
Lightweight Obfuscation Techniques for Modeling
Attacks Resistant PUFs

Mohd Syafiq Mispan∗†, Basel Halak†, Mark Zwolinski†
†Electronics and Computer Science, University of Southampton, United Kingdom

e-mail: {msm1g14,bh9,mz@ecs.soton.ac.uk}
∗Faculty of Engineering Technology, Technical University of Malaysia Malacca, Malaysia

Abstract—Building lightweight security for low-cost pervasive
devices is a major challenge considering the design requirements
of a small footprint and low power consumption. Physical Unclon-
able Functions (PUFs) have emerged as a promising technology to
provide a low-cost authentication for such devices. By exploiting
intrinsic manufacturing process variations, PUFs are able to
generate unique and apparently random chip identifiers. Strong-
PUFs represent a variant of PUFs that have been suggested
for lightweight authentication applications. Unfortunately, many
of the Strong-PUFs have been shown to be susceptible to
modelling attacks (i.e., using machine learning techniques) in
which an adversary has access to challenge and response pairs.
In this study, we propose an obfuscation technique during post-
processing of Strong-PUF responses to increase the resilience
against machine learning attacks. We conduct machine learning
experiments using Support Vector Machines and Artificial Neural
Networks on two Strong-PUFs: a 32-bit Arbiter-PUF and a 2-
XOR 32-bit Arbiter-PUF. The predictability of the 32-bit Arbiter-
PUF is reduced to ≈ 70% by using an obfuscation technique.
Combining the obfuscation technique with 2-XOR 32-bit Arbiter-
PUF helps to reduce the predictability to ≈ 64%. More reduction
in predictability has been observed in an XOR Arbiter-PUF
because this PUF architecture has a good uniformity. The area
overhead with an obfuscation technique consumes only 788 and
1080 gate equivalents for the 32-bit Arbiter-PUF and 2-XOR 32-
bit Arbiter-PUF, respectively.

Keywords—Physical Unclonable Function (PUF); Arbiter-PUF;
Machine-Learning

I. INTRODUCTION

Low-cost pervasive devices such as Radio-Frequency Iden-
tification Devices (RFIDs) and wireless sensor nodes are the
foundations for building the next generation of ubiquitous
networks or the so-called Internet of Things (IoTs). Examples
of applications include secure access, health and social-security
cards, electronic passports, smart meters and smart homes. The
requirements of small footprints and low power consumption
for these resource-constraint pervasive devices introduce a sig-
nificant challenge to providing fundamental security services,
such as authentication and identification. It has been a practice
to store a binary vector (secret key) on the device to provide
an authentication mechanism. On-chip non-volatile memory
(NVM) is required to store the secret key. This may be too
costly for pervasive devices. Besides, storing a secret key
requires physical security measures such as hiding a secret key
in a complex chip layout which also brings additional cost.

Silicon Physically Unclonable Functions [1], or PUFs,
have been proposed as a low-cost solution for authenticating
pervasive devices. PUFs exploit the inherent manufacturing

process variations to map a set of challenges to a set of
responses, uniquely and randomly. Several works, [2], [3], [4],
[5], have demonstrated the suitability of PUFs to provide a
lightweight authentication protocol for area and energy con-
strained platforms, such as RFIDs and IoT nodes. The Arbiter-
PUF is one of the PUFs that has been suggested for lightweight
authentication applications, [6]. However, due to the lack of
complexity in the challenge to response mapping, it has been
shown that the Arbiter-PUF and its derivatives are susceptible
to modelling attacks resulting from machine learning (ML)
techniques, [7]. The Controlled-PUF has been proposed as
one technique to make the underlying PUF (e.g. Arbiter-
PUF) robust against an ML-attack by using hash functions
to process the logic of challenge and response, [8]. However,
hash functions consume thousands of logic gates, which is
too costly for low-cost pervasive devices that typically require
fewer than 1000 gates, [3]. In this paper, our goal is to reduce
the cost of implementation but still provide security against an
ML-attack. The main contributions of this work are:

1) We show that using an obfuscation technique in the
post-processing of the PUF’s responses can increase
the resilience against an ML-attack.

2) We also show that a 50% uniformity is the desired
property for PUFs and combined with the obfuscation
technique can further increase the resilience to an
ML-attack.

