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 
Abstract—Object detection is a focal point in remote sensing 

applications. Remote sensing images typically contains a large 

number of small objects and a wide range of orientations across 

objects. This results in great challenges to small object detection 

approaches based on remote sensing images. Methods directly 

employ channel relations with equal weights to construct 

information features leads to inadequate feature representation in 

complex image small object detection tasks. Multi-scale detection 

methods improve the speed and accuracy of detection, while small 

objects themselves contain limited information, and the features 

are easily lost following down-sampling. During the detection, the 

feature images are independent across scales, resulting in 

discontinuity at the detection scale. In this paper, we propose the 

Multi-Scale Context and enhanced Channel Attention (MSCCA) 

model. MSCCA employs PeleeNet as the backbone network. In 

particular, the feature image channel attention is enhanced and 

the multi-scale context information is fused with multi-scale 

detection methods to improve the characterization ability of the 

convolutional neural network. The proposed MSCCA method is 

evaluated on two real datasets. Results show that for 512 × 512 

input images, MSCCA was able to achieve 80.4% and 94.4% mAP 

on the DOTA and NWPU VHR-10, respectively. Meanwhile, the 

model size of MSCCA is 21% smaller than that of its predecessor. 

MSCCA can be considered as a practical lightweight oriented 

object detection model in remote sensing images. 

 

Key words—Object Detection, Multi-scale Context, Channel 

Attention, Lightweight convolutional neural network, Remote 

Sensing. 

I. INTRODUCTION 

he object detection plays a key role in remote sensing 

algorithms and applications. They can be roughly divided 

into traditional and deep learning object detection approaches. 

Traditional object detection methods (HOG[1], SVM[2], 

DPM[3] etc.) generally include a region proposal, feature 

extraction and classification, resulting in a low detection 

efficiency and poor accuracy due to complex procedures, a 

large number of redundant windows and the poor robustness of 

manual feature extraction methods. Thus, traditional detection 

methods are hardly meeting the object detection performance 

demands. The emergence of deep learning-based methods has 
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achieved significant breakthroughs in object detection [4]-[6]. 

Deep learning-based object detection methods mainly can be 

divided into two types: i) two-stage detection models, which 

defines detection as a "coarse-to-fine" process; and ii) 

one-stage detection models, which defines detection as a 

"one-step" process [7]. 

     Two-stage detection approaches are generally region-based 

and extract a set of object proposals that potentially contain the 

objects using methods such as selective searching or region 

proposals. These sets are subsequently fed into a Convolutional 

Neural Network (CNN) for feature extraction. The classifiers 

then predict the presence of an object within each region and 

recognize the object categories. R-CNN[8] is a typical 

two-stage detector that generates proposals by selective 

searching and normalizes their size and inputs them to the CNN 

to extract the features. SVM is then applied to recognize object 

categories within each region. Fast R-CNN[9] improves 

R-CNN by using a multi-task loss to increase the detection 

quality. Faster R-CNN[10] introduces the Region Proposal 

Network (RPN), whereby the majority of the individual blocks 

in the object detection framework (region proposal, feature 

extraction, bounding box regression, etc.) are gradually 

integrated into an end-to-end learning framework. Mask 

R-CNN[11] includes a branch to segment an object based on 

Faster R-CNN and simultaneously performs instance 

segmentation and object detection. Libra R-CNN[12] integrates 

IoU-balanced sampling, a balanced feature pyramid and a 

balanced L1 loss to reduce the imbalance at the sampling, 

feature extraction and training procedures, respectively. 

Although two-stage object detection methods have made a 

great progress in detection tasks, they are limited by large 

amounts of parameters and slow detection speeds. HSP[13] 

considers the utilization and propagation of hierarchical 

semantic information in the optimized process of the detection 

network to improve object detection performance in remote 

sensing imagery. 

One-stage detection methods apply a single CNN to divide 

the image into multiple regions and simultaneously predict the 

bounding boxes and category of each region. This process 

greatly improves the detection speed, yet reduces the detection 

accuracy compared to two-stage detectors. YOLO[14] is a 

typical one-stage object detection method that treats object 

detection as the solution of a regression problem, applying a 

single CNN to the full image. This network simultaneously 

predicts the bounding boxes and category for each region. 

SSD[15] is an additional one-stage detection method that sets 

default boxes with different aspect ratios in each feature map to
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Fig. 1. The structure of MSCCA.

perform multi-scale detection, significantly improving the 

one-stage detector detection accuracy. FMSSD[16] leverages 

the Atrous Spatial Feature Pyramid (ASFP) module to integrate 

the context information into the framework, improving the 

robustness of features. RetinaNet[17] proposes the focal loss, 

whereby the detector pays more attention to samples that are 

difficult to classify during the training process. This maintains a 

high detection speed while matching the accuracy of two-stage 

detection methods. RefineDet[18] proposes the Anchor 

Refinement Module (ARM) and Object Detection Module 

(ODM) to improve the detection efficiency without reducing 

the detection speed. M2Det[19] propose the Multi-Level 

Feature Pyramid Network (MLFPN), and construct more object 

feature pyramids to detect objects at different scales. Based on 

FCN, FCOS[20] is an anchor-free detector that abandons 

anchor generation process, reducing memory footprints and 

improving the detection accuracy.  MS-VANs [21] proposed a 

visual attention-based network and simultaneously predict 

object class at each pixel of the feature maps, and use visual 

attention network to highlight the features from the object 

region and decrease the influence of cluttered backgrounds. 

S
2
A-Net [44] implemented full feature alignment and alleviates 

the inconsistency between regression and classification by 

using Feature Alignment Module (FAM) and Oriented 

Detection Module (ODM). 

For small object detection tasks, SNIP[23] and SNIPER[24] 

employ scale normalization, and only detect objects with a 

fixed size for scale-specific feature maps. SNIPER reduces the 

computation of the multi-scale image pyramid generation and 

accelerates multi-scale training. DEFace[25] proposes the 

extended Feature Pyramid Network (FPN[26]) module with a 

Receptive Context Module (RCM) to enhance the 

distinguishability and robustness of features. TridentNet[27] 

constructs a parallel multi-branch architecture and adopts a 

scale-aware training scheme to specialize each branch by 

sampling the object instances of proper scales for training. 

SCRDet++[28] introduces denoising process to object 

detection, whereby instance-level denoising on the feature map 

is performed to enhance the detection of small and cluttered 

objects. Stitcher[29] dynamically generates stitched images to 

enrich small object samples and adaptively determines whether 

the input of the next iteration is the original or the stitched 

image, which improves the small object loss contribution. 

