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Abstract—Robust efficient loop closure detection is essential
for large-scale real-time SLAM. In this paper, we propose a
novel unsupervised deep neural network architecture of a feature
embedding for visual loop closure that is both reliable and
compact. Our model is built upon the autoencoder architecture,
tailored specifically to the problem at hand. To train our network,
we inflict random noise on our input data as the denoising
autoencoder does, but, instead of applying random dropout,
we warp images with randomized projective transformations
to emulate natural viewpoint changes due to robot motion.
Moreover, we utilize the geometric information and illumination
invariance provided by histogram of oriented gradients (HOG),
forcing the encoder to reconstruct a HOG descriptor instead
of the original image. As a result, our trained model extracts
features robust to extreme variations in appearance directly
from raw images, without the need for labeled training data or
environment-specific training. We perform extensive experiments
on various challenging datasets, showing that the proposed deep
loop-closure model consistently outperforms the state-of-the-art
methods in terms of effectiveness and efficiency. Our model is
fast and reliable enough to close loops in real time with no
dimensionality reduction, and capable of replacing generic off-
the-shelf networks in state-of-the-art ConvNet-based loop closure
systems.

I. INTRODUCTION

It is critical to perform low-latency, high-fidelity, online loop

closure detection (or place recognition) for real-time visual

SLAM in order to enable bounded localization errors. This

is a challenging problem, because the visual appearance of

one location at different times can change dramatically due

to varying viewpoints, illumination, weather, and dynamic

objects (see Fig. 1). Numerous algorithms have recently

been developed to address these issues [1]. Although these

methods can perform well, in particular, by incorporating

temporal information [2, 3, 4, 5, 6, 7], they may not be fast

or robust enough for real-time performance in challenging

environments.

Convolutional neural networks (ConvNets) [8] have recently

become the state of the art for many vision-based classification

tasks [9]. While off-the-shelf ConvNets are proven as useful

feature embeddings for place recognition [10, 11, 12, 13, 14],

specialized networks have also been constructed and trained to

further improve performance [15, 16, 17, 18]. However, most

of these ConvNet-based approaches suffer from either slow

feature extraction [18, 14], slow querying [11, 12], or the need

for a large amount of labeled data for training [15, 16, 17].

To address the aforementioned issues, in this paper, we

construct a novel autoencoder-based ConvNet for loop closure
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Fig. 1: An example image match from the Gardens Point

dataset, which demonstrates large differences in viewpoint,

dynamic objects, and illumination, as well as occlusions.

Nevertheless, with the right image as the query, our proposed

method correctly retrieves the left during our experiments (see

Section IV), while all of the tested state-of-the-art methods

retrieve incorrect images. Below each image, the first face of

the descriptor layer, before flattening, is shown. Evidently,

these visually dissimilar images are transformed into very

similar activation maps.

that requires very few parameters, and train it using public data

in an unsupervised manner. In particular, when building our

autoencoder network, we exploit the advantages of classical

geometric vision techniques – the histogram of oriented gra-

dients (HOG) [19] that offers a convenient way to compress

images while preserving salient features, and the projective

transformation (homography) [20] that relates images with

differing viewpoints. In contrast, we also incorporate the

modern stacked convolutional autoencoder into the network

to be data-driven. Consequently, the features extracted from

our network are not only robust to extreme variations in

appearance, but also lightweight and compact enough for real-

time loop closing – even for resource-constrained systems.

The main contributions of this paper are the following:

• We design an unsupervised, convolutional autoencoder

network architecture, tailored for loop closure, and

amenable for efficient, robust place recognition.

• We perform extensive comparison studies of the pro-

posed deep loop-closure model against the state-of-the-

art methods on different datasets. To benefit the research

community, we open source our code and pre-trained

model used in this work along with a new dataset1

1The code, dataset, as well as the pre-trained model from this work are
available online: https://github.com/rpng/calc.
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that captures extreme variations in viewpoint, weather,

illumination, and dynamic objects in a single dataset.

The rest of the paper is structured as follows: After re-

viewing the related work in the next section, in Section III

we present in detail the proposed deep loop closure network,

including the network architecture, training scheme, and online

usage. The proposed approach is tested extensively in Section

IV – both against state-of-the-art algorithms and in a real-time

loop-closure setting. Finally, we conclude the paper in Section

V.

II. RELATED WORK

Due to its importance, loop closure, or place recognition,

has attracted significant attention in recent years. Many differ-

ent algorithms have been introduced (see [1, 21] and references

therein), with variant performance characteristics in terms of

complexity, robustness and efficiency.

