

Lightweight Transformation and Fact Extraction
with the srcML Toolkit

Michael L. Collard, Michael J. Decker

Department of Computer Science
The University of Akron

Akron, Ohio 44325
collard@uakron.edu, mjd52@zips.uakron.edu

Jonathan I. Maletic

Department of Computer Science
Kent State University

Kent, Ohio 44242
jmaletic@kent.edu

Abstract—The srcML toolkit for lightweight transformation and
fact-extraction of source code is described. srcML is an XML
format for C/C++/Java source code. The open source toolkit that
includes the source-to-srcML and srcML-to-source translators
for round-trip reverse engineering is freely available. The direct
use of XPath and XSLT is supported, an archive format for large
projects is included, and a rich set of input and output formats
through a command-line interface is available. Applying
transformations and formulating queries using srcML is very
convenient. Application use-cases of transformations and fact-
extraction are shown and demonstrated to be practical and
scalable.

Keywords-component; Source Transformation, Fact
Extraction, srcML

I. INTRODUCTION
srcML1 [1-3] is an XML format for the representation of

C/C++/Java source code. The representation wraps source
code (text) with information from the AST (tags) into a single
XML document, as shown in the example in Figure 1. All
original text is preserved so that the original source code
document (the programmer typed in) can be recreated. This
provides full access to the source code at the lexical,
documentary (e.g., comments, white space), structural (e.g.,
classes, functions), and syntactic (e.g., statement) levels. The
format also provides easy support for fact-extraction and
transformation. The srcML format is supported by the srcML
toolkit and has been shown to perform scalable lightweight
fact-extraction and transformation.

The first release of the tool (to other researchers) was in
2003 and the format and associated toolkit has matured steadily
since that time. The toolkit is freely available under GPL and
has also been licensed commercially for use by industry.
Recently, we have added functionality to the toolkit, making it
easier to do simple queries and transformations. This paper
focuses on how to use the toolkit and the command line
interface along with providing examples using srcML for
practical problems.

The original intent of srcML was to support research on
fact extraction and transformation in the context of very large
code bases. We also found it to be very practical for
developers. Because of the need for flexible usage and
integration into existing tools, the srcML toolkit supports
conversion to/from the srcML format through a set of two

1 Pronounced source M L

command-line tools. Users can then apply their tools to this
format. However, feedback from users prompted us to include
direct support for fact-extraction and transformation into the
toolset via the integration of some standard XML tools. This
led to a series of new features to support a rich set of
input/output formats and to make the toolkit more self
contained.

Transformation and fact extraction of source code begins
with the conversion of source code to the srcML format. The
tool src2srcml is used to convert all of the original source code
files into the srcML format. This tool is robust in that it
handles unprocessed and incomplete code. The tool is very
efficient with a translation speed of 25 KLOCS/sec and can
handle approximately 3,000 files per minute. For example, the
entire Linux kernel can be converted into the srcML format in
less than seven minutes. Once in srcML, XML tools and
technologies can be used for fact extraction and transformation.
This includes the use of XPath and XQuery for fact extraction,
RelaxNG and XSchema for validation, and XSLT, DOM, SAX
for transformation. Going from srcML back to source code is
handled by the tool srcml2src, which is very fast with speeds
over 250 KLOCS/sec. As an example of the scalability and
performance of the srcML toolkit, throughout the paper we
applied srcML with a fairly standard laptop (Macbook Pro 2.66
GHz i7 processor wth 4 GB memory) to version 2.6.38.3 of the
Linux kernel. This version consists of approximately 13
MLOC in 29,361 source-code files, which is 353 MB of text.

The srcML project is hosted at:
http://www.sdml.info/projects/srcml. The particular version
used in this paper is under current development and whose
release is being finalized. This can be found at
http://www.sdml.info/projects/srcml/trunk.

The paper is organized as follows. The next section
provides an overview of the srcML format and the associated
toolkit. Section III provides details and examples of using the
toolkit for conversion to/from srcML, for individual files and
complete projects. Section IV discusses how srcML can be
applied to transformation, followed by section V which covers
applications for fact extraction. Section VI discusses how the
srcML markup can be extended. This is followed by related
approaches and tools, future directions for srcML and the
toolkit, and finishes with our conclusions.

II. SRCML FORMAT AND TOOLKIT
The srcML format and toolkit is now described in more

detail. We begin with an example and general description of
the elements used in srcML, followed with details on how the
source code text is preserved to allow for fact extraction of any
part of source code. Finally, a brief description of the
implementation of the srcML toolkit is given.

A. srcML Format
The srcML format consists of all text from the original

source code file plus XML tags. Specifically, the text is
wrapped with srcML elements that indicate the syntactic
structure of the code. In short, this explicitly identifies all
syntactic structures in the code (e.g., classes, functions,
methods, if-statements, etc.).

An example of the srcML representation can be found in
Figure 1. The srcML format starts with a root element unit.
This element contains the srcML of the entire source-code file.
It contains the required attribute language that stores the
programming language of the source-code file and is used in
the translation process. The optional attributes filename and
directory store the path to the file. Originally, the given path
to the file was split into these parts. In the current version, the
path is stored in the attribute filename and the attribute
directory is not automatically created. Options during
translation allow these to be explicitly set. The last optional
attribute is version, which is purely descriptive and allows for
distinguishing between different files that have the same
filename attribute.

A list of the srcML elements is given in Table I. Inside the
element unit there is markup for statements, functions, classes,
structs and unions, and exception handling. Comments are
included in the element comment that has an attribute, type,
whose value can be line or block. There are also optional
elements for literals, operators, and type modifiers.
Preprocessing elements are put in their own namespace cpp.

We must point out here that preprocessing directives and
macros are marked up in srcML, much like any other part of
the syntax. While the preprocessor can be run prior to
conversion to srcML, most users keep the user-centric view of
the code for queries and to support accurate round-trip
transformations. As such, we assume that the preprocessor is
not run and directives, macros, and template code remains and
will be marked up as srcML.

Even with this added markup, the size of the srcML file is
reasonable for an XML representation. In general, we see
approximately a four-times increase in file size over the
original text. For our Linux kernel example, the total text of
the original source is 353 MB whereas the equivalent srcML
representation is 1.2 GB. One of the reasons for this is that the
markup stops at the expression level, with only variable names
at calls marked.

XML uses namespaces as packaging and for
disambiguation of elements. The srcML format defines a
number of namespaces, as will be discussed in greater detail
later in the paper. The namespace:

http://www.sdml.info/srcML/src

is used for most of the language base set of elements and is
included in all srcML files. For C/C++ an additional
namespace, http://www.sdml.info/srcML/cpp, is used for
preprocessor elements. Special namespaces are used for
optional markup and will be described later in the paper.

