
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

Lightweight secure‑boot architecture for RISC‑V
System‑on‑Chip

Haj‑Yahya, Jawad; Wong, Ming Ming; Pudi, Vikramkumar; Bhasin, Shivam; Chattopadhyay,
Anupam

2019

Haj‑Yahya, J., Wong, M. M., Pudi, V., Bhasin, S., & Chattopadhyay, A. (2019). Lightweight
secure‑boot architecture for RISC‑V System‑on‑Chip. Proceedings of the 20th International
Symposium on Quality Electronic Design (ISQED), 216‑223.
doi:10.1109/ISQED.2019.8697657

https://hdl.handle.net/10356/143198

https://doi.org/10.1109/ISQED.2019.8697657

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works. The published version is available at:
https://doi.org/10.1109/ISQED.2019.8697657.

Downloaded on 28 Aug 2022 06:30:32 SGT

Lightweight Secure-Boot Architecture for RISC-V
System-on-Chip

Jawad Haj-Yahya1,2 Ming Ming Wong1 Vikramkumar Pudi1,3 Shivam Bhasin1 Anupam Chattopadhyay1
1Nanyang Technological University (NTU), Singapore

2Institute of Microelectronics, Agency for Science Technology and Research (ASTAR), Singapore
3Indian Institute of Technology (IIT), Tirupati, India

Abstract—Securing thousands of connected, resource-
constrained computing devices is a major challenge nowadays.
Adding to the challenge, third party service providers need
regular access to the system. To ensure the integrity of the
system and authenticity of the software vendor, secure boot
is supported by several commercial processors. However, the
existing solutions are either complex, or have been compromised
by determined attackers. In this scenario, open-source secure
computing architectures are poised to play an important role
for designers and white hat attackers.

In this manuscript, we propose a lightweight hardware-
based secure boot architecture. The architecture uses efficient
implementation of Elliptic Curve Digital Signature Algorithm
(ECDSA), Secure Hash Algorithm 3 (SHA3) hashing algorithm
and Direct Memory Access (DMA). In addition, the architecture
includes Key Management Unit, which incorporates an optimized
Physical Unclonable Function (PUF) for providing keys to the
security blocks of the System on Chip (SoC), among which, secure
boot and remote attestation. We demonstrated the framework on
RISC-V based SoC. Detailed analysis of performance and security
for the platform is presented.

Keywords—Secure Boot, Physical unclonable Function,
ECC, ECDSA, Hardware Security, IoT, Key Management,

I. INTRODUCTION

Boot is one of the critical points during the lifetime of
a secure system where system integrity can be compromised.
Many attacks break the software while the device is powered
down [1], performing an attack that, for example, replaces
the OS kernel image with one that has been tampered with,
making the system vulnerable. One of the principles applied
in secure systems is the generation of a chain of trust for
all software parts running from first boot loader up to trusted
applications, established from a root of trust that cannot easily
be tampered. This is known as a secure boot sequence. Thus,
all secure devices, including laptops, desktops, smart-phones
and IoT devices need to implement secure boot to assure
system integrity.

The existing architectures of secure boot are either com-
plex, or have been compromised by determined attackers [2],
[3], [4]. The recent growth of open-source hardware [5],
[6], [7] enables a transparent and thorough evaluation of
the security protocols. Contributing to this effort, this work
suggests a robust secure boot framework for the open source
RISC-V processors. To the best of our knowledge, this is the
first hardware based secure boot framework for RISC-V based
SoCs.

Our architecture introduces a lightweight hardware-based
secure boot. The architecture defines a centralized Code Au-
thentication Unit (CAU) that is responsible for verifying the
integrity of the chain of trust, starting from first boot loader

until the application as depicted in Figure 1. CAU uses efficient
implementation of Elliptic Curve Digital Signature Algorithm
(ECDSA) and Secure Hash Algorithm 3 (SHA3) hashing algo-
rithm. The use of ECDSA enabled easier integration of Physi-
cal Unclonable function (PUF) for asymmetric key generation
and management, which is realized using the Key Management
Unit (KMU). Moreover, a Direct Memory Access (DMA) is
used by the CAU for fast code reading and authentication.
We demonstrated the framework on RISC-V based System On
Chip (SoC), whereas the high level architecture of the system
is illustrated in Figure 2.

Code
Authentication

Unit (CAU)

Authentication
Pass/Fail

Second
Stage Boot

loader

Signature

Operating
System

Signature

Applications

Signature

First Stage
Boot loader

(ROM)

Signature

configure/report configure/report

configure/
report

configure/
report

pass pass pass

Fig. 1. Code Authentication Unit verifies the integrity of the chain of trust,
starting from first boot loader up to the application.

This work have the following contribution:

• Present new lightweight architecture for secure boot
that ensure system integrity and authenticity of the
software vendor.

• A framework including key management unit using
optimized Physical Unclonable Function (PUF) im-
plementation.

• Integration of the Code Authentication Unit into mod-
ern RISC-V SoC.

The rest of this manuscript is organized as follows: Section
II describes prior work and introduces secure boot concepts.
Section III describes in high level out RISC-V based secure
SoC. Our framework for secure boot is described in section
IV. Security analysis of secure boot is carried out at V. Section
VI present the framework evaluation. Section VII concludes.