The approaches based on bag of words (BoW), such as

FAB-MAP [22] and DBoW2 [4], are among the most popular

for real-time visual SLAM systems (e.g., [23, 24, 25]). These

methods build vocabulary trees based on point features of

different descriptors [26, 27, 28], typically amenable for fast

querying of matches; yet, they may fail when there are large

variations in appearance between images. For this reason, Se-

qSLAM [2] was introduced to utilize the information provided

by image sequences to construct a better hypothesis of loop

closure. However, this method directly compares pixel values

of down-sampled images and can fail under large variations in

viewpoint. In contrast, different hand-crafted features are used

in [29, 21, 30], where the loop closure is formulated as sparse

optimization problems.

Recently, ConvNet-based approaches have risen in popu-

larity. Chen et al. [10] first introduced the concept of using

features produced by the off-the-shelf Overfeat network [31]

as a holistic image descriptor – shown to outperform state-

of-the-art place recognition systems. However, the descrip-

tors extracted from such deep networks are too large to be

used for real-time loop closure without approximating their

similarity scores, which hinders their widespread deployment.

Since then, many similar deep learning approaches have been

introduced. For example, Sünderhauf et al. [12] employed

ConvNet features to match subregions corresponding to land-

marks, improving upon the performance of the holistic image

descriptors, but the authors pointed out that it was nowhere

near fast enough to be used in real time. Kenshimov et al.

[32] proposed a method to omit parts of the activation maps

from the neural networks in order to improve cross-seasonal

place recognition. Hou et al. [14] combined ConvNet features

with a bag of words scheme to speed up querying, while Bai

et al. [33] combined ConvNet features with sequence searching

to increase reliability. All of these methods rely on features

extracted from generic neural networks that are not trained

specifically for loop closure.

Others have trained their own networks for place recogni-

tion. For instance, Chen et al. [17] compiled a large place

recognition-specific dataset to train classification networks for

the sole purpose of feature embedding. NetVLAD [15] is an

architecture that relies on geotags from Google Street View

to label training images for a triplet loss scheme, where a

triplet consists of two matching images and one non-matching

image. Lopez-Antequera et al. [16] proposed a similar method

using manually-labeled triplets, which reduces images into a

single 128-dimensional vector. Their descriptor is shown to be

useful for place recognition, and far more compact than that

from any previous methods (e.g., [15]). However, all of these

methods rely on supervised learning – requiring an immense

amount of (human) effort to label images.

To address this issue, Gao and Zhang [18] recently intro-

duced a stacked denoising autoencoder architecture [34] to

solve the place recognition problem. Their method is shown

to perform comparably to FAB-MAP 2.0 [35], but suffers

from slow feature extraction. The model employed by Gao

and Zhang [18] learns to reconstruct an image that has had

random pixel values altered, but, if it is to be used for

place recognition, it then has to be invariant to variations in

viewpoint. Intuitively, it would be more useful to train an

unsupervised model to reconstruct an image that has been

altered to mimic the viewpoint variations that it will encounter

in reality. With this observation, in this work, we build upon

the autoencoder concept, utilizing the multi-view geometry of

homographies and the invariance of HOG, to design a novel

unsupervised architecture that is both more lightweight than

the previously mentioned ConvNets, and trained to compensate

for the specific types of visual appearance changes that are

often encountered in loop closure scenarios.

III. UNSUPERVISED DEEP LOOP CLOSURE

In this section, we present in detail our method to construct,

train, and utilize a novel autoencoder network for the loop

closure task. Our model is designed to map high-dimensional

raw images into a low-dimensional descriptor space, which is

invariant to appearance differences. The proposed network and

training scheme creates a compact robust feature embedding,

while eliminating the need of image labeling.

A. Design Motivation

The standard denoising autoencoder network randomly

drops input values during training to mitigate the effect of

noise from actual signals during testing [34]. Clearly, such

networks do not learn the variations in images that a loop

closure system will encounter, such as changes in viewpoint,

illumination and so on. Thus, the direct deployment of such

autoencoders for place recognition may not be optimal.

Inspired by Sünderhauf et al. [12], where synthetic view-

point alterations, in the form of simple translations, were

used to test their place recognition system, we employ more

generalized viewpoint alterations (projective transformations)

to train our deep loop-closure model. Specifically, we inflict

“noise” on the training inputs while modeling the natural

variations due to robot motion, thus improving the perfor-

mance of the autoencoder specifically for the place recogni-

tion task. However, these raw image pairs are not enough.
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Fig. 2: The training pipeline for our deep model. In this architecture, the projective transformations and HOG descriptors are

computed only once for the entire training dataset, and the results are then written to a database to use in training. Upon

deployment, the batch size N is set to 1, and only the layers in the boxed area are used.

In experimentation with different network architectures, we

constructed an autoencoder that shares the same encoding

layers as the proposed model, but utilizes deconvolution and

unpooling layers to attempt to reconstruct the other raw image

from the pair. Without any extra optimization constraints, the

network learned zero vectors, which suggests that the model

needs more information to map one image from the pair to

the other.