The rest of the paper is organized as follows. Section
II discusses the literature relating to ML-attacks and the
architecture of Arbiter-PUFs. Section III describes challenge-
response pair (CRP) generation, machine learning algorithms
and the attacker model used in our work. The analysis of an
ML-attack is presented in Section IV. Finally, conclusions are
drawn in Section V.

II. BACKGROUND

A. Related Work

ML-attack resistance describes the complexity of the chal-
lenge to response mapping for a particular PUF. An ML-attack
is most applicable to Strong-PUFs, [7]. As defined in [9],
Strong-PUFs are a type of PUF that are able to generate an
exponential number of challenge-response pairs (CRPs), as in
the Arbiter-PUF, [6]. However, the Arbiter-PUF can be easily
modelled by ML due to the linear addition of the inherent delay
values, [6]. Several PUFs have been derived from the Arbiter-
PUF to introduce a non-linearity into the mapping function of



Arbiter 

A

B

r

Switch Component

Input

C0 = 0 C1 = 1 Ck = 1Ck-1 = 0

∆t

Fig. 1: Arbiter-PUF

the CRPs, such as the Feed-forward Arbiter-PUF, [10], XOR-
PUF, [11] and Lightweight Secure PUFs, [2]. Although these
Arbiter-PUF’s derivatives increase the ML-attack resistance,
ML techniques are still able to model them with high accuracy,
[7]. Elsewhere, Gassend et al, [8], proposed a Controlled-PUF
which uses a one-way hash function to increase the mapping
complexity of the CRPs in a Strong-PUF. The challenges
are pre-processed by the hash function before being applied
to the Strong-PUF and the responses of the Strong-PUF are
post-processed by the hash function before being output by
the Controlled-PUF. For any attacker that only has access to
the interface of the device, the Controlled-PUF successfully
disables an ML-attack. Nevertheless, a one-way hash function
is too costly for low-cost pervasive devices.

A few works focus on how to increase the resilience against
an ML-attack by controlling either the challenges or responses
during the authentication process. Rostami et al, [4], proposed
a sub-string matching technique in which only a subset of PUF
response strings is sent to the verifier during authentication.
Elsewhere, Gao et al, [5] proposed an Obfuscated-PUF (OB-
PUF) in which a partial challenge is sent by the verifier to
the OB-PUF (i.e., the prover). Subsequently, within an OB-
PUF, a partial challenge is padded with a random pattern
generated by a random number generator (RNG) to make up a
full-length challenge. Generally, both works, [4], [5], use the
same technique by only exposing a subset of either challenges
or responses. However, this might increase the authentication
time to run the matching algorithm, as well as the area, on
the verifier side. One might argue, however, that the area is
not a concern since the verifier has always been assumed to
be resource rich. In our work, we propose an obfuscation
technique to post-process the responses of Strong-PUFs. We
use the Arbiter-PUF and XOR Arbiter-PUF as test cases. Both
PUFs will be described in the next sections.

B. Arbiter-PUF and Model Description

The Arbiter-PUF [6] consists of k stages; each stage is
composed of two 2-to-1 multiplexers as shown in Figs. 1 and
2. A rising pulse at an input propagates through two nomi-
nally identical delay paths. The paths for the input pulse are
controlled by the the switching elements, which are set by the
bits of the challenge. For ck=0, the paths go straight through,
while for ck=1 they are crossed. Because of manufacturing
variations, however, there is a delay difference ∆t between
the paths. An arbiter at the end generates a response ‘0’ or ‘1’
depending on the difference in arrival times. In our simulation,
a set-reset (SR) latch has been used as the arbiter block.
The functionality of the Arbiter-PUF can be described by an

in0

in1

o

in0

in1

s

i1

i0

Ck

O0

O1

s

o

in0

in1

o

s

(a) (b)

Fig. 2: Switching element circuit; (a) 2-to-1 MUX, (b) Switch
component

additive linear model, [6], [7]. The total delays of both paths
are modelled as the sum of the delays in each stage (switch
components) depending on the challenge C (c1, c2...ck). The
final delay difference ∆t between the two paths in a k-bit
Arbiter-PUF can be expressed as:

∆t = ~wT ~Φ (1)

where parameter ~w is the delay-determined vector and ~Φ is the
feature vector. Both parameters are functions of the applied k-
bit challenge with dimension k + 1. As described in [5], we
denote δ

1/0
i as the delay in stage i for the crossed (1) and

uncrossed (0), respectively. Hence, δ1i is the delay of stage i
when ci = 1, while δ0i is the delay of stage i when ci = 0.
Then

~w = (w1, w2, ...wk, wk+1)T (2)

where w1 =
δ01−δ

1
1

2 , wi =
δ0i−1+δ

1
i−1+δ

0
i−δ

1
i

2 for all i = 2, ..., k,

and wk+1 =
δ0k+δ

1
k

2 . Furthermore,

~Φ(C) = (Φ1(C), ...,Φk(C), 1)T (3)

where ~Φj(C) =
∏k
i=j(1− 2ci) for j = 1, ..., k

From (2), the vector ~w encodes the delay in each stage of
the Arbiter-PUF and via ~wT ~Φ = 0 determines the separating
hyperplane in the space of all feature vectors, ~Φ. The delay
difference, ∆t, is the inner product of ~w and ~Φ. If ∆t >
0, the response bit is ‘1’, otherwise, the response bit is ‘0’.
Determination of this hyperplane allows prediction of the PUF.

C. XOR Arbiter-PUFs

The l-XOR Arbiter-PUF employs l individual Arbiter-
PUFs in parallel, each with k stages. The same k-bit challenge
is applied to all of them, and their individual outputs are
XORed to produce a final response, tXOR, [11]. The XOR
function helps to make the uniformity of the Arbiter-PUF close
to the ideal value of 50%. The uniformity is a measure of the
proportion of 0’s and 1’s in the response bits of a PUF and it
is calculated using the Hamming Weight (HW), [12]. For the



2-XOR Arbiter-PUF, the probability of the tXOR output being
‘1’ is given as:

P (tXOR = 1) = P (X ∪ Y )− P (X ∩ Y ) (4)
= P (X) + P (Y )− 2P (X)P (Y ) (5)

where P (X) and P (Y ) are the probabilities of the two Arbiter-
PUF outputs being one, respectively. We found that the average
uniformity of Arbiter-PUFs is around 30% to 35%. Based on
(5), as l or the number of XORs increases, the uniformity
become very close to the ideal value of 50%. Because of the
importance of the uniformity metric in improving the resilience
to an ML-attack, we also considered the XOR-Arbiter-PUF
here. We used a 2-XOR Arbiter-PUF in combination with our
obfuscation technique.

III. METHODOLOGY

In this section, we briefly discuss the simulation setup for
CRP generation, the ML algorithms, and the threat model used
in this work.

A. CRP Generation

For CRP generation, a 32-bit Arbiter-PUF has been imple-
mented in a low-κ 65-nm technology node and simulated using
the BSIM4 (V4.5) transistor model with a nominal supply
voltage of 1.2V and a room temperature of 25oC. Intrinsic
variations such as effective length, effective width, oxide
thickness and threshold voltage are modelled in Monte Carlo
simulations using the built-in fabrication standard statistical
variation (3σ variations) in the technology design kit. A total
of 32000 CRPs have been generated for ML-attack analysis.

B. Machine Learning

In our study, we have employed two machine learning
techniques: Support Vector Machine (SVM) and Artificial
Neural Network (ANN). SVM has been previously used for
testing the modelling-attack resistance of Strong-PUFs, [6],
[7], [13]. An SVM classifies the binary response of a Strong-
PUF by finding the best hyperplane that separates all data
points of one class (response 1’s) from those of the other
class (response 0’s). We performed a 5-fold cross-validation
to determine the SVM’s best kernel setting (linear, radial basis
function or polynomial) for a particular set of data. Once
the best kernel is determined, we incrementally increased the
amount of training data, extracted each of the SVM models,
applied the test data that is not part of the training data and
computed the prediction accuracy.

