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Abstract. Despite convolutional network-based methods have boosted
the performance of single image super-resolution (SISR), the huge com-
putation costs restrict their practical applicability. In this paper, we de-
velop a computation efficient yet accurate network based on the proposed
attentive auxiliary features (A2F) for SISR. Firstly, to explore the fea-
tures from the bottom layers, the auxiliary feature from all the previous
layers are projected into a common space. Then, to better utilize these
projected auxiliary features and filter the redundant information, the
channel attention is employed to select the most important common fea-
ture based on current layer feature. We incorporate these two modules
into a block and implement it with a lightweight network. Experimental
results on large-scale dataset demonstrate the effectiveness of the pro-
posed model against the state-of-the-art (SOTA) SR methods. Notably,
when parameters are less than 320k, A2F outperforms SOTA methods for
all scales, which proves its ability to better utilize the auxiliary features.
Codes are available at https://github.com/wxxxxxxh/A2F-SR.

1 Introduction

Convolutional neural network (CNN) has been widely used for single image
super-resolution (SISR) since the debut of SRCNN [1]. Most of the CNN-based
SISR models [2–7] are deep and large. However, in the real world, the models of-
ten need to be run efficiently in embedded system like mobile phone with limited
computational resources [8–13]. Thus, those methods are not proper for many
practical SISR applications, and lightweight networks have been becoming an im-
portant way for practical SISR. Also, the model compression techniques can be
used in lightweight architecture to further reduce the parameters and computa-
tion. However, before using model compression techniques (e.g. model pruning),
it is time-consuming to train a large model and it also occupies more memory.
This is unrealistic for some low budget devices, so CNN-based lightweight SISR
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Fig. 1. Cost-effectiveness comparison between the proposed A2F model variants (A2F-
S, A2F-SD, A2F-M, A2F-L) with other methods on the Manga109 [19] on ×2 scale. The
proposed models can achieve high PSNR with fewer parameters. Note that MSRN [20]
and D-DBPN [21] are large models.

methods become increasingly popular because it can be regarded as an image
preprocessing or postprocessing instrument for other tasks [14–18].

One typical strategy is to reduce the parameters [22–25]. Moreover, the net-
work architecture is essential for lightweight SISR models. Generally, methods
of designing architectures can be categorized into two groups. One is based on
neural architecture search. MoreMNA-S and FALSR [26, 27] adopt the evolu-
tionary algorithm to search efficient model architectures for lightweight SISR.
The other is to design the models manually [28, 29]. These methods all utilize
features of previous layers to better learn the features of the current layer, which
reflect that auxiliary features can boost the performance of lightweight models.
However, these methods do not fully use all the features of previous layers, which
possibly limits the performance.

Directly combining the auxiliary features with current features is conceptu-
ally problematic as features of different layers are often embedded in different
space. Thus, we use the projection unit to project the auxiliary features to a
common space that is suitable for fusing features. After projected to a common
space, these projected features may not be all useful for learning features of
the current layer. So we adopt the channel attention to make the model auto-
matically assign the importance to different channels. The projection unit and
channel attention constitute the proposed attentive auxiliary feature block. We
term our model that consists of Attentive Auxiliary Feature blocks as A2F since
it utilizes the auxilary features and the attention mechanism. Figure 1 gives the
comparison between different models on Manga109 [19] dataset with a upscale
factor of 2. As shown in Figure 1, models of our A2F family can achieve better
efficiency than current SOTA methods [28, 29]. Figure 2 describes the architec-
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Fig. 2. The architecture of A2F with 4 attentive auxiliary feature blocks. The archi-
tecture of A2F with more attentive auxiliary feature blocks is similar. Note that 1×1
convolution kernel is used to project the auxiliary features and learn the importance of
different channels of projected features. The convolution kernels elsewhere are all 3×3.
The input is the LR image and the output is the predicted HR image. Pixelshuffle [30]
is used to upsample the features to the high-resolution image with target size.

ture of A2F with four attentive auxiliary feature blocks. Our main contributions
are given below:

– We handle the super resolution task from a new direction, which means
we discuss the benefit brought by auxiliary features in the view of how to
recover multi-frequency through different layers. Thus, we propose the atten-
tive auxiliary feature block to utilize auxiliary features of previous layers for
facilitating features learning of the current layer. The mainstay we use the
channel attention is the dense auxiliary features rather than the backbone
features or the sparse skip connections, which is different from other works.

– Compared with other lightweight methods especially when the parameters
are less than 1000K, we outperform all of them both in PSNR and SSIM but
have fewer parameters, which is an enormous trade-off between performance
and parameters. In general, A2F is able to achieve better efficiency than
current state-of-the-art methods [29, 28, 31].

– Finally, we conduct a thorough ablation study to show the effectiveness of
each component in the proposed attentive auxiliary feature block. We release
our PyTorch implementation of the proposed method and its pretrained
models together with the publication of the paper.