HOG, by design, provides geometric information about

an image. Li et al. [36] showed that HOG description over

segmented image patches can successfully be used to match

images with vastly differing appearances in a place recognition

setting. Furthermore, since HOG descriptors are fixed-length

vectors for images of the same size, and can naturally be

compared by the Euclidean distance, they are easily integrated

into a neural network with ℓ2 loss. However, since HOG relies

on gradient orientation, it is not very robust to alterations in

viewpoint, but, on the other hand, the image gradients are ro-

bust to illumination to some degree. Therefore, HOG provides

the prior geometric knowledge needed by our network with

the added benefit of learning illumination invariance, while

the random projective transformations still create the added

noise required to obtain a more useful feature embedding than

just HOG can provide. Finally, it should be noted that we do

not randomly place dynamic objects in the training pairs, even

though our model is shown to be invariant to them (see Section

IV). While doing so could potentially improve robustness to

such occlusions, well-trained ConvNets are naturally invariant

to such noise as Sünderhauf et al. [11] observed.

B. Network Architecture

Fig. 2 provides a visualization of the data flow from raw

images to the loss layer. Before training begins, every image in

the set of training images I is converted to grayscale, resized

to 120 × 160, and used to create an image pair (see Fig. 3

and Algorithm 1). The HOG descriptor is computed for a

randomly chosen image from each pair. We stack all the HOG

descriptors from each batch of training images, denoted by

X2 of dimension N ×D, where N is the batch size and D is

the dimension of each HOG descriptor. The other image from

the pair remains in raw form, and is stacked along with the

other N−1 images in that training batch. The resulting tensor

denoted by X1 has the dimension of N × 120× 160.

The training network aims to reconstruct X2 given X1

using only two convolution and pooling paired layers, one

pure convolution layer, and three fully-connected layers. Note

that every layer has an activation after it. We use the rectified

linear unit (ReLU) activation for the convolutional layers,

while the sigmoid activation is chosen for the fully connected

layers in order to better reconstruct the HOG descriptor (as

it normalizes the data into [0, 1]). Additionally, since the

Euclidean distance is naturally a good distance metric for

HOG descriptors, we employ an ℓ2 loss function to compare

X2 with its reconstruction X̂2. Upon deployment, we drop all

layers but X1 and the three convolution layers. Our model is

extremely lightweight compared to the state-of-the-art models

for place recognition [16, 15, 12], taking up only 139 MB of

GPU memory, allowing plenty of space for other processes –

even on resource-constrained low-cost platforms.

C. Network Training

As previously mentioned, the proposed model does not

require the training images to be labeled or contain any specific

information – that is, any image from any scene can be

used in the training set to improve our model. To illustrate

this, we have trained our model on the Places dataset [37],

which has over 8 million images originally designed for scene

recognition. Figs. 2 and 3 contain a few examples of images

from this dataset. While the majority of the images in the

Places dataset are unrelated to any scene that a loop closure

algorithm may encounter, the sheer number of images leads

to improved performance over training on smaller datasets.

Algorithm 1 outlines the main steps of utilizing such a dataset

to create T1 and T2, the large tensors from which X1 and

X2 are sampled during every iteration of stochastic gradient

descent.
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Algorithm 1 Generating Training Data

input: I: A set of grayscale training images, resized to H ×W

output: T1 ∈ R
M×H×W and T2 ∈ R

M×D

define: rand(A) as a map from set A to one of its elements,

chosen at random

1: W, H, D, M← 160, 120, 3648, |I|
2: T1 ← 0M×H×W
3: T2 ← 0M×D
4: Pc ← ((0, 0), (0,H), (W, 0), (W,H))
5: for i ∈ N ∩ [1,M] do

6: I← rand(I)
7: Pr ← randFourPts(W,H)
8: Hp ← estimateHomography(Pr,Pc)
9: Iw ← transform(I,Hp)

10: if rand({0, 1}) then

11: swap(I, Iw)

12: T
(i)
1 ← I

13: T
(i)
2 ← calcHOG(Iw)

Given an image I ∈ I, we would like to automatically

generate Iw, which is of the same scene as I from a different

viewpoint; this effect is achieved by applying a randomized 2D

projective transformation matrix, Hp ∈ R
3×3, to every pixel

location in I. To obtain this matrix, four points are randomly

selected within the bounding boxes along the corners in the

image I (see Fig. 3); Hp is then calculated to warp I such that

those four points become the four corners of Iw. We choose

each bounding box of the point selection to be H/4×W/4 in

order to avoid excessive distortion of Iw, while still warping

it enough to emulate a new perspective of the scene. Since

every Iw appears zoomed in compared to I, we randomly

choose which of the images out of every pair to place into

T1, avoiding unnecessary training biases.