B. Addressing srcML
The srcML format allows for specific locations in the

source code to be addressed for external links into the code,
forming queries for fact-extraction, and in transformations.
Due to the preservation of all text from the original source
code, and the wrapping of parts of the text with srcML
elements, addressing with srcML provides a direct way to
address any of the source code text.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<unit xmlns="http://www.sdml.info/srcML/src" xmlns:cpp="http://www.sdml.info/srcML/cpp" language="C++"
filename="rotate.cpp">
<cpp:include>#<cpp:directive>include</cpp:directive> <cpp:file>"rotate.hpp"</cpp:file>
</cpp:include>

<comment type="line">// rotate three values</comment>
<function><type>void</type> <name>rotate</name>
<formal-params>(<param><type>int&</type> <name>n1</name></param>,
<param><type>int&</type> <name>n2</name></param>,
<param><type>int&</type> <name>n3</name></param>)</formal-params>
<block>{
 <comment type="line">// copy original values</comment>
 <decl-stmt><decl><type>int</type> <name>tn1</name> = <name>n1</name>,
<name>tn2</name> = <name>n2</name>, <name>tn3</name> = <name>n3</name></decl>;
</decl-stmt>
 <comment type="line">// move</comment>
 <expr-stmt><expr><name>n1</name> = <name>tn3</name></expr>;</expr-stmt>
 <expr-stmt><expr><name>n2</name> = <name>tn1</name></expr>;</expr-stmt>
 <expr-stmt><expr><name>n3</name> = <name>tn2</name></expr>;</expr-stmt>
}</block></function>
</unit>

Figure 1. Example of the source code file rotate.cpp in the srcML format. Note that all original text is preserved, including white space and comments.
The XML markup is placed to indicate syntactic context. The example is for C++, however C and Java are also supported.

To refer to a specific structure in the code, the structure
element, e.g., class, and the following name can be used. For
example, to address the class Rotate, the XPath would be:

//src:class[src:name='Rotate']

The use of “//” means at any point in the document. The
part in brackets is a predicate, and will apply if the XPath in it
exists. Note that name of the class is not an attribute, but a
nested element inside the class. This same approach can be
used with the elements function, call, etc.

The extraction of elements in more specific locations can be
obtained by giving the path to it. For example, to obtain all if-
statements in the function rotate, the XPath would be:

//src:function[src:name='rotate']/src:block//src:if

Note that the body of a function (or class) is marked with the
element block.

The limits of this often depend on how complicated an
XPath the user can stand. Our work on method stereotyping
applies some very complicated patterns against methods [4].

C. Preservation of Source Text
All text is preserved with as little processing as possible.

However, there are some issues that arise with XML formats
that the srcML representation needed to address.

Newlines, or EOL characters, are normalized in XML. The
original newline characters are not stored. Therefore a srcML
file can be created on one platform, and extracted on another
platform that uses a different EOL representation. This is a
common behavior for source code tools, such as version-
control systems. Also, it is relatively easy to convert files to
the desired EOL character.

TABLE I. A LIST OF THE SRCML ELEMENTS ORGANIZED INTO GENERAL
CATEGORIES.

Category srcML Elements
File/Project unit
Statement if, then, else, while, do, switch, case, default, for, init,

incr, condition, break, continue, comment, name,
type, block, index, expr_stmt, expr, decl_stmt, decl,
init, goto, label, typedef, asm, macro, enum,
empty_stmt, namespace, template, using, extern

Function/Method function, function_decl, specifier, return, call,
parameter_list, param, argument_list, argument

Class class, class_decl, public, private, protected,
member_list, constructor, constructor_decl,
destructor, destructor_decl, super, friend

Struct and Union struct, struct_decl, union, union_decl
Exception try, catch, throw, throws
C-Preprocessor cpp:directive, cpp:file, cpp:include, cpp:define,

cpp:undef, cpp:line, cpp:if, cpp:ifdef, cpp:ifndef,
cpp:else, cpp:elif, cpp:endif, cpp:then, cpp:pragma,
cpp:error

Java extends, implements, import, package
Extra Markup literal, operator, modifier
Misc escape

The XML meta-characters, ‘<’, ‘>’, and ‘&’, occur
frequently in source code and must be escaped. Some source
code files contain special characters that cannot be stored in

XML even if they are escaped. This issue is handled by
including the special element escape with an attribute that
contains the character value. One common example is the
form-feed character which is represented by the element
<escape char="0xc"/>. When converting back to source code,
this element is translated back to its proper character value.
Other examples are control codes that can be found in strings
and comments.

We think of source code as being written in ASCII, with
some exceptions such as Java with UTF-8. However, it is not
unusual for programmers to use their native language for
descriptions and their names in comments, and sometimes non-
ASCII characters are used in literal strings. In most cases, the
character set ISO-8859-1, sometimes referred to as Latin-1, is
sufficient. However, there are examples of code written in
Windows that use other character sets. The detection of what
character set is used for a plain-text file cannot be automated.
This can cause an issue because the conversion to XML,
typically stored in UTF-8, requires knowledge of the original
character set. The srcML toolkit supports encoding conversion
for a wide variety of character sets.

D. Implementation
The srcML toolkit consists of two command-line tools.

src2srcml provides for conversion of source code files to the
srcML format, and the tool srcml2src provides for conversion
of srcML files back to source code. In addition, srcml2src also
provides options for general querying and transformation of
srcML and for the handling of srcML archives. Specific
features of these tools will be described with examples in later
sections.

The srcML toolkit is built on a number of open-source
libraries. ANTLR 2 is used for the underlying parsing.
Although this was sufficient for the early versions of the
toolkit, the need to handle more realistic situations of XML,
encoding, and support for other formats for input and output
led to the use of some additional packages. We will briefly
describe these packages now and will give some example usage
in following sections.

The libxml2 XML library3 provides a full set of APIs for
XML processing. For both src2srcml and srcml2src, libxml2 is
used to produce the XML output, encoding conversion, and
support of http: and ftp: protocols. For srcml2src it is also used
to parse XML, and for XPath and XSLT evaluation. Some of
the encoding conversion support of libxml2 is built-in,
however, much of it is provided by the iconv library4.

The other library that we recently integrated into the toolkit
is libarchive5. This is a general-purpose input and output
library for traditional archive formats: tar, cpio, zip, etc. It
also provides support for compression formats such as gz,
bzip2, etc. The greatest benefit is that the application program
can write against one API, and have the automatic detection
and extraction/decompression provided.