II. BACKGROUND AND RELATED WORKS

Several RISC-V based projects focus on enhancing the
hardware security of the underlying SoC. Shakti-T [8] em-
ploys the concept of base and bounds to ensure that pointers
access only valid memory regions. SMARTS [9] implemented

Memory Protection Unit (MPU) that was integrated into RISC-
V SoC. The proposed framework provides integrity and con-
fidentiality of the external memory (DRAM). Keystone [10]
initiated an open-source project for building trusted execution
environments (TEE) with secure hardware enclaves, based on
the RISC-V architecture. Sanctum [11] introduced software
based secure boot and remote attestation process. However,
their work focus on software implementation of secure boot
that have several drawbacks compared to hardware imple-
mentation, as explained in section V. This work presents a
lightweight hardware based secure boot architecture for RISC-
V SoC, and describes Key Management Unit that uses PUF.

A. Secure Boot

The first boot protection mechanism was proposed by
Arbaugh et al. in [12]. They describe a way to verify the
integrity of a system by constructing a chain of integrity checks
of every stage of the boot process. Every stage in the boot
process has to verify the integrity of the next stage.

Secure boot is described in the Unified Extensible
Firmware Interface (UEFI) specification since version 2.2 [13].
UEFI secure boot verifies the integrity of each stage of the
boot process by computing a hash and comparing the result
with a cryptographic signature. A key database of trustworthy
public keys needs to be accessible during boot time so that the
signature can be verified. In secure boot, if any integrity check
fails, the boot will be aborted. If the boot process succeeds,
the system is expected to be running in a trusted state. This
definition of secure boot is widely accepted in the security
community ([14] and references therein).

Additional terms and variants of secure boot that describe
the integrity checks process, such as - Trusted Boot, verified
boot, authenticated boot, certified boot, or measured boot - are
also found in commercial products and some research articles,
all with different connotations. For example, Intel processors
support secure boot in two modes - measured and verified
modes. For both modes microcode on the processor is the root
of trust for the boot sequence [15]. In the measured mode a
Trusted Platform Module (TPM) is responsible for storing and
attesting to the measurements, while in verified mode each
component is signed by the manufacturer and these signatures
are verified prior to loading the component. Another variant
of secure boot mechanism is where the root of trust is built on
immutable hardware that is integrated inside a dedicated secure
processor. For instance, Hardware Validated Boot (HVB) is an
AMD-specific form of secure boot that roots the trust to Read
Only Memory (ROM) [16]. The ROM validates the secure boot
key, which will later be used to validate the larger processor
firmware that is fetched from the system flash.

B. Digital Signature Authentication

Digital signature based authentication is a well-known
technique arising from public-key cryptography. It is used in
most web browsers (for SSL) and email packages. All public-
key cryptographic systems have their security based on certain
mathematical problems that are difficult to solve. For example,
RSA [17], has its security based on the difficulty of factoring
integers. Similarly, Elliptic Curve Cryptography (ECC) [18]
has its security based on the elliptic curve discrete logarithm
problem (ECDLP). The most popular signature scheme which

uses elliptic curves is called the Elliptic Curve Digital Signa-
ture Algorithm (ECDSA), the most popular encryption scheme
is called the Elliptic Curve Integrated Encryption Scheme
(ECIES) and the most popular key agreement method is called
Elliptic Curve Diffie-Hellman (ECDH) [19].

NISTs standard for Digital Signatures [20] recommends us-
ing a prime field, GF (p) , or a binary extension field GF (2m)
for Elliptic Curves. Binary Extension Fields have the advantage
that field additions can be performed by XOR operations,
therefore no carry is involved. This leads to implementations
that require lesser area and have better performance. While
Standards for Efficient Cryptography Group (SECG) [21] has
defined the Koblitz curve secp256k1 that is used by online
cryptocurrency Bitcoin [22]. NIST curves are more widely
used and has received more scrutiny than other SECG curves.

C. Physical Unclonable Function (PUF)

Physical Unclonable Functions extract volatile secret keys
from semiconductor manufacturing variation that only exist
when the chip is powered on. The first documented use of
PUF generated keys in a secure processor setting was in
the AEGIS processor [23]. The PUF was used to generate a
symmetric key shared with the client through a cryptographic
protocol. Recently, PUFs are used as symmetric key generators
in commercial products such as Xilinx Ultrascale Zynq FPGAs
[24] and Intel/Altera [25] FPGAs. For Public Key Algorithms
(PKA), PUF can be used to generate a random seed for
asymmetric (public/private) key generator inside of a secure
processor, such as [26].

III. OVERVIEW OF SECURE RISC-V SOC

Rocket
Core

L1 Cache

Coherent Fabric

L2 Cache

Memory Protection Unit (MPU)

Memory Controller (MC)

DRAM

I/
O

 F
ab

ri
c

UART

SPI

BRAM

Ethernet

ROM

Debug

CAU

ECDSA SHA3

DMA CTRL

Boot
Sequncer

System on Chip
KMU

CHLNGS
Storage TRNG

PUF CTRL

Rocket
Core

L1 Cache
2

1

3

4

5

.

.

.

Pub Keys

Fig. 2. Architecture of our secure SoC. Main security units are highlighted:
(1) Key Management Unit, (2) Code Authentication Unit, (3) Secure Debug,
(4) Trusted Execution Environment and (5) Memory Protection Unit.

The secure SoC presented in this study is built upon
lowRISC [6] as the baseline processor. LowRISC is an open
source processor which implements the open RISC-V Instruc-
tion Set Architecture (ISA) [27], [28]. The secure system de-
veloped in this project is equipped with security functionality,
such as, secure boot, encryption and authentication of off-chip
memory, key management and cryptographic accelerators as
depicted in Figure 2.

Essentially, a secure SoC has to be robust against the at-
tacks in both hardware and software. Therefore, the developed
secure RISC-V SoC implements various features to protect
against known attacks on the computing system hardware, and
the software that is running on it. As illustrated in Figure 2,
these features include:

• Key Management Unit 1 generate and distribute the
keys to the various security blocks, such as Code Au-
thentication Unit (CAU), Secure Debug and Memory
Protection Unit.