We employ a HOG descriptor with large strides and a small

window size to reduce the dimension of one of the images in

each training pair – mapping an image I ∈ R
120×160 of 19,200

pixels to R
3,648. While this particular HOG descriptor may

not be very informative for place recognition because of its

aggressive data compression, it helps the autoencoder model

to learn a good image encoding as mentioned in Section III-A.

To construct and train our model, we utilize the Caffe Deep

Learning Library [38] due to its efficiency. We train our model

for roughly 42 epochs with a fixed learning rate of 9× 10−4.

Based on Krizhevsky et al. [39], we choose a momentum of

0.9, and weight decay of 5× 10−4.

D. Online Use

Once our model is trained, upon its deployment for online

use, we create a database of the descriptors extracted by our

model and later query it to find loop closure candidates. While

K-D trees [40] are a popular means to create such databases for

nearest-neighbors searches, there is no speed up over a linear

search for 1,064-dimensional vectors – even when the search is

approximated [41]. For this reason, we use the simple linear

Fig. 3: An example of a possible training image pair. The

four bounding boxes shown on the raw image (left) highlight

the possible locations of each randomly selected point. Once

the point correspondences are generated, a 2D projective

transformation is calculated such that each one of those points

becomes a corner of the warped image (right) after applying it.

The randomly selected points are shown on the left, connected

to their corresponding locations in the warped image shown

on the right.

search method. Additionally, as the descriptors are compact

enough, their similarity can be calculated directly with no

dimensionality reduction.

We seek to emphasize that our method of creating and

querying the database with the descriptors extracted from

our model is simple but effective; albeit, we are able to

achieve faster-than-real-time querying speed with minimal

memory usage (see Section IV-E). Furthermore, since many

new ConvNet-based place recognition systems [12, 32, 14, 33]

rely on features from bulky off-the-shelf networks, our light-

weight model can potentially be utilized in many of these

systems to achieve speedups with competative accuracy (see

Section IV-G).

IV. EXPERIMENTAL RESULTS

To validate the proposed unsupervised deep loop closure

model, we have performed extensive comparison studies on

various datasets with the state-of-the-art approaches as well as

other benchmarks where applicable. While runtime is used as

the criterion for evaluating efficiency, we utilize the precision-

recall curve, a standard method to evaluate binary classifica-

tion, to quantify effectiveness. While there are many ways to

interpret a precision-recall curve, we primarily use: (i) the area

under curve (AUC), where a higher AUC is desired; and (ii)

the maximum recall rate with 100% precision, denoted by r,

where again a higher value is desired. This can be observed

visually in any precision-recall curve, as it will be the recall

rate where the precision first dips down from 1.0. By observing

both of these values, we obtain a comprehensive picture about

how well the considered algorithms can generalize; however,

the r value is slightly more desirable in practice, since one

binary classifier can have non-perfect precision for all recall

rates despite a high AUC.

For the results presented below, we compare the proposed

approach with the following: (i) Autoencoder: A traditional

denoising convolutional autoencoder. This model has the same

encoding layers as our proposed model upon deployment, but,
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Fig. 4: An example image pair from the Alderley dataset. Note

that these frames are extremely difficult to match, even for a

human.

Fig. 5: Our method outperforms the state-of-the-art algorithms

on the Alderley dataset, with the highest AUC and r value.

instead of reconstructing HOG descriptors of warped images,

it utilizes deconvolution and unpooling layers to reconstruct

the original image and is subject to random dropout during

training. (ii) LA: The model from Lopez-Antequera et al. [16],

which has comparable efficiency as our unsupervised model

while requiring labeled data for training (i.e. supervised), mak-

ing any retraining difficult. (iii) DBoW2: We use the DBoW2

vocabulary tree from the state-of-the-art ORB-SLAM [24, 23].

(iv) AlexNet: Sünderhauf et al. [11] found AlexNet conv3 to

be the most robust layer for place recognition; however, it was

also noted that the 64,896-dimensional vector produced was

too large to perform real-time database queries. Therefore, we

apply Gaussian random projection (GRP) [42, 43] as in [12] to

compress the conv3 layer to the same size as the descriptors

from the proposed model. In our tests, we use the AlexNet

trained by BVLC. (v) HOG: Although the 3,648-dimensional

HOG descriptor is used to train our model, we include this

comparison merely to show that our model is able to learn a

better feature than the original reduced HOG, rather than to

show the ability of HOG as descriptors for place recognition.

Note that for all of these methods, we use a single nearest-

neighbor linear search in order to purely compare the ability of

each descriptor to match places. At last, it should be pointed

out that in all the following experiments, our approach uses the

same model trained on a completely different dataset from the

testing datasets, showing that the proposed deep loop closure

network does not require environment-specific training.

A. The Alderley Dataset

The Alderley dataset was first introduced in SeqSLAM [2]

and is composed of two image sequences, extracted from

videos taken during a rainy night and a sunny day. Fig. 4 shows

an example image match from this dataset; it is very difficult

even for human to realize these images are of the same place.

