
Lightweight Time Synchronization
for Sensor Networks

Jana van Greunen
University of California, Berkeley

2108 Allston Way, Suite 200
Berkeley, CA 94704, USA

+1 510.666.3102

janavg@eecs.berkeley.edu

Jan Rabaey
University of California, Berkeley

2108 Allston Way, Suite 200
 Berkeley, CA 94704, USA

+ 1 510.666.3102

jan@eecs.berkeley.edu

ABSTRACT
This paper presents lightweight tree-based synchronization (LTS)
methods for sensor networks. First, a single-hop, pair-wise syn-
chronization scheme is analyzed. This scheme requires the ex-
change of only three messages and has Gaussian error properties.
The single-hop approach is extended to a centralized multi-hop
synchronization method. Multi-hop synchronization consists of
pair-wise synchronizations performed along the edges of a span-
ning tree. Multi-hop synchronization requires only n-1 pair-wise
synchronizations for a network of n nodes. In addition, we show
that the communication complexity and accuracy of multi-hop
synchronization is a function of the construction and depth of the
spanning tree; several spanning-tree construction algorithms are
described. Further, the required refresh rate of multi-hop synchro-
nization is shown as a function of clock drift and the accuracy of
single-hop synchronization. Finally, a distributed multi-hop syn-
chronization is presented where nodes keep track of their own
clock drift and their synchronization accuracy. In this scheme,
nodes initialize their own resynchronization as needed.

Categories and Subject Descriptors
C.3 [Special-Purpose And Application-Based Systems]: Real-

time and embedded systems, Signal processing systems

General Terms: Algorithms, Performance, Reliability.

Keywords
Synchronization, Lightweight, Spanning tree, Multi-hop.

1. INTRODUCTION

Many applications of sensor networks depend on the time accu-
racy kept by nodes in the network. In such applications, events
observed by a node are timestamped with the node’s local time,
which should be accurate to within the limits imposed by the ap-
plication and the timescale of the events under observation. Nota-
bly, time accuracy to within fractions of seconds is often the
maximum accuracy required by sensor network applications.
Thus, it is often sufficient to use a relaxed or lightweight synchro-
nization method in sensor networks.

Sensor networks require a way for nodes to synchronize their
clocks (i.e. local times) to a global time. Traditional synchroniza-
tion algorithms have focused on minimizing the synchronization
error and achieving maximum accuracy, without regard to the
computation- and communication energy expended by the algo-
rithm. In sensor networks, however, energy is a highly constrained
resource. Thus, traditional synchronization algorithms are not
adequate as they place a heavy burden on the network resources.

In this paper we argue that the communication and computation
requirements of synchronization can be significantly reduced by
taking advantage of the relaxed accuracy constraints. We intro-
duce synchronization schemes that sacrifice accuracy by perform-
ing synchronization less frequently and between fewer nodes. The
efficiency of these schemes can be adjusted to perform to the
desired accuracy.

The work in this paper is principally motivated by the Pico-radio
[1] project. Pico-radio is targeted mainly at environment monitor-
ing applications such as temperature control, traffic monitoring,
and surveillance. Pico-radio nodes are designed to be self-
powered by scavenging energy from the environment and are
extremely power constrained. Thus, minimizing energy and power
consumption is crucial.

The lightweight tree-based synchronization (LTS) algorithms
developed in this paper are designed to work with generic low-
cost sensor nodes. The algorithms focus on minimizing overhead
(energy) while being robust and self-configuring. In particular, the
algorithms operate correctly in the presence of node failures, dy-
namically varying channels, and node mobility.

This paper is organized as follows: Section 2 presents an overview
of existing synchronization algorithms for wired networks as well
as related work in sensor networks. Section 3 describes and ana-
lyzes single-hop synchronization, which is then extended to multi-
hop tree-based synchronization in Section 4. Section 5 and 6 dis-
cuss a centralized and distributed multi-hop synchronization
scheme respectively. Sections 7 and 8 present future work and a
summary.

2. RELATED WORK

2.1 General Synchronization Techniques

Synchronization is important in many systems, both wired and
wireless, and a large number of time synchronization schemes
exist. Well-known synchronization schemes include GPS [2] and
the Network Time Protocol (NTP) [3]. In general, synchronization
can be implemented in software or hardware, and the algorithms
can be probabilistic, deterministic, or statistical. This section pro-

This research was sponsored by the Defense Advanced Research
Projects Agency (DARPA) under contract F33615-02-2-4005.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WSNA’03, September 19, 2003, San Diego, California, USA.

Copyright 2003 ACM 1-58113-764-8/03/0009…$5.00.

11

vides a brief overview of the main characteristics of existing time
synchronization schemes.