2 Related Work

Instead of powerful computers with GPU, embedded devices usually need to run
a super resolution model. As a result, lightweight SR architectures are needed
and have been recently proposed.
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One pioneering work is SRCNN [1] which contains three convolution layers
to directly map the low-resolution (LR) images to high-resolution (HR) images.
Subsequently, a high-efficiency SR model named ESPCNN [24] was introduced,
which extracts feature maps in LR space and contains a sub-pixel convolution
layer that replaces the handcrafted bicubic filter to upscale the final LR map into
the HR images. DRRN [25] also had been proposed to alleviate parameters by
adopting recursive learning while increasing the depth. Then CARN [32] was pro-
posed to obtain an accurate but lightweight result. It addresses the issue about
heavy computation by utilizing the cascading mechanism for residual networks.
More recently, AWSRN [28] was designed to decrease the heavy computation. It
applies the local fusion block for residual learning. For lightweight network, it
can remove redundancy scale branches according to the adaptive weights.

Feature fusion has undergone its tremendous progress since the ResNet [33]
was proposed, which implies the auxiliary feature is becoming the crucial as-
pect for learning. The full utilization of the auxiliary feature was adopted in
DenseNet [34]. The authors take the feature map of each former layer into a
layer, and this alleviates the vanishing gradient problem. SR methods also make
use of auxiliary features to improve performance, such as [2, 25, 35, 7, 36]. The
local fusion block of AWSRN [28] consists of concatenated AWRUs and a LRFU.
Each output of AWRUs is combined one by one, which means a dense connection
for a block. A novel SR method called FC2N was presented in [29]. A module
named GFF was devised through implementing all skip connections by weighted
channel concatenation, and it also can be considered as the auxiliary feature.

As an important technique for vision tasks, attention mechanism [37] can
automatically determine which component is important for learning. Channel
attention is a type of attention mechanism, which concentrates on the impact
of each feature channel. SENet [38] is a channel attention based model in the
image classification task. In the domain of SR, RCAN [7] had been introduced
to elevate SR results by taking advantage of interdependencies among channels.
It can adaptively rescale features according to the training target.

In our paper, auxiliaty features are not fully-dense connections, which indi-
cates it is not dense in one block. We expect that each block can only learn to
recover specific frequency information and provide auxiliary information to the
next block. There are two main differences compred with FC2N and AWSRN.
One is that for a block of A2F, we use the features of ALL previous blocks as
auxiliary features of the current block, while FC2N and AWSRN use the features
of a FIXED number of previous blocks. The second is that we adopt channel
attention to decide how to transmit different informations to the next block, but
the other two works do not adopt this mechanism.

3 Proposed Model

3.1 Motivation and Overview

Our method is motivated by an interesting fact that many CNN based meth-
ods [32, 3, 29] can reconstruct the high frequency details from the low resolution
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images hierachically, which indicates that different layers learn the capacity of
recovering multi-frequency information. However, stacking more layers increases
the computation burden and higher frequency information is difficult to regain.
So we aim to provide a fast, low-parameters and accurate method that can re-
store more high frequency details on the basis of ensuring the accuracy of low
frequency information reconstruction. According to this goal, we have the fol-
lowing observations:

– To build a lightweight network, how to diminish parameters and the multiply
operation is essential. Generally, we consider reducing the depth or the width
of the network, performing upsampling operation at the end of the network
and adopting small kernel to reach this target. It also brings a new issue
that a shallow network (i.e. fewer layers and fewer channels in each layer)
can not have an excellent training result due to the lower complexity of the
model, which also can be considered as an under-fitting problem.

– For the limited depth and width of the network, feature reusing is the
best way to solve the issue. By this way, the low-frequency information
can be transmitted to the next layer easily and it is more useful to com-
bine multi-level low-frequency features to obtain accurate high-frequency
features. Thus, more features benefitting to recover high-frequency signal will
circulate across the entire network. It will promote the capacity of learning
the mapping function if the network is shallow.

– We also consider another problem that the impact of multi-frequency in-
formation should be different when used for the learning of high frequency
features. As the depth of the layer becomes deeper, effective information
of the last layer provided for current layer is becoming rarer, because the
learning of high frequency features is more and more difficult. So how to
combine the information of all the previous layers to bring an efficient result
is important and it should be dicided by the network.

Based on these observations, we design the model by reusing all features of
the preceding layers and then concating them directly along channels like [34]
in a block. Meanwhile, to reduce the disturbance brought by the redundant
information when concating all of channels and adaptively obtain the multi-
frequency reconstruction capability of different layers, we adopt the same-space
attention mechanism in our model, which can avoid the situation that features
from different space would cause extraodinary imbalance when computing the
attention weight.