Frame correspondences are included in the dataset, providing

ground truth for place recognition, with an added tolerance for

multiple sequential frames of the same location. We test on the

last 200 frames of each sequence. The comparison results are

shown in Fig. 5. Clearly, our method is the most robust in this

case, taking the highest AUC and r value by large margins.

Interestingly, the regular autoencoder performs well here. Note

that the model from [16] was trained on a different subset of

the Alderley dataset than used here, giving their model an

advantage over the others that have not been trained on any

of the Alderley dataset. Nevertheless, our model is still more

robust in this experiment, while the other methods are failing

due to the significant differences in appearance in this dataset.

B. The Gardens Point Dataset

The Gardens Point dataset consists of three traversals

through the QUT campus in Brisbane, Australia. In this

dataset, there are two day-time traversals – one tends to contain

images of the left side of the walking path, and the other

contains the right side. Additionally, there is one night-time

traversal, which tends to the right side of the path as well.

Unlike in the Alderley dataset, image i from one sequence

matches image i from any of the other two. We utilize

this, as well as an added tolerance for multiple sequential

images of the same location, to define the ground truth for

this experiment in addition to the remaining precision-recall

experiments in this work, since the rest of the datasets follow

the same format.

An example of this dataset is shown in Fig. 1, while

Fig. 6 shows the comparative results. Fig. 6 (top) is for

the day left and day right sequences. Our method, AlexNet,

and LA perform comparably in this dataset, and even the

autoencoder is not far behind; however, we will see that this

trend of comparable performance does not carry throughout

the experiments. DBoW2 is competitive in this experiment,

but falls short of our method, AlexNet, and LA. The HOG

descriptor we used to train our model is clearly not nearly as

robust as our final descriptor, even in this daytime dataset –

one of the easier datasets used in experimentation. To further

challenge these methods, we use the night-time sequence from

the Gardens Point dataset – the results of which are shown in

Fig. 6 (bottom). In this case, our method takes the highest

r value, and the second-highest AUC. DBoW2, HOG, and

the autoencoder completely fail in this test. Although the

performance of DBoW2 could most likely could be improved

by training the ORB vocabulary tree on the night-time images,

we want to test all of these methods void of any environment-

specific training for the purpose of generalization.

C. The Nordland Dataset

The Nordland dataset, one of the most challenging place

recognition datasets to date [32], consists of four time-

synchronized videos of train journeys through Norway. Each

of the four 9-hour long sequences corresponds to a different
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Fig. 6: The comparison results on the Gardens Point dataset.

(top) Our method performs comparably with [16] (which,

however, is a supervised learning approach) in the day-time

sequence, while (bottom) our method outperforms its com-

petitors in the night-time sequence.

season, creating a difficult challenge for cross-seasonal place

recognition. In addition to seasonal variation, the images also

contain extreme blurring from the fast speed of the train. Fig.

7 shows an example of an image pair from this dataset. We test

our method on one of the most difficult sequence pairs, Winter

versus Spring. Specifically, we extracted 5,357 frames from

these two videos. This experiment was performed using frames

29 to 200, as this was the first sequence we found where

the train was constantly in motion and outside of tunnels.

Note that images from inside the tunnels are completely black,

and therefore useless for experimentation; additionally, if the

train was stopped at a station, there were too many sequential

images of the same location, causing large biases in the

precision-recall curves.

The results of this experiment are shown in Fig. 8. It

should be noted that Lopez-Antequera et al. [16] used all

but the last hour of each Nordland sequence in training their

model; this implies that their model has seen this testing

data in the training phase. However, even with this incredible

disadvantage, our model outperforms theirs, along with other

methods in this experiment.

D. Our Campus Loop Dataset

The Nordland dataset provides extreme weather variations,

the Gardens Point dataset provides extreme brightness and

viewpoint variations, as well as many dynamic objects, while

the Alderley dataset provides all but large viewpoint variations.

Fig. 7: An example image pair from the Nordland dataset. The

left image is from the spring sequence while the right one is

from the winter.

Fig. 8: Comparison results on the Nordland dataset. Our

method is observed to be more robust to the seasonal changes

provided by this subset of the winter and spring sequences.

However, we found that no dataset can provide all of these

challenges. Therefore, we collect our own dataset, termed

as the Campus Loop dataset. The dataset consists of two

sequences of 100 images each. The sequences are a mix of

indoor and outdoor images in a campus environment. The first

sequence was taken on a snowy day, when it was very cloudy,

while the second was taken nine days later, when most of the

snow had melted and the sun was out. The indoor images

obviously do not vary as much with this weather change.

Additionally, each image match contains varying perspectives

and many dynamic objects, making this one of the most

challenging publicly-available place recognition datasets. Fig.