In the traditional convolutional pooling process, the 

convolution operation does not consider the dependence of 

each feature channel. In addition, the importance of each 

channel in the generated feature image is considered to be the 

same, yet in the actual problem, the importance is actually 

distinct across channels. One-stage detection methods employ 

multi-scale detection that extract multi-scale feature maps from 

different layers of the network for predictions. Although this 

does not increase the amount of calculations, the small object 

itself has less pixel information and is easily lost during 

downsampling[30]. 
In this paper, we propose the Multi-Scale Context and 

enhanced Channel Attention (MSCCA) model. MSCCA 

employs PeleeNet as the backbone network. In particular, the 

feature image channel attention is enhanced and the multi-scale 

context information is fused with multi-scale detection methods 

to improve the characterization ability of the convolutional 

neural network[31]. The proposed method is evaluated on two 

real datasets. Results show that for 512 × 512 input images, 

MSCCA was able to achieve 80.4% and 94.4% mAP on the 

DOTA and NWPU VHR-10, respectively. Meanwhile, the 
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model size of MSCCA is 21% smaller than that of its 

predecessor. MSCCA can be considered as a practical 

lightweight oriented object detection model in remote sensing 

images. 

The rest of this paper is structured as follows. In Section II, 

the multi-scale context and enhanced channel attention model 

is described. In Section III, two real datasets DOTA and NWPU 

VHR-10 are presented. In Section IV, the datasets are used to 

evaluate the proposed MSCCA model. Both the detection 

accuracy and model size are summarized. Section V concludes 

this paper with some remarks and hints at plausible future 

research lines. 

II. METHODS 

Multi-scale context and enhanced channel attention model 

employs the PeleeNet [32] as the backbone, while the enhanced 

channel attention block is added to balance the channel features 

that have a positive effect on detection and weakens the channel 

features that have no effect. Then, the multi-scale context 

structure combines high-level and low-level features within the 

multi-scale detection framework. Fig. 1 presents the whole 

structure of MSCCA. Objects in remote sensing images 

typically exhibit large scale changes, arbitrary-orientation and 

irregular shapes. Thus, seven different scale feature maps are 

employed for multi-scale objects. Moreover, the quadrilateral 

representation is used in location loss for objects with 

arbitrary-orientation and irregular shapes. 

A. Backbone 

PeleeNet improves employs a large number of dense layers 

that consist of two branches that extract multi-scale features in 

the receptive field. ResBlock is added prior to the detection of 

each feature map. Moreover, MSCCA includes the ECA Block 

following each transition layer of the network structure. Due to 

the large size of the remote sensing images, in order to ensure 

the detection accuracy of small objects, the image is not resized 

and the input size set to 512 x 512 pixels. 

The entire network consists of five stages. Stage0 only 

contains Stem Block, which is a low-cost and efficient module 

that can effectively improve the feature extraction ability with a 

minimal increase in computational cost. Stem Block initially 

employs a 3×3 convolution layer to downsample the image and 

subsequently divides it into two branches that use i) the max 

pooling layer to downsample the image and ii) one 1×1 and one 

3×3 convolution layer. The two branches are merged to the 

channel dimension via concat. 

The remaining components consists of dense and transition 

layers. The dense layer can acquire receptive fields at multiple 

scales and consists of two branches, one of which employs one 

1×1 and one 3×3 convolution layer, while the other uses one 

1×1 and two stacked 3×3 convolution layers. The two branches 

are merged with the previous feature to the channel dimension 

via concat. The transition layer includes a 1×1 convolution 

layer and a 2×2 average pooling layer with a stride of 2. 

 

 

TABLE 1 BACKBONE 

Stage Layer Feature Map 

Input 512×512×3 

Stage0 Stem Block   256×256×32 

Stage 1 

Dense Block Dense Layer x 3 

128×128×32 Transition Layer 
1×1 Conv , stride 1 

2×2 Ave pool ,stride 2 

ECA Block  

Stage 2 

Dense Block Dense Layer x 3 

64×64×256 Transition Layer 
1×1 Conv , stride 1 

2×2 Ave pool ,stride 2 

ECA Block  

Stage 3 

Dense Block Dense Layer x 3 

32×32×512 Transition Layer 
1×1 Conv , stride 1 

2×2 Ave pool ,stride 2 

ECA Block  

Stage 4 

Dense Block Dense Layer x 3 

16 ×16×704 Transition Layer 
1×1 Conv , stride 1 

2×2 Ave pool ,stride 2 

ECA Block  

B. Enhanced Channel Attention 

The attention mechanism in the convolutional neural 

network draws on the human visual attention mechanism. 

Human vision quickly scans a global image to obtain the 

required object area, generally referred to as the focus of 

attention. Additional attention is then focused on this area to 

obtain more detailed information about the target object, while 

suppressing other useless information. In general, some 

features learned in the convolutional neural network will be 

redundant for the object detection task[33]. For example,the 

Relu layer will generate a large number of parameters with a 

value of 0, while visualizing the intermediate feature image can 

demonstrate the inability of some channels to detect the object. 

Thus, during network training, some channels are more 

important than other channels. In order to emphasize these 

important channels, we include the channel attention structure 

ECA Block to the model (Fig. 2) based on SE Block[34].  
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Fig. 2. Enhanced channel attention block. 

In ECA Block, for any given feature map 
C H W

X
  , the 

global average pooling layer is implemented to generate 

features 
1 1C

M
  : 

  
1 1

1
,

H W

c c

i j

M X i j
H W  


   (1) 

where C is the number of channels; H  and W  are the 
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height and width of the image, respectively;  cM  indicates the 

feature obtained after the current channel performs global 

average pooling on 
cX ; c is the current channel; and

   ,cX i j  is the feature value of input feature image  cX  

under coordinates  ,i j  The feature image of each channel 

accumulates all the values, averages them to generate feature 

cM  and subsequently combines features M  of C  channels. 

Two Fully Connected (FC) layers are implemented. The first 

FC layer uses the Relu activation function to generate features 

of / 1 1C r   size, where r  is a hyperparameter and is used 

to change the ECA Block parameter in the network. Here, we 

set r  to 16 following the previous experience of SE Block. 