The following discussion is based on a classification of synchro-
nization algorithms by Anceaume and Puaut [4]. They partition
time synchronization into three main components: resynchroniza-
tion event detection, remote clock estimation, and clock correc-
tion. Resynchronization event detection identifies the time at
which nodes have to resynchronize their clocks. This identifica-
tion can be performed in two ways. The first technique is based on
initially synchronized clocks that are resynchronized at a constant
rate of kR where R is the duration of a single synchronization
round and k is a real number larger than one to prevent overlap
between the rounds. The second technique for resynchronization
detection relies on a specific node to send an initiating message to
every other node j in the system when kR time has passed. Once
the message reaches node j, node j initiates its own synchroniza-
tion. Thus the accuracy of the synchronization is dependent on the
message latency. Our centralized scheme presented in Section 5
uses a variation of the latter technique and the distributed scheme
presented in Section 6 utilizes the first technique.

The remote clock estimation component is used to determine the
local time of another node in a network. Remote clock estimation
is performed with one of two techniques: “time transmission”
when the time of a remote clock is sent in a message, or “remote
clock reading” when the delay bounds are unknown. Both these
techniques involve the transmission of additional messages. These
additional messages add unwanted communication overhead and
thus are to be avoided in a lightweight synchronization algo-
rithms. Instead, our algorithms estimate the maximum deviation
of the remote clock by using a probabilistic bound on synchroni-
zation accuracy and the clock drift since the last synchronization.

The last component of time synchronization is clock correction,
which is used to update the local time of a node when a resyn-
chronization event has occurred (the first component) and infor-
mation about remote clocks has been estimated (the second com-
ponent). Clock correction estimates an adjustment Api based on the
“estimation set” [4]. The estimation set is a set containing relevant
remote clock estimates which are produced by the clock estima-
tion component. There is two broad classes of these clock correc-
tion functions: convergence average based functions (which return
an average of the values contained in the estimation set) and con-
vergence non-average based functions. The non-average tech-
niques use only a subset of the estimation set to account for Byz-
antine failure.

Traditionally, synchronization techniques have focused on achiev-
ing maximum accuracy. In this sense our approach differs funda-
mentally because the objective is to minimize complexity (and
therefore energy) of the synchronization algorithm. The accuracy
is given as a constraint. The next section discusses a synchroniza-
tion algorithm developed for sensor networks.

2.2 Related Work in Sensor Network Time

Synchronization

To our knowledge, there are three distinct synchronization algo-
rithms, Reference Broadcast (RBS [5]), TINY/MINI-SYNC [6],
and Level synchronization [7]. In the first scheme (RBS), an in-
termediate node is used to synchronize the local time of two
nodes. The intermediate node transmits a “reference packet” to the

two nodes. The two nodes record the time that they received the
packet and then exchange this recorded time to find the differ-
ence. The accuracy of RBS is mostly determined by the amount of
time it takes either node to receive and process the reference
packet; if there is a large difference in receiving time, the accu-
racy of RBS is reduced. RBS has a complexity of 4 received and 3
transmitted messages for two nodes. For n nodes and m reference
broadcast packets, RBS has a complexity of O(mn2) – for each of
the m received reference packets, a node exchanges information
with all other n-1 receivers. A major goal of this paper is to de-
velop an algorithm with much lower complexity.

In [5] the RBS algorithm is further extended to multi-hop (rather
than pair-wise) using “multi-hop clock conversion.” Multi-hop
clock conversion is designed to synchronize at least two groups of
nodes. A group of nodes is defined as all nodes that can receive
reference packets from a particular broadcast node. Let A and B
be two broadcast nodes. It is assumed that at least one receiver of
node A is also a receiver of node B. Synchronization is then per-
formed by finding the statistical best fit of the receiver time dif-
ferences through the nodes in both groups. The multi-hop RBS
algorithm relies on effective clustering of the nodes around the
broadcast nodes. Mitra and Rabek [8] proposed an addition to
RBS in the form of a clustering service that maintains a cluster
cover of the sensor network. The service also ensures that there is
overlap between the clusters so that inter-cluster synchronization
can be efficiently performed. This clustering service adds consid-
erable overhead to the RBS algorithm because the clustering to-
pology needs to be constructed and maintained.

Elson et al. [9] proposes post-facto synchronization. Post-facto
synchronization utilizes RBS synchronization, but nodes are syn-
chronized only after a time-sensitive packet has been transmitted.
If many such packets are transmitted, this scheme may result in
many unnecessary pair-wise synchronizations.

The second type of synchronization TINY/MINI-SYNC [6] is
based on the assumption that the nodes’ clock drifts are of the

following linear form: iii btat += where ti is the local clock of

node i, ai and bi are drift parameters, and t is “real” time. Under
this assumption, the offset between two nodes is also linear. In
order to perform pair-wise synchronization, TINY/MINI-SYNC
nodes exchange time-stamped packets (timestamped in the same
way described in the pair-wise synchronization algorithm in Sec-
tion 3). These exchanged packets are used to estimate the best-fit
offset line between the two nodes. As more packets are exchanged
the computation complexity required for calculating the best-fit
line increases. The linear constraint is used to identify redundant
packets that are discarded to lower computation complexity. Each
node performs this pair-wise synchronization scheme with each of
its neighbors.