9 shows an example of an image pair from this dataset.

The results of experimentation with this dataset are shown

in Fig. 10. As expected, across the board the performance is

worse than any other dataset thus far. Nevertheless, compar-

atively, our method is the most robust to the challenges pre-

sented in this new dataset. The model from Lopez-Antequera

et al. [16] falls flat in this experiment, performing significantly

worse than the other three deep-learning methods, and falling

short of even DBoW2 in AUC.

E. Runtime Evaluation

To validate the efficiency of our approach, we perform

runtime evaluations of both descriptor computing time, and

database querying time for a single-nearest neighbor search.

These tests are conducted on affordable hardware to allow for

better reproducibility – specifically, an i7-6700HQ CPU, and

a GeForce GTX 960M GPU. Note that in this test we only
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Fig. 9: An image pair example from our Campus Loop

dataset, which has extreme variations in viewpoint, weather,

and dynamic objects.

Fig. 10: Our approach outperforms the other benchmark meth-

ods on our own Campus Loop dataset, with the highest r value

while tying with AlexNet conv3 for the highest AUC.

compare against DBoW2 and AlexNet due to the following:

(i) Lopez-Antequera et al. [16] do not provide an open-

sourced library for performing image matches, so it would

not necessarily be fair to time their models in our code. They

report 1.8 millisecond descriptor computing time using a GPU,

which is slower than ours. However, their descriptor is smaller

than ours, so it should be cheaper to query, while ours is

shown to be competative (if not better) in accuracy, and more

convenient to fine-tune or retrain. (ii) The reduced HOG is

presented in the preceding tests only to show that our model

learns a better version of it, rendering its runtime irrelevant.

We choose DBoW2 with ORB features as one benchmark,

since it is one of the fastest place recognition libraries used

in many state-of-the-art SLAM systems (e.g., [23, 24]). Addi-

tionally, we choose AlexNet conv3 features both with GRP,

compressed to 1,064 dimensions, and in original form, since

it is a popular choice for ConvNet-based place recognition

(i.e. in [12, 14, 33, 32]). Note that AlexNet has been modified

to only contain up to the conv3 layer here for fair testing.

The KITTI Visual Odometry dataset sequence 00 [44] is used

as testing data for the first experiment. We utilize the 4,541

376 × 1241 stereo pairs from this sequence to construct two

subsets, placing all of the left images in the database, and using

the right images for querying. Table I shows the results of this

experiment, where feature extraction time refers to the time

between starting with a raw image and ending with having that

image’s representation inserted into the respective database.

The query times do not include any descriptor calculation

times. Note that DBoW2 has no GPU implementation, and

TABLE I: Times (in milliseconds) to extract features and query

a database of 4,541 images on the KITTI dataset.

Method Extract (GPU) Extract (CPU) Query
µ σ µ σ µ σ

Ours 0.862 0.025 44.0 2.98 1.47 0.031
DBoW2 N/A N/A 15.8 3.08 4.25 0.547
AlexNet (no GRP) 2.13 0.038 405.0 17.4 80.8 0.708
AlexNet 16.6 0.658 418.0 17.8 N/A N/A

Fig. 11: The proposed method performs queries faster than

DBoW2 with varying database size.

AlexNet with GRP produces features of the same size as ours,

so the query times will be the same. From Table I, it is clear

that our method is faster than the others for feature extraction

when a GPU is used to make forward passes through the net,

and is still reasonably fast when using a CPU. Additionally,

our method for querying, though it is simple, outperforms

DBoW2 in terms of speed in this experiment.

We also test the query speed for a variable-sized database,

comparing only to DBoW2 – the most competative candidate

from Table I. We use the large St. Lucia dataset [45], which,

similar to KITTI, is a sequence of stereo pairs. However, this

sequence contains over 30,000 stereo pairs, making it very

useful for testing a variable database size. The left images are

used for the database, and a subset of the right images is used

for querying. Fig. 11 shows the results of this experiment, from

which it is evident that our querying method is inexpensive,

even for very large databases – larger than that created by a

typical SLAM system.

F. Online Loop Closure

Precision-recall curves are a good metric for binary classifi-

cation, but they do not fully prove that our method is capable

of accurately closing loops in practice. Therefore, we perform

real-time loop closure using an extremely simple application

of our model on KITTI [44] sequences 00 and 05. In this

experiment, we simulate keyframe selection by using every

seventh frame for loop detection. A loop closure hypothesis is

proposed if a database query score is above an a-priori thresh-

old τ , and a loop is determined closed if three consecutive

queries retrieve descriptors within six frames of the first query.