3.2 Overall Architecture

As shown in Figure 2, the whole model architecture is divided into four compo-
nents: head module, nonlinear mapping, skip module and tail module. Detailed
configuration of each component can be seen in Table 1. We denote the low res-
olution and the predicted image as ILR and ISR, respectively. The input is first
processed by the head module Fhead to get the features x0:

x0 = Fhead(ILR), (1)
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Table 1. Configurations of the proposed method. We set stride = 1 for every convo-
lutional operation to keep the same size in each layer. i indicates the i-th A2F module
and p means the scale factor. For the A2F-SD model, we change the channels that are
32 in other models to 16 for each F .

Function Details Kernel
Channels

(Input, Output)

Fhead Convolution 3× 3 (3, 32)

Fskip
Convolution 3× 3 (3, p ∗ p ∗ 3)
PixelShuffle - -

F i
proj Convolution 1× 1 (i ∗ 32, 32)

F i
att

Adaptive AvgPool - -
Convolution 1× 1 (32, 32)

ReLU - -
Convolution 1× 1 (32, 32)
Sigmoid - -

F i
res

Convolution 3× 3 (32, 128)
ReLU - -

Convolution 3× 3 (128, 32)

Ftail
Convolution 3× 3 (32, p ∗ p ∗ 3)
PixelShuffle - -

and Fhead is just one 3×3 convolutional layer (Conv). We do not use 1 × 1
Conv in the first layer for it can not capture the spatial correlation and cause a
information loss of the basic low frequency. The reason why we use a 3× 3 Conv
rather than a 5 × 5 Conv is twofold: a) 3 × 3 Conv can use fewer parameters
to contribute to the lightweight of the network. b) It is not suitable to employ
kernels with large receptive field in the task of super-resolution, especially for
the first layer. Recall that each pixel in downsampled image corresponds to a
mini-region in the original image. So during the training, large receptive field
may introduce irrelevant information.

Then the nonlinear mapping which consists of L stacked attentive auxiliary
feature blocks is used to further extract information from x0. In the ith attentive
auxiliary feature block, the features xi is extracted from all the features of the
previous blocks x0, x1, x2, ..., xi−1:

xi = giAAF (x0, x1, ..., xi−1), (2)

where giAAF denotes attentive auxiliary feature block i.
After getting the features xL from the last attentive auxiliary feature block,

Ftail, which is a 3×3 convolution layer followed by a pixelshuffle layer [24], is
used to upsample xL to the features xtail with targe size:

xtail = Ftail(xL). (3)

We design this module to integrate the multi-frequency information produced
by different blocks. It also correlates channels and spatial correlation, which is
useful for pixelshuffle layer to rescale the image.
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To make the mapping learning easier and introduce the original low frequency
information to keep the accuracy of low frequency, the skip module Fskip, which
has the same component with Ftail, is adopted to get the global residual infor-
mation xskip:

xskip = Fskip(ILR). (4)

Finally, the target ISR is obtained by adding xskip and xtail:

ISR = xtail ⊕ xskip. (5)

where ⊕ denotes the element-wise add operation.

3.3 Attentive Auxiliary Feature Block

The keypoint of the A2F is that it adopts attentive auxiliary feature blocks to
utilize all the usable features. Given features x0, x1, ..., xi−1 from all previous
blocks, it is improper to directly fuse with features of the current block because
features of different blocks are in different feature spaces. Thus we need to project
auxiliary features to a common-space that is suitable to be fused, which prevent
features of different space from causing extraodinary imbalance for attention
weights. In A2F, 1×1 convolution layer F i

proj is served as such a projection unit.

The projected features of the ith auxiliary block x
proj
i are obtained by

x
proj
i = F i

proj([x0, x1, ..., xi−1]), (6)

where [x0, x1, ..., xi−1] concatenates x0, x1, ..., xi−1 along the channel. However,
different channels of xproj

i have different importance when being fused with fea-
tures of current layer. Therefore, channel attention F i

att is used to learn the
importance factor of different channel of x

proj
i . In this way, we get the new

features xatt
i by

xatt
i = F i

att(x
proj
i )⊗ x

proj
i , (7)

where F i
att consists of one average pooling layer, one 1×1 convolution layer, one

ReLU layer, another 1×1 convolution layer and one sigmoid layer. The symbol
⊗ means channel-wise multiplication. The block of WDSR A [5] is adopted to
get the features of current layer xres

i :

xres
i = F i

res(xi−1), (8)

where F i
res consists of one 3×3 convolution layer, one ReLU layer and another

3×3 convolution layer. The output of ith attentive auxiliary feature block xi is
given by:

xi = λres
i × xres

i + λatt
i × xatt

i + λx
i × xi−1, (9)

where λres
i , λatt

i and λx
i are feature factors for different features like [28]. These

feature factors will be learned automatically when training the model. Here we
choose additive operation for it can better handle the situation that the λatt

i of
some auxiliary features is 0. If we concat channels directly, there will be some
invalid channels which may increase the redundancy of the network. We can also
reduce parameters by additive operation sin it does not expand channels.
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4 Experiments

In this section, we first introduce some common datasets and metrics for evalu-
ation. Then, we describe details of our experiment and analyze the effectiveness
of our framework. Finally, we compare our model with state-of-the-art methods
both in qualitation and quantitation to demonstrate the superiority of A2F. For
more experiments please refer to the supplementary materials.

