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�e electrical activity produced during the heartbeat is measured and recorded by an ECG. Cardiologists can interpret the ECG
machine’s signals and determine the heart’s health condition and related causes of ECG signal abnormalities. However, car-
diologist shortage is a challenge in both developing and developed countries. Moreover, the experience of a cardiologist matters in
the accurate interpretation of the ECG signal, as the interpretation of ECG is quite tricky even for experienced doctors. �erefore,
developing computer-aided ECG interpretation is required for its wide-reaching e�ect. 12-lead ECG generates a 1D signal with 12
channels among the well-known time-series data. Classical machine learning can develop automatic detection, but deep learning
is more e�ective in the classi�cation task. 1D-CNN is being widely used for CVDS detection from ECG datasets. However,
adopting a deep learning model designed for computer vision can be problematic because of its massive parameters and the need
for many samples to train. In many detection tasks ranging from semantic segmentation of medical images to time-series data
classi�cation, multireceptive �eld CNN has improved performance. Notably, the nature of the ECG dataset made performance
improvement possible by using a multireceptive �eld CNN (MRF-CNN). Using MRF-CNN, it is possible to design a model that
considers semantic context information within ECG signals with di�erent sizes. As a result, this study has designed a multi-
receptive �eld CNN architecture for ECG classi�cation. �e proposed multireceptive �eld CNN architecture can improve the
performance of ECG signal classi�cation. We have achieved a 0.72 F1 score and 0.93 AUC for 5 superclasses, a 0.46 F1 score and
0.92 AUC for 20 subclasses, and a 0.31 F1 score and 0.92 AUC for all the diagnostic classes of the PTB-XL dataset.

1. Introduction

ECG is amedical device used tomonitor the heart’s electrical
activity and rhythm of the heart [1]. �e electrical pulses
produced by the heart organ each time the heart beats are
detected by the sensors attached to the skin, and the device
gives a voltage versus time electrical activity of the heart [2].
In 12-lead ECG, there are 12 directions from which an
electrical signal or impulse generated by the heart can be
measured [3]. �e ECG signal generated by each lead

contains waves, intervals, segments, and one complex [4], as
shown in Figure 1. �e waves indicate a speci�c electrical
event, a negative or positive de¥ection from the baseline.
ECG waves include the P wave, Q wave, R wave, S wave, T
wave, and U wave. �e period between two speci�c ECG
events is referred to as the interval. �e PR interval, QRS
interval (also known as QRS duration), QT interval, and RR
interval are routinely observed on an ECG. �e segment is
the distance between two speci�c locations on an ECG that
should be at the same amplitude as the baseline (not negative
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or positive). ,e PR, ST, and TP segments are the three
segments of an ECG.,e QRS complex is the only one on an
ECG, consisting of many grouped waves. On the other hand,
the QRS complex includes Q, R, and S waves and represents
ventricular depolarization. ,e T wave indicates ventricular
repolarization after the QRS complex.

During interpretation, doctors examine the ECG signals
printed on the ECG paper and look for the anomalies that
could appear in the signal wave, interval segment, and
complex. Cardiovascular diseases are related to those
changes that happen in the signal. However, cardiologist
shortage is a challenge in both developing and developed
countries. Moreover, the experience of a cardiologist matters
in the accurate interpretation of the ECG signal, as the
interpretation of ECG is quite tricky even for experienced
doctors. ,erefore, developing computer-aided ECG in-
terpretation is required for its wide-reaching effect. Early
computer analysis tools used deterministic algorithms to
interpret ECG data using logical decision rules devised by
expert ECG readers. ,e algorithms employed narrowly
defined cutoff points to see if they met a decision criterion.
However, this approach was not practical across individuals
with varying QT intervals [5]. Since the 1980s, computerized
ECG data classification has incorporated probability theory
and statistics. ,ese include Bayesian analysis, multivariate
statistics, and, more recently, ML approaches such as SVMs,
neural networks, and deep learning methods.

,e remarkable advancement of medical image classi-
fication using conventional machine learning and deep
learning algorithms indicates the feasibility of borrowing the
same concept for computer-aided time-series signal classi-
fication. In the classical machine learning approach, time-
domain feature extraction is performed, and the result is fed
to classifiers like KNN, SVMs, neural networks, and so forth
[6–9]. On the other hand, in deep learning, a raw time-series
signal is given as input to the deep learning model. We
generally talk about 2D-CNN for image classification when
we refer to CNN. However, there are two other types of
CNN, which are 1D-CNN and 3D-CNN. ,e exact process
used for 2D-CNN image analysis can be harnessed for 1D
data sequences, such as acceleration and gyroscopic data for
human activity recognition, bearing fault analysis from vi-
bration signals, and audio classification [10–12]. ,e model
extracts features from observations by convolving the signal

with 1D filters along one dimension and generating feature
maps.

,e advantage of using 1D-CNNs for sequence classi-
fication is that they can learn from raw time-series data
straightforwardly and do not require domain expertise to
engineer input features manually [13–15]. ,e model can
acquire knowledge about the internal representation of the
time-series data. ,eoretically, it achieves comparable per-
formance to model fit on a manually engineered dataset
feature. ,e input and output of 1D-CNN are two-di-
mensional (width of the data and its channel). For example,
the 12-lead ECG signal has 12 channels with N signal length/
width. On sequence processing problems, 1D-CNNs can be
competitive with RNNs, usually, at a lower computational
cost [16]. 1D-CNNs have recently been successfully
employed for audio generation and machine translation,
primarily with dilated kernels [17, 18]. Aside from these
specific accomplishments, small 1D-CNNs have long been
known to be a fast alternative to RNNs for simple tasks like
text classification and time-series forecasting [19]. What
makes CNN work well for time-series signals is the win-
dowed convolution that produces a receptive field. ,e
receptive field is a portion of a sensory space that can give
rise to a neuronal response when stimulated, or it is a portion
of an input signal that can enable a single neuron [20]. It can
also be defined as a region in an input that produces a feature
map when convolved with a filter. Kernels in CNN access
this region and make the feature map.,e receptive field has
a direct relationship with the size of the filter. ,e larger the
kernel size is, the larger the receptive field will be. ,us, a
small receptive field may not recognize extensive features in
the signal. On the contrary, an unnecessarily sizeable re-
ceptive field would result in more parameters that are not
useful in the feature extraction. ,at is why multiscale ap-
proaches are usually seen in object detection.

