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The COVID-19 pandemic has had a global impact, transforming how we manage
infectious diseases and interact socially. Researchers from various fields have
worked tirelessly to develop vaccines on an unprecedented scale, while different
countries have developed various sanitary protocols to deal withmore contagious
variants. Machine learning-assisted diagnosis has emerged as a powerful tool that
can help health professionals deliver faster and more accurate outcomes.
However, medical systems that rely on deep learning often require extensive
data, which may be impractical for real-world applications. This paper compares
lightweight neural architectures for COVID-19 identification using chest X-rays,
highlighting the strengths and weaknesses of each approach. Additionally, a web
tool has been developed that accepts chest computer tomography images and
outputs the probability of COVID-19 infection alongwith a heatmap of the regions
used by the intelligent system to make this determination. The experiments
indicate that most lightweight architectures considered in the study can
identify COVID-19 correctly, but further investigation is necessary. Lightweight
neural architectures show promise in computer-aided COVID-19 diagnosis using
chest X-rays, but they did not reach accuracy rates above 88%, which is necessary
for medical applications. These findings suggest that additional research is
necessary to improve the accuracy of lightweight models and make them
practical for real-world use.
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1 Introduction

The COVID-19 pandemic has significantly impacted our world, and it has required rapid
adaptation to new ways of social interaction. The widespread use of facial masks, barrier face
coverings, gloves, and other sanitary practices have been introduced on an unprecedented
scale. Although it appears relatively controlled, COVID-19 is still prevalent, and new
outbreaks are continually being reported. The good news is the rapid development of
vaccines, but there are also concerns regarding their efficacy.

In the effort to better understand the internal mechanisms of intelligent systems and to
provide faster COVID-19 diagnosis, machine learning-aided diagnosis has emerged. There is
a vast body of literature on this topic, with many exciting works. For example, Hassan
et al.Hassan et al. [1] introduced Deep Taylor Decomposition Montavon et al. [2] to explain
COVID-19 recognition from chest X-ray images. The experiments included the well-known
Composite Layer-wise Propagation Samek et al. [3] and Single Taylor Decomposition for
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comparison purposes concerning selectivity, continuity, and input
perturbation. Santos et al.Santos et al. [4] used Efficient Nets Tan
and Le [5], specifically EfficientNet-B6, to improve COVID-19
identification. The authors showed improvements using a min-
max normalization, outperforming COVID-Net.

Although deep learning techniques have shown promising
results, they require a large amount of data Hu et al. [6]; Ohata
et al. [7]; deMesquita et al. [8]; Parah et al. [9]. Convolutional Neural
Networks (CNNs) LeCun et al. [10] are crucial in this area, but
deeper architectures come at a high computational cost, which can
be unfeasible for real-world applications. Hence, researchers have
been pursuing lightweight architectures to address this shortcoming
Gumaei et al. [11]; Hassan et al. [12]; Alsahli et al. [13]. These
lightweight architectures, despite having lower performance, are
more efficient and can be embedded in sensors and portable devices
Hassan et al. [14].

Polsinelli et al.Polsinelli et al. [15] proposed a lightweight CNN
based on Squeeze Net Iandola et al. [16] for efficient discrimination
between COVID-19, pneumonia, and healthy individuals using
chest computed tomography (CT) images. Their work
outperformed the original SqueezeNet and could analyze
thousands of images daily, even with limited hardware resources.
Zhang et al. Zhang et al. [17] employed MobileNetV2 and transfer
learning to address the shortage of computational power in some
environments. They fine-tuned the ImageNet-trained backbone on a
CT dataset provided by Kaggle and showed that their proposed
system can analyze and diagnose a chest CT image in 1.06 s on a
computer without a dedicated graphics processing unit (GPU).