• Code Authentication Unit 2 to protect against at-
tacks such as: Image Hacking, Botnet Enrolling and
Cold-Boot attack. secure boot is implemented using
Code Authentication Unit (CAU) and Boot-Sequencer
block.

• Secure Debug 3 to protect against various hardware
threats such as Key Extraction, Illicit Debugging,
Probing and Side Channel Attacks (SCA).

• Trusted Execution Environment (TEE) 4 guaran-
tees isolated execution environment for the trusted
application, this feature is essential for protecting
against attacks such as: Software Exploitation, Priv-
ilege Escalation and Botnet Enrolling.

• Trusted Off-Chip Memory 5 is an essential feature
that protects against Side-Channel Attacks (SCA),
Probing and Key Extraction from main memory. In
addition, it is used by the TEE to load and execute
trusted applications, thereby protecting the code and
data of the running applications.

This paper highlight two major designs, namely the Code
Authentication Unit (CAU) and the Key Management Unit
(KMU) which play the vital roles in providing secure boot
in the secure RISC-V SoC.

IV. FRAMEWORK OF TRUSTED AND SECURE BOOT IN
RISC-V SOC

A feasibly secure RISC-V SoC shall establish a chain
of trust at the early stage of boot sequence and needed be
maintained during the OS and applications run. The chain
starts with the first stage where the immutable bootloader
is run from the read-only-memory (ROM). This bootloader
cryptographically verifies the signature of the second stage
bootloader in the chain and then, this subsequent bootloader
again cryptographically verifies the signature of the next
software image(s) and so forth. At the end of the chain, a
trusted application is verified before it is running on the trusted
execution environment (TEE) of the SoC.

A. Bootloader (BBL) in RISC-V

The main bootloading procedure instructions for RISC-V is
defined in the Berkeley Boot Loader (BBL), which is the actual

bootloader for the SoC. BBL performed several functions such
initializing all peripheral devices, setting up page table and
virtual memory and loading the choice of kernel (Linux) into
virtual memory and finally boot the kernel.

The entire boot flow is conducted in multiple stages. In
Stage 1, the configured hardware RISC-V SoC contains a
storage ROM loaded with bare metal boot (C program). This
boot program is required to load the actual bootloader, BBL.
Next, Stage 2 involved copying/moving the BBL to DDR
RAM. The size of BBL is in fact larger than on-chip boot
ROM. Hence, in the recent development of RISC-V, there are
two options available to facilitate this process,

• SD-Boot: The BBL is loaded from digital card storage
connected externally to the RISC-V core.

• Etherboot: The bare metal boot loader advertises its
presence on the network to incoming ARP queries.

With that, the loaded program will be an ELF file which
contains BBL with the choice of kernel (such as Linux). In this
second option, the ELF file (BBL+kernel) is segmented into
UDP packets before sending over the network. Final Stage
3 involved launching BBL in machine mode and sets up the
machine mode trap vectors and proceed with execution of the
kernel.

B. Secure Boot as Chain of Trust

The boot process in RISC-V begins by executing the
hard-coded instructions (termed as ROMSlave located at
uncore/src/main/scala/rom.scala) which its sole
purpose is to jump from the reset vector (termed as ResetVec-
tor) to the start of the BRAM.

Therefore, these hard-coded instructions are
calculated based on ResetVector which is characterized
in a configuration file (chisel code located in
src/main/scala/Configs.scala). The initial reset
vector is described in function makeBootRom() (chisel code
located in src/main/scala/LowRISCChip.scala)
which configured with instructions that boot should either
starts from BRAM (for normal FPGA execution) or directly
to DDR.

In order to achieve secure boot flow in RISC-V SoC,
the proposed framework presented in this study establishes
a chain of trust by enforcing code authentication procedure
in between the bootloading stages. Such authentication is
performed via the presented Code Authentication Unit (CAU)
which integrates signature verification procedures.

C. CAU in RISC-V SoC

A hardware component called Code Authentication Unit
(CAU) cryptographically verifies the signature of each trusted
code that will be running on the processor using Elliptic
Curve Digital Signature Algorithm (ECDSA). CAU verifies
each software code that is to be executed, starting from the
first boot up to the applications. Such mechanism effectively
prevents unauthorized or modified code from being executed
in our secure SoC.

The recent RISC-V development employs re-configurable
memory mapping (instead of fixed memory map), where
the addresses are automatically generated upon the build

instructions for peripheral customization. This approach is
more advantageous as this will ensure correct alignment of
start addresses to prevent crossing address boundaries. The
final memory map (termed as ConfigString) will be used and
automatically linked to C-programs (as well as other hardware
modules).

Therefore, the hard-coded instructions ROMSlave com-
prised of jump instruction, ResetVector and ConfigString. This
piece of code will be signed and the signature is appended at
end of the code line;

rom.array() ++ p(ConfigString).toSeq ++
signature (refer function in makeBootRom()).

The initial boot ROM is mapped to memory address
0x10000 of which also marks the first data CAU module will
begin to perform signature verification. The obtained value
will be matched with the signature appended at the end of
the code. Positive match result shall lead to the next boot
stage, otherwise RISC-V Rocket tile (RocketTile()) shall be
suspended.

D. Application: Linux in RISC-V SoC

In this case study, We selected Linux version 4.2 (as the
choice of kernel) to be run on secure RISC-V SoC. A bare
metal boot program (boot.c) is compiled and preloaded in
the BRAM which will copy (boot.bin, consisted of BBL with
Linux appended as payload) from SD card and move to DDR.
The process is also as depicted in Figure 3.