4.1 Dataset and Evaluation Metric

DIV2K dataset [39] with 800 training images is used in previous methods [28,
29] for model training. When testing the performance of the models, Peak Sig-
nal to Noise Ratio (PSNR) and the Structural SIMilarity index (SSIM) [40] on
the Y channel after converting to YCbCr channels are calculated on five bench-
mark datasets including Set5 [41], Set14 [42], B100 [43], Urban100 [44] and
Manga109 [19]. We also adopt the LPIPS [45] as a perceptual metric to do com-
parison, which can avoid the situation that over-smoothed images may present
a higher PSNR/SSIM when the performances of two methods are similar.

4.2 Implementation Details

Similar to AWSRN [28], we design four variants of A2F, denoted as A2F-S,
A2F-SD, A2F-M and A2F-L. The channels of F i

res in the attentive auxiliary
feature block of A2F-S, A2F-M and A2F-L are set to {32,128,32} channels, which
means the input, internal and output channel number of F i

res is 32, 128, 32,
respectively. The channels of F i

res in the attentive auxiliary feature block of A2F-
SD is set to {16,128,16}. For the A2F-SD model, we change all of the channels
that are setted as 32 in A2F-S, A2F-M, A2F-L to 16. The number of the attentive
auxiliary feature blocks of A2F-S, A2F-SD, A2F-M and A2F-L is 4, 8, 12, and 16,
respectively. During the training process, typical data augmentation including
horizontal flip, rotation and random rotations of 90o, 180o, 270o are used. The
model is trained using Adam algorithm [46] with L1 loss. The initial value of
λres
i , λatt

i and λx
i are set to 1. All the code are developed using PyTorch on a

machine with an NVIDIA 1080 Ti GPU.

4.3 Ablation Study

In this section, we first demonstrate the effectiveness of the proposed auxiliary
features. Then, we conduct an ablation experiments to study the effect of es-
sential components of our model and the selection of the kernel for the head
component.

Effect of auxiliary features To show the effect of auxiliary features, we plot
the λres

i , λatt
i and λx

i−1 of each layer of each model in Figure 3. As shown in
Figure 3, the value of λatt

i are always bigger than 0.2, which reflects that the
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Fig. 3. The weight of λres
i (res scale), λatt

i (auxiliary scale) and λx
i−1 (x scale) in dif-

ferent layers. From top to bottom are the results on the ×2, ×3, ×4 tasks. From left
to right are the results of models A2F-S, A2F-SD, A2F-M and A2F-L.

Table 2. Results of ablation study on the projection unit and the channel attention.
PSNR is calculated on the super-resolution task with a scale factor of 2. PU means
projection unit and CA means channel attention. “MP” in the model means more
parameters.

Model PU CA Param MutiAdds Set5 Set14 B100 Urban100 Manga109

BASELINE 1190K 273.9G 38.04 33.69 32.20 32.20 38.66
BASELINE-MP 1338K 308.0G 38.09 33.70 32.21 32.25 38.69
A2F-L-NOCA

√
1329K 306.0G 38.08 33.75 32.23 32.39 38.79

A2F-L-NOCA-MP
√

1368K 315.1G 38.09 33.77 32.23 32.35 38.79
A2F-L

√ √
1363K 306.1G 38.09 33.78 32.23 32.46 38.95

auxiliary features always play a certain role in generating the output features
of the auxiliary features block. It can also be observed that in all the models of
A2F, the weight of xres

i (i.e. λres
i ) plays the most important role. The weight

of xi−1 (i.e. λx
i−1) is usually larger than λatt

i . However, for the more lightweight
SISR models (i.e. A2F-S and A2F-SD), xatt

i becomes more and more important
than xi−1 (i.e. λatt

i becomes more and more larger than λx
i−1) as the number of

layers increases. This reflects that auxiliary features may have great effects on
the lightweight SISR models.

Effect of projection unit and channel attention To evaluate the perfor-
mance of the projection unit and channel attention in the attentive auxiliary
feature block, WDSR A [5] with 16 layers is used as the BASELINE model.
Then we drop the channel attention in the attentive auxiliary feature block and
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Table 3. Results of ablation study on different kernel size which is only used for head
component. Note that other convolutional kernels are same.