Paluru et al.Paluru et al. [18] proposed a lightweight CNN-based
strategy called Anam-Net to segment anomalies in chest CT images
affected by COVID-19. The approach has 7.8 times fewer parameters
than U-Net Ronneberger et al. [19], making it suitable for mobile
devices or resource-constrained platforms. State-of-the-art results were
reported in terms of the Dice similarity score, with Anam-Net deployed
in a Raspberry Pi equipped with an NVIDIA Jetson Xavier Agx. In
another study, Iyer et al. Iyer et al. [20] compared four CNN models,
includingU-Net, SegNet, HRNet, andVGGNet, to segmentCT images
from patients affected by COVID-19. Using their dataset with more
than 3,000 images, the authors found thatHRNet was themost effective
model, achieving an accuracy of 96.24% and a Dice score of 0.91. The
work highlighted that lightweight models are adequate for infectious
tissue segmentation on CT slices.

Huang and Liao Huang and Liao [21] proposed
LightEfficientNetV2, which aimed to improve accuracy and speed
up the training step with fewer parameters. The approach used chest
CT images to distinguish between COVID-19, pneumonia, and
healthy individuals, and promising accuracies were obtained in
distinct datasets. In addition, Zhao et al. Zhao et al. [22]
presented LCOV-Net, a lightweight 3D CNN for image
segmentation of COVID-19 pneumonia lesions from CT
volumes. An attention-based convolutional block played a
significant role in the approach, and it consisted of a
spatiotemporal separable convolution module to reduce
parameters and a feature calibration to improve learning. The
proposed approach was tested on a dataset with 130 patients
affected by COVID-19 for lesion segmentation, with a reported
speed up of 27.93% compared to a standard 3D U-Net. The central
core of the proposed approach was a 3D UNet.

Security issues are a major concern when dealing with data from
different organizations. Heiradi et al. Heidari et al. [23] presented an
approach based on blockchain and lightweight CNNs to address
COVID-19 detection. Given data from different hospitals, the
authors trained a global model while maintaining the
confidentiality of the institutions. State-of-the-art results were
reported. Kamal et al. Kamal et al. [24] emphasized the
importance of using the Internet of Things (IoT) framework to
combat COVID-19. Digital telehealth has expanded the frontiers of
artificial intelligence and remote diagnosis, but it has also brought
new issues such as the need for larger bandwidth and better security.
The authors suggested that lightweight security and intelligent
systems are a few solutions that should be explored to prevent
the further spread of COVID-19.

The literature lacks a more substantial comparison among
lightweight neural architectures for COVID-19 identification, as
most works focus on lesion segmentation. Therefore, our main
scientific contribution is to address this gap and provide a web
tool that allows users to upload CT images from the chest and
receive two outputs: 1) the probability of being affected by
COVID-19 concerning different models (the user can pick
one), and 2) a heatmap with the regions used by the
intelligent tool to make its decision. Although CT scans are
more informative than X-rays, the latter is cheaper and can be
used in remote locations.

In summary, this manuscript has two main contributions:

• A comprehensive comparison of lightweight neural
architectures for COVID-19 identification; and

• A web tool for analyzing chest CT images.

The remainder of the manuscript is organized as follows. Section
2 provides a brief background on the neural architectures used in
this work, and Section 3 discusses the methodology, evaluation
measures, dataset, and the neural architectures considered. Section 4
presents the experiments and the web tool, while Section 5
summarizes the conclusions and outlines potential future work.

2 Theoretical background

This section presents a brief theoretical background of the neural
architectures used in the manuscript.

FIGURE 1
Input image with 32 × 32 pixels and three channels convolved
with 64 filters of size 5 × 3 × 3, ending up in 5 × 5 × 3 × 32 × 32 × 64 = 4,
915, 200 multiplication operations. The input channels are convolved
with each filter separately and further integrated.
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2.1 MobileNet

Convolutional layers play a crucial role in deep neural networks, but
they can become computationally expensive due to the large number of
matrix multiplications involved. To address this, MobileNet Howard
et al. [25] was introduced as a CNN architecture that is typically faster
than conventional CNNs. This is achieved by using a convolutional
layer called depthwise separable convolution. The main difference
between standard (two-dimensional) and depthwise convolutions is
that the former is performed over all input channels, while the latter

treats each channel separately. Figure 1 illustrates the concept of a
standard convolution.