The third scheme [7], which utilizes level-based synchronization,
introduces the pair-wise synchronization that we will use in this
paper. This scheme was chosen because it is extremely simple and
computationally efficient. The accuracy of this pair-wise synchro-
nization scheme is determined by the sensor’s radio characteris-
tics. Due to the importance of pair-wise synchronization in the
execution of our multi-hop synchronization scheme this pair-wise
scheme will be presented and analyzed in detail in Section 3.

The multi-hop component of the level-based synchronization
scheme differs from the scheme presented in this paper. In the
level-based scheme each node is assigned a logical level indicat-

12

ing its distance from the chosen leader node. This level assign-
ment is fixed for the lifetime of the leader. When new nodes join
the synchronization they are required to initiate a “level discov-
ery” phase. Pair-wise synchronizations are then performed be-
tween nodes in adjacent levels. The static nature of the level hier-
archy reduces the robustness of this solution.

The next section presents a detailed overview of the technique for
pair-wise time synchronization used in the remainder of the paper.

3. PAIR-WISE SYNCHRONIZATION

The following section describes a basic scheme to synchronize
pairs of nodes. Nodes j and k can synchronize their local time by
exchanging two packets with the following procedure:

• Node j transmits the first packet with a timestamp t1 with
respect to its local time.

• Node k records the time t2 when it receives the first packet.
Time t2 is equal to t1 plus the transmission time D from node
k to j plus the offset d between node j and k’s clocks. Gener-
ally the transmission time D is unknown and is a function of
the distance between the nodes and signal propagation char-
acteristics.

• Next, node k transmits a second packet to j that contains t1
and t2. This packet is also timestamped by k at time t3.

• Node j receives the second packet at time t4 = t3 + D – d. See
Figure 1 for a graphical depiction of the exchange.

Figure 1: Packet exchange for pair-wise synchronization

• The offset d can be calculated at node j by subtracting t4 from
t2.

t2 – t4 = t1 – t3 – D + D + 2d

d = 0.5*(t2 – t4 – t1 + t3)

• The two nodes are synchronized once node j has calculated
the offset d. However, a third message is required if the offset
d must also be communicated to node k.

The underlying assumption is that the transmission time is the
same from j to k and k to j, that is D1 = D2. Of course D1 and D2
are not exactly equal and this introduces some error in the syn-
chronization. In order to analyze this difference we provide a brief
overview of the components that make up the transmission time D
and the amount of error that each component contributes. Kopetz
and Schwabl [10] have divided the transmission time into four
parts:

• Send time. The time spent assembling the message at the
sender, which includes processing and buffering time. The
message is timestamped after the send time has completed so

send time does not contributed to the difference in transmis-
sion times.

• Propagation time. The time for the signal to propagate across
the physical medium between the two nodes. The propaga-
tion time is a function of the distance between the nodes. As
the distances between nodes do not change rapidly, the
propagation time is the same in both directions and thus does
not contribute to the difference between transmission times.

• Receive time. The processing time required for the receiver to
receive a message from the channel and notify the host of its
arrival. Elson et al. [5] characterized the receive time using a
testbed of “COTS MOTES,” a narrowband radio and sensor
platform developed by Warneke, Atwood, and Pister [11].
Results from receive delay differences showed that the distri-
bution of inter-receiver variability was Gaussian with zero
mean and a variance σ of 11.1 microseconds. The experiment
validates the use of a Gaussian distribution to model the vari-
ability of receive time.

• Access time. The delay associated with accessing the channel,
including carrier sensing. The differences in access times
arise in much the same way that the difference in receive
time do because the packets go through the same physical
and MAC layers of the radio. Thus, as with receive time, we
assume that differences in access times among nodes are also
Gaussian with zero mean

When the error from the receive- and access time are combined,
their variance increases at most four times (depending on the de-
gree of correlation between them). Thus, when two nodes syn-
chronize with each other, we can say with 99% confidence that
the accuracy will be within (2.3)*(4·σ) or 9.2*σ. For the COTS
MOTES [11] this is an accuracy of 0.1 milliseconds.

In the next section we will extend the pair-wise (single-hop) syn-
chronization algorithm introduced in this section to multi-hop
synchronization. In addition to accuracy of the synchronization
we will also discuss stability (drift of clocks over time) and a way
to determine when nodes must resynchronize.

4. MULTI-HOP SYNCHRONIZATION

Multi-hop synchronization is an extension of the pair-wise syn-
chronization algorithm. In a straightforward extension of pair-
wise synchronization, a group of n nodes requires n2 pair-wise
synchronizations. Due to the relatively low accuracy requirements
of our sensor network, we will avoid this n2 factor by linearizing
the synchronization by performing pair-wise synchronization only
along network edges that form a spanning tree structure, described
later.

There are several important considerations for multi-hop synchro-
nization that influence the design of an efficient algorithm:

• Global reference. We assume that at least one node in the
network has access to a global time reference. We will fur-
ther assume that the global time kept by any reference node is
orders of magnitude more accurate than the accuracy achiev-
able by the single-hop synchronization. All nodes with refer-
ence to global time are stationary.

• Selective synchronization. Multi-hop synchronization can aim
to keep all nodes synchronized at all times, or we can per-
form selective synchronization. In other words, the algorithm

13

can synchronize only the nodes that are transmitting time-
sensitive data.