The second FC layer uses the Sigmoid activation function to 

generate feature 
1 1C

S
  :   

   2 1S W W M   (2) 

where 1W  and 2W  represent two fully connected operations; 

δ and σ are two activation functions; S is the generated feature 

and represents the importance of each feature channel 

following feature selection. The normalized weight is 

multiplied to the feature of each channel to output feature 
C H W

U
  : 

  ,scalec c c c cU F X S S X   (3) 

where 1 2[ , , , ]c cU U U U   represents the feature 

generated following the scale operation for current channel c . 

The scale operation multiplies each element in cS  and cX  to 

generate feature U for each channel. 

We add the ECA Block to the proposed network to enhance 

the channel attention. The ECA Block is a simplified structure, 

which consists of a global average pooling operation, two full 

connections layers and a scale operation. Therefore, ECA 

Block can be used to replace the complex convolution 

component of the network in order to reduce the number of 

network parameters. For example, after replacing the additional 

convolution layer with ECA Block, the amount of network 

parameters is reduced from 7.06M to 5.08M. Our results 

demonstrate that including the ECA Block can generally 

improve the detection accuracy and reduce the amount of 

parameters (Section 4.3). 

C. Multi-scale Context  

The CNN in object detection is associated with a high 

shallow network resolution and low deep network resolution. 

Shallow convolution features represent the details of the object, 

while deep convolution features indicate the semantic 

information. However, using multi-scale feature maps for 

object detection ignores the detailed features in the shallow 

convolution features. Such shallow convolution features play a 

vital role in the detection of small objects. In order to fuse the 

scale context information[35][36], we include the FPN-based 

SC structure to the network. In table 2, we added convolutional 

layers to the end of the backbone to extract low-scale feature 

maps.  
TABLE 2 FEATURE PYRAMID. 

Feature Pyramid Layer Feature Map 

FP5 
1×1 conv , stride 1  

3×3 conv , stride 2 
8×8×256 

FP6 
1×1 conv , stride 1  

3×3 conv , stride 2 
4×4×256 

FP7 
1×1 conv , stride 1  

3×3 conv , stride 2 
2×2×256 

FP8 
1×1 conv , stride 1  

4×4 conv , stride 1 
1×1×256 

MSCCA employs feature maps of different sizes to 

independently detect objects of varying sizes. In our proposed 

framework, the pyramid is constructed via bottom-up and 

top-down pathways, and lateral connections (Fig. 3). For every 

scale feature image (with the exception of the highest level), we 

upsample the spatial resolution by a factor of 2 (via bilinear 

interpolation upsampling) and merge with the same sized 

feature image convolved by 1×1. Feature maps of other sizes 

undergo the same procedure until a new feature pyramid is 

generated. Feature maps that fully integrate the scale context 

information are then adopted to detect objects of different 

scales. 

  upsampleU F X S     (4) 

For each feature layer X of the pyramid, 
C H W

X
  . X 

is upsampled to twice the scale and fused with S in the channel 

dimension to generate feature
O H W

U
  . 

L H W
S

   is 

a feature of the same scale as X . Fusing the features via the 

concat operation can make an excessively large feature 

dimension. Thus, we reduced the number of channels. 
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D. Loss Function   

Remote sensing images typically exhibit arbitrary object 

orientations. Thus, MSCCA employs quadrilateral bounding 

boxes to detect objects across different directions. The location 
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information of the bounding box is expressed as 

 , , ,x y w h ,whereby   ,x y  represents the center point 

coordinates of the bounding box, and w and h are the width and 

height of the bounding box, respectively. If we define the 

default box as  , , ,b x y w h , then the corresponding 

quadrilateral is represented as 

 1 1 2 2 3 3 4 4, , , , , , ,q x y x y x y x y , whereby  ,i ix y  are the 

coordinates of the four vertices of the quadrilateral frame. 

The loss function is divided into the confidence loss confL  

and the location loss locL : 

       1
, , , , , ,conf locL x c l g L x c L x l g

N
   (5) 

where α is the weight; N is the number of matched default 

boxes; x∈{1,0} is the matching value indicating whether the 

default box matches the ground truth; c is the confidence; l is 

the predicted bounding box; and g is the ground truth. 

Positioning loss locL  is a smooth L1 loss between the predicted 

bounding box and ground truth. If the overlap between the 

default box and ground truth exceeds the threshold (0.5), then it 

is considered as a positive sample: 

    1, ˆ,
N

k m m

loc ij i j

i Po

L

s m

L l smoothx g x l g


   (6) 

where  1 1 2 2 3 3 4 4m , , , , , , , , , , ,x y w h x y x y x y x y , (x, 

y) represents the center coordinates of the box;   1,0k

ijx   is 

an indicator of the match between the i-th predicted bounding 

box and the j-th ground truth; Pos is a positive sample; k is a 

ground truth object category; and ˆ m

jg  represents the coded 

ground truth, which ensures that the weight of the ground truth 

center position and weakens the width and height widths:  

    ˆ ˆ/ /x x x w y y y h

j j i i j j i ig g d d g g d d      (7) 

  ˆ g ˆlo

w h

j jw h

j jw h

i i

g g
g g log

d d

   
       

   
 (8) 

    1 1 1 1ˆ ˆ/ /min minx yx x y yw h

j j i i j j i ig g d d g g d d     (9) 

    2 2 2 2ˆ ˆ / /max minx yx x y yw h

j j i i j j i ig g d d g g d d     (10) 

    3 3 3 3ˆ ˆ/ /max maxx x x y y yw h

j j i i j j i ig g d d g g d d     (11) 

    4 4 4 4ˆ ˆ/ /min maxx yx x y yw h

j j i i j j i ig g d d g g d d     (12) 

where d represents the default box; 
w

id  and 
h

id  are the 

width and height of the default box, respectively; , )( min minx y

and , ) ( max maxx y represent the coordinates of the upper left and 

lower right points of the horizontal default box, respectively; 

and is the
1Lsmooth  loss defined as: 
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Confidence loss confL  is described in formula (17) and can 

be divided into the cross entropy loss of the positive and 

negative samples.  
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where 
p

ic  is the multi-category output; confidence ˆ p

ic  is 

obtained following the activation of the Softmax function; p

represents the p-th category; the 0th category is the background; 

i is the i-th predicted bounding box; and Pos and Neg

indicate positive and negative samples, respectively. In order to 

ensure a balance, the ratio of the positive to negative sample is 

set to 3:1. 