,e main task of artificial intelligence in medical data
analysis has been to develop models for typical classification
problems, where an object is related to a single class from a
set of mutually exclusive categories. ,ere is, nevertheless,
another task in which classes are not mutually exclusive but
are presented in the form of multilabel assignments. Let us
say we have label sets C� Ci , i� 1. . .|C|, in multiclass
classification (MLC); each example belongs to a single class
Ci. ,e labels are mutually exclusive, and data cannot be
related to more than one class. Multilabel classification
requires specialized machine learning algorithms to predict
multiple mutually nonexclusive labels or categories since
examples are associated with a set of labels Y⊆C [21].
Problem transformation [22–24] and algorithm adaptation
[25–27] are the broadly used techniques to deal with mul-
tilabel classification problems.

,ough deep learning is growing popular in its per-
formance, serious thought is necessary to develop a specific
architecture that is well suited to the nature of the analyzed
data to create an efficient model. Adopting deep CNN
models developed for image analysis is not straightforward.
,ey have massive parameters that lead to overfitting and
extensive computation. Besides, they do not go with the
characteristics of the ECG signal.,erefore, we designed and

Figure 1: ECG waves, segments, and intervals [4].
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implemented a lightweight, multireceptive field CNN for the
PTB-XL dataset [28] classification in this study.

2. Related Work

One of the earliest uses of classical machine learning in-
cludes ECG beat classification with the Gaussian RBF kernel
support vector machine (SVM) after extracting 20 signifi-
cant features from the MIT-BIH dataset by the Discrete
Wavelet Transform (DWT) and Principal Component
Analysis (PCA) [29]. Li et al. [30] developed ventricular
fibrillation (VF) and rapid ventricular tachycardia (VT)
detection by extracting 14 features from three annotated
public domain ECG databases (the American Heart Asso-
ciation Database, the Creighton University Ventricular
Tachyarrhythmia Database, and the MIT-BIH Malignant
Ventricular Arrhythmia Database).,en they used SVM as a
classifier.

,e authors in [31] used DWTto denoise the ECG signal
first and then Pan-Tompkins [32] for QRS detection. ,ey
performed ECG beat segmentation after the QRS detection.
Feature extraction is performed from the segmented ECG
signal using HOS with ICA and DWT with PCA. ,e
extracted features are fed to SVM and NN for classifying the
MIT-BIH AD dataset into five types of ECG beats (non-
ectopic (N), supraventricular ectopic (S), ventricular ectopic
(V), fusion (F), and unclassifiable and paced (U) beats). ,e
average accuracy of 99.57% and 99.56% is achieved with
SVM and NN, respectively, on the MIT-BIH AD dataset. Li
and Zhou [33] developed an ECG classification on the MIT-
BIH Arrhythmia Database. First, they decomposed the ECG
signals using wavelet packet decomposition (WPD) and then
calculated the entropy as representative features from the
decomposed coefficients. Random Forest is used as a clas-
sifier and achieves good test time and accuracy. ,is study
indicates that entropy and RR intervals perform better than
the ICA-RR and DWT-RR.

Celin and Vasanth [34] used low pass, high pass, and
Butterworth filters to preprocess ECG signals. After pre-
processing, R-peak detection is performed, and features such
as mean, standard deviation, root mean square, pulse transit
time, and pulse rate variability are extracted. ,ese features
are fed to the Naive Bayes classifier to classify ECG signals as
normal and abnormal.

Billeci et al. [35] proposed a multiclass SVM classifier for
detecting normal rhythm, atrial fibrillation, and other ar-
rhythmias from ECG recordings on a smartphone device.
Since the smartphone device is not suitable for multilead
recording, a single lead point of care device, AliveCorTM, was
used to record the signals for the smartphone. ,ey used 30
features extracted from the RR intervals analysis, analysis
based on P wave absence (PWA), and frequency spectrum
analysis (FSA) for training their algorithm.,ey achieved an
F1 score of 0.83 on the PhysioNet Challenge and 0.98 on the
MIT-BH ADF database.

In paper [36], the MIT-BIH Arrhythmia Database was
used to classify heartbeats into four types using an ensemble-
based support vector machine (SVM) classifier. SVM,
Random Forest (RF), K-Nearest Neighbours (KNN), and

Long Short-Term Memory network compared the findings
with the ensemble-based SVM classifiers. Wavelets, high
order statistics, R-R intervals, and morphological features
are the four features retrieved from ECG signals that the
classifiers use. ,e best result was obtained using an en-
semble of SVMs with an overall accuracy of 94.4%.

Sraitih et al. [37] performed normalization using min-
max normalization and then denoised the ECG signal using
the Butterworth digital filter with a cutoff frequency of
0.25Hz and a filter order of 3. ,e signal is then sampled at
0.66 s segments for each beat, t� 0.33 s after and before the
R-peak position. Without any feature extraction, the results
from the segmentation process are directly fed to four su-
pervised classifiers: SVM, KNN, RF, and the ensemble of
these three classifiers. ,ese four methods were investigated
in classifying the ECG beats into Normal (NOR), Left
Bundle Branch Block (LBBB), Right Bundle Branch Block
(RBBB), Premature Atrial Contraction (PAC), and Prema-
ture Ventricular Contraction (PVC) beat from MIT-BIH
Database. ,e study emphasized that, by applying no de-
tailed data preprocessing or feature engineering methods,
SVM outperformed the other practices by achieving an
accuracy of 83%.