• Resynchronization rate. Due to clock drift, the nodes will
periodically need to be resynchronized. Here we assume a
clock drift is bounded. In [4] a node’s clock denoted by H(t)

is defined to be “ρ - bounded” provided that for all real time
t,

ρ
ρ

+≤≤
+

1
)(

)1(

1

dt

tdH

A clock H(t) that drifts at a constant rate will have ρ = 1.0.

The resynchronization can be done synchronously (all the
nodes at once) or asynchronously.

• Error estimation & limitation. The synchronization algorithm
itself should keep track of accuracy performance and the er-
rors produced by clock drift among nodes. When the algo-
rithm determines that node clocks have (or might have)
drifted, a resynchronization scheme should be invoked.

• Robustness. There should not be a single point of failure in
the system (except maybe the reference node) and the algo-
rithm should be robust to node failures.

• Mobility. Synchronization should work for both stationary or
mobile nodes

• Propagation of error. When multi-hop synchronization is
performed by the algorithm presented in this paper (i.e. along
the edges of a spanning tree), the error will grow linearly as a
function of the number of hops from the reference node.
Thus, we want to limit the worst-case depth of the spanning
tree. In our algorithm the leaf nodes of the spanning tree will
have the greatest synchronization error but this error is
bounded to within the required accuracy limits.

In the next sections we propose two algorithms for multi-hop
synchronization. The first algorithm is a centralized approach in
which the synchronization and periodic updates are generated
from a reference node. The second scheme is a distributed multi-
hop synchronization method where the nodes (and not the refer-
ence nodes) are responsible for initiating and performing resyn-
chronization.

5. CENTRALIZED MULTI-HOP LTS

Centralized multi-hop synchronization is a simple linear extension
of the single-hop synchronization. The basis of the algorithm is
the construction (either offline or dynamic) of a low-depth span-
ning tree T comprising the nodes in the network. In general, a
new spanning tree is constructed each time the algorithm is per-
formed. In order to synchronize nodes in the tree, pair-wise syn-
chronizations are performed along the edges of T. In centralized
multi-hop synchronization, the reference node initiates the syn-
chronization by synchronizing with all immediate (single-hop)
children in T. Next, each child of the reference node synchronizes
with their subsequent children. This process continues until the
leaf nodes of T are reached. The algorithm terminates when all
the leaf nodes have been synchronized. This running time of the
algorithm is proportional to the depth of the tree.

5.1 Analysis of Error

The variance of the synchronization error increases along each
branch of the tree as a linear function of the number of hops. This
is because the errors resulting from the respective pair-wise syn-
chronizations are independent and thus additive. As assumed in
the pair-wise synchronization discussion, the synchronization
error between two adjacent nodes is a Gaussian random variable
with a variance of four times the receiver variance σ. Thus, for a
node at depth d in the spanning tree, the expected error is zero but
the variance of the error is 4*d* σ.

The following example illustrates the effect of error accumulation
on accuracy. Consider a network with 1000 randomly distributed
nodes in a rectangular region of size 140m*140m with a radio
range of 10m and a reference node in the center of the region. If
the spanning tree is created by breadth-first search, the longest
possible path in the network is along a diagonal of length 70*2½
which consists of at most 10 hops. Thus the maximum resulting
variance at the leaf nodes will be 40σ. If the nodes are COTS
MOTES then with 99% confidence the leaf nodes will be accurate
to within 2.3*40σ, which is an accuracy of 1ms.

The error accumulation is highly associated with the spanning tree
used for synchronization, specifically its depth. In the next section
we will consider algorithms for efficiently constructing low-depth
spanning trees in a distributed manner.

5.2 Creating a Spanning Tree

We would like to construct a spanning tree that maximizes the
synchronization accuracy. Thus, based on the previous discussion,
an optimal tree is one with minimum depth. If we consider clock
drift, the accuracy of synchronization is also affected by the run-
ning time of the algorithm. To minimize running time, the syn-
chronization should occur in parallel along all branches so that all
leaf nodes finish similar times. One type of tree construction that
yields both these properties is breadth first search.

Breadth-first-search has a higher communication overhead com-
pared to other tree-construction algorithms. The communication
complexity (i.e. the number of messages generated) of breadth
first search can be minimized to 10*n*m½ where n is the number
of nodes and m is the number of edges between them. Breadth
first search is also difficult to perform in a distributed manner.

In addition to breadth-first-search, there are two other tree-
construction algorithms with desirable properties. Distributed
depth first search (DDFS) developed by Awerbuch.[12] is a com-
putationally efficient algorithm (see Figure 2 for a detailed ver-
sion of the algorithm). Savings in communication arise because
each node informs its neighbors when it is visited the first time,
before it continues the recursive search among its children. Thus,
DDFS eliminates the return calls along non-tree edges. The com-
munication complexity of the algorithm is 4*m (where m is the
number of edges) and the time complexity is bounded by 4n-2.