III. DATASETS  

A. DOTA  

The DOTA dataset [37] was published on CVPR by Wuhan 

University. DOTA is a large-scale dataset used for the object 

detection of aerial images. It contains 2,806 aerial images from 

different sensors and platforms. The images in the DOTA-v1.0 

dataset were collected from Google Earth, some of which were 

taken by the satellite JL-1, and others were taken by the satellite 

GF-2 of the China Resources Satellite Data and Application 

Center. The size of each image ranges from approximately 800 

× 800 to 4000 × 4000 pixels, and contains objects of various 

proportions, orientations, and shapes. Current object detection 

methods generally divide small objects into two categories: i) 

objects smaller than 32 × 32 pixels; and ii) objects with a width 

and height less than one-tenth of the original image. Fig. 4 

presents the area distribution of all object types in the DOTA 

dataset, where the horizontal axis represents the object pixel 

area size and the vertical axis is the percentage of each category 

in a certain scale range.  The DOTA dataset contains a large 

number of small objects, the majority of which are aircrafts, 

cars, and boats. The objects are divided into the following 15 

categories: plane, ship, storage tank, baseball field, tennis court, 

basketball court, ground track field, harbor, bridge, large 

vehicle, small vehicle, helicopter, roundabout, soccer ball field 

and swimming pool. 

Due to the large number of pictures in the dataset and the 

large scale changes, we crop the pictures to a size of 512 × 512 

pixels and randomly select 3/5 of the samples as the training set, 

1/5 as the verification set, and 1/ 5 as the test set. 
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TABLE 3 DOTA DATASET DETECTION RESULTS. 

 

TABLE 4 NWPU VHR-10 DATASET DETECTION RESULTS. 

 Method PL SH ST BD TC BC GT HA BR VH mAP 

RICNN[47]  88.3 77.3 85.2 88.1 40.8 58.4 86.7 68.6 61.5 71.1 72.6 

COPD[48]  89.1 81.7 97.3 89.3 73.2 73.4 82.9 73.3 62.8 83.3 80.6 

Faster R-CNN[10] 94.6 82.3 65.3 95.5 81.9 89.7 92.4 72.4 57.5 77.8 80.9 

HyperNet[49] 99.4 89.7 98.6 90.9 90.6 90.3 89.2 80.3 68.9 88.6 88.7 

Pelee 99.5 93.4 90.8 97.2 90.7 96.0 95.9 88.9 88.9 90.7 93.2 

MSCCA 99.7 90.4 90.8 90.8 90.8 98.6 98.3 90.3 88.2 98.3 94.4 

 
Fig. 4. Area distribution map of the objects contained in the 

DOTA dataset 

B. NWPU VHR-10  

The NWPU VHR-10 dataset [38] is derived from a 10-level 

geographic remote sensing dataset for space object detection. 
The dataset includes 650 images containing objects and 150 

background images. The image content and object 

types/characteristics are similar to those of the DOTA dataset 

(Fig. 5). Although the dataset contains many object types, the  

 

number of samples is small, and the number and proportion of 

small objects is much less than that of the DOTA dataset. In 

particular, the NWPU VHR-10 dataset has almost no objects 

with an area of less than 1,000 pixels. The 10 types of objects 

are: airplane, ship, storage tank, baseball field, tennis court, 

basketball court, ground track field, harbor, bridge and vehicle. 
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Fig. 5. Area distribution map of the objects contained in the 

NWPU VHR-10 dataset 

IV. RESULTS  

A. DOTA Dataset Results 

The multi-scale object detection method generate candidate 

regions of different scales on the feature maps, which are of 

different receptive field sizes and the size of the default box is 

based on these receptive field sizes. The default box setting 

contains two features: the scale and aspect ratio. The scale of 

each feature image default box is set as follows: 

     1 , 1,
1

max min
k min

S
S S k k m

m

S 
   


 (15) 

where 
kS  is the scale of the default box to the image; 

minS  

and 
maxS  represent the ratio of the lowest and highest scales, 

set to 0.15 and 0.9, respectively; and m is the number of feature 

maps of different sizes. Once the default box scale 
kS  of each 

feature image layer is determined, the specific default box is 
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Method PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP Fps 

SSD[15] 41.0 24.3 4.55 17.1 15.9 7.72 13.2 39.9 12.0 46.8 9.09 30.8 1.36 3.50 0 17.8 59 

YOLOv2[39] 76.9 33.8 22.7 34.8 38.7 32.0 52.3 61.6 48.5 33.9 29.2 36.8 36.4 38.2 11.6 39.2 30 

RetinaNET[17]  78.2 53.4 26.3 42.2 63.6 52.6 73.1 87.1 44.6 57.9 18.0 51.0 43.3 56.5 7.4 50.3 14 

R-FCN[40] 81.0 58.9 31.6 58.9 49.7 45.0 49.2 68.9 52.0 67.4 41.8 51.4 45.1 53.3 33.8 52.5 9 

YOLOv3 错误!未找

到引用源。 

79.0 77.1 33.9 68.1 52.8 52.2 49.8 89.9 74.8 59.2 55.5 49.0 61.5 55.9 41.7 60.0 13 

DSSD[42] 91.1 71.8 54.6 66.4 79.0 77.2 87.5 87.6 52.1 69.7 38.0 72.6 75.4 59.4 28.9 67.4 9 

DYOLO[43] 86.0 71.4 54.6 52.5 79.2 80.6 87.8 82.2 54.1 75.0 51.0 69.2 66.4 59.2 51.3 68.1 17 

FPN[26] 88.7 75.1 52.6 59.2 69.4 78.8 84.5 90.6 81.3 82.6 52.5 62.1 76.7 66.3 60.1 72.0 6 

FMSSD[16] 89.1 81.5 48.2 67.9 69.2 73.5 76.8 90.7 82.6 73.3 52.6 67.5 72.3 80.5 60.1 72.4 16 

DRN[44]  89.7 82.3 47.2 64.1 76.2 74.4 85.8 90.5 86.1 84.8 57.6 61.9 69.3 69.6 58.4 73.2 9.8 

R3Det [45] 89.4 81.1 50.5 66.1 70.9 78.6 78.2 90.8 85.2 84.2 61.8 63.7 68.1 69.8 67.1 73.7 10 