Convolutional Kernel Selection

Kernel Parameters Set5 Set14 B100 Urban100 Manga109

1× 1 319.2K 32.00 28.46 27.46 25.78 30.13
3× 3 319.6K 32.06 28.47 27.48 25.80 30.16
5× 5 320.4K 32.00 28.45 27.48 25.80 38.13
7× 7 321.6K 31.99 28.44 27.48 25.78 30.10

such model is denoted as A2F-L-NOCA. To further prove the performance gain
comes from the proposed attention module, we perform an experiment as fol-
lows: we increase the number of parameters of BASELINE and A2F-L-NOCA,
and we denote these models as BASELINE-MP and A2F-L-NOCA-MP, where
MP means more parameters. Table 2 shows that comparing the results of BASE-
LINE, BASELINE-MP and A2F-L-NOCA, we can find that projection unit with
auxiliary features can boost the performance on all the datasets. Comparing
the results of A2F-L-NOCA, A2F-L-NOCA-MP, A2F-L, it can be found that
channel attention in the attentive auxiliary feature block further improves the
performance. Thus, we draw the conclusion that the projection unit and channel
attention in the auxiliary can both better explore the auxiliary features. In our
supplementary materials, we also do this ablation study on a challengeable case
(i.e. A2F-S for x4) to show that the good using of auxiliary features is especially
important for shallow networks.

Kernel selection for Fhead We select different size of kernels in Fhead to verify
that 1×1 conv and large receptive field are not suitable for the head component.
From Table 3, we can observe both of them have whittled the performance of
the network. This result verifies the reasonability of our head component which
has been introduced in section 3.2

4.4 Comparison with State-of-the-art Methods

We report an exhaustive comparative evaluation, comparing with several high
performance but low parameters and multi-adds operations methods on five
datasets, including FSRCNN [22], DRRN [25], FALSR [26], CARN [32], VDSR [2],
MemNet [35], LapSRN [47], AWSRN [28], DRCN [23], MSRN [20], SRMDNF [48],
SelNet [49], IDN [50], SRFBN-S [31] and so on. Note that we do not con-
sider methods that have significant performance such as RDN [36], RCAN [7],
EDSR [3] for they have nearly even more than 10M parameters. It is unrealistic
to apply the method in real-world application though they have higher PSNR.
But we provide a supplementary material to compare with these non-lightweight
SOTAs. To ensure that parameters of different methods are at the same mag-
nitude, we divide the comparison experiment on a single scale into multi-group
according to different parameters. All methods including ours have been evalu-
ated on ×2, ×3, ×4.
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Ground Truth

PSNR/SSIM
Params/Multi-adds

DRRN

25.744/0.7314
297K/6797G

LapSRN

25.798/0.7426
813K/149.4G

CARN-M

25.892/0.7463
412K/32.5G

AWSRN-SD

25.874/0.7463
444K/25.4G

A2F-SD(ours)

25.962/0.7491
320K/18.2G

Bicubic

25.149/0.6870
Params/Multi-adds

SRCNN

25.011/0.6962
57K/52.7G

FSRCNN

25.709/0.7295
12K/4.6G

VDSR

25.748/0.7274
665K/612.6G

Dataset: Set14
File: barbara

Ground Truth

PSNR/SSIM
Params/Multi-adds

DRRN
Dataset: Urban100

File: img_096 23.984/0.8250

LapSRN

23.585/0.8193

CARN-M

24.129/0.8372

AWSRN-SD

23.852/0.8376

A2F-SD(ours)

24.498/0.8491

Bicubic

21.327/0.6858
Params/Multi-adds

SRCNN

21.443/0.7090

FSRCNN

22.261/0.7501

VDSR

23.060/0.7824

297K/6797G 813K/149.4G 412K/32.5G 444K/25.4G 320K/18.2G

57K/52.7G 12K/4.6G 665K/612.6G

Fig. 4. Qualitative comparison over datasets for scale ×4. The red rectangle indicates
the area of interest for zooming. Comparison for other two datasets can be seen sup-
plementary material.

Qualitative comparison Qualitative comparison is shown in Figure 4. We
choose methods whose parameters are less than 1000k since we think high ef-
ficiency (low parameters) is essential. We can see that our method A2F-SD
achieves better performance than others, which is represented through recover-
ing more high-frequency information for the entire image. For the image barbara
in Set14 (row 1 in Figure 4), our method performs a clear difference between the
blue area and the apricot area on the right top corner of the image. Compared
with AWSRN-SD which is the second method in our table, our model removes
more blur and constructs more regular texture on the right top corner of the
image img096 of Urban100. We own this advantage to the sufficient using of
auxiliary features of previous layers which incorporate multi-scale features in
different convolution progress that might contain abundant multi-frequency in-
formation. While the attention mechanism conduces to the adaptive selection of
different frequency among various layers.