We also considered an ANN since it is known to have the
capability of modelling highly non-linear systems. An ANN is
a system formed by interconnected computing nodes called
neurons. The simplest ANN has only one hidden layer of
neurons. In each neuron, all input vector values are weighted,
summed, biased and applied to an activation function to
generate an output. During training, an error resulting from
the difference between a predicted and observed value is
propagated back through the network and the neuron’s weight
and bias are adjusted and updated. The training process stops
when the prediction error reaches a predefined value or a pre-
determined number of epochs is completed. Based on our ML
experiments, resilient back-propagation has been chosen as the

best training algorithm considering the prediction accuracy and
fast convergence time; this is consistent with the explanation
elsewhere, [14]. Both the SVM and ANN are implemented in
MATLAB.

C. Threat Model

An adversary may have several motives for attacking
deployed low-end devices, such as gaining secure access or
an electronic passport, through RFID, or to report fake data
in smart metering. In order to achieve one of these goals,
we assume that the attacker is restricted to non-invasive CRP
measurement. The attacker only has access to the interface of
the device, and can apply a polynomial number of challenges
to the device and then collect the corresponding responses.
Further, the attacker tries to derive a numerical model from the
CRPs data by using ML techniques, as described in Section
III-B.

IV. ANALYSIS

A. PUF Modelling Attack

As explained in Section II-A, a Controlled-PUF uses a
secure one-way hash function to break the relationship between
challenges and responses. With our threat model (Section
III-C), a Controlled-PUF successfully disables a modelling
attack since it is known to be a hard problem to invert a one-
way function. However, a one-way hash function consumes
area and is power-hungry. To demonstrate this, we compiled
readily-available SHA-1 and SHA-256 Verilog code, [15],
using Synopsys Design Compiler. The area and power for
SHA-256 are 12980 gate equivalents (GE) and 1.688mW,
respectively. The area and power for SHA-1 are 9567 GE
and 1.256mW, respectively. Clearly, one-way hash functions
are too costly for low-cost pervasive devices, which typically
require fewer than 1000 gates, [3].

Nevertheless, one important thing to be learned from SHA-
1 and SHA-256 is that the hashing of input and output is
exaggerated by an iterated compression function and obfusca-
tion of their internal states, [16]. Learning from this, we could
construct a simple technique of obfuscation for post-processing
of a PUF’s responses as shown in Fig. 3. L is the length of
the PUF response string in bits and n is the length of the bit
string that gets combined. In our study, L = 32 and n = 8.

A B C D

B A D C

L

n

Fig. 3: Obfuscation of PUF responses

We applied the obfuscation technique of Fig. 3 to a 32-bit
Arbiter-PUF and a 2-XOR 32-bit Arbiter-PUF. We evaluated
the resiliency of this technique against ML-attack by using an
SVM and ANN. Figure 4 shows the results of an ML-attack



0 0.5 1 1.5 2 2.5 3

·104

40

50

60

70

80

90

100

CRPs

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

no-obfus-SVM
no-obfus-ANN

obfus-SVM
obfus-ANN

(a) 32-bit Arbiter-PUF

0 0.5 1 1.5 2 2.5 3

·104

40

50

60

70

80

90

100

CRPs

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

no-obfus-SVM
no-obfus-ANN

obfus-SVM
obfus-ANN

(b) 2-XOR 32-bit Arbiter-PUF

Fig. 4: ML-attack for 32-bit Arbiter-PUF and 2-XOR 32-bit
Arbiter-PUF using SVM and ANN

using both ML techniques. For a comparison, the ML-attack
without obfuscation is also shown in Fig. 4. As can be seen
from Fig. 4a, without an obfuscation technique, the Arbiter-
PUF can be modelled easily with a prediction accuracy of 99%
at ≈ 30000 CRPs. The resilience against an ML-attack is better
for the 2-XOR Arbiter-PUF but still can be predicted with high
accuracy, as shown in Fig. 4b. As discussed in Section II-C, the
XOR Arbiter-PUF has a uniformity close to the ideal value of
50%, hence, increasing the randomness and unpredictability.
Although the 2-XOR Arbiter-PUF can still be predicted in
this case, it is interesting to note that uniformity is indeed an
important metric for a PUF.