Despite the excellent performance achieved by the
classical machine learning approach on a small dataset,
being cheaper for development and easier for interpretation,
most of the research on automatic detection of abnormalities
on ECG focused on detecting only a single abnormality or a
few abnormalities with the most popular abnormalities,
including arrhythmia, ventricular fibrillation, and tachy-
cardia. Deep learning is more preferred than classical ma-
chine learning because it scales effectively with data, does not
need feature engineering, and is adaptable and transferable
[38]. Applying RNN, CNN, and DNN for computer-aided
cardiac abnormality detection has become famous as the
ECG dataset grows in volume. ,e PhysioNet/CinC Chal-
lenge datasets [39] are among the popular publicly available
ECG datasets.

Izci et al. [40] proposed a deep learning-based approach
for detecting five distinct forms of ECG arrhythmias (N,
nonectopic or paced beats; S, supraventricular ectopic beat;
V, ventricular ectopic beat; F, a fusion of ventricular and Q-
healthy rhythm, pace beat, or fusion of a paced and a normal
or beat that cannot be classified). In segmentation pro-
cessing, ECG signals are converted into ECG beats. Each
beat of the 1D ECG signal is then transformed into a 2D
grayscale image as input data for the proposed 2D-CNN
structure. ,is model has attained high-performance mea-
surements for diagnosing five different arrhythmic heart-
beats with an accuracy of 97.42% on the MIT-BIH
Arrhythmia Database. Similarly, Zhao et al. [41] modified
the ResNet34 deep learning architecture to have a 1D filter
instead of the 2D filter to make it suitable for a 1D ECG
signal. ,ey achieved an average accuracy of 98.6% in
categorizing heartbeats from the ECG into the five forms of
ECG arrhythmia on the MIT-BIH Arrhythmia Database.

Khatibi and Rabinezhadsadatmahaleh [42] used features
extracted by pretraining deep learning models (ResNet50
and VGGNet16) and handcrafted features (RR features)

Computational Intelligence and Neuroscience 3



from the MIT-BIH database for training different classifiers.
,ey used the KNN algorithm for feature engineering. ,e
pretraining deep learning model extracts features and re-
duces them by calculating the linear correlation coefficient
and removing features with less than some value determined
by trial and error. ,e SVM with polynomial kernel was the
best performing classifier with a classification accuracy of
99.7% in classifying heartbeats into Normal (NOR), Pre-
mature Ventricular Contraction (PVC), and Premature
Atrial Contraction (PAC) beats.

Teplitzky et al. [43] used a deep learning-based BeatLogic
platform designed by fusing two deep learning networks,
RhythmNet and BeatNet, which are designed based on the
ResNet architecture, to annotate ECG graphs. ,e
RhythmNet architecture is responsible for the detection and
classification of sinus rhythm (Sinus), atrial fibrillation/
flutter (AFib), supraventricular tachycardia (SVT), junc-
tional rhythm, second-degree heart block type 1 (BII1),
second-degree heart block type 2 (BII2), third-degree heart
block (BIII), and others. In contrast, BeatNet architecture is
for detecting ventricular rhythms, IVCD, and Pause. ,e
proposed method achieved a 0.95 F1 score for atrial fi-
brillation/flutter, ventricular tachycardia, ventricular bi-
geminy, ventricular trigeminy, and third-degree heart block
detection.

On the PTB-XL dataset, Strodthoff et al. [44] provided
benchmarking tasks ranging from ECG statements predic-
tion from various subsets of ECG statements and label
granularity to age and sex prediction. ,ey adapted state-of-
the-art deep learning models for image classification to the
ECG context.,e authors also claimed that modern ResNet-
based or Inception-based CNN architectures performed
best, particularly the newly proposed ResNet variant
XResNet1d. Still, recurrent architectures are also competi-
tive for a particular prediction task. Modern ResNet-based
or Inception-based CNN architectures, particularly the re-
cently proposed ResNet variant XResNet1d101, perform best
with a macro-averaged AUC of 93.5%, 92.9%, and 92.8% for
44, 23, and 5 classes, respectively, but recurrent architectures
are also competitive for specific prediction tasks.

Śmigiel et al. [45] developed a lightweight CNNs model
and integrated it with entropy, which is calculated after the
signal is converted to a spectrogram.,ey claimed that using
the entropy features significantly improved the performance
of their model on the PTB-XL database. ,ey also claim that
adding QRX complexes features extracted from the signal
substantially enhances performance in the study they carried
out in paper [46]. ,e authors in [47] proposed a neural
network trained for conducting Few-Shot Learning (FSL)
classification and proved that FSL-based classification is
more accurate than the softmax-based classification. ,e
authors in [48] tried to address the challenges of cross-in-
stitutional algorithm evaluation using transfer learning and
frequency domain CNN. ,ey demonstrated their work for
atrial fibrillation classification on the PTB-XL dataset and
two additional datasets from different institutions. Another
study that uses the PTB-XL dataset to build a model for
diagnosing normal and abnormal ECG with adaptive feature
was conducted by Zhu et al. [49]. ,e model has three

modules: (1) convolutional neural network-based feature
extraction module, (2) recursive feature elimination based
on the weights of the features, and (3) a fully connected layer
for classification.

,ere are some challenges in developing a machine
learning model for cardiac abnormality classification from
the ECG datasets. Firstly, no ECG dataset is available with a
massive sample number like the ImageNet dataset. ,is
property leads to overfitting if an intense CNN architecture
is used for the ECG datasets. Secondly, the nature of in-
formation context for ECG and image is very different.
Hence, while designing a CNN model for ECG analysis,
attention must be given to exploiting the nature of the ECG
datasets to improve performance. ,e other challenge is that
ECG datasets are likely to have classes imbalanced. Cardiac
abnormalities are likely to have biased distributions because
most severe diseases occur rarely but are essential [50].