Quantitative comparison Table 6 shows the detailed comparison results. Our
models obtain a great trade-off between performance and parameters. In par-
ticular, when the number of parameters is less than 1000K, our model achieves
the best result for arbitrary scales on each dataset among all of the algorithms.
A2F-SD, which only has about 300K parameters, even shows better performance
on a variety of datasets compared to DRCN that has nearly 1800K parameters.
This proves the tremendous potential of A2F for real-world application. The high
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Table 4. Running time comparison with ×4 scale on Urban100 dataset. All of them
are evaluated on the same mechine.

Model Params Multi-Adds Running time(s) PSNR

RCAN [7] 15590K 919.9G 0.8746 26.82
EDSR [3] 43090K 2896.3G 0.3564 26.64

D-DBPN [21] 10430K 685.7G 0.4174 26.38
SRFBN [31] 3631K 1128.7G 0.4291 26.60
SRFBN-S [31] 483K 132.5G 0.0956 25.71

VDSR [2] 665K 612.6G 0.1165 25.18
CARN-M [32] 412K 32.5G 0.0326 25.62

A2F-SD 320K 18.2G 0.0145 25.80
A2F-L 1374K 77.2G 0.0324 26.32

efficiency of A2F comes from the mechnism of sufficient fusion of former layers
feature via the proposed attention scheme. Because we adopt 1×1 Conv and
channel attention to select the appropriate features of former layers for fusing,
which can help to reduce the number of layers in the network without sacrificing
good performance. When the number of parameters is more than 1000K, A2F-L
model also performs a SOTA result on the whole, although worse in some cases
slightly. It is due to that they combine all features of former layers without con-
sidering whether they are useful, which cause a reduction to performance. While
compared to AWSRN-M and AWSRN, A2F-M model has more advantage in
trade-off since it has comparable PSNR and SSIM but only 1010K parameters
that account for 63%, 80% of AWSRN and AWSRN-M, respectively.

4.5 Running Time and GFLOPS

We compare our model A2F-SD and A2F-L with other methods (both lightweight
[2, 31, 32] and non-lightweight [7, 3, 21]) in running time to verify the high effi-
ciency of our work in Table 4. Like [31], we evaluate our method on a same
machine with four NVIDIA 1080Ti GPUs and 3.6GHz Intel i7 CPU. All of the
codes are official implementation. To be fair, we only use a single NVIDIA 1080Ti
GPU for evaluation, and only contain codes that are necessary for testing an im-
age, which means operations of saving images, saving models, opening log files,
appending extra datas and so on are removed from the timing program.

To reduce the accidental error, we evaluate each method for four times on
each GPU and calculate the avarage time as the final running time for a method.
Table 4 shows that our models represent a significant surpass on running time
for an image compared with other methods, even our A2F-L model is three
times faster than SRFBN-S [31] which has only 483K parameters with 25.71
PSNR. All of our models are highly efficient and keep being less comparable
with RCAN [7] which are 60 and 27 times slower than our A2F-SD, and A2F-L
model, respectively. This comparison result reflects that our method gets the
tremendous trade-off between performance and running time and is the best
choice for realistic applications.
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Table 5. The perceptual metric LPIPS on five datasets for scale x4. The lower is
better. We only choose methods that can be comparable with A2F. All of the output
SR images are provided officially.

Methods Params GFLOPs Set5 Set14 B100 Urban100 Manga109

AWSRN [28] 1587K 1.620G 0.1747 0.2853 0.3692 0.2198 0.1058
AWSRN-SD [28] 444K - 0.1779 0.2917 0.3838 0.2468 0.1168

CARN [32] 1592K 1.620G 0.1761 0.2893 0.3799 0.2363 -
CARN-M [32] 412K 0.445G 0.1777 0.2938 0.3850 0.2524 -
SRFBN-S [31] 483K 0.323G 0.1776 0.2938 0.3861 0.2554 0.1396
IMDN [51] 715K 0.729G 0.1743 0.2901 0.3740 0.2350 0.1330

A2F-SD 320K 0.321G 0.1731 0.2870 0.3761 0.2375 0.1112
A2F-L 1374K 1.370G 0.1733 0.2846 0.3698 0.2194 0.1056

We also calculate the GFLOPs based on the input size of 32× 32 for several
methods that can be comparable with A2F in Table 5. We actually get high
performance with lower GFLOPs both for our large and small models.

4.6 Perceptual Metric

Perceptual metric can better reflect the judgment of image quality. In this paper,
LPIPS [45] is chosen as the perceptual metric. From Table 5, our proposed model
obtains superior results with high efficiency in most cases, which shows their
ability of generating more realistic images.