2 http://www.antlr.org
3 http://xmlsoft.org/
4 http://www.gnu.org/software/libiconv/
5 http://code.google.com/p/libarchive/

III. SINGLE FILE CONVERSIONS
Before any fact extraction or transformation can be

accomplished, the source must be converted to the srcML
format. This conversion involves text encoding, determination
of the programming language (C/C++/Java), optional markup,
and other options for the conversion process. In this section,
we will walk through the conversion of a single file and explain
the various options that are available. The long form of options
is used for comprehension, but as is typical of command-line
tools, most of the options also have a short form. A complete
list of the options can be found in the Appendix with Figure 5
for src2srcml and Figure 6 for srcml2src.

A. Round-Trip srcML Conversion
The simplest case is to convert a source code file to srcML.

To convert the source code file rotate.cpp to the srcML file
rotate.cpp.xml the command below is used:

src2srcml rotate.cpp -o rotate.cpp.xml

The speed of conversion to srcML is typically over 25
KLOC/sec. For most source-code files, the transformation to
the srcML format takes fractions of a second.

To convert the srcML format file rotate.cpp.xml back to a
source code file we use:

srcml2src rotate.cpp.xml -o rotatev2.cpp

The conversion back to a source-code file is even faster, and is
often over 250 KLOC/second.

In general, this direct conversion to and from srcML will
produce a file, rotatev2.cpp, that is identical to the original file.
That is, the following pipe will find no differences:

src2srcml rotate.cpp | srcml2src | cmp rotate.cpp

where the cmp utility compares standard input to the file on a
byte-by-byte basis. The only exception to this may be a
difference in the EOL character as explained previously.

Although this direct conversion to and then from srcML is
not directly useful, it does show how transformation and entity
extraction can be integrated into a pipeline using the toolkit.
For example, any XML transformation, here represented by the
name process, can be integrated into the pipeline, such as in the
following:

src2srcml rotate.cpp | process | srcml2src

This simple conversion will work for most cases; however
there are issues that arise that can often be solved by various
srcML options. The rest of this section will describe some of
these options.

B. Encoding
The encoding of the original source code may need to be

specified. The default is to assume ISO-8859-1 encoding and
this works in most cases. If another encoding is needed, then
this can be specified with the option --src-encoding. For
example:

src2srcml --src-encoding=WINDOWS-1258 rotate.hpp -o
rotate.hpp.xml

The other encoding issue concerns the resulting srcML file.
The default is UTF-8 encoding, but other encodings can be
specified via the option --encoding. For example:

src2srcml --encoding ISO-8859-1 rotate.hpp –o
rotate.hpp.xml

Once in the srcML format, conversion back to source code
also involves the selection of an output text encoding. The
same option, --src-encoding, is used. For example:

srcml2src --src-encoding UTF-8 rotate.hpp.xml –o
rotate.hpp

In most cases, these options are not necessary. One way to
deal with the problem is to use the defaults and then check the
resulting XML file to see if it is well formed.

C. Programming Languages
For conversion to srcML, the programming language of the

source code is required for proper parsing (e.g., try is a
keyword in C++ but not in C). Originally, the src2srcml tool
assumed a default programming language of C++. Other
languages could be specified with an option, however, if this
was not properly specified, then incorrect markup may result.
For example, there were cases where users would enter the
command src2srcml Rotate.java and incorrectly assume that
Java was being used as the language. Now, the type of
programming language is automatically determined by the file
extension, and usage errors due to language choice are avoided.
A mapping of file extensions to languages is listed later on in
the paper in Table III with the typical file extensions for the
languages C, C++, and Java.

One exception that arises is for include .h files. From the
extension, it may be assumed that the file is a C file. However,
it is common to use the .h extension (as opposed to .hpp) for
C++ files as was done until relatively recently in the source for
the srcML toolkit.

In any case, the programming language can be explicitly set
using the option --language. For example, to specify C++ for
the include file rotate.h, the following command is used:

src2srcml --language=C++ rotate.h -o rotate.h.xml

D. Namespaces
A namespace prefix is used as shorthand inside of a XML

file. The prefixes that srcML uses by default are the default
prefix for the standard srcML elements, e.g., <class>, and cpp
for the preprocessor elements, e.g., <cpp:ifndef>, but they can
be reconfigured using the command line options. To specify a
prefix the option --xmlns is used. For example, to declare src
as the prefix for the standard srcML namespaces, the option
would be:

--xmlns:src=”http://www.sdml.info/srcML/src”

Note that the prefix is a local declaration to the file, and
other prefixes can be used in queries for such things as fact
extraction. This will be further demonstrated in the later
section on fact extraction using srcML.

TABLE II. A LIST OF NAMESPACES FOR SRCML. THE MAIN NAMESPACE
IS AT THE TOP FOLLOWED BY THE NAMESPACE FOR PREPROCESSING
ELEMENTS. THIS IS FOLLOWED BY THE OPTIONAL NAMESPACES AND THEIR
CORRESPONDING OPTION.

Option Prefix Namespace
- - http://www.sdml.info/srcML/src

- cpp http://www.sdml.info/srcML/cpp

--position pos http://www.sdml.info/srcML/position

--operator op http://www.sdml.info/srcML/operator

--literal lit http://www.sdml.info/srcML/literal

--modifier type http://www.sdml.info/srcML/modifier

--debug err http://www.sdml.info/srcML/srcerr

E. Optional Markup
Optional markup is available but not included by default

because it can impact the size of the srcML file (i.e., increase
the number of tags). Each optional markup forms a unique
group that can be identified separately. These can be enabled
by a specific option and each has a namespace and default
prefix. A complete list of these options with their namespaces
and default prefixes can be found in Table II. The use of a
separate namespace allows us to tell if they are enabled. If the
namespace for an option is declared in the root element, then
the corresponding feature is enabled during parsing. This is a
small feature to help in automating testing of the toolkit. We
will briefly describe each option.

One consistent request by srcML users was for the
recording of the line and column numbers for each element in
the original source file. Typically, researchers wanted to
integrate srcML into their line-based tools. In the past, we
accomplished this by writing a separate utility for this purpose.
Now, the recording of line and column position as attributes in
an element can be turned on with the option --position. The
feature adds two attributes, pos:line and pos:column. While
the definition of line is clear, the definition of column is not.
The exact column that the element appears on depends on the
use of tabs and the tab stops. In order to deal with this, a tab
stop of 8 was assumed as a default. This can be set to a
different value with the option --tabs.