The concept of depthwise separable convolution starts with the idea
of spatial separable convolutions, which involves performing two
sequential one-dimensional convolutions instead of a single two-
dimensional one (as illustrated in Figure 2). However, the primary
issue with this approach is that not all kernels can be separated into two
smaller ones. An alternative approach is depthwise separable
convolution, which works with kernels that cannot be factored into
smaller kernels. The idea behind depthwise separable convolution is to
perform two different convolutions on the input kernel: depthwise
convolution and pointwise convolution. In the depthwise convolution, a
kernel operates over each channel separately, addressing the depth
dimension (i.e., the number of channels). To aggregate each feature
map, a pointwise convolution is then performed. MobileNet Howard
et al. [25] is a CNN architecture that uses this approach and is usually
faster than conventional CNNs.

Other versions of MobileNet are also available, such as
MobileNetV2 Sandler et al. [26] and MobileNetV3 Howard et al.
[27]. MobileNetV2 introduces two new features to its previous
version: 1) linear bottlenecks between layers and 2) shortcut
connections between the bottlenecks. The motivation behind
MobileNetV2 is to address the issue of non-linearities encoded by
ReLU, which can cause the input channel to collapse by assigning zero
values to the activation units’ outputs. The authors in Sandler et al. [26]
demonstrated experimentally that incorporating linear bottleneck layers
within the convolutional blocks can prevent non-linearities from
destroying too much information. Additionally,
MobileNetV2 employs residual connections between the bottlenecks,
called inverted residuals. Figure 3 illustrates the architectures of both
MobileNetV1 and MobileNetV2.

The MobileNetV3 architecture is built on the same core
architecture used in MobileNetV2 but introduces some new features.
The architecture uses squeeze-and-excite blocks and swish activation
functions in the residual layers. The authors of Howard et al. [27]
demonstrated that MobileNetV3 outperforms many existing models in
various tasks, achieving state-of-the-art results.

2.2 GhostNet

Han et al.Han et al. [28] proposed GhostNet, which aims to
reduce redundancy in feature maps produced by deep neural

FIGURE 2
The input 32 × 32 × 3 image is convolved with a 5 × 5 × 3 kernel,
ending up in a 28 × 28 × 3 output (76,800 multiplication operations).
Further, the feature maps are convolved with 64 filters of size 1 × 1 × 3,
ending up in 150,528multiplication operations, summing 76, 800
+ 150, 528 = 227, 328 operations.

FIGURE 3
The MobileNetV1 (A) and MobileNetV2 (B) architectures:
ReLU6 is used in MobileNetV2 instead of the standard ReLU.

FIGURE 4
The idea behind the ghost features: cheap and linear operations
generate redundant feature maps instead of convolutional modules.
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networks. The authors argued that while redundancy is important,
many feature maps are similar or even identical to each other. They
refer to these similar feature maps as “ghosts” of each other. The
authors further noted that generating such redundant maps with
convolutional modules is unnecessary, as it requires a large amount
of computation and parameters. Figure 4 illustrates the idea behind
GhostNet.

GhostNet generates these redundant feature maps, called ghost
features, using inexpensive linear operations that operate on each
channel with lower computational cost than standard convolutional
operations. The authors of Han et al. [28] also introduced the Ghost
bottleneck, specially designed for small-sized networks. Similar to a
ResNet residual block He et al. [29], the proposed bottleneck layer
consists of two stacked Ghost modules: 1) the first acts as an
expansion layer, increasing the number of channels, and 2) the
second reduces the number of channels to match the shortcut path
that connects the inputs and outputs of these Ghost modules. Batch
normalization and ReLU are applied after each layer, except that
ReLU is not employed after the second Ghost module. Figure 5
illustrates the Ghost bottleneck.