CodeLine

Signature

BootROM

SHA3 ECDSA

CAU

RISC-V
core

start

reset

Signature
verifcation

pass
fail

External
Memory
Storage

DDR

MOVE payload
boot.bin

(BBL + kernel)

RUN
payload

boot.c

Boot
Sequncer

KMU

CHLNGS
Storage TRNG

PUF CTRL

Pub Keys

Configure
/Status

Key

Fig. 3. Secure Boot Flow in RISC-V SoC

As mentioned previously, Linux is not booted directly, as it
goes via Berkeley boot loader which sets up the machine mode
(including handlers for unaligned fetches/stores and emulated
instruction traps). Note that the boot ROM not only enforce
jump instruction from ResetVector to BRAM location. It also
serves another purpose which is to store the start address of
peripherals for the use of Linux. This conveniently avoids the
need for a BIOS to determine or to calculate these addresses.

Next, the boot proceeds with launching the Linux in
supervisor mode and ensuring the start address is aligned
with the device memory mapping (listed in boot ROM). Upon
the execution of the kernel, the BBL continues running as
hypervisor (underneath the kernel) to serve the peripheral
interrupt request from the actual FPGA hardware.

E. Boot Sequencer and Key Management Unit

Boot Sequencer and Key Management Unit (KMU) are
shown in Figure 3. The Boot Sequencer is a Finite State
Machine (FSM), that sequences the flow of the SoC’s boot pro-
cess. This hardware function is called every time a new stage
of the boot is about to run. the Boot Sequencer communicates
with the KMU to send the relevant key to the CAU. Later it
asks the CAU to read the corresponding code from memory
and authenticate it’s signature using the ECDSA. The Boot
Sequencer collects the authentication result (pass or fail) and
based on it, decides if to continue with the boot sequence or
to abort it. At the current implementation, the Boot Sequencer
is a hardware state machine, while in future version it can
be replaced by small micro-controller for the sake of better
programmability and patchability.

The Key Management Unit (KMU) is responsible for
the generation and distribution of symmetric and asymmetric
encryption keys. Whereas, it consists of True Random Num-
ber Generator (TRNG), Physical Unclonable Function (PUF),
Challenges Storage and One-Time Programmable (OTP) mem-
ory. The TRNG generates a random challenges for symmetric
keys challenges, the challenges are stored with corresponding
identification into a storage. To retrieve a specific key, the
challenge is fed into the PUF and a response is outputted that
is used as key. These symmetric keys are used at part of the
security blocks inside the SoC, such as, Memory Protection
Unit (memory encryption and integrity) and Secure Debug
Unit. The Code Authentication Unit uses Asymmetric keys
required by Public Key Algorithms. The public keys are fused
into the Key Management Unit using OTP memory. Key
Management Unit architecture details are not presented here
due to space limitation, at section VI we discuss in more details
the design of the PUF.

V. SECURITY ANALYSIS

Several existing secure boot architectures have been com-
promised by determined attackers. For instance, AMD’s Hard-
ware Validated Boot (HVB) [16] architecture for secure boot
was shown to have severe security vulnerabilities that enabling
bypassing the secure boot flow. Whereas, CTS labs revealed
a set of security vulnerabilities that affected AMD processors
[4]. According to the CTS labs report, an attacker can exploit
the set of vulnerabilities referred to as MASTERKEY and
FALLOUT in the AMD secure processor. This can allow an at-
tacker to install unsigned malicious software; with the highest
possible privileged access; inside the AMD secure processor
by bypassing the Hardware Validated Boot. Consequently, a
malicious application can be used to leak encryption keys
that are used by the AMD Secure Encrypted Virtualization
(SEV)1 protected Virtual Machines, thus compromising the
confidentiality of the data in those Virtual Machines.

1SEV is a security feature that mainly addresses the high-privileged system
software class of attacks by providing encrypted Virtual Machine isolation

ROM SD
Card DRAMCAUBoot

sequencer

Reset
Authenticate

Read First
bootloader

Authenticate
Code

Status

RISC-V
Core

Pass/
 Run

Fail/
Reset

Load Second bootloader to DRAM
Load to
DRAM

Load Second
bootloader to

DRAM Authenticate

Status

Pass/
 Run

Fail/
Reset

Load Kernel to DRAM
Load to
DRAM

Load Kernel
to DRAM

Read Second
bootloader

Authenticate

Pass/
 Run

Fail/
Reset

Status

Read OS
kernel

OS up and
running

ROM SD
Card DRAM

Reset

Read First
bootloader

RISC-V
Core

Pass/
 Run

Fail/
Abort

Load Second bootloader
 to DRAM

Load to
DRAM

Read Second
bootloader

OS up and
running

Authenticate

Pass/
 Run

Fail/
Abort

Authenticate

Load Kernel to DRAM
Load to
DRAM

Read OS
kernel

Pass/
 Run

Fail/
Abort

Authenticate

(a) Conventional secure boot flow (b) This work secure boot flow

Fig. 4. Secure boot flow diagrams. Diagram (a) depicts a conventional flow that uses software based implementation (such as Sanctum[11]) of SHA3 and
ECDSA that runs on the RISC-V processor. Diagram (b) shows this work’s flow that uses hardware units to implement the secure boot.

Figure 4 describes secure boot flow diagrams, whereas
diagram (a) depicts a conventional flow that uses software
based implementation (such as Sanctum [11]) of SHA3 and
ECDSA. The software runs on processor core , such as RISC-
V core. On the other hand, diagram (b) shows this work’s flow,
whereas it uses hardware units (CAU and Boot Sequencer)
to implement the secure boot. The main advantages for this
implementations over conventional ones is as follows.