14

Start the algorithm at node u the initiator:
visitedu := true ;

for all x є Neighu do send <visit> to x;
for all x є Neighu do receive <ack> from x;
for some w є Neighu do send <dfs> to w; statusu[w] := cal

end

Upon receipt of <visit> from v:
statusu[v] := done ; send <ack> to v

Upon receipt of <dfs> from v:

if not visitedu then
begin visitedu := true; statusu[v] := father;

begin forall x є Neighu \ {v} do send <visit> to x;
forall x є Neighu \ {v} do receive <ack> from x;

end;
if there is a w є Neighu with statusu[w] = unused

begin send <dfs> to w; statusu[w] := cal

else if there is a w є Neighu with statusu[w] = father

begin send <dfs> to w end

else (* initiator *) stop

Figure 2: Awerbuch’s distributed depth-first search (algo-

rithm description taken from [12])

A second tree-exploration algorithm is called the “Echo” algo-
rithm, described in [12] (see Figure 3 for the algorithm). This
algorithm is not computationally efficient, i.e. it actually has an
O(nm) running time, but in practice it completes with O(d) run-
ning time where d is the depth of the tree. This short completion
time will increase the accuracy of the synchronization.

var recu : integer init 0;
 fatheru : neighbor init undef;

Algorithm for the initiator:

forall v є Neighu do send <echo> to v ;
while recu < |Neighu| do

begin receive <echo> ; recu := recu + 1 end

Algorithm for other nodes:
receive <echo> from w ; fatheru := w ; recu := 1;
forall v є Neighu \ {w} do send <echo> to v ;
while recu < |Neighu| do

begin receive <echo> ; recu := recu + 1 end ;
send <echo> to fatheru

Figure 3:The Echo algorithm (algorithm description from

[12])

5.3 Efficiency

The communication cost of the multi-hop synchronization algo-
rithm arises from the spanning tree construction and the pair-wise
synchronization along the tree’s n-1 edges. Pair-wise synchroniza-
tion has a fixed overhead of 3 messages per edge for a total of 3n-
3 messages. The overhead for constructing the spanning tree de-
pends on the complexity of the algorithm used to construct the
tree. If DDFS is employed, the total overhead for centralized
multi-hop synchronization is 3n-3 + 4*m per network synchroni-
zation.

The network must periodically be resynchronized due to clock
drift. The next section discusses finding the minimum allowable
resynchronization rate while maintaining the accuracy required by
the application.

5.4 Clock Drift and Resynchronization

It is desirable to keep all clocks accurate (with high probability) to

within τ units of global time. In the centralized multi-hop algo-
rithm, the reference node must periodically resynchronize the
network. Two parameters are required by the reference node in
order to calculate a good resynchronization interval: the instanta-
neous accuracy obtained by synchronizing the entire network, and
the expected rate of clock drift.

In centralized multi-hop synchronization, the depth of the span-
ning tree determines the instantaneous accuracy of network syn-
chronization. Each time the nodes are synchronized, the maximum
depth of the spanning tree must be communicated to the reference
node. This introduces the overhead of forwarding depth informa-
tion back along the spanning tree when synchronization has com-
pleted. Given this maximum depth, a single synchronization ses-
sion is accurate to within 9.2*d*σ (where σ is the variance per hop
in units of time) with 99% probability.

By assuming a ρ-bounded clock, the expected clock drift rate will

not exceed ρ. Thus, in order to maintain time accuracy to within τ
units of global time, the reference node must resynchronize at a

rate of at least (τ – 9.2*d*σ)/ρ. (The numerator represents the
amount of time that the clock can drift and the denominator repre-
sents the drift rate). In this paper, we assume that all nodes know

their clock-drift ρ. This is a reasonable assumption because the
clock drift of oscillators can be found in standard specification
sheets and can easily be programmed on the nodes during assem-
bly or during a network initialization phase. If we choose σ to be

11.1 microseconds as for the COTS nodes, the drift ρ to be the
drift of a typical quartz crystal, which is 20-50 parts per million, a
depth of 5 and an accuracy of 0.5 seconds, the resynchronization
rate would be approximately 1mHz or once every 990 seconds.
The reference node can calculate this rate and periodically gener-
ate a resynchronization.

Periodic resynchronization is complicated as it is possible to initi-
ate a new synchronization session B before the previous session A
is completed. The problem arises because a new spanning tree is
created for each new synchronization session. It is possible for a
node k to be synchronized with new information from session B
but then resynchronized with stale information from session A due
to differences in the spanning tree construction.

There are several ways to solve this problem and ensure that in-
formation from the most recent session is used. One way is to
have the reference node include a monotonically increasing ses-
sion number in the synchronization packets. Nodes along the tree
edges could then discard synchronization packets from older ses-
sions.

5.5 Robustness

The centralized multi-hop synchronization algorithm is robust in
the following ways. First, although the algorithm is sensitive to
failures in the reference node, backup or multiple reference nodes
can be used. Second, given that a new spanning tree is created
every time the network is synchronized, the algorithm is robust to

15

dynamic channel variations, changes in topology, changes in size,
and node mobility. In particular, channel characteristics in sensor
networks with mobile nodes are assumed to be constant relative to
the time required to synchronize the network. The multi-hop algo-
rithm can also keep the network synchronized to the required

accuracy τ in the presence of network changes. This is because the
reference node can calculate the maximum possible tree depth
based on the radio range and network size and ensures that up-
dates occur frequently enough to maintain accuracy.