Originally, srcML marked elements only down to variables
and calls at the expression level, e.g.,

<expr><name>a</name> = 1</expr>

This required further processing for applications that wanted to
easily work with operators and literal values. The options --
operator and --literal can be used to enable these features. The
following is the same expression as before, but with the options
to markup operators and literal values:

<expr><name>a</name> <op:operator>=</op:operator>
<lit:literal type=”number”>1</literal></expr>

There is a similar situation for type modifiers in
declarations, i.e., ‘&’ and ‘*’ for C++, which are not marked by

default. This marking can be enabled in a similar manner with
the option --modifier.

One special option for internal debugging is the option --
debug which adds additional elements to indicate problems in
parsing.

Alternatively, declaring a prefix for the appropriate
namespace can enable all of the optional markup features. For
example, instead of using the option --operator, the namespace
declaration option --xmlns can be used to define a prefix for the
operator namespace:

--xmlns:oper="http://www.sdml.info/srcML/operator"

that enables the markup of operators, and also give them a
prefix of oper instead of the default prefix op.

F. General Information
Meta-data about a srcML file can be generated using the

option --info of srcml2src as below:

srcml2src --info rotate.hpp.xml

This option lists the namespaces and prefixes used, encoding,
language, and values of the standard attributes filename,
directory, and version, if they are used. Options exist to extract
all of these items individually.

G. Miscellaneous Options
There are a few miscellaneous options that affect the

behavior of the translation and are useful in various situations.
First, although the srcML toolkit can handle a source code file
that consists of a single statement, the attempt to convert a
single expression that is not in a statement will be seen as an
expression statement. The option --expression prevents the
expression from being wrapped in a statement.

The stream processing used by the toolkit allows for the
conversion to srcML on the fly. For example, the output of
XML for an expression can begin as soon as the start of the
expression is parsed. Due to output buffering, this is difficult
to see. The option --interactive turns off this output buffering.

Finally, the srcML output can be compressed using the
option --compress. A compressed file, either source code or
srcML, is automatically detected when used as input with the
srcML toolkit. For example, the Linux kernel can be
compressed by a factor of almost 8 from 1.2 GB to 162 MB.

IV. PROJECT CONVERSIONS: SRCML ARCHIVE
The srcML toolkit provides a number of options and

configurations for translation of individual files. For a large
project, with a number of files, each file can be converted
individually. However, we found it inconvenient to have a
large number of separate XML files to process and deal with.
Also, this is a limitation for fact extraction and multiple-file
transformations. Therefore, the srcML archive format was
created.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<unit xmlns="http://www.sdml.info/srcML/src">

<unit xmlns:cpp="http://www.sdml.info/srcML/cpp" language="C++" filename="rotate.hpp>…</unit>

<unit xmlns:cpp="http://www.sdml.info/srcML/cpp" language="C++" filename="rotate.cpp>…</unit>

<unit language=”Java" filename="Rotate.java”>…</unit>

</unit>
Figure 2. The outer elements for a srcML archive of three files, rotate.hpp, rotate.cpp, and Rotate.java. Each source code file is stored in a separate unit

element that has its own attributes, and can be of a different language.

The srcML archive format allows for the representation
(and processing) of multiple files in a single srcML file
(basically a single file multi-document format). The original
motivation for the format was actually for the test suite. For
example, instead of a large number of separate files for fine-
grained tests of parsing for if statements e.g., if1.cpp.xml,
if2.cpp.xml, etc., all of them are stored in a single if.cpp.xml
srcML archive file.

An example of the archive format is given in Figure 2. This
shows a common situation for C++ where both the .hpp and
.cpp file for a class are needed for analysis or manipulation.
The srcML archive format is the default whenever multiple
input files are indicated. The srcML file in Figure 2 can be
formed from the following command:

src2srcml rotate.hpp rotate.cpp Rotate.java -o rotate.xml

For a large number of files, the filenames can be put into a
list and the list used as input:

src2srcml --files-from=foo.txt -o rotate.xml

The generation of a srcML archive can be forced, even for a
single source code file, using the option --archive. If the files
to be converted are source code files in the same directory, then
the name directory can be used:

src2srcml rotate/ -o rotate.xml

TABLE III. DEFAULT MAPPING OF LANGUAGES TO EXTENSIONS. IT IS
ALSO POSSIBLE TO CHANGE THE MAPPING OF AN EXTENSION, OR TO CREATE

NEW EXTENSIONS.

Language Extension
C .c, .h

C++ .cpp, .h˙pp, .cxx, .hxx, .cc, .hh,
.c++, .h++, .C, .H

Java .java

In a typical case, there are other files besides source code in
a directory. This is so common that we build in direct support
for it. Therefore, the tool uses the file extension to decide what
is or is not a source code file. All files without registered
extensions are ignored. The list of default-registered
extensions is given in Table III. This also allows for multi-
language projects, where each file in the srcML archive can be
in a different language. Additional extensions can be
registered, e.g., to register .h files as C++ use:

src2srcml --register-ext h=C++ rotate.h

In many cases the files may be stored in a standard archive
format, i.e., tar, cpio, tar, etc., and may also include
compression. The use of the library libarchive, internal to the
toolkit, allows for the automatic direct handling of these files
with no options required. The use of the libxml2 library also
allows the tool to fetch remote files. For example, the
following will create a srcML archive of the Linux kernel
directly from kernel.org:

src2srcml http://www.kernel.org/pub/linux/kernel/v2.6/linux-
2.6.38.3.tar.bz2 -o linux.xml

The total time for this command was just around 7 ½ minutes
on our test machine. This includes the time it took the tool to
download, decompress, untar, and convert to the srcML
archive.

Note that, as with input from a directory, the srcML archive
is the default and is required, even with a single file in the
source-code archive.

Finally, all of these sources can be combined into a single,
srcML archive in one command:

src2srcml rotate/ project.tar.gz rotate.hpp rotate.cpp –o
rotate.xml

The option --info for srcML archives provides the same set
of information as it does with non-archive files. Even for very
large srcML archives, it is very fast because only the root unit
tag has to be processed. Another option, --longinfo, provides a
count of the number of files contained in the archive. This
requires the complete traversal of the archive but only takes
about 15 seconds on an archive of the Linux kernel.