With an obfuscation technique, the prediction accuracy is
reduced dramatically to ≈ 70% at 30000 CRPs for the Arbiter-
PUF. Combining the obfuscation technique with the 2-XOR
Arbiter-PUF helps to further reduce the prediction accuracy
to ≈ 64% at 30000 CRPs. Here, we can see that a good
uniformity caused by the XOR function helps to increase the
resilience to the ML-attack by about 6%. From (1), without ob-
fuscation, the challenges can be easily classified by generating

the response ‘0’ or ‘1’ via a separating hyperplane ~wT ~Φ = 0.
However, the obfuscation technique introduces a non-linear
function which increases the complexity of the challenge to
response mapping. Hence, the obfuscated response can be
expressed as:

∆tobfus = f(~wT ~Φ) (6)

Overall, an obfuscation technique helps to increase the
resilience to ML-attacks. From an ML perspective, we note
that for all the test cases in Fig. 4, the ANN learning curve
is slower at the beginning given a small set of training data.
However, as the training data increases, the ANN is better than
SVM especially for the XOR Arbiter-PUF which proves that
the ANN is suitable for highly non-linear systems.

B. Impact of L and/or n Variations on ML-attack

So far we have discussed only one set of permutations (see
Fig. 3) for L = 32 and n = 8. In our study, the values of L and
n in Fig. 3 are powers of two. Therefore, we have evaluated the
impact of an ML-attack using an ANN on a 32-bit Arbiter-PUF
with L = 32 and L = 64 for a set of n = {32, 16, 8, 4, 2, 1}
and the obfuscation technique shown in Fig. 3. As can be seen
in Fig. 5, as n reduces the probability of prediction is higher
for both L = 32 and L = 64 because some of the challenges
to response mappings are essentially not obfuscated. A similar
pattern has been observed for the 2-XOR 32-bit Arbiter-PUF
as n reduces.

C. Impact of Other Permutations on ML-attack

All of the above analysis has only considered an obfus-
cation technique with the permutations shown in Fig. 3. As
discussed in Section IV-A, with L = 32 and n = 8, the total
number of permutations can be calculated from (7) which gives
a total of 23 permutations.

Total Permutations =

(
L

n

)
!− 1 (7)

An ML-attack for all 23 possible permutations, using the
ANN algorithm for the 32-bit Arbiter-PUF and the 2-XOR
32-bit Arbiter-PUF is shown in Fig. 6. It is clear that different
permutations have different susceptibilities to an ML-attack
which causes the spread of the prediction accuracy as the
number of CRPs for ML training increases. However, from
our analysis, we found no distinct pattern between different
permutations and the probability of being random once the
L-bit response is permuted or obfuscated is as observed in
Section IV-B. From (6), it might be the case that different
permutations induce a different level of non-linearity into (1)
which causes a different susceptibility to an ML-attack. We
also observed the spread of all 23 possible permutations for
L = 64 and n = 16 as the number of CRPs for ML training
increases. However, the best and the worst prediction accuracy
for L = 64 and L = 32 do not occur on a similar set of
permutations. Nevertheless, one interesting observation is that
the prediction accuracy of a permutation, as in Fig. 3, is always
at the middle point of the observed spread for L = 64 and
L = 32 (i.e., compare Fig. 4 and Fig. 6). This indicates that the
prediction accuracy of this permutation could be a benchmark
if we have to choose a permutation from a very large number
of possible permutations for use as the response obfuscation.



0 0.5 1 1.5 2 2.5 3

·104

40

50

60

70

80

90

100

CRPs

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

n=16
n=8
n=4
n=2
n=1

(a) L = 32

0 0.5 1 1.5 2 2.5 3

·104

40

50

60

70

80

90

100

CRPs

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

n=32
n=16
n=8
n=4
n=2
n=1

(b) L = 64

Fig. 5: ML-attack using ANN for 32-bit Arbiter-PUF with
varying n.

It is desirable to increase the possible number of permu-
tations to decrease the susceptibility to a random guess of
a challenge to response mapping. To achieve that, from (7)(
L
n

)
≥ 16, which gives at least a total of 1013 permutations.