5 Conclusion

In this paper, we propose a lightweight single-image super-resolution network
called A2F which adopts attentive auxiliary feature blocks to efficiently and
sufficiently utilize auxiliary features. Quantitive experiment results demonstrate
that auxiliary features with projection unit and channel attention can achieve
higher PSNR and SSIM as well as perceptual metric LPIPS with less running
time on various datasets. Qualitative experiment results reflect that auxiliary
features can give the predicted image more high-frequency information, thus
making the models achieve better performance. The A2F model with attentive
auxiliary feature block is easy to implement and achieves great performance
when the number of parameters is less than 320K and the multi-adds are less
than 75G, which shows that it has great potential to be deployed in practical ap-
plications with limited computation resources. In the future, we will investigate
more measures to better fuse auxiliary features.
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Table 6. Evaluation on five datasets by scale ×2, ×3, ×4. Red and blue imply the
best and second best result in a group, respectively.

Scale Size Scope Model Param MutiAdds Set5 Set14 B100 Urban100 Manga109

x2

< 5× 102K

FSRCNN 12K 6G 37.00/0.9558 32.63/0.9088 31.53/0.8920 29.88/0.9020 36.67/0.9694
SRCNN 57K 52.7G 36.66/0.9542 32.42/0.9063 31.36/0.8879 29.50/0.8946 35.74/0.9661
DRRN 297K 6797G 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.92/0.9760
A2F-SD(ours) 313k 71.2G 37.91/0.9602 33.45/0.9164 32.08/0.8986 31.79/0.9246 38.52/0.9767
A2F-S(ours) 320k 71.7G 37.79/0.9597 33.32/0.9152 31.99/0.8972 31.44/0.9211 38.11/0.9757
FALSR-B 326K 74.7G 37.61/0.9585 33.29/0.9143 31.97/0.8967 31.28/0.9191 -
AWSRN-SD 348K 79.6G 37.86/0.9600 33.41/0.9161 32.07/0.8984 31.67/0.9237 38.20/0.9762
AWSRN-S 397K 91.2G 37.75/0.9596 33.31/0.9151 32.00/0.8974 31.39/0.9207 37.90/0.9755
FALSR-C 408K 93.7G 37.66/0.9586 33.26/0.9140 31.96/0.8965 31.24/0.9187 -
CARN-M 412K 91.2G 37.53/0.9583 33.26/0.9141 31.92/0.8960 31.23/0.9193 -
SRFBN-S 483K - 37.78/0.9597 33.35/0.9156 32.00/0.8970 31.41/0.9207 38.06/0.9757

< 103K

IDN 552K - 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 -
VDSR 665K 612.6G 37.53/0.9587 33.03/0.9124 31.90/0.8960 30.76/0.9140 37.22/0.9729
MemNet 677K 2662.4G 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 -
LapSRN 813K 29.9G 37.52/0.9590 33.08/0.9130 31.80/0.8950 30.41/0.9100 37.27/0.9740
SelNet 974K 225.7G 37.89/0.9598 33.61/0.9160 32.08/0.8984 - -
A2F-M(ours) 999k 224.2G 38.04/0.9607 33.67/0.9184 32.18/0.8996 32.27/0.9294 38.87/0.9774

< 2× 103K

FALSR-A 1021K 234.7G 37.82/0.9595 33.55/0.9168 32.12/0.8987 31.93/0.9256 -
MoreMNAS-A 1039K 238.6G 37.63/0.9584 33.23/0.9138 31.95/0.8961 31.24/0.9187 -
AWSRN-M 1063K 244.1G 38.04/0.9605 33.66/0.9181 32.21/0.9000 32.23/0.9294 38.66/0.9772
A2F-L(ours) 1363k 306.1G 38.09/0.9607 33.78/0.9192 32.23/0.9002 32.46/0.9313 38.95/0.9772
AWSRN 1397K 320.5G 38.11/0.9608 33.78/0.9189 32.26/0.9006 32.49/0.9316 38.87/0.9776
SRMDNF 1513K 347.7G 37.79/0.9600 33.32/0.9150 32.05/0.8980 31.33/0.9200 -
CARN 1592K 222.8G 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 -
DRCN 1774K 17974G 37.63/0.9588 33.04/0.9118 31.85/0.8942 30.75/0.9133 37.63/0.9723