6. DISTRIBUTED MULTI-HOP LTS

This algorithm performs node synchronization in a distributed
fashion and does not make use of an overlay spanning tree to di-
rect the pair-wise synchronizations. This algorithm also moves the
resynchronization responsibility from the reference node to the
nodes themselves. An individual node’s resynchronization rate
can be determined using the same parameters as the reference
node uses in the centralized case. Therefore, to determine their
resynchronization rates, nodes will need to obtain the following

information: the desired accuracy τ, their distance d (in number of

hops) from a reference node, their clock drift ρ, and a record of
the time that has passed since they were synchronized. A particu-

lar node j needs to resynchronize at a rate of at least (τ - 9.2*dj*σ)/
ρj. When a node j determines that it needs to be resynchronized, j
will send a resynchronization request to the closest reference
node. In order for j to resynchronize, all nodes along the routing
path from the reference node to j will be synchronized in a pair-
wise fashion.

If we assume that the clock drift ρ is the same for all nodes in the
network, the nodes furthest from the reference node will have the
greatest synchronization error and correspondingly the greatest
synchronization rate. Therefore, the synchronization will be
driven by these edge-nodes along paths that almost look like a
reverse tree. An advantage of this algorithm is that certain nodes
may not require frequent synchronization. If a node’s rate of event
observation is significantly lower than its required synchroniza-
tion rate, it may not always need to be synchronized to the re-
quired accuracy. In other words, it is better to synchronize only
when the node has a data packet to transmit. Thus, the nodes can
opportunistically synchronize.

6.1 Avoiding cycles

When a synchronization request is forwarded from a leaf node to
the reference node it is possible for a cycle to occur. A cycle oc-
curs when the node at the head of the synchronization chain re-
quests synchronization from a node that is lower down in the
same request chain. Cycles occur because the routing is dynamic
and a node requesting synchronization may not know the entire
routing path at the time of the request. When cycles occur they
cause deadlock, because the nodes mutually depend on each other
for synchronization. The occurrence of cycles can be minimized
by forwarding the known synchronization path from the child or
requesting node to the new parent node at the time of a synchroni-
zation request. However, it is impossible to avoid cycles due to
the asynchronous and distributed nature of the synchronization
requests. Once a cycle has occurred a distributed graph-searching
algorithm can be used to detect it. To our knowledge the searching
algorithm with the lowest complexity (described in [13]) runs in
O(2m) where m is the number of edges in the sensor graph. This
algorithm presents a considerable overhead.

We propose an alternative approach that does not rely on detect-
ing cycles, but does avoid potential cycles. The approach works as
follows: when a node sends a synchronization request to one of its
neighbors it sets a timer that is proportional to its distance from
the reference node. If the timer expires before a synchronization
response from the neighbor arrives, the node simply initiates an-
other synchronization request with a different neighbor. This
scheme does not prevent cycles from occurring but reduces their
impact at an overhead cost of additional synchronizations.

6.2 Algorithm Enhancements

Although some nodes have relaxed synchronization rates, in the
distributed approach there are some potential inefficiencies of
synchronization requests. For example, two adjacent nodes may
attempt to resynchronize and send two separate synchronization
requests. However, because the nodes are adjacent, it is more
efficient to aggregate the requests. In general, duplicate requests
can be eliminated by having each node keep track of pending
requests from itself and other nodes. If a node k wishes to resyn-
chronize or is forwarding a request from another node, it is bene-
ficial for k to query each of its adjacent nodes to discover if any
have pending requests. If so, k can forward the request to a node
with pending requests, which aggregates the request.

Another way to increase efficiency is through path diversification.
This is best described with an example. Let k and j be two nodes
that are relatively close to a reference node and must each be re-
synchronized at the same rate. Assume that when other nodes
wish to resynchronize with the reference node, they tend to favor
a forwarding path that includes k, but not j. Thus, k itself never
needs to send a resynchronization request because it is frequently
resynchronized by other requests. On the other hand, j rarely
“sees” new synchronization information by virtue of being in the
path of other requests and must occasionally generate its own
resynchronization request. Path diversification allows requests to
be sent through both k and j in proportion to how frequently they
require resynchronization. Path diversification can be imple-
mented as follows. Each node knows when it next requires resyn-
chronization. When a node x is forwarding or generating a syn-
chronization request, it forwards the synchronization request to a
participating neighbor with the earliest resynchronization dead-
line.

7. SIMULATION AND RESULTS

7.1 Simulation setup

The simulations were conducted using Omnet++ [14], a discrete
event simulator developed by Andras Varga at the Technical Uni-
versity of Budapest. Omnet++ provides built-in support for mod-
eling wireless channels and a notion of time for distributed sched-
uling of events at nodes. Custom functionality was implemented
using C++.