2.3 ShuffleNet

ShuffleNet was proposed by Zhang et al. Zhang et al. [30], and it
employs two main operations, namely, group convolution and channel
shuffle. Group convolution allows data from different channels to
strengthen the representation, whereas channel shuffle facilitates the
efficient implementation of group convolution. Additionally, channel
shuffle is differentiable, which means it can be embedded into different
architectures for end-to-end training.

A ShuffleNet unit comprises a pointwise group convolution,
followed by a channel shuffle operation. The second pointwise

operation aims to recover the channel dimension and match the
shortcut path. Batch normalization and ReLU are also employed.
Figure 6 illustrates a ShuffleNet unit with no stride.

3 Methodology

This section describes the dataset used in the experiments, the
lightweight architectures, the experimental setting, and themeasures
used for evaluation purposes.

3.1 Dataset

We used the “COVID-19 Radiography Dataset”1, which
comprises 15,153 chest X-ray images divided into three classes:
1) 1,345 images positive to viral pneumonia, 2) 3,616 images positive
to COVID-19, and 3) 10,192 images from healthy people. Figure 7
depicts some examples from the dataset.

3.2 Neural architectures

We considered five deep neural architectures that use different
mechanisms for training purposes:

• MobileNetV1 Howard et al. [25]: It receives 224 × 224 RGB
images that are forwarded to a 3 × 3 convolutional layer with

FIGURE 5
Ghost bottlenecks for stride value greater or equal to 2.

FIGURE 6
ShuffleNet unit with no stride (i.e., stride = 1).

1 Available at https://www.kaggle.com/tawsifurrahman/covid19-
radiography-database.
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stride fixed to 2 pixels that outputs 32 feature maps; further,
three blocks composed of a depthwise convolution with a 3 ×
3 × 32 kernel, stride set to 1, pointwise convolution with a 1 ×
1 × 32 × 64 kernel (stride set to 1), a depthwise convolution
with 3 × 3 × 32 kernel, stride set to 2, and another pointwise
convolution with a 1 × 1 × 32 × 64 kernel (stride set to 1);
5 convolutional blocks composed of a depthwise convolution
with a 3 × 3 × 512 kernel (stride set to 1), followed by a
pointwise convolution with a 1 × 1 × 512 × 512 kernel (stride
set to 1); two blocks of a depthwise convolutional with a 3 × 3 ×
512 kernel (stride set to 2) followed by a pointwise convolution
with a 1 × 1 × 512 × 1, 024 kernel (stride set to 1); average
pooling with a 7 × 7 kernel (stride set to 1); and a softmax layer
with 1,280 inputs and 1,000 outputs, for it has been designed
to be trained on ImageNet dataset.

• MobileNetV2 Sandler et al. [26]: It receives 224 × 224 RGB
images that are forwarded to a 3 × 3 convolutional layer with
stride fixed to 2 pixels that outputs 32 feature maps; further,
7 bottleneck layers are applied for a subsequently 3 × 3
convolution with stride set to 1 pixel; average pooling with
a 7 × 7 window is employed for the further application of a
softmax layer with 1,280 inputs and 1,000 outputs, for it has
been designed to be trained on ImageNet dataset.

• MobileNetV32 Howard et al. [27]: It receives 224 × 224 RGB
images that are forwarded to a 3 × 3 convolutional layer with
stride fixed to 2 pixels that outputs 16 feature maps; further,
three blocks composed of bottleneck with a 3 × 3 kernel,

8 blocks composed of bottleneck with a 5 × 5 kernel, a
pointwise convolution (stride set to 1); average pooling
with a 7 × 7 kernel (stride set to 1), two blocks composed
of a pointwise convolution (stride set to 1) with no batch
normalization; and a softmax layer with 1,024 inputs and
1,000 outputs, for it has been designed to be trained on
ImageNet dataset.