We exclude the most recent images from the search space, and

do not start loop detection until the database is of sufficient

size. We choose τ from the precisions and recalls shown in

Fig. 6 (bottom) such that it maximizes the recall rate with
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Fig. 12: The results of online loop closure using KITTI 00

and 05, respectively. The 2D location of the trajectory is

represented on the x-y plane, and the z-axis is the current

keyframe number.

perfect precision. Fig. 12 shows the results of this experiment.

Clearly our method is able to consistently close loops on a

practical SLAM dataset using a threshold from completely

unrelated ground truth data, which shows that it is ready to

use in a real-time SLAM system. Additionally, this application

of our model for online loop closure is extremely simple,

and can be improved upon easily by looking at the k-nearest

neighbors instead of the single-nearest neighbor, adding extra

false positive rejection methods (i.e. a geometric check), or

utilizing any of the methods described in the next section.

G. Integration into ConvNet-Based Place Recognition Systems

As stated in Section III-D, our model can easily be in-

tegrated into off-the-shelf ConvNet-based place recognition

systems [12, 32, 14, 33] for faster feature extraction. These

methods build upon the use of holistic image descriptors,

improving performance in different cases. They treat the

ConvNet as a black box for image description – throwing

out image classifications from classification networks. Many

of these methods are forced to reduce the dimension of

the ConvNet features to minimize runtime, while our model

already produces a small enough descriptor for real-time use,

and is smaller and faster than the typical classification network

used by these methods.

To prove this, we reproduce the state-of-the-art landmark-

based place recognition system presented in [12], replac-

ing Edge Boxes [46] with BING [47] as Hou et al. [14]

did to reduce runtime, and replacing the dimension-reduced

AlexNet conv3 landmark descriptor with that from our

model. Sünderhauf et al. [12] proposed reducing the AlexNet

conv3 layer to 1,024 dimensions, while ours is naturally

1,064, so we do not need to reduce it further – avoiding the

cost of the 1024× 64896 by 64896×m matrix multiplication

Fig. 13: The landmark-based method shows a vast improve-

ment over the holistic approach – nearing perfect performance.

required to project m landmark descriptors (using AlexNet)

into 1,024 dimensions, which must be done every time a new

image is added to the database. The results of this experiment

can be seen in Fig. 13. The landmark-based method offers

an enormous improvement over the holistic image descriptor

– approaching perfect performance on the Gardens Point

daytime dataset. Our model is seamlessly integrated into this

system, which suggests that it can easily replace bloated

classification networks in other such ConvNet-based place

recognition systems.

V. CONCLUSIONS

We have presented a novel unsupervised deep neural net-

work for fast and robust loop closure, applicable in visual

SLAM. Built upon the denoising autoencoder architecture,

we apply randomized projective transformations to images in

order to capture extreme variations in viewpoints due to robot

motion, while employing the fixed-length HOG descriptor to

help our network better learn the geometry of scenes. The

proposed model allows for vast amounts of data to be used

in training, since none of it needs to be labeled or contain

any special information. Furthermore, although our pre-trained

model generalizes well in its current state, it is easy to fine-

tune or retrain due to our unsupervised design – increasing the

likelihood of improvement as more data becomes available.

We have performed thorough comparison studies on dif-

ferent datasets against the state-of-the-art image description

methods for place recognition, where the extensive experi-

mental results have shown that the proposed deep loop closure

method generally outperforms the benchmarks in terms of both

effectiveness (precision-recall) and efficiency (runtime). Our

model is compact, robust, and fast – making it a promising

candidate to replace larger, slower classification networks in

ConvNet-based place recognition systems, as we have shown

by reproducing [12]. Due to its lightweight yet robust design,

our model is suitable for use in real-time SLAM systems

– in particular, direct algorithms [48, 25, 49, 50] where

no intermediate image representation is needed. We aim to

provide an out-of-the-box solution for loop closure, and, more

generally, place recognition. We are currently working to

integrate our model into various SLAM systems, applicable

for autonomous navigation in challenging environments.
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[25] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM:

Large-scale direct monocular SLAM,” in Computer Vi-

sion – ECCV 2014, D. Fleet, T. Pajdla, B. Schiele,

and T. Tuytelaars, Eds. Cham: Springer International

Publishing, 2014, pp. 834–849.

[26] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool,

“Speeded-up robust features (surf),” Comput. Vis. Image

Underst., vol. 110, no. 3, pp. 346–359, Jun. 2008.

[27] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski,

“Orb: An efficient alternative to sift or surf,” in 2011

International Conference on Computer Vision, Nov 2011,

pp. 2564–2571.

9



[28] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski,

C. Strecha, and P. Fua, “Brief: Computing a local bi-

nary descriptor very fast,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 34, no. 7, pp.

1281–1298, July 2012.

[29] Y. Latif, G. Huang, J. Leonard, and J. Neira, “An on-

line sparsity-cognizant loop-closure algorithm for visual

navigation,” in Proc. of Robotics: Science and Systems,

Berkeley, CA, Jul. 12-16 2014.