For extraction back to source code, the set of choices for
output format are almost the same as what was supported for
input formats, with minor exceptions due to limitations in the
library libarchive used by the toolkit. To generate a gzipped tar
file from the project, the command is:

srcml2src rotate.xml -o rotate.tar.gz

Individual files can be extracted from a srcML archive
using the option --unit and by providing the number of the unit.
For example, to extract the file rotate.cpp from the archive in
Figure 2:

srcml2src --unit=2 rotate.xml

This extracts the text of the file. If the srcML form is needed,
then the option --xml extracts the XML for that individual file
into a non-archive srcML file with the contents. If the position

<xsl:stylesheet xmlns=”http://www.sdml.info/srcML/src” xmlns:xsl=”http://www.w3.org/1999/XSL/Transform”
xmlns:cpp=”http://www.sdml.info/srcML/cpp” version="1.0">
<xsl:output method="xml" omit-xml-declaration="yes" version="1.0" encoding="UTF-8"/>

<!-- instrument each function -->
<xsl:template match="function/block">

 <!-- copy the start of the block (first line) -->
 <xsl:copy-of select="node()[1]"/>

 <!-- insert the instrumented code -->
 fprintf(stderr, "FILENAME: <xsl:value-of select="/unit/@filename"/>\tFUNCTION: <xsl:value-of
select="../name"/>\n");

 <!-- copy the rest of the block -->
 <xsl:copy-of select="node()[position()!=1]"/>

</xsl:template>

<!-- identity copy -->
< xsl:template match="@*|node()"><xsl:copy><xsl:apply-templates select="@*|node()"/></xsl:copy></xsl:template>

</xsl:stylesheet>

Figure 3. An example XSLT transformation to instrument code where a trace call to fprintf() is inserted in each function. Inserted text is shown in bold.
Note that literal text can be directly inserted, i.e., it does not have to be marked up with srcML elements. The call to fprintf is constructed from a mixture of
literal text and XSLT to extract data from the function, i.e., the filename and function name. The template at the bottom is used for an identity copy.

of a file in the srcML archive is not known, the --list option can
be used to find the file.

Most of the conversion back to source code files is
relatively straightforward. One that isn’t is output to a
directory. The model here is that of the tar utility for
extraction. To specify the tar-like extraction of the complete
srcML archive the command would be:

srcml2src --to-dir rotate/ rotate.xml

This also allows for round trip, from a directory of files
back to the same directory, with any transformation that may
be performed along the way.

V. TRANSFORMATION WITH SRCML
With the use of src2srcml and srcml2src, transformation

pipelines can be created. Users can write a transformation
using the various XML transformation language or API,
including DOM, SAX, TextReader, LINQ, etc. XML
transformation can also be performed with XSLT directly using
srcml2src. To apply the XSLT program copy.xsl the command
is:

srcml2src --xslt=copy.xsl linux.xml -o linux.copy.xml

One limitation of using XSLT is that it requires the
complete DOM (Document Object Model) to be constructed in
memory. For large projects the memory requirements for
XSLT processing for the equivalently large srcML archive can
exceed that of many machines. This is opposed to SAX
handlers that process the XML a node at a time. Therefore,
special processing of srcML archives is used with XSLT
transformations. The entire document is traversed in a stream
fashion using a SAX handler. When the srcML for an
individual file in the archive is reached, the DOM for that
particular file is created. The XSLT is applied to that
individual DOM, the result is captured, and the DOM for that

file is de-allocated. The result, when applied to a srcML
archive, is the collection of results of applying the
transformation to each individual unit in order. This is
wrapped so that the collected result forms a srcML archive.
This process can be applied repeatedly.

An example XSLT transformation for instrumenting code is
shown in Figure 3. To each block of a function, a call to the
function fprintf() is added to output the file and function
names. This example shows that literal text can be output
without srcML markup.

To perform a typical transformation on the entire Linux
kernel takes under three minutes (approximately 50
KLOC/sec), not including conversion to/from srcML. A
recursively-defined copy that simulates matching of every node
to an XSLT template (simulating full processing of the XML)
requires just over three minutes (200 seconds). Many common
transformations work at over 80 KLOC/sec. using XSLT.
Examples of transformations for adaptive maintenance changes
using XSLT can be found in [5].

One problem with this approach is that the individual
transformations do not have any access to the attributes on the
root src:unit element, nor do the transformations know their
position in the srcML archive. Therefore each XSLT program
has access to the XPath extension function src:archive() and
src:unit(). The function src:archive() provides access to the
attributes and takes the name of the archive attribute as a
parameter, e.g., src:archive('language').. The other function,
src:unit(), returns the unit number/position of an individual file
in the srcML archive. These extension functions can also be
used in XPath queries.

Parameters can be passed to the XSLT program through the
option:

--xpathparam parameter_name=parameter_value

<unit xmlns="http://www.sdml.info/srcML/src">

<unit xmlns:cpp="http://www.sdml.info/srcML/cpp" language="C"
 filename="linux-2.6.38.3/Documentation/accounting/getdelays.c" item="1"
><condition>(<expr><name>fd</name> < 0</expr>)</condition></unit>

<unit xmlns:cpp="http://www.sdml.info/srcML/cpp" language="C"
 filename="linux-2.6.38.3/Documentation/accounting/getdelays.c" item="2"
><condition>(<expr><name>rcvbufsz</name></expr>)</condition></unit>
…
<unit xmlns:cpp="http://www.sdml.info/srcML/cpp" language="C"
 filename="linux-2.6.38.3/Documentation/auxdisplay/cfag12864b-example.c" item="1">
<condition>(<expr><name>cfag12864b_fd</name> == -1</expr>)</condition></unit>
…
</unit>
Figure 4. A portion of the results of a fact extraction to find all conditions in the Linux kernel. The value of the filename and item number are in bold. Each
match of the query is placed in its own unit element, with the unit attributes copied from the original unit that it was a portion. In order to distinguish
separate occurrences, the attribute item is used as a counter.

This is only valid with the option --xslt and is analogous to
the --xpathparam of the libxml2 utility xsltproc.

A. Filesystem Transformations
The srcML archive also allows for transformations that

convert the file and directory structure of the program, and
allows for the merging or creation of additional source files.

Certain transformations cannot be applied to each source
code file individually. One example is coordinating changes to
an .hpp and the corresponding .cpp file. In this case, both files
should be transformed using a single XSLT program. The
option --apply-root can be used. Note that if the srcML archive
is quite large, then the transformation may take a particularly
long time. For these cases, the archive should only consist of
the files of interest.