• GhostNet Han et al. [28]: It receives 224 × 224 RGB images
that are forwarded by a first convolutional layer of size 3 ×
3; the following 16 modules stand for Ghost bottlenecks for
the further application of a 1 × 1-sized convolutional
operation, then an average pooling with a window of size
7 × 7 and another 1 × 1-sized convolutional operation are
performed; a fully connected layer receives 1,280 features
and outputs 1,000 neurons since it has been designed to be
trained on ImageNet dataset; the last layer stands for a
softmax layer.

• MobileNetV1 Howard et al. [25]: It receives 224 × 224 RGB
images that are forwarded to a 3 × 3 convolutional layer
with stride fixed to 2 pixels, outputting 32 feature maps.
Then, three blocks are applied, each consisting of a
depthwise convolution with a 3 × 3 × 32 kernel, a stride
set to 1, followed by a pointwise convolution with a 1 × 1 ×
32 × 64 kernel and stride set to 1. Afterward, five
convolutional blocks are applied, each consisting of a
depthwise convolution with a 3 × 3 × 512 kernel (stride
set to 1), followed by a pointwise convolution with a 1 × 1 ×
512 × 512 kernel (stride set to 1). Finally, two blocks of a
depthwise convolutional layer with a 3 × 3 × 512 kernel
(stride set to 2) followed by a pointwise convolutional layer
with a 1 × 1 × 512 × 1, 024 kernel (stride set to 1) are

FIGURE 7
Some samples from the dataset: (A,B) images positive to viral pneumonia, (C,D) images positive to COVID-19, and (E,F) images from healthy people.

2 We considered the MobileNetV3-Small in this manuscript.
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applied, along with average pooling with a 7 × 7 kernel
(stride set to 1) and a softmax layer with 1,280 inputs and
1,000 outputs. It was designed to be trained on the
ImageNet dataset.

• MobileNetV2 Sandler et al. [26]: It receives 224 × 224 RGB
images that are forwarded to a 3 × 3 convolutional layer with
stride fixed to 2 pixels, outputting 32 feature maps. Then,
seven bottleneck layers are applied for subsequent 3 × 3
convolutions with stride set to 1 pixel. Next, average
pooling with a 7 × 7 window is employed, followed by a
softmax layer with 1,280 inputs and 1,000 outputs. It was
designed to be trained on the ImageNet dataset.

• MobileNetV33Howard et al. [27]: It receives 224 × 224 RGB
images that are forwarded to a 3 × 3 convolutional layer with
stride fixed to 2 pixels, outputting 16 feature maps. Then, three
blocks of bottlenecks with a 3 × 3 kernel are applied, followed
by eight blocks of bottlenecks with a 5 × 5 kernel, and a
pointwise convolution (stride set to 1). Next, average pooling
with a 7 × 7 kernel (stride set to 1) is applied, followed by two

blocks of pointwise convolution (stride set to 1) with no batch
normalization. Finally, a softmax layer with 1,024 inputs and
1,000 outputs is applied. It was designed to be trained on the
ImageNet dataset.

• Ghost Net Han et al. [28]: It receives 224 × 224 RGB images that
are forwarded by a first convolutional layer of size 3 × 3. The
following 16modules are Ghost bottlenecks, which involve a 1 ×
1-sized convolutional operation, average pooling with a 7 × 7
window, and another 1 × 1-sized convolutional operation. A
fully connected layer receives 1,280 features and outputs
1,000 neurons since it was designed to be trained on
ImageNet dataset; the last layer stands for a softmax layer.

• ShuffleNet Zhang et al. [30]: It receives 224 × 224 RGB images
that are passed through a 3 × 3 convolutional layer with stride
fixed to 2 pixels, resulting in 24 feature maps. Then a 56 × 56
max-pooling is applied. The network consists of a stack of
ShuffleNet units grouped into three stages, where the first
building block in each stage uses a stride of 2 and the second
uses a stride of 1. The final layers include global pooling with a
7 × 7 kernel, a fully connected layer with 1,000 output neurons,
and a softmax layer with 1,000 outputs. This architecture is
designed to be trained on the ImageNet dataset.