Even though there is a noticeable improvement in deep
learning performance in classifying abnormalities on ECG
signals, the focus is mostly on arrhythmias and there is lack
of universality. Emphasis must also be given to the class
imbalance in the ECG datasets, and the model developed
should consider the signal properties of ECG data. Table 1
summarizes the essential findings and limitations of each
related work.

3. Materials and Methods

,is section covers the techniques and workflow employed
to design and implement multireceptive field CNN for ECG
signal classification. ,e research methodology described in
this paper is demonstrated in Figure 2. First, dataset pre-
processing and preparation will be discussed. After that, the
detailed design of the MRF-CNN will be addressed. Finally,
the model will be evaluated using macro-averaged metrics,
and a comparison with the existing methods will be
provided.

3.1. Dataset. ,e proposed method is tested on the PTB-XL
ECG dataset [28]. It is the most significant freely accessible
clinical 12-lead ECG waveform. ,e waveform data in the
dataset was collected for seven years between 1989 and 1996.
Twelve-lead readings with reference electrodes on the right
arm are provided. Each record was annotated with a
reporting string converted into a standardized set of SCP-
ECG statements [51]. ,e dataset contains 21837 12-lead
ECG records with F1 of 0 seconds from 18885 patients,
among which 48% is for female patients, and 52% is for male
patients, and it covers an age range from 0 to 95. PTB-XL
dataset is complex because it covers a wide age range (0–95),
and it is a multilabel dataset, where diagnostic labels are
further aggregated into superclasses and subclasses.

In the dataset, there are 71 unique classes, given in
Table 2. ,e 71 classes comprise 44 diagnostic, 19 form, and
12 rhythm classes. ,e diagnostic category can be further
arranged hierarchically into a superclass and subclass. ,e
waveform files are saved in a format with 16-bit precision, at
a resolution of 1 μV/LSB and a sampling frequency of 500Hz
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and 100Hz. Since the signal was recorded for 10 seconds,
there will be 1000 discrete values for 100Hz and 5000 for
500Hz per record.

We have employed two approaches in the data pre-
processing stage: windowed and nonwindowed. In the
windowing data preprocessing, 2.5 seconds of window size
with 50% overlap are used as discussed in [44]. On the other
hand, for the nonwindowing approach, the whole record is
fed to the model without any segmentation. We have also
experimented by removing classes with less than 20 sample

numbers. ,e dataset was divided into training, testing, and
validation sets in 70%, 15%, and 15%, respectively. Finally,
while standard normalization is performed on the raw
signal, the multilabel is converted to multihot using the
scikit-learn MultiLabelBinarizer.

3.2. ProposedMultireceptive Field CNN. Multireceptive field
CNN is a deep learning architecture in which we have
multiple receptive fields to extract features from the inputs

Table 1: Literature summary table.

Author(s) Dataset Purpose Method Key findings Limitations

,anapatay et al. [29]
MIT-BIH
Arrhythmia
Database

ECG beat
classification

Discrete wavelet
transform (DWT)
and Principal

Component Analysis
(PCA) to extract 20
principal features and
SVM for classification

,e classifier achieved
99.6% in classifying

beats

It is only for beat
classification, and it
is based on image

processing
techniques

Billeci et al. [35]
MIT-BIH AF
Arrhythmia
Database

Classification in
short ECG

recordings acquired
using a smartphone

device

51 features extracted
and LS-SVM is used
for classification

Performance for normal
rhythm 0.98, AF

rhythm 0.99, and global
0.98 F1 score

Atrial fibrillation
classification only

Khatibi and
Rabinezhadsadatmahaleh
[42]

MIT-BIH
Arrhythmia
Database

Arrhythmia
detection from beat

classification

Features extracted by
pretraining
ResNet50,

VGGNet16, and
handcrafted features
(RR features). SVM,
KNN, Decision Trees,
and Random Forests

are used for
classification

It has a lower
computational need for
training than a deep
learning model built
from the ground up,
and it outperforms
classical machine

learning

,e model has
millions of

parameters, and it
only detects
arrhythmias

Zhao et al. [41]
MIT-BIH
Arrhythmia
Database

Patient-specific
classification of
arrhythmias

ResNet34 deep
learning architecture

with a 1D filter

Average accuracy of
98.6% in the

categorization of
heartbeats

Model with millions
of parameters and it
overfits quickly

Śmigiel et al. [45] PTB-XL
database

Subclasses of
diagnostic

categories in the
PTB-XL

CNN with six layers
with entropy as an
additional feature

0.698 accuracy, 0.332 F1
score, and 0.815 AUC

Low accuracy, F1
score, and AUC

Śmigiel et al. [46] PTB-XL
database

Classification of 2, 5,
and 20 classes of

heart diseases in the
PTB-XL dataset

CNN to perform the
encoding of a single
QRS complex with
the addition of
entropy-based

features

Adding entropy-based
features and extracted
QRS complexes to the
raw signal is beneficial

Low accuracy, F1
score, and AUC

Pałczyński et al. [47] PTB-XL
database

Training deep CNN
to recognize 2, 5,
and 20 different

heart disease classes
from the PTB-XL

dataset

Achieved better
results in classifying
five other disease

classes than softmax-
based counterparts

Determining the Few-
Shot Learning (FSL)
applicability for ECG
signal proximity-based

classification

Low accuracy, F1
score, and AUC

Zhu et al. [49] PTB-XL
database

Classifying ECG
signal into abnormal

and normal

CNN as feature
extraction module,
recursive feature

elimination, and fully
connected layer for
final classification

0.889 accuracy and
0.904 F1 score

It is only
abnormality
detection, no

further effort to
identify specific

heart disease from
the signal
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[52]. Wang et al. [53] proposed a 1D multiscale CNN for
bearing fault diagnosis. ,eir model uses three feature ex-
tractors with different convolutional kernel sizes, enabling
the mode to learn from the varying size of the receptive field.
Cui et al. [54] proposed an end-to-end multiscale CNN
model that considers the fact that features in the time-series
dataset often appear at different time scales. Applying
multireceptive field CNN with dilated and multiple kernels
also works well for semantic segmentation of medical images
[55].