Applying the transformation to the entire archive also
allows for filesystem transformations. By a filesystem
transformation, we mean where files are created, deleted, or
moved in the directory structure, possibly with their contents
moved around. The transformation can create new files by
generating the element unit with the appropriate attributes and
delete files by filtering out the appropriate element unit.
Moving files around in the directory structure can be
accomplished by changing the path that is stored in the attribute
filename. This is one of the main reasons that the srcML
archive stores the files in one long list and preserves the
directory structure (for future extraction) in the attribute
filename.

VI. FACT EXTRACTION WITH SRCML
Users can perform fact extraction in multiple ways with the

srcML toolkit. They can simply use the toolkit to convert to
the srcML format and then use their own XML tools for
querying or traversal. For example, XPath can be used to
address the needed fact in the documents. Once the result of a
query is obtained, the user’s tool can format the result to their
requirements. This was the original intent as was described in
the first paper on fact extraction using srcML [1].

However in order to do this, a user had to install and learn

to use an XPath evaluation tool. Many of these are inefficient
or difficult to understand/use. Further, these tools have no
knowledge of the srcML format, namespaces, or structure of
the srcML archive. In order to provide an alternative, we
decided to build features for fact extraction directly into the
srcml2src tool. This was relatively straightforward because
these features are in the underlying libxml2 library. XPath
queries can be directly performed with srcml2src,.e.g.,

srcml2src --xpath "/src:unit//src:expr" -o project.xml

The XPath expression is applied to each individual unit inside
the srcML archive project.xml. The result is a series of
fragments consisting of src:expr elements.

Note that in the previous example, the namespace prefix src
is used. Many XPath evaluators interpret the XPath standard as
requiring that a prefix be used, including libxml2. The
explanation is that the XPath /unit refers to all elements with
the local name of unit that are not part of a namespace. This is
different from the default namespace used inside of srcML for
unit. However, namespace prefixes are local to an XML file
and matching is based on the namespace, not the prefix. The
prefixes used inside of the srcML file can be anything (and are
configurable), as long as they map to the proper namespaces.
A complete list of default prefixes and their namespaces can be
found in Table II. In short, follow the previous example and
your query should work.

Another general issue with fact extraction is the output
format. The result may require further processing. Therefore,
we decided to use the srcML archive format as the output
format. Each result is placed into a separate unit element in the
srcML archive along with the associated metadata, e.g.,
filename and directory. Another attribute, item, is used to
provide a unique identifier for when multiple occurrences of
the extracted code are found in the same file. An example is
shown in Figure 4.

The time for the evaluation of an XPath depends on the
amount of output. In general, the evaluation is quite fast. For
example, an XPath query that examines each element of the
entire Linux kernel but produces no output takes around 45

seconds at over 150 KLOC/sec. Also, since the XPath is
applied to each individual unit separately, the internal memory
requirements are minimal in contrast to application on the
entire nested document.

Another application of fact extraction is to filter the files in
the project; to find the particular files that match a query. This
is quite straightforward to apply. The XPath that matches the
desired units is used as a predicate. For example, if we want to
find all files that contain a call to a particular function,
memcpy(), the command is:

srcml2src --xpath
"/src:unit[.//src:call/src:name='memcpy'] "

linux.xml -o memcpy.xml

Because the resulting XML element is src:unit and
corresponds to a complete file, the result is placed in a srcML
archive. This forms a subset of the original set of Linux files,
all of which can undergo further processing.

Another way to filter files in a srcML archive is to use a
RelaxNG grammar. The option --relaxng can be used to apply
the grammar to the entire archive, as in the following:

srcml2src --relaxng=nestedif.rng linux.xml -o memcpy.xml

This applies the RelaxNG grammar nestedif.rng to each
individual unit in the srcML archive and combines the
individual files that match the grammar and places them into an
output srcML archive. We are just starting to explore the use
of RelaxNG for pattern matching with srcML.

Besides extraction of particular parts of a XML document,
XPath also supports the calculation of numeric results. The
XPath numeric function count() can be used to find the number
of occurrences of an element. For numeric results, the
processing of an XPath forms a sum of the individual results.
For example, to find the number of conditions in the Linux
kernel, the following query can be made:

srcml2src --xpath=”count(/src:unit//src:condition)”
linux.xml

which, in our example Linux kernel is 738,712 and takes
approximately one minute to determine. This is equivalent to
extracting all the occurrences, then counting the number of
resulting occurrences:

srcml2src --xpath=”/src:unit//src:condition” linux.xml |
srcml2src --longinfo

VII. EXTENDING THE SRCML FORMAT
XML is an extensible format, and this philosophy is carried

over into the srcML tools. It is possible to extend the markup
with additional elements. This can be extended markup for the
contents of strings, or additional elements to group items
together.

One example of this can be found in srcDoc, a markup for
structured comments, e.g., Javadoc, Doxygen. [6]. The srcML
underwent additional markup in a new namespace using the
srcDoc tool. Elements were added to markup the contents of
comments. Another example is the srcDiff format, which is an
extension of srcML that represents multiple versions of a

source-code file in a single document that can be queried for
analysis of code changes [7]. The toolset provides full support
for these kinds of extensions.

Alternatively, users may not like some of the choices of
elements names or require additional elements. Since the
output is XML, in many cases a simple XML transformation
will convert srcML to a markup more to their liking. The
srcML tools do not validate against a DTD or any schema, so
the elements can be put into the default srcML namespace.

VIII. RELATED APPROACHES AND TOOLS
We observed that automated source code transformations

intended to be handed back to a developer must preserve the
programmer's view of the document, i.e., preserve white space,
comments, and the expressions of literals, and failure to do so
may mean the rejection of the result [8, 9] and tool. In [8] the
concept of the documentary structure of source code, whose
elements include all white space and comments, is presented.
This documentary structure is often at odds with the linguistic
structure of the program. Unfortunately for many parse-tree-
based approaches, this documentary structure is completely
lost. Attempts to preserve these ties often result in the
documentary structure not being easily integrated back into the
representation.

In contrast to these requirements, software-development
tools typically take a totally compiler-centric approach of
representing the source code as an abstract syntax tree. It has
been observed that these approaches are often not a good match
to the problems that they are trying to solve [8, 10]. There are
exceptions to this problem with compiler-centric approaches,
with one example being the DMS systems by Baxter [11].
Baxter has gone to great lengths to address this specific issue
by storing important textual items within the underlying
abstract-syntax graph. Also, as a full compiler (i.e., heavy
weight) approach, it allows for static analysis to be built into
the transformation. Our approach is very lightweight by
comparison and uses widely available and accessible XML
technologies. One approach is to move down to the level of
lexical analysis and provide for the transformation at that level,
as in [12]. This allows for the preservation of all of the text,
but at a cost of complex regular expressions. Also, with this
approach, it is not as easy to provide for abstractions that
reflect static analysis. Another approach that preserves the
programmer’s view is to move the transformation to the level
of the grammar as in TXL [13]. Using this approach, the
transformations are written as part of the grammar for parsing
the language. The approach shares many of the advantages of
our approach: preservation of programmer’s view, scalability,
robustness, etc. The difference is in the format of the
transformation. Instead of grammar rules, our approach treats
the text of the source code as data in XML, and the
transformations are XML transformations.