D. Power, Area and Predictability Comparison

In Section IV-A, we have presented an obfuscation tech-
nique. From the hardware perspective, this technique can be
implemented with serial-in-parallel-out (SIPO) and parallel-in-
parallel-out (PIPO) registers. Fig. 7 shows the main functional
unit blocks (FUBs) within a typical low-cost pervasive device,
which are a 32-bit linear feedback shift register (LFSR), a
32-bit Arbiter-PUF or 2-XOR 32-bit Arbiter-PUF, a 32-bit
SIPO and a 32-bit PIPO. The LFSR is used to generate L
challenges to apply to the PUF to generate an L-bit response
string which is stored in an L-bit SIPO shift register. Once the
L-bit response string has been generated, it is moved to the L-

0 0.5 1 1.5 2 2.5 3

·104

40

50

60

70

80

90

100

CRPs

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

DCBA DCAB DBCA DBAC DACB DABC

CDBA CDAB CBDA CBAD CADB CABD

BDCA BDAC BCDA BCAD BADC BACD

ADCB ADBC ACDB ACBD ABDC

(a) 32-bit Arbiter-PUF

0 0.5 1 1.5 2 2.5 3

·104

40

50

60

70

80

90

100

CRPs

Pr
ed

ic
tio

n
A

cc
ur

ac
y

[%
]

DCBA DCAB DBCA DBAC DACB DABC

CDBA CDAB CBDA CBAD CADB CABD

BDCA BDAC BCDA BCAD BADC BACD

ADCB ADBC ACDB ACBD ABDC

(b) 2-XOR 32-bit Arbiter-PUF

Fig. 6: ML-attack using ANN of all possible permutations with
L = 32 and n = 8

bit PIPO where the connectivity between SIPO and PIPO has
been obfuscated according to Fig. 3. An obfuscated response
in PIPO is sent to the verifier for authentication. As mentioned
in Section IV-A, in our study, L has been set to 32. Therefore,
the area and power for the FUBs have been estimated based
on a 32-bit response string using Synopsys Design Compiler.
If one has to increase the size of L, it only impacts the size
of the SIPO and PIPO registers.

As reported in [3], low-cost pervasive devices typically
require fewer than 1000 gate equivalents. From Table I, the
estimated area and the prediction accuracy for a 32-bit Arbiter-
PUF and a 2-XOR 32-bit Arbiter-PUF with an obfuscation
technique indicate that this technique can provide secure and
lightweight authentication of low-cost pervasive devices. Com-
pared to an XOR Arbiter-PUF without an obfuscation, they
have a reasonably low area overhead but there the responses
can be predicted with high accuracy. An OB-PUF proposed



TABLE I: Comparison of Area, Power and Prediction Accuracy

Type Area [GE] Power [mW] CRPs Prediction Accuracy [%]
32-bit Arbiter-PUF + proposed obfuscation 788 0.155 3× 104 70.6
2-XOR 32-bit Arbiter-PUF + proposed obfuscation 1080 0.197 3× 104 64.0
2-XOR 32-bit Arbiter-PUF [11] 918 0.163 3× 104 98.9
3-XOR 32-bit Arbiter-PUF [11] 1210 0.205 3× 104 98.4
Lightweight OB-PUF [5] NR NR 2× 104 63.27
Controlled-PUF [8] 26251 3.42 NA unpredictable [9]

LFSR PUF

SIPOPIPO

Fig. 7: Functional unit blocks within low cost pervasive devices

in [5] achieves approximately similar prediction accuracy as
the 2-XOR 32-bit Arbiter-PUF with an obfuscation technique
at 20000 CRPs. Nevertheless, the area and power of OB-PUF
were not reported. With our attacker model as explained in
Section III-C, Controlled-PUF which uses a one-way hash
function makes the input-output relation of PUF unpredictable
and therefore, disables the ML-attack [9]. For a comparison,
the area and power for Controlled-PUF are included in Table
I which was calculated from the architecture proposed in [8],
but without considering the error correction code (ECC), and
with the 32-bit Arbiter-PUF as the underlying PUF and SHA-
256 as the hash function. Clearly, our obfuscation technique
has much less area – it is more than 24× smaller.