SCRDET++[28]  90.0 84.3 55.4 73.9 77.5 71.1 86.0 90.6 87.3 87.0 69.6 68.9 73.7 71.2 65.0 76.8 13 

FR-EST[46]  89.7 85.2 55.4 77.7 80.2 83.7 87.5 90.8 87.6 86.9 65.6 68.7 71.6 79.9 66.2 78.4 — 

S2A-NET[22] 89.2 84.1 56.9 79.2 80.1 82.9 89.2 90.8 84.6 87.6 71.6 68.2 78.5 78.2 65.5 79.1 34 

Pelee 87.6 72.9 52.8 73.7 73.5 77.9 76.3 90.0 80.7 74.4 40.7 68.0 71.7 79.6 83.7 74.0 29.2 

MSCCA 89.7 84.9 64.5 81.3 77.3 83.9 84.8 90.4 86.2 77.1 54.8 79.7 78.0 84.4 89.1 80.4 32.3 
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calculated according to the pre-defined aspect ratio. When the 

aspect ratio is 1, the side lengths of the two square default boxes 

are equal to 
kS  and 

'

1k k kS S S  , where 
1kS   is the 

default box scale of the feature image in the next layer. If the 

aspect ratio does not equal 1, the default box is calculated as 

follows 

 /a a

k k k kw S a h S a   (16) 

a

kw
 and 

a

kh
 are the width and height of the candidate region of 

the k-th feature image; and a is the value of the aspect ratio.  

For the size of input image is 512×512, we select seven 

feature image scales to cover the different object sizes, as same 

as SSD[15], DSSD[42], FSSD[52], Rainbow SSD[53], 

Pelee[32], etc. The default box aspect ratios set to [[1,2,1/2], 

[1,2 ,3,1/2,1/3], [1,2,3,1/2,1/3], [1,2,3,1/2,1/3], [1,2,3 ,1/2,1/3], 

[1,2,1/2], and [1,2,1/2]].  

During training, the pre-trained model is employed to 

initialize the parameters. The learning rate is set at 0.005 for the 

first 120,000 iterations and is subsequently reduce by an order 

of magnitude after every 40000 iterations computation, with 

200,000 iterations in total. The momentum, weight decay and 

batch size are set to 0.9, 0.0005, and 16, respectively. The 

model is trained using the stochastic gradient descent method 

on four Nvidia Titan Xp GPUs.  

Table 3 is the test results of the MSCCA model on the DOTA 

dataset, while Fig. 6 depicts the results of the model leaflet test. 

The result proves that MSCCA has higher detection accuracy 

than Pelee in detecting various objects.Pelee achieves a 

detection accuracy of 74% on the DOTA dataset, while that of 

the proposed MSCCA is 80.4%. This demonstrates the ability 

of the ECA Block and scale context features to improve the 

detection accuracy. The proposed MSCCA has a higher 

detection accuracy than S2A-NET. 

The following is the detection results of SSD, Pelee and 

MSCCA on DOTA. As shown in Fig. 6, the information in 

Pelee is not enough to detect the objects. The prediction result 

of MSCCA outperforms the Pelee by a large margin. And the 

boxes of objects are regressed more accurately. 

B. NWPU VHR-10 Dataset Results 

The cropping, sample selection and settings of the NWPU 

VHR-10 dataset[38] follow those of the DOTA dataset. Seven 

feature maps of different sizes are used, and six default boxes of 

varying ratios are generated for each pixel and scale feature 

layer. However, in contrast to the DOTA dataset, the NWPU 

VHR-10 dataset only contains a horizontal manual annotation 

box, and thus the results are maintained in the horizontal box. 

The pre-trained PeleeNet model is employed to initialize the 

parameters during training, with a 0.005 learning rate for the 

first 60,000 iterations that is subsequently reduced by an order 

of magnitude until the total 80,000 iterations are complete. The 

momentum, weight decay and batch size are set to 0.9, 0.0005, 

and 16, respectively and training is performed using the 

stochastic gradient descent method using four Nvidia Titan Xp 

GPUs.  
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Fig. 6 . DOTA results of SSD (left), Pelee (middle) and 

MSCCA (right) 

Fig. 7. NWPU VHR-10 results of Pelee (left) and MSCCA 

(right) 

Table 4 is the detection results of the MSCCA model and 

other methods on the NWPU VHR-10 dataset. MSCCA 

outperforms the HyperNet by 5.7%. The following is the 

detection results of Pelee and MSCCA on NWPU VHR-10. 

Since there is no manual quadrilateral annotation in NWPU 

VHR-10 dataset, we use horizontal default box to detect.As 

same as results on DOTA, the detection effect of MSCCA is 

better than that of Pelee. 
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TABLE 5 INFLUENCE OF THE ECA BLOCK AND MSC STRUCTURE ON THE DETECTION PERFORMANCE FOR DOTA DATASET. 

Resblock-> 

ECA 

Transition 

layers-> ECA 

Additional 

layers-> ECA  

Add ECA after each 

stage 

MSC mAP Model size Speed 

(Nvidia Titan Xp) 

Parameters FLOPs 

     74.0 26.5 MB 29.2 fps  6.56M 4.58G 

√   √ √ 75.4 22.1 MB 32.2 fps   5.48M 3.93G 

   √  75.8 26.9 MB 30.0 fps   6.67M 4.58G 

 √   √ 78.9 25.2 MB 33.2 fps   6.26M 4.43G 

    √ 79.2 28.2 MB 31.9 fps  7.00M 5.36G 

   √ √ 80.2 28.6 MB 31.9 fps   7.10M 5.36G 

  √ √ √ 80.4 20.6 MB 32.3 fps    5.12M 5.02G 

 

TABLE 6 INFLUENCE OF THE ECA BLOCK AND MSC STRUCTURE ON THE DETECTION PERFORMANCE FOR NWPU-VHR DATASET. 

Resblock-> 

ECA 

Transition 

layers-> ECA 

Additional 

layers-> ECA  

Add ECA after each 

stage 

MSC mAP Model size Speed 

(Nvidia Titan Xp) 

Parameters FLOPs 

     93.2 26.4 MB 29.1 fps 6.52M 4.55G 

√   √ √ 93.5 21.9 MB 32.0 fps 5.43M 3.91G 

   √  93.8 26.8 MB 30.0 fps 6.63M 4.55G 

 √   √ 93.8 25.0 MB 32.8 fps 6.22M 4.40G 

    √ 94.0 28.2 MB 32.0 fps 6.95M 5.33G 

   √ √ 94.3 28.4 MB 32.0 fps 7.06M 5.33G 

  √ √ √ 94.4 20.5 MB 32.4 fps 5.08M 4.99G 

C. Ablation Study 

In order to investigate the impact of the ECA Block and 

MSC structure on the detection results, we created several 

training models for the DOTA dataset and NWPU VHR-10 

dataset to test using Nvidia Titan Xp and applied on Jetson TX2. 