Every single point in a feature map of a CNN-based
model is generated via a receptive field. For example, as
illustrated in Figure 3, the receptive field (3× 3, nine pixels)
given as green pixels in layer 1 produces a green pixel in layer
2. On the other hand, the receptive field in 1D-CNN will be
1-dimensional, as depicted in Figure 4. ,e primary purpose
of the convolutional neural network is to detect local low-
level features in a given signal. ,e receptive field of CNN
architecture directly relates to the filter size used in the
architecture, as explained in Section 1. For example, if we use
a kernel size of 3, we necessarily say that low-level features
are 3 points wide. We can design a multireceptive field CNN
using two ways. ,e first is by using multiple kernels of
different sizes. ,e second is using a fixed-size kernel with a
varying dilation rate to obtain multiple receptive fields [55].
Figure 4 describes the effects of kernel size and dilation rate.
In (a), a kernel size of 5 and 7 is used with dilation rate of 1,
resulting in 5 and 7 broad receptive fields, respectively. In
(b), the same kernel size is used but with a dilation rate of 2,
resulting in 9 and 13 receptive fields, respectively. ,erefore,
to increase the receptive field size, we can increase either the
kernel size or dilation rate.

As shown in Table 3, features in ECG signals are found at
different sizes (interval or duration). Hence, we have pro-
posed a multireceptive field 1D-CNN model for automatic
multilabel classification of the 12-lead ECG dataset. CNN
architecture that ensures its receptive field covers the entire

relevant input signal region is designed and tested to be robust
compared to the existing deep learning models for PTB-XL
dataset classification.,erefore, multiple filters with sizes of 7
and 5 with dilation rates of 1 and 2 and a filter size of 1 with a
dilation rate of 1 are used in the proposedmodel.,ese kernel
sizes are chosen because the ECG signal should capture
different interval and segment lengths. Having kernels of
different sizes enables the model to capture various features
that can discriminate one class of ECG from another. ,e
network facilitates the ability to look into multiple fields si-
multaneously. Most studies regarding the classification of
ECG signals are based on a receptive field generated by a fixed
kernel length. However, our work shows generating both
small and large receptive fields can improve performance and
detect local features of varying sizes. It also enhances the
feature discriminability and robustness according to the
verification of the experiment carried out in this study.

,erefore, detecting appropriate discriminative features
requires a kernel of different sizes instead of a fixed one. ,e
proposed model (Figure 5) has large and small blocks to see
features from larger and smaller receptive fields. ,e
LargeBlock contains five 1D convolutions (7×1 and 5×1
kernels with dilation rates of 1 and 2 and an additional filter
of 1× 1 with a dilation rate of 1) followed by batch nor-
malization, activation, and max pooling. ,e SmallBlock is
identical to the LargeBlock, except that the filter sizes are
7×1, 5×1, and 1× 1, and there is a dropout with a 0.20 rate
after each max pooling. Finally, global average pooling is
used in the fully connected layer instead of flattening. ,e
global average pooling is followed by one dense layer and the
final output layer. Global average pooling has an advantage
over the flattening layer as more native to the convolution
structure, and there is no parameter to optimize; thus,
overfitting is avoided at this layer [56].

Since the PTB-XL dataset is multilabel, the CNNmust be
configured to support the MLC task. ,erefore, Sigmoid is
used as an activation function for the output layer. ,e

Data Filtering

Data Normalization

Sliding
Window? 

Split the Dataset

MRF-CNN Design

MRF-CNN Implementation

MRF-CNN Training

Model Evaluation on 
Validation and Test Set

Record

Performance Comparison 
with Existing Model

Whole
Record 

Generate 2.5-second 
Segments with 50% 

Overlap

No

Yes

Dataset Preparation Model Building Model Evaluation

Figure 2: Framework of the proposed methodology.
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likelihood of an instance belonging to a particular class is
calculated using Sigmoid. ,e label is true if the probability
is more than a given threshold (0.5 in this study). In the
layers other than the output layer, Leaky ReLU is used. ,e
most widely used loss function for MLC is binary cross-
entropy [57]. ,e factor that leads to selecting a cross-en-
tropy loss function is the output layer activation function,
Sigmoid. ,e binary cross-entropy computes the cross-en-
tropy loss between the input label and the predicted output
probability of the model.

,e model’s number of parameters is few as it is
lightweight and special consideration is taken to minimize
the computational resource requirement of the model. To
reduce the numbers of parameters and dimensions of inputs

of the network’s layers, we used max pooling and 1× 1
convolution filters. ,e max pooling operation minimizes
the input width by two after each layer. Concatenation of
each feature map increases the channel number enormously.
Hence, the 1× 1 Conv reduces the channel number.

3.3. Evaluation. In most classification tasks, the accuracy is
used as an evaluation matrix. It indicates the ratio of cor-
rectly classified labels to the total number of classifications.
However, it does not tell the whole story in some cases.
Hence, it may lead to a wrong conclusion about the model.
Calculating the confusion matrix is advised to get the entire
idea about the model’s performance.

Table 2: Hierarchical arrangement in the diagnostic class of the PTB-XL dataset.