• The Hardware implementation has better performance
and energy-efficiency over the software implementa-
tion as shown in section VI.

• Running the software implementation of SHA3 and
ECDSA on the RISC-V processor assumes that the
RISC-V is part of the trusted computing base (TCB).
While including a relatively big design on the TCB
might introduce security vulnerabilities similar to
Meltdown [29] and Spectre [30] that cannot be easily
detected due to the design size of the processor’s core.
On the other hand, our frameworks assumes that the
CAU and the Boot Sequencer are trusted, and the
RISC-V processor is not part of the TCB for the secure

boot process.

• The secure boot in this work’s framework is controlled
by centralized unit (the CAU), thereby enabling a
better control over the flow, allowing easier security
analysis, and post fabrication flaws fixes and patch-
ing2.

VI. EVALUATION

In this section, we evaluate the various components that
are used at our framework, including Code Authentication
Unit (SHA3 and ECDSA) and the Key Management Unit
(specifically, the PUF therein).

A. Code Authentication Unit

Code Authentication Unit consists of three main blocks:
1) DMA for reading the data from memory 2) optimized
SHA3 implementation and 3) ECDSA verification. The DMA
is configured by the boot sequencer to read the code from

2The current implementation uses hardware only, while our architecture is
extendable with firmware component that enables post silicon flaws fixes.

TABLE I. ECDSA VERIFICATION IMPLEMENTATION RESULTS WITH
BINARY CURVE SECT233R1.

Baseline SW
Intel IVB

Vectorized SW
Intel IVB+AVX

Our HW
FPGA

Cycles 2,226,927 405,330 6,720
Frequency (MHz) 2,000 2,000 100
Time(ms) 1.11 0.22 0.067
Power (mW) 2,100 2,600 386
Energy (mJ) 2,331 572 0.025
Energy Efficiency
(mJ x ms) 2,587.4 125.84 0.0016

the memory and calculate it’s hash using the SHA3 hardware
block, whereas the last block is the code signature. The Key
Management Unit sends the corresponding public key to the
CAU. Later, code hash, code signature and the public key fed
into the ECDSA block to verify the digital signature correct-
ness. Evaluation of the ECDSA and the SHA3 implementations
is follows.

1) ECDSA evaluation: ECDSA verification part was im-
plemented in hardware, we used the sect233r1 curve with
the recommended parameters by Standards for Efficient Cryp-
tography(SEC) [31]. Table I compares ECDSA hardware im-
plementation with software implementation running on Intel
Ivy Bridge (IVB) modern processor [32]. Kintex-7 KC705
FPGA is used for hardware implementation. Second and third
columns represent the results of the scalar and vectorized
software implementations respectively (that ran on Intel Ivy
Bridge processor). The last column shows the hardware im-
plementation. The vectorized software implementation uses
Advanced Vector Extensions [32]. While, the number of cycles
and power consumption for software implementations were
obtained from [33] and [34] respectively.

Table I shows higher number of cycles for the software
implementations compared to the hardware implementation.
When running the Ivy Bridge core at 2.0GHz core frequency.
The execution times for both scalar and vectorized software
implementation is much higher compared to the FPGA hard-
ware implementation. Whereas, the hardware implementation
is 16 and 3 times faster than the scalar and vectorized
software implementations respectively. In addition, the Energy
consumption and Energy-Delay-Product (EDP)3 are more than
four orders of magnitude higher at the software implemen-
tations compared to the hardware one. This being said, the
Energy-Efficiency gap between software a hardware ECDSA
implementation might be even higher when running software
at RISC-V core (as in Sanctum [11] ECDSA implementation)
core compared to Ivy Bridge modern core.

Our ECDSA verification core was implemented using
binary extension field GF (2233) for Elliptic Curves. Binary
Extension Fields have the advantage that field additions can be
performed by XOR operations, therefore no carry is involved.
This leads to implementations that require lesser area and have
better performance. Our implementation uses existing elliptic
curve cryptography (ECC) modules that implements parallel
ECC processor design presented in [35]. This design requires
8 cycles for ECC point addition and 3 cycles for computing
ECC point doubling. Therefore, the ECC point multiplication
requires less number of cycles compared to the existing

3Lower Energy-Delay-Product (EDP) means higher Energy-Efficiency

designs. Detailed description on the hardware requirements of
the ECDSA verification module is as summarized in Table II.

TABLE II. HARDWARE REQUIREMENT AND POWER CONSUMPTION
FOR ECDSA VERIFICATION (SECT233R1).

Used Available Util%

Slice LUT
LUT as Logic
LUT as Memory

27170
26450
720

203800
203800
64000

13.33
12.98
1.13

Slice Registers
Register as Flip Flop
Register as Latch

6722
6722
0

407600
407600
407600

1.65
1.65
0.00

Multiplexer
F7 Muxes
F8 Muxes

684
0

101900
50950

0.67
0.00

2) SHA3 evaluation: An optimized design of SHA3 [36]
is deployed in this work. The design comes with a simplified
round constants (RC) generator and new subpipelined trans-
formation round, with unrolling factor of 2 and followed by
2-stages pipelining in between adjacent rounds (as depicted in
Figure 5. The simplified RC generator is smaller in hardware
area size because only the non-zero bits of the RC is stored.
In SHA3, there are only maximum number of 8 non-zero bits
observed in each round constant value. Therefore, the length
of the 24 pre-calculated constants value is effectively reduced
to a byte size.