We then evaluated the model size, detection speed and 

computational complexity of the proposed method.  

Table 5 and Table 6 is the impact of each structure in terms 

of the detection accuracy, parameter file size, and detection 

speed under a single Nvidia Titan Xp GPU. In Table 5, without 

any structure, Pelee achieves a detection result of 74.0% mAP.  

Following the addition of the ECA Block after each network 

stage, the accuracy improves to 75.8% mAP. This demonstrates 

the ability of the ECA Block to strengthen the characterization 

performance of the network, thus improving the detection 

results. The inclusion of the MSC structure fusion scale context 

further improves the detection accuracy to 80.2% mAP. We 

then evaluate the impact of the ECA Block, replacing the 

complex convolutional layer in the network. Replacing the 

ECA Block with Resblock or the transition layer reduces the 

network parameters yet the detection accuracy is also 

weakened. Following this, we include a convolutional layer to 

provide small-scale feature maps for the multi-scale detection 

framework. We use a pooling layer to replace the convolutional 

layer downsampling, and subsequently add the ECA Block to 

enhance the channel attention.  

For lightweight network, flops, model parameters and 

Memory Access Cost (MAC)[50][51] is widely used to 

measure the computational cost. Follow design guide of 

lightweight network, in the proposed structure MSC and ECA 

Block, we balanced the number of input and output channels for 

1×1 convolution and make their ratio approach 1:1. This 

operation have been proved to reduce the MAC of the network. 

With the addition of MSC structure, the parameters and flops of 

the model are increased, but the inference time of the model is 

accelerated. Compared with Pelee, this structure was able to 

achieve a mAP of 80.4% and 6.4% higher than Pelee. The 

model size reduced from 26.5 MB to 20.6 MB and detection 

speed increased from 30.0 fps to 32.3 fps. Thus, the MSCCA 

can be considered as a lightweight oriented object detection 

model in remote sensing images. 

V. CONCLUSIONS 

A lightweight Multi-Scale Context and enhanced Channel 

Attention (MSCCA) model was proposed in this paper. It 

employs PeleeNet as the backbone network. The feature image 

channel attention is enhanced and the multi-scale context 

information is fused with multi-scale detection methods to 

improve the characterization ability of the convolutional neural 

network. Results show that for 512 × 512 input images, 

MSCCA was able to achieve 80.4% and 94.4% mAP on the 

DOTA and NWPU VHR-10, respectively. Meanwhile, the 

model size of MSCCA is 21% smaller than that of its 

predecessor. MSCCA can be considered as a practical 

lightweight oriented object detection model in remote sensing 

images. In the future, the proposed MSCCA model will be 

applied to edge devices for object detection application in 

remote sensing images. Moreover, computing optimization 

methods (like TenserRT) will be used to improve the 

processing efficiency of model inference procedures. 

REFERENCES 

[1] N.Dalal and B.Triggs, "Histograms of oriented gradients for human 

detection," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., San Diego, 

CA, USA, pp. 886-893, July 2005. 

[2] T. Malisiewicz, A. Gupta and A. A. Efros, "Ensemble of exemplar-svms 

for object detection and beyond," Proc. IEEE Int. Conf. Comput. Vis., 

Barcelona, Spain, pp. 89–96, Nov 2011. 

[3] P . F. Felzenszwalb, R. B. Girshick, D. McAllester and D. Ramanan, 

"Object detection with discriminatively trained part-based models," IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627–1645, Sep 

2009. 

[4] Mahdianpari M ,  Ghanbari H ,  Mohammadimanesh F , et al. A 

Meta-Analysis of Convolutional Neural Networks for Remote Sensing 

Applications[J]. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 2021, PP(99):1-1. 

[5] Danfeng Hong, Lianru Gao, Naoto Yokoya, Jing Yao, Jocelyn Chanussot, 

Qian Du, Bing Zhang. “More Diverse Means Better: Multimodal Deep 
Learning Meets Remote Sensing Imagery Classification, IEEE 

Transactions on Geoscience and Remote Sensing,” 2020. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3079968, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

[6] Danfeng Hong, Naoto Yokoya, Gui-Song Xia, Jocelyn Chanussot, Xiao 

Xiang Zhu. " X-ModalNet: A Semi-Supervised Deep Cross-Modal 

Network for Classification of Remote Sensing Data," ISPRS Journal of 

Photogrammetry and Remote Sensing, 2020, 167: 12-23. 

[7] Zou Z, Shi Z, Guo Y, et al, "Object detection in 20 years: A survey," 2018, 

[online] http://arxiv.org/abs/1905.05055v1. 

[8] R. Girshick, J. Donahue, T. Darrell and J. Malik, "Rich feature hierarchies 

for accurate object detection and se-mantic segmentation," Proc. IEEE 

Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, pp. 580–587, 

June 2014. 

[9] R. Girshick, "Fast R-CNN," Proc. IEEE Int. Conf. Comput. Vis. Santiago, 

Chile, pp. 1440–1448, Dec 2015. 

[10] S. Ren, K. He, R. Girshick and J. Sun, "Faster r-cnn:Towards real-time 

object detection with region proposal networks," Advances in neural 

information processing systems, vol. 39, no. 6, pp. 91–99, June 2016. 

[11] K. He, G. Gkioxari, P . Dollár and R. Girshick, "Mask r-cnn," Proc. IEEE 

Int. Conf. Comput. Vis., Venice, Italy, pp. 2980–2988, Dec 2017. 

[12] Pang J , Chen K , Shi J , et al, "Libra R-CNN: Towards Balanced Learning 

for Object Detection," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 

Seattle, WA, USA, pp. 821-830, June 2019. 

[13] C. Xu, C. Li, Z. Cui, T. Zhang and J. Yang, "Hierarchical Semantic 

Propagation for Object Detection in Remote Sensing Imagery," Proc.  

IEEE Transactions on Geoscience and Remote Sensing, vol. 58, no. 6, pp. 

4353-4364, June 2020. 

[14] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, "You only look once: 

Unified, real-time object detection," Proc. IEEE Conf. Comput. Vis. 

Pattern Recognit., Las Vegas, NV, USA, pp. 779–788, June 2016. 