V. CONCLUSION

Providing security such as authentication for low-cost
pervasive devices is a significant challenge due to the small
footprint and low power consumption. Strong-PUFs are a
promising technology to provide low-cost authentication for
pervasive devices. However, the susceptibility to ML-attack
is still a major concern. In this paper, we have proposed a
simple obfuscation technique for post-processing of Strong-
PUF responses to increase the resilience to an ML-attack.
Using this technique, we are able to reduce the predictability of
Arbiter-PUF responses to ≈ 70%. Combining the obfuscation
technique with a PUF that has a good uniformity (i.e., close
to an ideal value of 50%), such as the XOR Arbiter-PUF,
helps to further reduce the predictability to ≈ 64%. Our
obfuscation technique consumes only 788 and 1080 GEs when
implemented with the 32-bit Arbiter-PUF and the 2-XOR 32-
bit Arbiter-PUF, respectively. Hence, this technique is suitable
for lightweight security devices.

VI. ACKNOWLEDGMENTS

The authors would like to thank Ministry of Educa-
tion Malaysia (MOE) and Technical University of Malaysia

Malacca (UTeM) for financial support.

REFERENCES

[1] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon physical
random functions,” in ACM Conference on Computer and Communica-
tions Security, 2002, pp. 148–160.

[2] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
PUFs,” in IEEE/ACM International Conference on Computer-Aided
Design, 2008, pp. 670–673.

[3] E. Oztürk, G. Hammouri, and B. Sunar, “Towards robust low cost
authentication for pervasive devices,” in IEEE International Conference
on Pervasive Computing and Communications, 2008, pp. 170–178.

[4] M. Rostami, M. Majzoobi, F. Koushanfar, D. Wallach, and S. Devadas,
“Robust and reverse-engineering resilient PUF authentication and key-
exchange by substring matching,” IEEE Transactions on Emerging
Topics in Computing, vol. 2, pp. 37–49, 2014.

[5] Y. Gao, G. Li, H. Ma, S. F. Al-Sarawi, O. Kavehei, D. Abbott, and D. C.
Ranasinghe, “Obfuscated challenge-response: A secure lightweight au-
thentication mechanism for PUF-based pervasive devices,” in IEEE
International Conference on Pervasive Computing and Communication
Workshops, 2016, pp. 1–6.

[6] D. Lim, “Extracting secret keys from integrated circuits,” MSc. Thesis,
Massachusetts Institute of Technology, 2004.

[7] U. Ruhrmair and J. Solter, “PUF modeling attacks: An introduction
and overview,” in Design, Automation & Test in Europe Conference &
Exhibition, 2014, pp. 1–6.

[8] B. Gassend, M. van Dijk, D. Clarke, E. Torlak, and S. Devadas, “Con-
trolled physical random functions and applications,” ACM Transactions
on Information and System Security, vol. 10, no. 4, pp. 15:1 –15:22,
2008.

[9] U. Rührmair, J. Sölter, F. Sehnke, X. Xu, A. Mahmoud, V. Stoyanova,
G. Dror, J. Schmidhuber, W. Burleson, and S. Devadas, “PUF modeling
attacks on simulated and silicon data,” IEEE Transactions on Informa-
tion Forensic and Security, vol. 8, pp. 1876–1891, 2013.

[10] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. V. Dijk, and S. Devadas,
“Extracting secret keys from integrated circuits,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 10, pp.
1200–1205, 2005.

[11] G. E. Suh and S. Devadas, “Physical Unclonable Functions for de-
vice authentication and secret key generation,” in ACM/IEEE Design
Automation Conference, 2007, pp. 9–14.

[12] M. S. Mispan, B. Halak, and M. Zwolinski, “NBTI aging evaluation of
PUF-based differential architectures,” in IEEE International Symposium
on On-Line Testing and Robust System Design, 2016, pp. 103–108.

[13] M. S. Mispan, B. Halak, Z. Chen, and M. Zwolinski, “TCO-PUF: A
subthreshold physical unclonable function,” in IEEE PRIME, 2015, pp.
105–108.

[14] G. Hospodar, R. Maes, and I. Verbauwhede, “Machine learning attacks
on 65nm Arbiter PUFs: Accurate modeling poses strict bounds on
usability,” in IEEE International Workshop on Information Forensics
and Security, 2012, pp. 37–42.

[15] J. Strömbergson, “sha256,” https://github.com/secworks/sha256, 2013.
[16] National Institute of Standards and Technology (NIST), FIPS PUB

180-4: Secure Hash Standard (SHS), August 2015. [Online]. Available:
http://www.itl.nist.gov/fipspubs/