7.2 Implementation Details

Results are based on simulations of connected ad-hoc networks
consisting of 500 nodes. The nodes are placed uniformly at ran-
dom within a 2-dimensional 120m*120m rectangular area. The
radio range is is 10m. Additionally, the network contains a single
reference node that keeps accurate time. This reference node is
placed in the center of the rectangular area. All nodes in the net-
work are aware of their own locations, the location of the refer-

16

ence node and the locations of their single-hop neighbors. Loca-
tion information is used only to construct the spanning tree for
multi-hop synchronization and to route synchronization requests
toward the controller. In the simulation, the depth-first search
algorithm is employed to construct the spanning tree.

The simulation was executed for 36,000s or 10 hours. A multi-
channel MAC model as described in [15] is assumed. In a multi-
channel MAC the frequency is divided into several bands and
each node uses a locally unique band to communicate with its
neighbors. This MAC model minimizes collisions and thus colli-
sions were considered negligible in the simulation. Further, a very
simple channel model is employed. At each attempted packet
transmission, independent of all other communication attempts,
the success probability for a packet transmission to a neighboring
node that is within radio range is Bernoulli with parameter p. In
the simulation p is either 0.95 or 0.65.

The sender and receiver delay is modeled as a Gaussian variable
with a mean of 0.0001 seconds of and a standard deviation of 11
microseconds. The required accuracy is 0.5 seconds. The drift of
the clocks is 50ppm, which is typical for quartz crystals. The re-
quired accuracy combined with the drift and synchronization ac-
curacy results in an average inter-synchronization time of about
1000 seconds.

7.3 Results

First we will investigate the efficiency of the synchronization
algorithms in terms of the number of pair-wise synchronizations
required to keep the network synchronized. Figure 4 shows the
total number of pair-wise synchronizations for all nodes in the
network using different algorithms. When all nodes are participat-
ing the centralized solution has the fewest number of synchroniza-
tions. The 18000 synchronizations that occur in the centralized
algorithm translate, on average, to 36 synchronizations for each
node over the course of 10 hours.

Figure 4: Number of synchronizations for different algorithms

and channel quality.

Depending on the channel quality the distributed algorithm adds
about 40%-100% overhead compared to the centralized algorithm.
Adding options (algorithm enhancements described in Section
6.2) reduces the overhead of the distributed algorithm to 15%-
60%. The channel quality (packet transmission success rate) af-
fects the number of synchronizations performed by distributed
algorithms greatly because the synchronization requests take
longer paths. This leads to an increase the depth of the synchroni-
zation trees. As the depths of the synchronization trees increase
more frequent synchronization is required. The increase in both

the average and maximum depths of the synchronization trees can
be seen in Figure 5 and Figure 6.

When only 60% of the nodes are participating the distributed al-
gorithm with enhancements significantly outperforms the other
solutions, especially if the channel is good. The use of the distrib-
uted algorithm is justified if only a portion of nodes is participat-
ing in synchronization.

Figure 5: Average depth of synchronization tree for different

algorithms

Figure 6: Maximum depth of synchronization tree for differ-

ent synchronization algorithms.

In addition to the number of synchronizations for the whole net-
work, the number of synchronizations as a function of depth and
degree were also explored. Figure 7 shows the percentage of syn-
chronizations performed at various depths in the synchronization
tree. Using the centralized algorithm, all nodes perform the same
number of synchronizations. Therefore, the centralized curve
displays the proportion of nodes at different depths. The percent-
age of synchronizations performed by the distributed algorithms
show a very similar pattern to that of the centralized case. Thus
we deduce that the percentage of synchronizations performed at a
certain depth is proportional to the number of nodes at that depth
and does not show any other strong dependencies on depth.

Further, the relationship between node degree (number of
neighbors) and number of synchronizations was explored. Figure
8 presents the number of synchronizations as a function of the
degree of the node. For the centralized case the number of syn-
chronizations does not depend on the degree because the synchro-
nization takes place on a spanning tree and each node is synchro-
nized only once, regardless of degree. However, with the distrib-
uted algorithm the number of synchronizations tends to increase
as a node’s degree increases. The node is more likely to receive
additional synchronization requests if it has a higher degree.
When the degree nears twenty there is a decrease in the number of
synchronizations. A possible explanation is that the high-degree

17

nodes are closely interconnected and when one neighbor starts a
synchronization all the other neighbors are aware of this and fall
requests are forwarded to the requesting neighbor. The node and
most of its neighbors may also be close to the reference node and
therefore the node will not receive synchronization requests from
its neighbors.

Figure 7: Percentage of synchronizations as a function of

depth in synchronization tree

Figure 8: Average number of synchronizations as a function

of node degree

The next four graphs relate to the accuracy achieved by the syn-
chronization algorithm. Figure 9 shows the average accuracy, the
nodes’ offset from the reference time directly after synchroniza-
tion, as a function of the depth at which the synchronization oc-
curred. The expected linear increase is evident in the figure, con-
firming that the accuracy of synchronization deteriorates linearly
as the hop-distance from the reference node increases.