The Proteus system [14] addresses similar problems of
performing transformations on large C++ systems while
preserving the layout and handling code before preprocessing.
They refer to this as "high-fidelity" transformations. An AST
approach is used, with white space and comments stored in
additional AST nodes. They provide their own language

YATL for transformations on the AST. Additionally, in [15]
these documentary structure issues are seen as a cross-cutting
concern in the form of annotated parse trees. Other approaches
include using an intermediate language to describe the source,
as in the case of the C Intermediate Language (CIL) [16].

The lightweight approach used in srcML preserves the
documentary structure, as is done in some of these approaches,
while at the same time integrates static analysis into
transformations that go down to the lexical level. This results
in a combination of a lightweight approach and static analysis
in an efficient and useable manner.

IX. FUTURE DIRECTIONS
Development of the srcML toolkit is continuing and much

of this is based on feedback and questions from users (and
sponsors). Besides fixing parsing errors and incorrect markup,
additional features are being developed. First, we are
extending the markup and the toolkit to additional languages.
One language that we are continually asked about is C#. Our
analysis so far is that this should be a relatively straightforward
addition. The C++0x standard introduces new language
constructs and is already partially implemented in the toolkit.
Due to the recent large interest in mobile apps, including iOS,
another language of current interest is Objective-C. Due to its
C/C++ base, much of the language is already handled.
However, the Smalltalk-style syntax used for messaging in
Objective-C will require additional markup.

Currently, any XML notation in the original source code is
escaped. One example of this is in comments where XML is
used for Javadoc and Doxygen. We first ran across this in
widespread use in C# code. It may be useful to preserve this
XML so that it can be referenced in queries and
transformations. This presents issues for the parser in
preserving this XML. We foresee adding a standard
namespace/prefix for these elements, and providing an option
for the user to provide a namespace and prefix.

The other area of interest is in direct support for XPath
extension functions. Currently, they must be defined and used
in XSLT and are not for direct queries using XPath. We see
the need for some that are predefined, e.g., src:statement()
which maps to a collection of all statements, i.e., if, while,
expression statements, etc. These could then be used directly
in XPath queries, e.g., /src:unit/src:unit//src:statement(.).

XPath extension functions are typically written in other
languages and then are linked into the program. Since we are
using libxml2, they would have to be written using the
extension API of libxml2 and statically linked into the srcML
toolkit. However, many of the possible extension functions can
be directly expressed in (typically very complicated) XPath. In
this case, the extension function serves as a type of macro
language. We are currently investigating providing the ability
to declare these functions as an option to the toolkit, or stored
in a file. This list of macro-type extensions would then be
registered and executed dynamically as needed.

X. CONCLUSIONS
The srcML toolkit has gained many features over the years

and has turned into a powerful tool for fact-extraction and

transformation. As noted, the development of srcML
continues. We encourage you to contact the authors if you
have any questions.

XI. REFERENCES
[1] Collard, M. L., Kagdi, H., and Maletic, J. I., "An XML-Based

Lightweight C++ Fact Extractor", in Proceedings of 11th IEEE
International Workshop on Program Comprehension (IWPC'03),
Portland, OR, May 10-11 2003, pp. 134-143.

[2] Collard, M. L. and Maletic, J. I., "Document-Oriented Source Code
Transformation using XML", in Proceedings of 1st International
Workshop on Software Evolution Transformation (SET'04), Delft, The
Netherlands, Nov. 9 2004, pp. 11-14.

[3] Maletic, J. I., Collard, M. L., and Marcus, A., "Source Code Files as
Structured Documents", in Proceedings of 10th IEEE International
Workshop on Program Comprehension (IWPC'02), Paris, France, June
27-29 2002, pp. 289-292.

[4] Dragan, N., Collard, M. L., and Maletic, J. I., "Reverse Engineering
Method Stereotypes", in Proceedings of 22nd IEEE International
Conference on Software Maintenance (ICSM'06), Philadelphia,
Pennsylvania USA, September 25-27 2006, pp. 24-34.

[5] Collard, M. L., Maletic, J. I., and Robinson, B. P., "A Lightweight
Transformational Approach to Support Large Scale Adaptive Changes",
in Proceedings of 26th IEEE International Conference on Software
Maintenance (ICSM'10), Timisoara, Romania, Sept 12-18 2010, pp. 10
pages to appear.

[6] Shearer, C. D. and Collard, M. L., "Enforcing Constraints Between
Documentary Comments and Source Code", in Proceedings of 15th
IEEE International Conference on Program Comprehension (ICPC'07),
Banff Canada, June 26-29 2007, pp. 271-280.

[7] Maletic, J. I. and Collard, M. L., "Supporting Source Code Difference
Analysis", in Proceedings of IEEE International Conference on Software
Maintenance (ICSM'04), Chicago, Illinois, September 11-17 2004, pp.
210-219.

[8] Van De Vanter, M. L., "The Documentary Structure of Source Code",
Information and Software Technology, vol. 44, no. 13, October 1 2002,
pp. 767-782.

[9] Cordy, J. R., "Comprehending Reality - Practical Barriers to Industrial
Adoption of Software Maintenance Automation", in Proceedings of 11th
IEEE International Workshop on Program Comprehension (IWPC'03),
Portland, OR, May 10-11 2003, pp. 196-206.

[10] Klint, P., "How Understanding and Restructuring Differ from Compiling
- A Rewriting Perspective", in Proceedings of 11th IEEE International
Workshop on Program Comprehension (IWPC'03), Portland, OR, May
10-11 2003, pp. 2-12.

[11] Baxter, I. D., Pidgeon, C., and Mehlich, M., "DMS: Program
Transformations for Practical Scalable Software Evolution", in
Proceedings of 26th International Conference on Software Engineering
(ICSE04), Edinburgh, Scotland, UK, May 23 -28 2004, pp. 625-634.

[12] Cox, A. and Clarke, C., "Relocating XML Elements from Preprocessed
to Unprocessed Code", in Proceedings of Proceedings of the IEEE 10th
International Workshop on Program Comprehension (IWPC’02), Paris,
France, June 2002, pp. 229-238.