3.3 Experimental setting

Since deep neural architectures are being used, data
augmentation is performed on the training dataset to double its
size by horizontally flipping every training image. This
transformation does not affect the natural appearance of the
images since we are dealing with chest X-ray data.

Out of the 15,153 images, 12,122 are used to compose the
training set (80%), and the remaining 3,031 images are used as
the test set. Although our goal is not to outperform state-of-the-art
approaches in terms of COVID-19 identification, we understand

FIGURE 8
Training step loss.

TABLE 1 Training time over the COVID-19 Radiography Dataset.

Model Training time Times faster

MobileNetV1 89 m 58 s 2.3×

MobileNetV2 112 m 47 s 2.9×

MobileNetV3 37 m 57 s -

GhostNet 78 m 49 s 2.0×

ShuffleNet 42 m 39 s 1.12×

3 We considered the MobileNetV3-Small in this manuscript.
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that larger training sets would be helpful in building more consistent
models that could improve their accuracy.

All architectures mentioned in Section 3.2 were first trained on
ImageNet before being fine-tuned on the COVID-19 Radiography

Dataset for 100 epochs4. Notice that this last step was only
performed on the fully connected layers. Mini-batches of size
120 were used, with cross-entropy as the loss function, Adam
optimizer Kingma and Ba [31], and a learning rate of 3 × 10−5.

3.4 Quantitative analysis

The lightweight architectures evaluated in this manuscript will
be assessed using two standard measures: accuracy and F1-Score.
We opted to use F1-Score since the dataset is highly unbalanced,
with the vast majority of samples belonging to healthy individuals.

FIGURE 9
Testing set validation over different epochs: (A) accuracy and (B) F1-Score.

TABLE 2 Accuracy and F1-Score values concerning all models over the
testing set.

Model Accuracy F1-score

MobileNetV1 0.7275 0.5744

MobileNetV2 0.8545 0.7814

MobileNetV3 0.8799 0.8441

GhostNet 0.8443 0.7076

ShuffleNet 0.6929 0.3246

4 We used the official implementation provided by PyTorch Paszke
et al. [33].
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4 Experiments

This section presents the experiments comparing the lightweight
models for COVID-19 identification and, later, screenshots of the
developed web tool.

4.1 Comparison among light architectures

We begin by examining the behavior of the training loss, as shown
in Figure 8. We observe that MobileNetV2 and MobileNetV3 had the
fastest learning, closely followed by GhostNet. This suggests that the
improvements made to MobileNetV1 have had a significant impact.
ShuffleNet, while being the second most efficient for training, was the
slowest to learn. It uses group convolutions to capture more complex
relationships between filters and features, which do not appear to be
effective in this particular domain.We believe that COVID-19 images
have specific regions containing important information and do not
vary significantly from other datasets with natural images.

All models started with a relatively high loss in the first epochs,
but 20 iterations were sufficient to significantly reduce the error for
MobileNetV2, MobileNetV3, and GhostNet. As previously noted,
ShuffleNet did not produce satisfactory results. However, we believe
that other data augmentation methods, such as adding noise, could

increase dataset variability and benefit ShuffleNet. This could be a
topic for future work, as our primary objective here was to evaluate the
backbones themselves and not different data augmentation methods.

The following crucial information regarding the efficiency of the
lightweight models concerns the training step. Table 1 presents the
computational load required to train each model, reflecting the
neural backbone’s complexity and the number of parameters.
MobileNetV3 was the fastest model, followed by ShuffleNet. We
can observe three groups of models regarding their efficiency: 1) the
top group comprising MobileNetV3 and ShuffleNet, 2) the second
group composed of GhostNet and MobileNetV1, and 3) the less
efficient group consisting of MobileNetV2. MobileNetV2 includes
linear bottleneck layers and inverted residuals, which add an extra
computational cost to its counterparts. More layers, even if linear,
represent more parameters to learn. However, MobileNetV2 is one
of the best for training, as shown in Figure 8.