[15] W. Liu, D. Anguelov , D. Erhan, C. Szegedy , S. Reed, C.-Y .Fu and A. C. 

Berg, "SSD: Single shot multibox detector," Proc. Eur. Conf. Comput. 

Vis., Amsterdam, The Netherlands, pp. 21–37, June 2016. 

[16] Wang P , Sun X , Diao W , et al, "FMSSD: Feature-Merged Single-Shot 

Detection for Multiscale Objects in Large-Scale Remote Sensing 

Imagery," IEEE Trans. Geosci. Remote Sens., vol. 58, no. 9, 

pp.3377-3390,  Dec 2019. 

[17] Lin T Y , Goyal P , Girshick R , et al, "Focal Loss for Dense Object 

Detection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, 

pp.2999-3007, July 2018. 

[18] S. Zhang, L. Wen, X. Bian, Z. Lei and S. Z. Li, "Single-shot refinement 

neural network for object detection," Proc. IEEE Conf. Comput. Vis. 

Pattern Recognit., Salt Lake City, UT, USApp. 4203-4212, June 2018. 

[19] Zhao Q , Sheng T , Wang Y , et al, "M2Det: A Single-Shot Object 

Detector based on Multi-Level Feature Pyramid Network," Proc. IEEE 

AAAI., New Orleans, LA, USA, pp. 9259-9266, February 2018. 

[20] Tian Z, Shen C, Chen H, et al, "Fcos: Fully convolutional one-stage 

object detection," Proc. IEEE Int. Conf. Comput. Vis., Venice, Italy, pp. 

9627-9636, Oct 2017. 

[21] C. Wang, X. Bai, S. Wang, J. Zhou and P. Ren, "Multiscale Visual 

Attention Networks for Object Detection in VHR Remote Sensing 

Images," Proc.  IEEE Geoscience and Remote Sensing Letters, vol. 16, no. 

2, pp. 310-314, Feb  2019. 

[22] Qi Ming, Zhiqiang Zhou, Lingjuan Miao, Hongwei Zhang, and Linhao Li. 

“Dynamic anchor learning for arbitrary oriented object detection,” arXiv 

preprint arXiv:2012.04150, 2020. 

[23] B. Singh and L. S. Davis, "An analysis of scale invariance in object 

detection–snip," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Salt 

Lake City, UT, USA, pp. 3578–3587, June 2018. 

[24] B. Singh, M. Najibi and L. S. Davis, "Sniper: Efficient multi-scale 

training," Proc. Adv. Neural Inf. Process. Syst., Montréal, Canada, pp. 

9333–9343, 2018. 

[25] T. M. Hoang, G. P. Nam, J. Cho and I. -J. Kim, "DEFace: Deep Efficient 

Face Network for Small Scale Variations," IEEE Access, vol. 8, pp. 

142423-142433, July 2020. 

[26] Lin T Y , Dollar P , Girshick R , et al, "Feature Pyramid Networks for 

Object Detection," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 

Honolulu, HI, USA, pp. 936-944, July 2017. 

[27] Y . Li, Y . Chen, N. Wang and Z. Zhang, "Scale-aware trident networks 

for object detection," Proc. IEEE Int. Conf. Comput. Vis., Seoul, South 

Korea, pp. 6053-6062, October 2019. 

[28] Yang X , Yan J , Yang X , et al, "SCRDet++: Detecting Small, Cluttered 

and Rotated Objects via Instance-Level Feature Denoising and Rotation 

Loss Smoothing," 2020, [online] https://arxiv.org/abs/2004.13316. 

[29] Chen Y , Zhang P , Li Z , et al, "Stitcher: Feedback-driven data provider 

for object detection," CVPR, 2020. 

[30] J. Su, J. Liao, D. Gu, Z. Wang and G. Cai, "Object Detection in Aerial 

Images Using a Multiscale Keypoint Detection Network," IEEE J. Sel. 

Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 1389-1398, Dec. 

2021. 

[31] Y. Li, Q. Huang, X. Pei, Y. Chen, L. Jiao and R. Shang, "Cross-Layer 

Attention Network for Small Object Detection in Remote Sensing 

Imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 14, 

pp. 2148-2161, Dec. 2021. 

[32] Wang, R.J., Li, X., Ao, S., Ling and C.X, "Pelee: A real-time object 

detection system on mobile devices," Proc. Adv. Neural Inf. Process. 

Syst., Montréal, Canada, pp. 1967-1976, Dec 2018. 

[33] J. Wang, Y. Zheng, M. Wang, Q. Shen and J. Huang, "Object-Scale 

Adaptive Convolutional Neural Networks for High-Spatial Resolution 

Remote Sensing Image Classification," IEEE J. Sel. Topics Appl. Earth 

Observ. Remote Sens., vol. 14, pp. 283-299, Dec. 2021. 

[34] Jie H , Li S , Gang S , et al, "Squeeze-and-Excitation Networks," IEEE 

Trans. Pattern Anal. Mach. Intell., vol. 42, no. 8, pp. 2011- 2023, April 

2019. 

[35] Z. Tian, W. Wang, R. Zhan, Z. He, J. Zhang and Z. Zhuang, "Cascaded 

Detection Framework Based on a Novel Backbone Network and Feature 

Fusion," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, 

no. 9, pp. 3480-3491, Sept. 2019. 

[36] Z. Gao, H. Ji, T. Mei, B. Ramesh and X. Liu, "EOVNet: 

Earth-Observation Image-Based Vehicle Detection Network," IEEE J. 

Sel. Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 9, pp. 

3552-3561, Sept. 2019. 

[37] G. Xia et al., "DOTA: A Large-Scale Dataset for Object Detection in 

Aerial Images," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Salt 

Lake City, UT, USA, pp. 3974-3983, June 2018. 

[38] G. Cheng, J. Han, P. Zhou and L. Guo, "Multi-class geospatial object 

detection and geographic image classification based on collection of part 

detectors," ISPRS J. Photogramm. Remote Sens., vol. 98, no. 12, pp. 119–
132, Dec 2014. 

[39] Redmon J , Farhadi A, "YOLO9000: Better, Faster, Stronger," Proc. 

IEEE Conf. Comput. Vis. Pattern Recognit., Honolulu, HI, USA, 

pp.6517-6525, July 2017. 

[40] Dai J ,  Li Y ,  He K , et al. "R-FCN: Object Detection via Region-based 

Fully Convolutional Networks[C]// Advances in Neural Information 

Processing Systems". Curran Associates Inc.  2016. 