[13] Cordy, J. R., Dean, T. R., Malton, A. J., and Schneider, K. A., "Source
transformation in software engineering using the TXL transformation
system", Information and Software Technology, vol. 44, no. 13, 2002,
pp. 827-837.

[14] Waddington, D. and Yao, B., "High-fidelity C/C++ code
transformation", Science of Computer Programming, vol. 68, no. 2,
2007, pp. 64-78.

[15] Kort, J. and Lammel, R., "Parse-tree annotations meet re-engineering
concerns", in Proceedings 2003, pp. 161–171.

[16] Necula, G. C., McPeak, S., Rahul, S. P., and Weimer, W., "CIL:
Intermediate language and tools for analysis and transformation of C
programs", Lecture Notes in Computer Science 2002, pp. 213-228.

Usage: src2srcml [options] <src_infile>... [-o <srcML_outfile>]

Translates C, C++, and Java source code into the XML source-code representation srcML.
Input can be from standard input, a file, a directory, or an archive file, i.e., tar, cpio, and zip.
Multiple files are stored in a srcML archive.

The source-code language is based on the file extension. Additional extensions for a language
can be registered, and can be directly set using the --language option.

By default, output is to stdout. You can specify a file for output using the --output or -o option.
When no filenames are given, input is from stdin and output is to stdout.
An input filename of '-' also reads from stdin.

Any input file can be a local filename (FILE) or a URI with the protocols http:, ftp:, or file:

Options:
 -h, --help display this help and exit
 -V, --version display version number and exit

 -l, --language=LANG set the language to C, C++, or Java
 --register-ext EXT=LANG register file extension EXT for source-code language LANG

 -o, --output=OUTPUT write result to OUTPUT which is a FILE or URI
 --files-from=INPUT read list of source file names, either FILE or URI, from INPUT
 to form a srcML archive
 -n, --archive store output in a srcML archive, default for multiple input files
 -e, --expression expression mode for translating a single expression not in a statement
 -x, --encoding=ENC set the output XML encoding to ENC (default: UTF-8)
 -t, --src-encoding=ENC set the input source encoding to ENC (default: ISO-8859-1)

 -z, --compress output in gzip format
 -c, --interactive immediate output while parsing, default for keyboard input
 -g, --debug markup translation errors, namespace http://www.sdml.info/srcML/srcerr
 -v, --verbose conversion and status information to stderr
 -q, --quiet suppresses status messages

 --no-xml-declaration do not output the default XML declaration
 --no-namespace-decl do not output any namespace declarations

Metadata Options:
 -d, --directory=DIR set the directory attribute to DIR
 -f, --filename=FILE set the filename attribute to FILE
 -s, --src-version=VER set the version attribute to VER

Markup Extensions:
 --literal markup literal values, namespace "http://www.sdml.info/srcML/literal"
 --operator markup operators, namespace "http://www.sdml.info/srcML/operator"
 --modifier markup type modifiers, namespace "http://www.sdml.info/srcML/modifier"

Line/Column Position:
 --position include line/column attributres, namespace "http://www.sdml.info/srcML/position"
 --tabs=NUMBER set tabs NUMBER characters apart. Default is 8

Prefix Options:
 --xmlns=URI set the default namespace URI
 --xmlns:PREFIX=URI set the namespace PREFIX for the namespace URI

 Predefined URIs and Prefixes:
 xmlns="http://www.sdml.info/srcML/src"
 xmlns:cpp="http://www.sdml.info/srcML/cpp"
 xmlns:err="http://www.sdml.info/srcML/srcerr"

CPP Markup Options:
 --cpp-markup-else markup cpp #else regions (default)
 --cpp-text-else leave cpp #else regions as text

 --cpp-markup-if0 markup cpp #if 0 regions
 --cpp-text-if0 leave cpp #if 0 regions as text (default)

XII. APPENDIX

Figure 5. Complete list of options for src2srcml from the help output.

Usage: srcml2src [options] <srcML_infile>... [-o <src_outfile>]

Translates from the the XML source-code representation srcML back to source-code.

Extracts back to standard output, the disk, or to traditional archive formats,
e.g., tar, cpio, zip, and with optional gzip, bzip2 compression.
Provides access to metadata about the srcML document. For srcML archives
provides extraction of specific files, and efficient querying/transformation
using XPath, XSLT, and RelaxNG.

srcML archives contain multiple individual source code files,
e.g., an entire project or directory tree.

By default, output is to stdout. You can specify a file for output using the --output or -o option.
When no filenames are given, input is from stdin and output is to stdout.
An input filename of '-' also reads from stdin.

Any input file, including XSLT and RelaxNG files, can be a local
filename (FILE) or a URI with the protocols http:, ftp:, or file:

The srcML files can be in xml, or compressed with gzip or bzip2 (detected automatically).

Options:
 -h, --help display this help and exit
 -V, --version display version number and exit

 -o, --output=OUTPUT write result to OUTPUT which is a FILE or URI
 -t, --src-encoding=ENC set the output source encoding to ENC (default: ISO-8859-1)
 -z, --compress output text or XML in gzip format
 -v, --verbose conversion and status information to stderr
 -q, --quiet suppresses status messages

 -X, --xml output in XML instead of text
 --no-xml-declaration do not output the XML declaration in XML output
 --no-namespace-decl do not output any namespace declarations in XML output

Metadata Options:
 -l, --language display source language and exit
 -d, --directory display source directory name and exit
 -f, --filename display source filename and exit
 -s, --src-version display source version and exit
 -x, --encoding display xml encoding and exit
 -p, --prefix=URI display prefix of namespace given by URI and exit
 -n, --units display number of srcML files and exit

 -i, --info display most metadata except file count (individual units) and exit
 -L, --longinfo display all metadata including file count (individual units) and exit
 --list list all the files in the srcML archive and exit

srcML Archive Options:
 -U, --unit=NUM extract individual unit NUM from srcML
 -a, --to-dir extract all files from srcML and create them in the filesystem

Query and Transformation Options:
 --xpath=XPATH apply XPATH expression to each individual unit
 --xslt=XSLT_FILE apply XSLT_FILE (FILE or URI) transformation to each individual unit
 --xpathparam NAME=VAL passes a parameter NAME and VAL to the XSLT program
 --relaxng=RELAXNG_FILE output individual units that match RELAXNG_FILE (FILE or URI)
 --apply-root apply an xslt program or xpath query to the root element

Figure 6. Complete list of options for srcml2src from the help output.