[30] H. Zhang, F. Han, and H. Wang, “Robust multimodal

sequence-based loop closure detection via structured

sparsity,” in Proc. of Robotics: Science and Systems,

AnnArbor, Michigan, June 2016.

[31] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. Lecun, “Overfeat: Integrated recognition, local-

ization and detection using convolutional networks,” 12

2013.

[32] C. Kenshimov, L. Bampis, B. Amirgaliyev, M. Arslanov,

and A. Gasteratos, “Deep learning features exception for

cross-season visual place recognition,” Pattern Recogni-

tion Letters, vol. 100, pp. 124 – 130, 2017.

[33] D. Bai, C. Wang, B. Zhang, X. Yi, and X. Yang,

“Sequence searching with cnn features for robust and

fast visual place recognition,” Computers and Graphics,

vol. 70, pp. 270 – 280, 2018, cAD/Graphics 2017.

[34] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Man-

zagol, “Extracting and composing robust features with

denoising autoencoders,” in Proceedings of the 25th In-

ternational Conference on Machine Learning, ser. ICML

’08. New York, NY, USA: ACM, 2008, pp. 1096–1103.

[35] M. Cummins and P. Newman, “Appearance-only SLAM

at large scale with FAB-MAP 2.0,” The International

Journal of Robotics Research, vol. 30, no. 9, pp. 1100–

1123, 2011.

[36] J. Li, R. M. Eustice, and M. Johnson-Roberson, “High-

level visual features for underwater place recognition,”

in 2015 IEEE International Conference on Robotics and

Automation (ICRA), May 2015, pp. 3652–3659.

[37] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Tor-

ralba, “Places: A 10 million image database for scene

recognition,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2017.

[38] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,

R. Girshick, S. Guadarrama, and T. Darrell, “Caffe:

Convolutional architecture for fast feature embedding,”

arXiv preprint arXiv:1408.5093, 2014.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet

classification with deep convolutional neural networks,”

in Proceedings of the 25th International Conference on

Neural Information Processing Systems - Volume 1, ser.

NIPS’12. USA: Curran Associates Inc., 2012, pp. 1097–

1105.

[40] J. L. Bentley, “Multidimensional binary search trees used

for associative searching,” Commun. ACM, vol. 18, no. 9,

pp. 509–517, Sep. 1975.

[41] M. Muja and D. G. Lowe, “Scalable nearest neighbor al-

gorithms for high dimensional data,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 36,

2014.

[42] S. Dasgupta, “Experiments with random projection,” in

Proceedings of the 16th Conference on Uncertainty in

Artificial Intelligence, ser. UAI ’00. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2000, pp. 143–

151.

[43] E. Bingham and H. Mannila, “Random projection in

dimensionality reduction: Applications to image and text

data,” in Proceedings of the Seventh ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, ser. KDD ’01. New York, NY, USA:

ACM, 2001, pp. 245–250.

[44] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for

autonomous driving? the kitti vision benchmark suite,” in

Conference on Computer Vision and Pattern Recognition

(CVPR), 2012.

[45] M. Warren, D. McKinnon, H. He, and B. Upcroft,

“Unaided stereo vision based pose estimation,” in

Australasian Conference on Robotics and Automation,

G. Wyeth and B. Upcroft, Eds. Brisbane: Australian

Robotics and Automation Association, 2010.

[46] C. L. Zitnick and P. Dollár, “Edge boxes: Locating object

proposals from edges,” in ECCV, 2014.

[47] M. M. Cheng, Z. Zhang, W. Y. Lin, and P. Torr, “Bing:

Binarized normed gradients for objectness estimation at

300fps,” in 2014 IEEE Conference on Computer Vision

and Pattern Recognition, June 2014, pp. 3286–3293.

[48] J. Engel, V. Koltun, and D. Cremers, “Direct sparse

odometry,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. PP, no. 99, pp. 1–1, 2017.

[49] R. A. Newcombe, S. J. Lovegrove, and A. J. Davison,

“Dtam: Dense tracking and mapping in real-time,” in

2011 International Conference on Computer Vision, Nov

2011, pp. 2320–2327.

[50] A. Concha, G. Loianno, V. Kumar, and J. Civera, “Visual-

inertial direct SLAM,” in 2016 IEEE International Con-

ference on Robotics and Automation (ICRA), May 2016,

pp. 1331–1338.

10


	Introduction
	Related Work
	Unsupervised Deep Loop Closure
	Design Motivation
	Network Architecture
	Network Training
	Online Use

	Experimental Results
	The Alderley Dataset
	The Gardens Point Dataset
	The Nordland Dataset
	Our Campus Loop Dataset
	Runtime Evaluation
	Online Loop Closure
	Integration into ConvNet-Based Place Recognition Systems

	Conclusions