Superclasses Subclasses All diagnostic classes Description

CD

IRBBB IRBBB Incomplete Right Bundle Branch Block
IVCD IVCD Nonspecific intraventricular CD
CRBBB CRBBB Complete Right Bundle Branch Block
CLBBB CLBBB Complete Left Bundle Branch Block

LAFB/LPFB LAFB Left anterior fascicular block
LPFB Left posterior fascicular block

WPW WPW Wolff-Parkinson white syndrome
ILBBB ILBBB Incomplete Left Bundle Branch Block

_AVB
3AVB ,ird-degree AV block
2AVB Second-degree AV block
AVB First-degree AV block

HYP

LVH LVH Left ventricular hypertrophy
LAO/LAE LAO/LAE Left atrial overload/enlargement

RVH RVH Right ventricular hypertrophy
RAO/LAE RAO/LAE Right atrial overload/enlargement
SEHYP SEHYP Septal hypertrophy

MI

AMI

INJLA Subendocardial injury infarction
ASMI Anteroseptal myocardial infarction
INJAL Subendocardial injury in the anterolateral leads
AMI Anterior myocardial infarction
ALMI Anterolateral myocardial infarction
INJAS Subendocardial injury in anteroseptal leads

LMI LMI Lateral myocardial infarction

IMI

IPLMI Inferoposterolateral myocardial infarction
IPMI Inferoposterior myocardial infarction
ILMI Inferolateral myocardial infarction
INJIL Subendocardial injury in inferolateral leads
IMI Inferior myocardial infarction
INJIN Subendocardial injury in lateral leads

PMI PMI Posterior myocardial infarction
NORM NORM NORM Normal ECG

STTC

STTC

NDT Nondiagnostic T abnormalities
DIG Digitalis effect

ANEUR ST-T changes compatible with ventricular aneurysm
EL Electrolytic disturbance or drug

LNGQT Long QT-interval
NST_ NST_ Nonspecific ST changes
ISC_ ISC_ Nonspecific ischemic

ISCI ISCIN Ischemic in inferior leads
ISCIL Ischemic in inferolateral leads

ISCA

ISCAL Ischemic in inferior leads
ISCAS Ischemic in anteroseptal leads
ISCLA Ischemic in lateral leads
ISCAN Ischemic in anterior leads
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A confusion matrix is a tabular representation of the
results that describe the overall performance of the classi-
fication model, depicted in Table 4.,e essential operation is
a confusion matrix that accepts the label of test data,
compares it with the predicted output from the classifier
model, and gives the result score for each class [58]. Metrics
like AUC, recall, precision, and F1 score are defined from the
confusion matrix. ,ey give us a more accurate measure of
what is going on than accuracy.

Accuracy is the number of correct predictions divided by
the total number of samples in the dataset. F1 score is used to
create a balance between precision and recall, and it is
sometimes referred to as the F score or F measure. Precision
can be obtained by dividing the true positive by the number
of positive and false negative values. In contrast, recall is

obtained by dividing the true positive by submitting true
positive and false negative values.

FalsePositiveRate �
FP

(TN + FP)
, (1)

TruePositiveRate �
TP

(TP + TN)
. (2)

,e other metric used to evaluate the model presented in
this study is AUC, calculated from ROC (receiver operating
characteristic curve). ROC is a graph plotting a true positive
rate (2) versus a false positive rate (1) at different classifi-
cation thresholds. ,e lower the classification threshold is,
the more items the classifier classifies as positive. AUC
represents the area under the ROC curve.

Accuracy �
TP

(TP + TN + FP + FN)
, (3)

Precision �
TP

(TP + FP)
, (4)

Recall �
TP

(TP + FN)
, (5)

F1Score � 2∗
Precision∗Recall

(Precision + Recall)
. (6)

Layer 1
Layer 2 Layer 3

Figure 3: Receptive field for 2-dimensional convolutional neural network [20].

5x1

7x1

(a)

5x2

7x2

(b)

Figure 4: Multireceptive field (a) using two kernels with a dilation rate of 1 and (b) two kernels with a dilation rate of 2, while the dots
represent data points in a given signal.

Table 3: Typical amplitudes and durations of ECG signal for adult.

Wave Amplitudes (mV) Durations (seconds)
P wave 0.10–0.30 0.04–0.12
PR interval 120–200 0.12–0.20
QRS interval 1-2 0.05–0.10
R wave 0.2–1.7 <0.07
ST interval — 0.12–0.32 (mean)
ST segment — 0.24 (mean)
T wave 0.05–0.80 0.10–0.25
QT interval — 0.30–0.40
PQRST — 0.42–0.60
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In multilabel classification (MLC), a prediction could be
completely accurate if the predicted labels P are the same as
the ground truth labels Y, partially accurate if Y ∩ Z ≠ ∅, or
utterly wrong if Y ∩ Z�∅. ,e multilabel classification
(MLC) evaluation metrics are divided into example-based
and label-based metrics. Performance is calculated for each
data instance and averaged over the whole dataset with
example-based metrics. On the other hand, label-based
metrics measure each label’s performance separately before
averaging across classes [59]. Hence, in this study, label-
based macro-averaged accuracy, AUC, recall, precision, and
F1 score are used to evaluate the performance of the pro-
posed model.

,e label-based evaluation considers every label sepa-
rately, reducing MLC to a binary classifier for a particular
label, with four possible prediction outcomes: TP, FP, TN,
and FN. Accuracy, precision, recall, and F1 score are cal-
culated by equations (3)–(6): label-based classification

metrics for the classifier H and dataset Dt could be obtained
using macro or micro averaging techniques. Let B be any of
the measures defined by equations (3)–(6). Bmacro (H, Dt)
and Bmicro (H, Dt) are calculated as follows [60]:

%

Bmacro H, Dt(  �
1
q



q

j�1
B TPj, FPj, TNj, FNj ,

Bmicro H, Dt(  � B 

q

j�1
TPj, 

q

j�1
FPj, 

q

j�1
TNj, 

q

j�1
FNj

⎛⎝ ⎞⎠,

(7)

where j� 1, . . ., q and q represents the number of labels in
the classification task.