< 5× 103K MSRN 5930K 1365.4G 38.08/0.9607 33.70/0.9186 32.23/0.9002 32.29/0.9303 38.69/0.9772

x3

< 103K

FSRCNN 12K 5G 33.16/0.9140 29.43/0.8242 28.53/0.7910 26.43/0.8080 30.98/0.9212
SRCNN 57K 52.7G 32.75/0.9090 29.28/0.8209 28.41/0.7863 26.24/0.7989 30.59/0.9107
DRRN 297K 6797G 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.74/0.9390
A2F-SD(ours) 316k 31.9G 34.23/0.9259 30.22/0.8395 29.01/0.8028 27.91/0.8465 33.29/0.9424
A2F-S(ours) 324k 32.3G 34.06/0.9241 30.08/0.8370 28.92/0.8006 27.57/0.8392 32.86/0.9394
AWSRN-SD 388K 39.5G 34.18/0.9273 30.21/0.8398 28.99/0.8027 27.80/0.8444 33.13/0.9416
CARN-M 412K 46.1G 33.99/0.9236 30.08/0.8367 28.91/0.8000 27.55/0.8385 -
AWSRN-S 477K 48.6G 34.02/0.9240 30.09/0.8376 28.92/0.8009 27.57/0.8391 32.82/0.9393
SRFBN-S 483K - 34.20/0.9255 30.10/0.8372 28.96/0.8010 27.66/0.8415 33.02/0.9404
IDN 552K - 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 -
VDSR 665K 612.6G 33.66/0.9213 29.77/0.8314 28.82/0.7976 27.14/0.8279 32.01/0.9310
MemNet 677K 2662.4G 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 -

< 2× 103K

A2F-M(ours) 1003k 100.0G 34.50/0.9278 30.39/0.8427 29.11/0.8054 28.28/0.8546 33.66/0.9453
AWSRN-M 1143K 116.6G 34.42/0.9275 30.32/0.8419 29.13/0.8059 28.26/0.8545 33.64/0.9450
SelNet 1159K 120G 34.27/0.9257 30.30/0.8399 28.97/0.8025 - -
A2F-L(ours) 1367k 136.3G 34.54/0.9283 30.41/0.8436 29.14/0.8062 28.40/0.8574 33.83/0.9463
AWSRN 1476K 150.6G 34.52/0.9281 30.38/0.8426 29.16/0.8069 28.42/0.8580 33.85/0.9463
SRMDNF 1530K 156.3G 34.12/0.9250 30.04/0.8370 28.97/0.8030 27.57/0.8400 -
CARN 1592K 118.8G 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 -
DRCN 1774K 17974G 33.82/0.9226 29.76/0.8311 28.80/0.7963 27.15/0.8276 32.31/0.9328

< 104K MSRN 6114K 625.7G 34.46/0.9278 30.41/0.8437 29.15/0.8064 28.33/0.8561 33.67/0.9456

x4

< 103K

FSRCNN 12K 4.6G 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280 27.90/0.8517
SRCNN 57K 52.7G 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505
DRRN 297K 6797G 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.46/0.8960
A2F-SD(ours) 320k 18.2G 32.06/0.8928 28.47/0.7790 27.48/0.7373 25.80/0.7767 30.16/0.9038
A2F-S(ours) 331k 18.6G 31.87/0.8900 28.36/0.7760 27.41/0.7305 25.58/0.7685 29.77/0.8987
CARN-M 412K 32.5G 31.92/0.8903 28.42/0.7762 27.44/0.7304 25.62/0.7694 -
AWSRN-SD 444K 25.4G 31.98/0.8921 28.46/0.7786 27.48/0.7368 25.74/0.7746 30.09/0.9024
SRFBN-S 483K 132.5G 31.98/0.8923 28.45/0.7779 27.44/0.7313 25.71/0.7719 29.91/0.9008
IDN 552K - 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 -
AWSRN-S 588K 37.7G 31.77/0.8893 28.35/0.7761 27.41/0.7304 25.56/0.7678 29.74/0.8982
VDSR 665K 612.6G 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809
MemNet 677K 2662.4G 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 -
LapSRN 813K 149.4G 31.54/0.8850 28.19/0.7720 27.32/0.7280 25.21/0.7560 29.09/0.8845

< 2× 103K

A2F-M(ours) 1010k 56.7G 32.28/0.8955 28.62/0.7828 27.58/0.7364 26.17/0.7892 30.57/0.9100
AWSRN-M 1254K 72G 32.21/0.8954 28.65/0.7832 27.60/0.7368 26.15/0.7884 30.56/0.9093
A2F-L(ours) 1374K 77.2G 32.32/0.8964 28.67/0.7839 27.62/0.7379 26.32/0.7931 30.72/0.9115
SelNet 1417K 83.1G 32.00/0.8931 28.49/0.7783 27.44/0.7325 - -
SRMDNF 1555K 89.3G 31.96/0.8930 28.35/0.7770 27.49/0.7340 25.68/0.7730 -
AWSRN 1587K 91.1G 32.27/0.8960 28.69/0.7843 27.64/0.7385 26.29/0.7930 30.72/0.9109
CARN 1592K 90.9G 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 -
DRCN 1774K 17974G 31.53/0.8854 28.02/0.7670 27.23/0.7233 25.14/0.7510 28.98/0.8816

< 104K
SRDenseNet 2015K 389.9K 32.02/0.8934 28.35/0.7770 27.53/0.7337 26.05/0.7819 -
MSRN 6078K 349.8G 32.26/0.8960 28.63/0.7836 27.61/0.7380 26.22/0.7911 30.57/0.9103
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