The third column in Table 1 shows the efficiency gain of all
techniques compared to the fastest one, i.e., MobileNetV3, which was
almost three times faster than its previous version, i.e., MobileNetV2.
Moreover, it was slightly more efficient than ShuffleNet (1.2×) but had
better learning capacity (Figure 8). Considering both the training loss
and computational time, MobileNetV3 emerged as the best option.

One last piece of information we shall consider is the
effectiveness of the testing set. As mentioned in Section 3.4, we

FIGURE 10
Primary screen of the web tool to identify COVID-19 from chest X-ray images.
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employed the standard accuracy and F1-Score to evaluate all
backbones quantitatively. Both measures are used in two distinct
ways: 1) mean accuracies over the testing using 100 epochs (the same
number of epochs used for training), and 2) the accuracy with the
best model selected in the previous step. Keeping track of the
accuracies over the test set gives us an idea of whether the model
was overfitting during training.We expect better recognition rates as
the number of epochs increases, though not being a rule.

Figures 9A, B illustrate the accuracy and F1-Score values over
the testing set, respectively. MobileNetV3 exhibited the expected
behavior, with accuracy and F1-Scores increasing as the number of
epochs increases. The same occurred for GhostNet and
MobileNetV2, although to a lesser extent. ShuffleNet displayed
the same behavior observed earlier, with the worst results. Its
accuracy did not change over time (Figure 9A).

Table 2 presents the mean accuracy and F1-Score values
considering all models over the testing set. Following the same
behavior, the most accurate model wasMobileNetV3, followed by its
previous version MobileNetV2. The MobileNetV3 obtained the best
results in all experiments, i.e., learning speed, training time, and

effectiveness over the test set. The outcomes also highlighted the
GhostNet as a reasonable architecture with a good trade-off between
recognition rate and computational training complexity.

4.2 Web tool

This section briefly presents a web tool that allows users to
upload a human chest X-ray image and receive its probability of
belonging to one of the following classes: 1) viral pneumonia, 2)
COVID-19, and 3) healthy5. Figure 10 illustrates the main home
page, where users can choose from up to five pre-trained lightweight
neural models (the same ones considered in this paper).

Figure 11 depicts the results of the web tool, showing the
probabilities computed by each neural model and a heatmap
highlighting the key regions used by eachmodel to make its decision.

FIGURE 11
Outcome screen with the outputs given by each neural model selected in the previous step. A heatmap is also provided.

5 The tool is available at http://xraycovid.space.
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The web tool has been deployed using Flask as the web framework,
Apache as the server, PyTorch for the machine learning models, and
Grad-CAM Selvaraju et al. [32] to generate the heatmaps.

5 Conclusion and future works

Thismanuscript compared five lightweight neural architectures to
cope with computer-assisted COVID-19 recognition: MobileNetV1,
MobileNetV2, MobileNetV3, GhostNet, and ShuffleNet. Experiments
were conducted in three rounds: 1) training learning convergence, 2)
training running time, and 3) efficiency over the testing set. Among all
models, MobileNetV3 was the best concerning all rounds mentioned
above, i.e., it has been the most effective for both training and testing
steps and the fastest for training purposes.

Another contribution was a web tool that allows anyone to
input chest X-ray images, choose one or more neural backbones,
and get their probabilistic outputs together with a heat map. We
expect the tool will serve anyone interested in having his images
analyzed. We are aware that other image modalities, e.g., CT
and lung ultrasound, are acknowledged to be more accurate
than X-rays to detect COVID-19. However, X-ray images are
more abundant and cheaper, with more datasets available.
Therefore, in future works, we intend to use more datasets
like CT and lung ultrasound and include more lightweight
neural backbones.
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