On the other hand, the example-based evaluation
metrics are found by considering each instance’s hit and
miss ratio regardless of the label and averaging the entire test

Input 
ECG Signal

LargeBlock

SmallBlock

Conv1D(1,1)

Conv1D(1,1)

SmallBlock

SmallBlock

GlobalAveragePool

Conv1D(1,1)

Conv1D(1,1)

Dense

SmallBlock

(a)

Base
LargeBlock

Conv1D(7,1) Conv1D(5,1) Conv1D(7,2) Conv1D(5,2)

BatchNorm BatchNorm BatchNorm BatchNorm

Activation Activation Activation Activation

Concatenate

Base
SmallBlock

Conv1D(7,1)

BatchNorm

Activation

Dropout

Max-pool

Concatenate

Conv1D(5,1)

BatchNorm

Activation

Dropout

Max-pool

Conv1D(1,1)

BatchNorm

Activation

Dropout

Max-pool

Conv1D(1,1)

BatchNorm

Activation

(b)

Figure 5:,e proposed model architecture: the picture in (a) indicates the proposed lightweight and multireceptive field CNN architecture;
the LargeBlock and SmallBlock in (b) have different kernel size and dilation rates to build the multireceptive field CNN. ,e model has six
layers: five convolutional layers and one fully connected layer. Finally, Sigmoid is used as an activation function for class probability
prediction.

Table 4: Confusion matrix table for binary class classification.

Prediction result
Positive Negative

Actual result Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)
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set. Example-based precision, recall, and F1 score are defined
as follows:

PrecisionEB �
1
N



N

i�1

Yi ∩Pi




Pi




,

RecallEB �
1
N



N

i�1

Yi ∩Pi




Yi




,

F1ScoreEB �
2∗RecallEB ∗ PrecisionEB

PrecisionEB + RecallEB

,

(8)

where Y, P, RecallEB, and PrecisionEB are ground truth,
prediction results, example-based recall, and example-based
precision, respectively, for i� 1,2, . . ., N and N represents
number of examples.

,erefore, in this research, we used macro-averaged
precision, recall, F1 score, AUC, and accuracy to measure
how the proposed model performed. Example-based Fmax is
also used. Maximum F1 score (Fmax) is an F1 measure at a
threshold that gives a maximum value rather than 0.5. Other
than these metrics, training AUC, validation AUC, training
loss, and validation loss were used to measure model per-
formance during training.

Applying the default evaluation metrics of unskewed
data to skewed data can have a negative effect on the model's
performance. Using standard metrics in the imbalanced
dataset can lead to suboptimal classification models and
might produce misleading conclusions, since these measures
are insensitive to the skewed dataset. ,e main problem of
imbalanced datasets is that they are often associated with a
user preference bias towards the performance of under-
represented classes in the available data sample [61]. When a
dataset is balanced, using accuracy is usually a good start. It
will help if accuracy is not used when a heavily imbalanced
dataset is considered. ,erefore, the F1 score and AUC are
appropriate for a class imbalance. ,e intuition is that the
false positive rate for highly imbalanced datasets is ruined
due to many true negatives. If we care about true negatives as
much as true positives, AUC and F1 scores are used [62–64].

4. Results and Discussion

ECG signal classification is performed using the proposed
model in the experiment, and the model’s performance is
compared with the existing model. From the experiments
carried out in this study, the optimal hyperparameters are
obtained using grid search. Although the epoch number
used is 100, early stopping with a tolerance of 10 is used to
get the best network parameters. RMSProp optimizer, 128
batch size, and 0.0001 learning rate are the optimal values of
the parameters. A summary of the hyperparameter setting is
found in Table 5.

Based on the previous works of the literature on the PTB-
XL dataset classification, we have tested our model under
two scenarios. ,e first scenario is that classes with a sample
number of less than 20 are removed from the dataset as is
done in [45–47]. ,e second scenario is working on the
whole dataset without removing any classes. However, the

sliding window approach is used to train the classifier on
random segments of fixed length (2.5 seconds) taken from
the entire record as is done in [44]. In this case, during the
test time, the signal is divided into segments of 2.5 seconds
with 50% overlap and obtains model predictions for each
segment. ,ese predictions are then aggregated using the
element-wise maximum to produce a single prediction for
the record.

We have compared the performance of the proposed
model under both scenarios with the existing model. Under
the first case, the proposed model has a significant perfor-
mance improvement compared to the architecture in
[45–47] as portrayed in Tables 6–8. ,e performance gain in
evaluation metrics (accuracy, precision, recall, F1 score, and
AUC) is significant, and the proposed model has fewer
parameter numbers.

Similarly, the model performance under the second
scenario is evaluated and found to be the same as that of [44]
with a significant improvement in the parameter number
(Table 9). In [44], the model with the least parameter
number is FCN-Wang with 311,700 total parameters. ,is
model has a performance of 0.926, 0.928, and 0.930 label-
based macro-averaged AUC for the diagnostic, sub-
diagnostic, and superdiagnostic classes, respectively. It also
produces 0.735, 0.762, and 0.823 example-based Fmax for the
diagnostic, subdiagnostic, and superdiagnostic classes, re-
spectively. ,e proposed model exhibits a nearly similar
performance in terms of AUC and Fmax scores; however, the
number of parameters decreases by five. ,e proposed
model has 0.930, 0.922, and 0.927 AUC and 0.720, 0.743, and
0.816 Fmax with 59,060 number of parameters.

Moreover, Table 10 shows the result without using the
sliding window concept, using the whole signal as input to
the model. ,e performance drop indicates that using the
sliding window concept can improve performance. In the
sliding window approach, a segment of 2.5 seconds is taken

Table 5: Hyperparameter values.