As for the new subpipelined transformation round, the
pipeline registers are inserted after the Theta (θ) operation.
It is observed that the longest delay in the first half of the
computation is constituted of 5 XORs while the second part
which includes Pi (π) to Iota (ι) covers the longest delay of
2 XORs, 1 AND and 1 XOR. Such subpipelining approach
reduce the critical path by approximately half and leading to
achieving maximal clock frequency.

in state

Theta

Rho

Pi

Chi

Iota

Rho

Pi

Chi

Iota

REGISTER

REGISTER

Theta

Rho

Pi

Chi

Iota

REGISTER

REGISTER Theta

Rho

Pi

Chi

Iota

Rho

Pi

Chi

Iota

REGISTER

REGISTER

Theta

Rho

Pi

Chi

Iota

REGISTER

REGISTER

R
C

R
C

0 10 1

out state

Fig. 5. Optimized SHA3 Implementation

Subpipelining is efficient in critical path reduction where
the maximum attainable frequency can be greatly improved.
Meanwhile, unrolling promotes throughput enhancement via
hardware replication as the total execution cycles is reduced.
In this SHA3, the register pipelines are inserted upon every
unrolled module. Thus, the simultaneous message processing

is enabled without imposing additional delays in the existing
critical path.

TABLE III. EXPERIMENTAL RESULT FOR RECENT SHA3 HASH
IMPLEMENTATIONS ON FPGA. THE NOTATION S , P AND U INDICATE THE

APPROACHES USING SUBPIPELINING, PIPELINING AND UNROLLING
RESPECTIVELY.

Work Approach Fmax Area Throughput Efficiency
(S/P/U) (MHz) (Slices) (Gbps) (Mbps/Slices)

Wong et al. U [k=2] 344 1,406 16.51 11.47
(2018) [36] P [n=2]

S [n=2]
Ioannou et al. U [k=2] 352 2,652 16.90 6.37
(2015) [37] P [n=2]
Ioannou et al. U [k=2] 391 2,296 18.77 8.17
(2015) [37] P [n=2]
Michail et al. U [k=3] 352 3,197 25.34 7.93
(2015) [38] P [n=3]
Michail et al. U [k=3] 391 3,965 28.15 7.10
(2015) [38] P [n=3]
Michail et al. U [k=4] 357 4,632 34.27 7.40
(2015) [38] P [n=4]
Michail et al. U [k=4] 392 4,117 37.63 9.14
(2015) [38] P [n=4]
Mestiri et al. S [n=2] 317 4,793 6.34 1.32
(2016) [39]

FPGA implementation and the comparison with the recent
works of SHA3 are as reflected in Table III, the highest
throughput performance was presented in the work by [37],
[38] where the authors employed higher unrolling factor in the
SHA3 hash implementations. However, this is traded off with
much larger amount of slices needed. Therefore, considering
the throughput/area factor, the SHA3 deployed in this work
has the highest implementation efficiency (11.47 Mbps/Slices)
compared to the existing works.

B. CoLPUF in Key Management Unit

This work integrated a configurable LFSR-based PUF
(CoLPUF) that was presented at [40]. The PUF is part of the
Key Management Unit (KMU), which is used for generating
the unique and non-reproducible secret key. The design uses
a Linear Feedback Shift Register (LFSR) and the output in
each state of the LFSR serves a the new challenge to the PUF.
CoLPUF is advantageous as the design is capable of extending
the length of the response bits through LFSR. In other words,
it promotes the concept of constant-resource scalability to
increase the response size without any considerable increase
in hardware.

There are two main phases in deriving the secure key from
the PUF and error correction codes, namely the initialization
and the re-generation of the key. In the first stage, a syndrome
is computed from the PUF through error correction code (ECC)
encoding circuit and stored in a memory as a pair with the
challenge. This is used to correct any detected errors found in
the PUF response. Next, in the latter stage, the noisy response
from the PUF is taken and its corresponding syndrome (for
a specific challenge) are sent to the ECC decoder. With the
aid of the stored syndrome, the ECC will correct the errors
occurred in the response of the PUF. Errors occurs due to any
changes in the voltage and temperature. To be precise, this
design employed BCH(15,7,2) as error correction code, where
a 7-bit message is encoded into 15-bit code (7-bit message
with 8-bit syndrome) and the correction can be performed up
to 2 errors in any position.

The hardware implementation for the designed CoLPUF
on Nexys-4 Artix-7 are as tabulated in Table IV. In addition

to that, the benchmarking with various existing PUF designs
reported in the literature is summarized in Table V. Note that
the specific comparison metrics used here are the uniqueness
(U) and the reliability (R). Based on the comparison results, it
is evident that CoLPUF used in this work demonstrates good
uniqueness and reliability.

TABLE IV. HARDWARE SPECIFICATION FOR COLPUF ON ARTIX-7
FPGA PLATFORM

Parameter Encoder Decoder PUF

#Slices Register 14 67 331
#Slices LUT 13 105 4245
#LUT- FFpairs 10 47 331

TABLE V. COMPARISON OF VARIOUS PUF DESIGNS

PUF Design
(response size)

U(%)
Uniqueness

R (%)
Reliability

FPGA
Platform

Area
Consumption

CoLPUF (128)
[40] 49.22 99.99 Artix-7 256 ROs

16-bit LFSR
RO PUF (128)
[41] 46.15 99.52 Virtex-4 1024 ROs

SRAM PUF (128)
[42] 49.97 >88 FPGA 4800 SRAM

memory bits
Latch PUF (128)
[43] 46 >87 Spartan-3 2x128 slices

Flip Flop PUF (4096)
[44] ≈ 50 >95 Virtex-2 4096 Flip Flops

Butterfly PUF (64)
[45] ≈ 50 94 Virtex-5 130 slices

CRO PUF (127)
[46] 43.50 96 Spartan-3 64 slices

for ROs

VII. CONCLUSION

We have presented secure boot framework which was
implemented into our RISC-V lightweight SoC. The frame-
work uses optimized Elliptic Curve Digital Signature Algo-
rithm (ECDSA), Secure Hash Algorithm 3 (SHA3) hashing
algorithm, Physically Unclonable Function (PUF) and Direct
Memory Access (DMA). We demonstrated the framework on
RISC-V based SoC. Detailed analysis of performance and
security for the platform is presented. In future work, we plan
to extend our secure processor framework to include more
security features. Remote attestation will be implemented on
top of the secure boot flow. In addition, we plan to integrate
trusted execution environment into the RISC-V SoC.