[41] Redmon J and Farhadi A, "Yolov3: An incremen tal improvement," arXiv 

preprint arXiv:1804.02767, 2018. 

[42] Fu C Y ,  Liu W ,  Ranga A , et al. DSSD : Deconvolutional Single Shot 

Detector[J].  2017. 

[43] Acatay O ,  Sommer L ,  Schumann A , et al. "Comprehensive Evaluation 

of Deep Learning based Detection Methods for Vehicle Detection in 

Aerial Imagery"，IEEE International Conference on Advanced Video and 

Signal Based Surveillance (AVSS). IEEE, 2018. 

[44] Xingjia Pan, Y uqiang Ren, Kekai Sheng, Weiming Dong, Haolei Y uan, 

Xiaowei Guo, Chongyang Ma and Changsheng Xu, "Dynamic 

Refinement Network for Oriented and Densely Packed Object 

Detection," Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Seattle, 

WA, USA, pp. 11204-11213, June 2020. 

[45] Xue Yang, Junchi Yan, Ziming Feng and Tao He, "R3det:Refined 

single-stage detector with feature refinement for rotating object," Proc. 

IEEE AAAI., Virtual Event, pp.11207–11216, February 2021. 

[46] Kun Fu, Zhonghan Chang, Yue Zhang and Xian Sun, "Pointbased 

estimator for arbitrary-oriented object detection inaerial images," IEEE 

Trans. Geosci. Remote Sens., pp.1-18, Sep 2020.  

[47] Gong C, Zhou P and Han J, "Learning Rotation-Invariant Convolutional 

Neural Networks for Object Detection in VHR Optical Remote Sensing 

Images,"IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, 

pp.7405-7415, Sep 2016.  

[48] G. Cheng, J. Han, P. Zhou and L. Guo, "Multi-class geospatial object 

detection and geographic image classification based on collection of part 

detectors," ISPRS J. Photogramm. Remote Sens., vol. 98, no. 1, pp. 119–
132, April 2014. 

[49] Kong T , Yao A , Chen Y , et al, "HyperNet: Towards Accurate Region 

Proposal Generation and Joint Object Detection," Proc. IEEE Conf. 

Comput. Vis. Pattern Recognit., Las Vegas, NV, USA, pp. 845-853, June 

2016. 

[50] Lee Y ,  Hwang J W ,  Lee S , et al. "An Energy and GPU-Computation 

Efficient Backbone Network for Real-Time Object Detection," 2019 

IEEE/CVF Conference on Computer Vision and Pattern Recognition 

Workshops (CVPRW). IEEE, 2019. 

[51] Ma N ,  Zhang X ,  Zheng H T , et al. "ShuffleNet V2: Practical Guidelines 

for Efficient CNN Architecture Design," European Conference on 

Computer Vision. Springer, Cham, 2018. 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3079968, IEEE Journal

of Selected Topics in Applied Earth Observations and Remote Sensing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

10 

[52] Z. Li and F. Zhou. Fssd: Feature fusion single shot multibox detector. 

arXiv preprint arXiv:1712.00960, 2017. 

[53] J. Jeong, H. Park, and N. Kwak. Enhancement of ssd by concatenating 

feature maps for object detection. In BMVC, 2017. 

 

 Qiong Ran received her Ph.D. degrees 

from the Institute of Remote Sensing 

Applications, Chinese Academy of 

Sciences (CAS), Beijing, China, in 2009. 

She has published over 10 papers in China 

and abroad. She is currently with the 

College of Information Science and 

Technology at Beijing University of 

Chemical Technology, Beijing, China. Her 

research interests include image acquisition, image processing, 

hyperspectral image analysis and applications.  

 

 Qing Wang received his bachelor degree 

from Qingdao Institute of Technology, 

China, in 2017. He is currently persuing 

his master's degree in College of 

Information Science and Technology at 

Beijing University of Chemical 

Technology, Beijing, China. 

 

 Boya Zhao received his B.Sc. degree 

from the School of Electrical Engineering 

and Information, Hebei University of 

Technology, Tianjin, China, in 2013 and 

Ph.D. degree in School of Electrical and 

Information Engineering, Beijing Institute 

of Technology, Beijing, China, in 2019. 

He is currently an assistant professor with 

the Key Laboratory of Digital Earth 

Science, Aerospace Information Research Institute, Chinese 

Academy of Sciences, Beijing, China. His research interest 

includes the object detection in complex background and 

on-board real-time information processing. 
 

Yuanfeng Wu received the B.S. and M.S. 

degrees in computer science from China 

University of Mining and Technology, 

Beijing, China, and the Ph.D. degree in 

cartography and geographical information 

system from the Graduate University of 

Chinese Academy of Sciences, Beijing, 

China, in 2010. He is currently an Associate 

Professor with the Key Laboratory of 

Digital Earth Science, Aerospace Information Research 

Institute, Chinese Academy of Sciences, Beijing, China. His 

research interests include the development of onboard real-time 

algorithms, high-performance computing implementation and 

computer software in hyperspectral image processing. 
 

 

 Shengliang Pu is with the Key 

Laboratory of Digital Earth Science, 

Aerospace Information Research Institute, 

Chinese Academy of Sciences, Beijing 

100094, China (e-mail: pusl@aircas.ac.cn) 

Shengliang Pu received the B.S. degree in Geodetic 

Engineering from the School of Geodesy and Geomatics, 

Wuhan University, China, in 2009; the M.S. degree in Software 

Engineering from the College of Computer Science, Inner 

Mongolia University, China, in 2013; and the Ph.D. degree in 

Photogrammetry and Remote Sensing from the School of 

Geodesy and Geomatics, Wuhan University, in 2019. He is 

currently a postdoc researcher with the Key Laboratory of 

Digital Earth Science, Aerospace Information Research 

Institute, Chinese Academy of Sciences, Beijing, China; and a 

lecturer with the Faculty of Geomatics, East China University 

of Technology, Nanchang, China. He has a wide variety of 

research interests in Remote Sensing. Currently, his research is 

mainly focused on hyperspectral remote sensing image 

processing. 
 

 

 Zijin Li received the B.S degree from the School of Earth and 

Space Sciences, Peking University, Beijing, China, in 2021.She 

is working toward the M.S. degree at the 

Aerospace Information Research Institute, 

Chinese Academy of Sciences, Beijing, 

China. Her research interest includes 

hyperspectral image processing and object 

detection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