In addition to post-synchronization accuracy, the offset or error
before synchronization is an important parameter. The offset be-
fore synchronization gives a bound on the maximum inaccuracy
of the nodes. The average offset before synchronization is shown
in Figure 10. The average offset peaks at about 0.4 seconds, which
is within the accuracy bound of 0.5 seconds. In the distributed
case (especially when the enhancement options are used) the av-
erage offset for nodes close to the controller is smaller. In the
distributed case the nodes near the controller synchronize more
frequently because they can have many separate synchronization
requests from more distant nodes.

Figure 9: Accuracy of synchronization as a function of node

depth in the tree

Figure 11 shows the maximum offset as a function of depth. As
the depth increases the maximum tends to be higher and goes
above the bound of 0.5 seconds. There is a non-zero probability of
this occurring because the bound is statistical.

Figure 10:Average time offset before synchronization as a

function of node depth in tree

Figure 11:Maximum time offset before synchronization as a

function of node depth in tree

8. FUTURE WORK

The LTS schemes presented in this paper rely on the reliability
and correctness of information from all nodes along the path to
the reference node. Thus, the synchronization will fail if there are
Byzantine faults, e.g. clock failure or malicious misinformation

18

from a subset of nodes. Our algorithm may be updated to function
correctly in the presence of these malicious faults.

9. CONCLUSION

In this paper we argue that the required time accuracy of most
sensor network applications is relatively low. For applications
with lower requirements, the lightweight synchronization scheme
we developed is an effective way to give up accuracy for gains in
energy efficiency. We show that an algorithm based on pair-wise
synchronizations can be used if the desired accuracy is much
lower than the accuracy achieved along the longest linear chain of
pair-wise synchronization. We investigate the performance of a
centralized and distributed LTS scheme. Results indicate that
when all nodes participate the centralized scheme is more efficient
that the distributed scheme but when a portion of the nodes need
frequent synchronization the distributed scheme can result in
fewer pair-wise synchronizations. We also show that the scheme
is robust and works well in the presence of dynamic links and
fading.

10. REFERENCES

[1] J. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets,
T. Tuan, PicoRadios for Wireless Sensor Networks: The
Next Challenge in Ultra-Low-Power Design in Proceedings

of the International Solid-State Circuits Conference, San
Francisco, CA, 2002.

[2] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins
GPS Theory and Practice, SpringerWienNewYork, 1997.

[3] D. Mills, Network Time Protocol (Version 3) Specification,
Implementation and Analysis, from
http://www.faqs.org/ftp/rfc/rfc1305.pdf.

[4] E. Anceaume and I. Puaut , A Taxonomy of Clock Syn-
chronization Algorithms, Research report IRISA,

NoPI1103, July 1997.

[5] J. Elson, L. Girod, and D. Estrin, Fine-Grained Network
Time Synchronization using Reference Broadcasts, Pro-

ceedings of the Fifth Symposium on Operating systems De-

sign and Implementation, Boston, MA. December 2002.

[6] M.L. Sichitiu and C. Veerarittiphan, Simple, Accurate Time
Synchronization for Wireless Sensor Networks. IEEE Wire-

less Communications and Networking Conference, WCNC
2003

[7] Saurabh Ganeriwal, Ram Kumar, Sachin Adlakha and
Mani Srivastava, “Network-wide Time Synchronization in
Sensor Networks,” Technical Report UCLA, April 2002.

[8] S. Mitra and J. Rabek, Power Efficient Clustering for Clock
Synchronizarion in Dynamic Multi-hop Sensor Networks,
from
http://theory.lcs.mit.edu/~mitras/courses/6829/project/proje

ct_main.html.

[9] J. Elson and K. Römer, Wireless Sensor Networks: A New
Regime for Time Synchronization, Proceedings of the First

Workshop on Hot Topics In Networks (HotNets-I), Prince-
ton, New Jersey. October 28-29 2002.

[10] H. Kopetz, W. Schwabl. Global time in distributed real-
time systems. Technical Report 15/89, Technishe Univesität
Wien, 1989.

[11] Warneke, B. Atwood, K.S.J. Pister, Smart Dust Mote Fore-
runners, Proceedings of the Fourteenth Annual Interna-

tional Conference on Microelectromechanical Systems

(MEMS 2001), Interlaken, Switzerland, January 21-25,
2001, pp. 357-360.

[12] B. Awerbuch, A new distributed depth first search algo-
rithm, Inf. Proc. Lett. 20 (1985), 147-150.

[13] A. Boukerche, C. Tropper, A Distributed Graph Algorithm
for the Detection of Local Cycles and Knots, IEEE Trans.

Parallel and Distributed Systems, 1998, pp. 748-758

[14] A. Varga, “The OMNeT++ Discrete Event Simulation Sys-
tem,” in European Simulation Multiconference
(ESM’2001), Prague, Czech Republic, June 2001.

[15] C. Guo, L. C. Zhong and J. M. Rabaey, “Low Power Dis-
tributed MAC for Ad Hoc Sensor Radio Networks”, Pro-

ceedings of IEEE GlobeCom 2001, San Antonio, November
25-29, 2001

19