ACKNOWLEDGEMENT

This research is supported by NRF-BICSAF project
(Project ID: NRF2016NCR-NCR001-006).

REFERENCES

[1] A. Furtak, Y. Bulygin, O. Bazhaniuk, J. Loucaides, A. Matrosov, and
M. Gorobets, “Bios and secure boot attacks uncovered,” in The 10th
ekoparty Security Conference, 2014.

[2] A. Vasselle, H. Thiebeauld, Q. Maouhoub, A. Morisset, and
S. Ermeneux, “Laser-induced fault injection on smartphone bypassing
the secure boot,” IEEE Transactions on Computers, 2018.

[3] A. Cui and R. Housley, “Badfet: defeating modern secure boot using
second-order pulsed electromagnetic fault injection,” in 11th USENIX
Workshop on Offensive Technologies (WOOT 17). USENIX Association,
vol. 180, 2017.

[4] C. Lab., “Severe security advisory on amd processors.” [Online].
Available: https://safefirmware.com/amdflaws whitepaper.pdf, 2018.

[5] DARPA., “Intelligent Design of Electronic Assets (IDEA) and Posh
Open Source Hardware (POSH).” [Online]. Available: https://www.
darpa.mil/attachments/eri design proposers day.pdf, 2018.

[6] A. Bradbury, G. Ferris, and R. Mullins, “Tagged memory and minion
cores in the lowrisc SoC,” Memo, University of Cambridge, 2014.

[7] Y. Lee, A. Waterman, R. Avizienis, H. Cook, C. Sun, V. Stojanovic,
and K. Asanovic, “A 45nm 1.3GHz 16.7 double-precision GFLOPS/W
RISC-V processor with vector accelerators,” in ESSCIRC 2014 - 40th
European Solid State Circuits Conference (ESSCIRC), Sept 2014, pp.
199–202.

[8] A. Menon, S. Murugan, C. Rebeiro, N. Gala, and K. Veezhinathan,
“Shakti-T: A RISC-V Processor with Light Weight Security Exten-
sions,” in Proceedings of the Hardware and Architectural Support for
Security and Privacy. ACM, 2017, p. 2.

[9] M. M. Wong, J. Haj-Yahya, and A. Chattopadhyay, “SMARTS: secure
memory assurance of RISC-V trusted SoC,” in Proceedings of the 7th
International Workshop on Hardware and Architectural Support for
Security and Privacy. ACM, 2018, p. 6.

[10] K. Project, “Secure hardware enclave,” [Online]. Available: https://
keystone-enclave.org/, 2018.

[11] I. Lebedev, K. Hogan, and S. Devadas, “Secure boot and remote
attestation in the sanctum processor,” in 2018 IEEE 31st Computer
Security Foundations Symposium (CSF). IEEE, 2018, pp. 46–60.

[12] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and reliable
bootstrap architecture,” in Security and Privacy, 1997. Proceedings.,
1997 IEEE Symposium on. IEEE, 1997, pp. 65–71.

[13] Unified-EFI, “Unified extensible firmware interface specification: Ver-
sion 2.2 d,” 2010.

[14] S. Sau, J. Haj-Yahya, M. M. Wong, K. Y. Lam, and A. Chattopad-
hyay, “Survey of secure processors,” in Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS), 2017 International
Conference on. IEEE, 2017, pp. 253–260.

[15] X. Ruan, “Boot with integrity, or dont boot,” in Platform Embedded
Security Technology Revealed. Springer, 2014, pp. 143–163.

[16] W. Arthur, D. Challener, and K. Goldman, Platform Security
Technologies That Use TPM 2.0. Berkeley, CA: Apress, 2015, pp. 331–
348. [Online]. Available: https://doi.org/10.1007/978-1-4302-6584-9
22

[17] T. ElGamal, “A public key cryptosystem and a signature scheme
based on discrete logarithms,” IEEE transactions on information theory,
vol. 31, no. 4, pp. 469–472, 1985.

[18] N. Koblitz, A. Menezes, and S. Vanstone, “The state of elliptic curve
cryptography,” Designs, codes and cryptography, vol. 19, no. 2-3, pp.
173–193, 2000.

[19] A. Liu and P. Ning, “Tinyecc: A configurable library for elliptic curve
cryptography in wireless sensor networks,” in Proceedings of the 7th
international conference on Information processing in sensor networks.
IEEE Computer Society, 2008, pp. 245–256.

[20] US Department of Commerce/National Institute of Standards and Tech-
nology, “Digital signature standards,” Federal Information Processing
Standards Publication.

[21] S. Blake-Wilson and M. Qu, “Standards for efficient cryptography
(sec) 2: Recommended elliptic curve domain parameters,” Certicom
Research, Oct, 1999.

[22] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[23] G. E. Suh, C. W. O’Donnell, I. Sachdev, and S. Devadas, “Design

and implementation of the AEGIS single-chip secure processor using
physical random functions,” in ACM SIGARCH Computer Architecture
News, vol. 33, no. 2. IEEE Computer Society, 2005, pp. 25–36.