Hyperparameters Value
Number of epochs 100
Dropout rate 0.20
Loss function Binary cross-entropy
Batch size 16, 32, 64, 128, and 256
Optimizer Adam, SGD, and RMSProp
Activation
function

Leaky ReLu (α� 0.01) and Sigmoid for the
final layer

Learning rate 0.01, 0.001, 0.0001, and 0.00001

Table 6: Results of the proposed model on the dataset after re-
moving classes with sample number of less than 20 and feeding the
whole signal to the model without using any sliding window
approach.

Class number Accuracy Precision Recall F1
score AUC

5 (superdiagnostic) 0.897 0.73 0.71 0.72 0.93
20 (subdiagnostic) 0.962 0.42 0.56 0.46 0.92
41 (diagnostic) 0.98 0.28 0.31 0.29 0.92
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from the record and used for prediction. ,e advantage of
this approach is that it generates additional data and can be
used as a data augmentation technique, leading to a per-
formance gain. Nevertheless, in some conditions of cardiac
abnormalities, the features that indicate a given situation
may manifest at a specific location but not all over the signal.

,e flaw in the current work that we decided to mitigate
is using a fixed-size kernel, which only generates a receptive
field with a fixed size. What we did was examination using
numerous receptive fields of various sizes rather than just
one large or small receptive field. Using this method, the
model can investigate several nearby places at once.
According to the experimental findings (Tables 7–9), CNN
with multireceptive fields has improved performance.

5. Conclusion

,e electrical activity produced during the heartbeat is
measured and recorded by an ECG. Cardiologists can in-
terpret the ECG machine’s signals and determine the heart’s
health condition and related causes of ECG signal abnor-
malities. However, cardiologist shortage is a challenge in

developing countries and developed countries. On the other
hand, the experience of a cardiologist matters in the accurate
interpretation of the ECG signal, as the interpretation of
ECG is quite tricky even for experienced doctors. ,erefore,
developing computer-aided ECG interpretation is required
for its wide-reaching effect.

CNN-based deep learning is more effective than classical
machine learning detection algorithms in classification
performance. 1D-CNN is being widely used for CVDS de-
tection from ECG signals. However, adopting a deep
learning model designed for computer vision can be
problematic because of its massive parameters and the need
for many samples to train. In many detection tasks ranging
from semantic segmentation of medical images to time-
series data classification, multireceptive field CNN has
improved performance. Notably, the nature of the ECG
dataset made performance improvement possible by using a
multireceptive field CNN. Using MRF-CNN, it is possible to
design a model that considers semantic context information
within ECG signals with different sizes. As a result, this study
has developed a lightweight multireceptive field CNN ar-
chitecture for ECG analysis. ,e proposed MRF-CNN

Table 7: Comparison of results of the proposed model and those of the existing model for 20 class number.

Model Acc Prec Recall F1 score AUC Total param

[45] 0.765 0.355 0.339 0.332 0.815 58,664
[46] 0.685 — — 0.336 0.861 —
[47] 0.671 — — 0.324 0.844 —
Proposed 0.962 0.420 0.560 0.460 0.920 56,732

Table 8: Comparison of results of the proposed model and those of the existing model for 5 class number.

Model Acc Prec Recall F1 score AUC Total param

[45] 0.765 0.714 0.662 0.680 0.910 58,259
[46] 0.763 — — 0.683 0.907 —
[47] 0.790 — — 0.717 0.936 —
Proposed 0.897 0.730 0.710 0.720 0.930 55,277

Table 9: Comparison of results of the proposedmodel and those of the existing model for the diagnostic, subdiagnostic, and superdiagnostic
classes number.

Authors/method Diagnostic Subdiagnostic Superdiagnostic
Total parameters

Authors Method AUC F max AUC F max AUC F max

[44]

LSTM-BiDir 0.932 0.737 0.923 0.757 0.921 0.815 2,332,564
XResNet101 0.937 0.736 0.929 0.760 0.928 0.815 1,874,196

LSTM 0.927 0.731 0.928 0.759 0.927 0.820 905,620
Inception 0.931 0.737 0.930 0.752 0.921 0.810 509,588

ResNet-Wang 0.936 0.741 0.928 0.762 0.930 0.823 745,284
FCN-Wang 0.926 0.735 0.928 0.762 0.930 0.823 311,700

Proposed 0.930 0.720 0.922 0.743 0.927 0.816 59,060

Table 10: Result of the proposed model without using the sliding window approach and by keeping the whole classes in the dataset.

Diagnostic Subdiagnostic Superdiagnostic Total parameters
AUC Fmax AUC Fmax AUC Fmax 59,0600.879 0.677 0.904 0.685 0.910 0.783
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architecture can improve the performance of ECG signal
classification. 1× 1 convolution and max pooling reduce the
numbers of parameters and dimensions of inputs to the
network layer. ,e 1× 1 convolution controls the depth of
the input volume as it propagates to the following layers and
introduces nonlinearity to the network; max pool down-
samples the input for dimension reduction and makes the
model feature extraction process be rational/position in-
variant. We have achieved a 0.72 F1 score and 0.93 AUC for
superclasses, a 0.46 F1 score and 0.92 AUC for subclasses,
and a 0.31 F1 score and 0.92 AUC for the diagnostic classes
of the PTB-XL dataset by removing classes with less than 20
sample number.

6. Future Work

ECG dataset suffers from class imbalance as the distribution
of cardiac abnormalities is not similar. For future work, we
recommend using a generative adversarial network and
other one-dimensional data augmentation techniques to
generate ECG signals to tackle the data imbalance issue. We
also recommend combining wavelet transform and raw
signal fusion to get broad feature representation and then
improving classification performance.

Data Availability

,e data linked should be changed to “https://physionet.org/
content/ptb-xl/”.
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