader may notice that there
are only even numbers of retransmission delay on x-axis,
since once a blockwise packet or a CON message is missing,
the CoAP server will postpone a retransmission (delay) in

7To best plot the histogram using MATLAB, we set the x-axis bin internal
as 0.4 s, which means that a delay will be counted on the same bar if its value
is within the same interval.
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2n s, where n is the number of retransmission. As a result,
the average request/response delay and retransmission delay
for the standard method are 3.04 s and 1.44 s, respectively,
whereas the results for the proposed method are only 0.8 s
and 0.36 s, respectively.

At the end, we evaluate the packet loss rate over the 50
measurements and have the following results

pSTD = 38/(38 + 50× 6) = 11.2% . (1)

where 38 is the total number of retransmission and 50× 6 is
the total blocks of transmission. The result for the proposed
solution is

pProposed = 10/(10 + 50× 2) = 9.1% . (2)

where 10 is the total number of retransmission and 50× 2 is
the total blocks of transmission. Therefore, compared to (2)
with (1), an improvement of 18.75% can be achieved by using
the proposed solution.

In order to evaluate the performance of a large scale
network, we set up another test to evaluate the packet loss
rate in a multi-hop environment. The test is carried out in
an open office area with strong Wi-Fi background noise and
lowest possible WSN radio frequency output power to ensure
a multi-hop fashion, which makes a sensor device can only
communicate to each other within around 30 cm.

Since the sensor devices are with only 8KB RAM and
256KB flash, a maximum number of 6 hops can be ob-
tained by optimizing the communication system. To re-
trieve the same onboard resources via GET request (i.e.,
< /.well-known/core >) over the same number of
measurements, Table IV shows the packet loss rate in a
multi-hop scenario. We can observe that the packet loss rate
increases dramatically with an increasing number of hops,
because of severe environmental interference and channel
congestions, etc. Moreover, additional configurations to ensure
a multi-hop transmission, such as one way communication,
low output power and RPL settings, also contribute to the
high loss. However, the result does not affect the true that the
proposed solution can always achieve better performance than
the standard method.

TABLE IV
PACKET LOSS RATE IN A MULTIPLE-HOP NETWORK

Hop 2 Hop 3 Hop 4 Hop 5 Hop 6
Proposed

DM
method

Received 684 602 462 439 405
Lost 43 126 262 289 321
Packet loss

rate 5.91% 17.30% 36.18% 39.69% 44.21%

Standard
CoAP

method

Received 2020 1704 1173 1112 944
Lost 161 474 1003 1068 1234
Packet loss

rate 7.38% 21.76% 46.09% 48.9% 56.65%

D. IoT application via the cloud platform

To further validate the applicability of the proposed DM
method, we integrate it into our prototype IoT cloud system
by connecting senor devices via the cloud platform using the
proposed CoAP based management protocol. The snapshot of
the management portal is shown in Fig. 7 (a). Through the
pre-defined CoAP APIs, interactions with application data can
be easily managed and retrieved in a unified manner without
remembering all string URIs.

Consider the limited resource of sensor devices, diverse
contextual data need to be uploaded to the IoT cloud platform
for further processing. Such data collected from independent
IoT sources often have implicit but disparate assumptions of
interpretation. We use a lightweight ontology which contains
a modifier using to capture additional information that affects
the interpretations of generic concepts. More details about the
setting of the cloud platform, e.g., the BPEL engine presented
in Fig. 7, can be found from our previous work [44].

We evaluate the system performance of the IoT cloud
in terms of time efficiency by setting up a simple test
environment in which 5 sensor devices are used to upload
computing tasks to the cloud platform with a total average rate
of E = 5/min. The OpenGALEN ontology [45] is adopted
as benchmark, and the computing tasks are to index and
calculate the similarities of concepts on this ontology under
the condition of four different size assertions (1000, 1500,
2000, 36000). The average results are shown in Fig. 7 (b).
The time delay when performing the task via cloud consists
of: 1) response and communication time between the remote
IoT cloud platform and the sensor device; and 2) processing
time of the task. The results show closed performance of
response time with an average of 4.5s, while the process time
mostly depends on the size of the data set. It is worth noting
that depends on specific scenarios of IoT applications and
computing capacities of IoT devices, we could choose different
size of dataset for real-world deployments.

VII. CONCLUSION AND FUTURE WORK

We have proposed a CoAP based DM solution and devel-
oped a prototype system to implement some basic functions on
IPv6 sensor nodes. By integrating IEEE 802.15.4 connectivity
and HTTP-CoAP proxy into an open-platform gateway, the
remote access and management from an Internet device to
an IPv6 sensor device can be realized in a unified manner.
Through the performance evaluations, we have shown the
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(a) An illustration of management web portal
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• Contiki v2.6 OS

Response

Fig. 7. User-cloud-sensor interactions in the proposed IoT system and its performance

simplicity and efficiency of the proposed solution, which is
promising to drive IoT development.

In the future work, a more robust and reliable device
management system for IoT needs to be built. Especially,
the following research issues need to be considered with
higher priorities: 1) Real-time management is a challenging
issue for resource constrained sensor networks. The require-
ments of real-time communication comprises in general of
response time in the required range and a small need of
device resources, e.g., processor load and memory use [46].
The proposed CoAP based method can potentially provide a
lightweight solution to cope with stringent industrial applica-
tions. 2) Security, trust and privacy [47] are also important
issues to be considered in practical applications. In our case,
the CoAP based management principle can utilize the transport
layer bindings of UDP or SMS protocols. Thus, the security
mechanisms of these channel bindings can be utilized to
implement access control and policy enforcement for IoT sys-
tems. 3) Dynamic registration, bootstrap and management will
be particularly considered for a large scale deployment with
devices coming in and out and changing their characteristics
and functionalities.
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