[24] Xilinx, “Developing tamper-resistant designs with zynq ultrascale+
devices.” [Online]. Available: https://www.xilinx.com.

[25] Altera/Intel, “Secure device manager for Intel R Stratix 10 devices
provides fpga and soc security.”

[26] J. Kong, F. Koushanfar, P. K. Pendyala, A.-R. Sadeghi, and C. Wachs-
mann, “Pufatt: Embedded platform attestation based on novel processor-
based pufs,” in Proceedings of the 51st Annual Design Automation
Conference. ACM, 2014, pp. 1–6.

[27] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The
RISC-V instruction set manual, volume I: user-level ISA, version
2.0,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2014-54, May 2014. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html

[28] A. Waterman, Y. Lee, R. Avizienis, D. A. Patterson, and K. Asanovic,
“The RISC-V instruction set manual volume II: privileged architecture

version 1.9,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2016-129, Jul 2016. [Online]. Available: http:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-129.html

[29] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” arXiv
preprint arXiv:1801.01207, 2018.

[30] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks:
Exploiting speculative execution,” arXiv preprint arXiv:1801.01203,
2018.

[31] S. SEC, “2: Recommended Elliptic Curve Domain Parameters,” Stan-
dards for Efficient Cryptography Group, Certicom Corp, 2000.

[32] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey,
S. Sarkar, S. Siers, I. Stolero, and A. Subbiah, “A 22nm IA multi-CPU
and GPU system-on-chip,” in Solid-State Circuits Conference Digest of
Technical Papers (ISSCC), 2012 IEEE International. IEEE, 2012, pp.
56–57.

[33] M. Bluhm and S. Gueron, “Fast software implementation of binary
elliptic curve cryptography,” Journal of Cryptographic Engineering,
vol. 5, no. 3, pp. 215–226, 2015.

[34] J. Haj-Yahya, A. Mendelson, Y. B. Asher, and A. Chattopadhyay,
Energy Efficient High Performance Processors: Recent Approaches for
Designing Green High Performance Computing. Springer, 2018.

[35] C. Rebeiro and D. Mukhopadhyay, “High speed compact elliptic curve
cryptoprocessor for fpga platforms,” in International Conference on
Cryptology in India. Springer, 2008, pp. 376–388.

[36] M. M. Wong, J. Haj-Yahya, S. Sau, and A. Chattopadhyay, “A new
high throughput and area efficient SHA-3 implementation,” in 2018
IEEE International Symposium on Circuits and Systems (ISCAS), May
2018, pp. 1–5.

[37] L. Ioannou, H. E. Michail, and A. G. Voyiatzis, “High performance
pipelined FPGA implementation of the SHA-3 hash algorithm,” in 2015
4th Mediterranean Conference on Embedded Computing (MECO), June
2015, pp. 68–71.

[38] H. E. Michail, L. Ioannou, and A. G. Voyiatzis, “Pipelined
SHA-3 implementations on FPGA: Architecture and performance
analysis,” in Proceedings of the Second Workshop on Cryptography
and Security in Computing Systems, ser. CS2 ’15. New York,
NY, USA: ACM, 2015, pp. 13:13–13:18. [Online]. Available:
http://doi.acm.org/10.1145/2694805.2694808

[39] H. Mestiri, F. Kahri, M. Bedoui, B. Bouallegue, and M. Machhout,
“High throughput pipelined hardware implementation of the KECCAK
hash function,” in 2016 International Symposium on Signal, Image,
Video and Communications (ISIVC), Nov 2016, pp. 282–286.

[40] “colpuf : A novel configurable lfsr-based puf.”
[41] G. E. Suh and S. Devadas, “Physical unclonable functions for

device authentication and secret key generation,” in Proceedings
of the 44th Annual Design Automation Conference, ser. DAC ’07.
New York, NY, USA: ACM, 2007, pp. 9–14. [Online]. Available:
http://doi.acm.org/10.1145/1278480.1278484

[42] J. Guajardo, S. S. Kumar, G.-J. Schrijen, and P. Tuyls, “Fpga intrinsic
pufs and their use for ip protection,” in Cryptographic Hardware and
Embedded Systems - CHES 2007, P. Paillier and I. Verbauwhede, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 63–80.

[43] D. Yamamoto, K. Sakiyama, M. Iwamoto, K. Ohta, T. Ochiai, M. Tak-
enaka, and K. Itoh, “Uniqueness enhancement of puf responses based
on the locations of random outputting rs latches,” in Cryptographic
Hardware and Embedded Systems – CHES 2011, B. Preneel and
T. Takagi, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 390–406.

[44] R. Maes, P. Tuyls, and I. Verbauwhede, “Intrinsic pufs from flip-flops on
reconfigurable devices,” in ser. 3rd Benelux Workshop on Information
and System Security (WISSec 2008).

[45] S. S. Kumar, J. Guajardo, R. Maes, G. Schrijen, and P. Tuyls, “Extended
abstract: The butterfly puf protecting ip on every fpga,” in 2008 IEEE
International Workshop on Hardware-Oriented Security and Trust, June
2008, pp. 67–70.

[46] D. Merli, F. Stumpf, and C. Eckert, “Improving the quality
of ring oscillator pufs on fpgas,” in Proceedings of the 5th
Workshop on Embedded Systems Security, ser. WESS ’10. New
York, NY, USA: ACM, 2010, pp. 9:1–9:9. [Online]. Available:
http://doi.acm.org/10.1145/1873548.1873557

View publication statsView publication stats

