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Tailoring the structure and properties of lignin is an important step toward electrochemical
applications. In this study, lignin/polypyrrole (PPy) composite electrode films with
microporous and mesoporous structures were designed effectively by electrostatic
spinning, carbonization, and in situ polymerization methods. The lignin can not only
reduce the cost of carbon fiber but also increase the specific surface area of composite
films due to the removal of carbonyl and phenolic functional groups of lignin during
carbonization. Besides, the compact three-dimensional (3D) conductive network
structures were constructed with PPy particles densely coated on the lignin nanofibers,
which was helpful to improve the conductivity and fast electron transfer during the charging
and discharging processes. The synthesized lignin carbon fibers/PPy anode materials had
good electrochemical performance in 1M H2SO4 electrolyte. The results showed that, at a
current density of 1 A g−1, the lignin carbon nanofibers/PPy (LCNFs/PPy) had a larger
specific capacitance of 213.7 F g−1 than carbon nanofibers (CNFs), lignin carbon nanofibers
(LCNFs), and lignin/PPy fiber (LPAN/PPy). In addition, the specific surface area of LCNFs/
PPy reached 872.60m2 g−1 and the average pore size decreased to 2.50 nm after being
coated by PPy. Therefore, the independent non-binder and self-supporting conductive film
is expected to be a promising electrode material for supercapacitors with high performance.
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INTRODUCTION

Supercapacitors rely on electrode materials for charge storage, so electrode materials are the key part of
the performance of supercapacitors (Choi et al., 2020;WulanSeptiani et al., 2020; Fu et al., 2021; Xu et al.,
2021b; Liu et al., 2021a; Liu et al., 2021b; Du et al., 2022). Carbon materials, such as porous carbon (Li
et al., 2019a), graphene (Zhou et al., 2020), carbon nanotubes (Fan et al., 2020), and orderedmesoporous
carbon (Wang et al., 2018), are considered the most suitable electrode materials for supercapacitors due
to their high specific surface area, developed pore structure, high electronic conductivity, and excellent
stability (Chen et al., 2020a; Shang et al., 2020; Xu et al., 2020c). Unfortunately, strong van der Waals
forces between graphene sheets tend to cause graphene sheets to accumulate and agglomerate (Xiong
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et al., 2020). And the biggest problem in the preparation of carbon
nanotube composites is that carbon nanotubes are difficult to
disperse effectively into the polymer matrix (Sahoo et al., 2010).
Also, the process of ordered mesoporous carbon is complicated due
to the use of various templates (Lin et al., 2015). However, porous
carbon has gained wide raw material sources, low cost, well-
developed pores, and an easy-to-control structure (Li et al.,
2020). Moreover, the large amount of oxygen functional groups
such as -OH and -COOH in these materials as another advantage
provided interesting attention for better superior charge storage
(Ding et al., 2021). Like the latest report, Xu et al. (2022) prepared
dung beetle forewing carbon materials with a hierarchical porous
structure, self-doped nitrogen, oxygen, and a large specific surface
area, which obtained a specific capacitance of 348 F g−1. Wang et al.
(2022) converted waste peach gum as a raw material into layered
porous carbon doped with N, P, and O through impregnation and
carbonization. The electrode exhibited excellent electrochemical
performance (490 F g−1 under 1 A g−1) due to the synergistic
effects of high specific surface area and multiple heteroatomic
co-doping amounts.

Therefore, more and more attention has been paid to the
preparation of porous carbon electrode materials for
supercapacitors using biomass as precursors (Lian et al., 2018;
Zhu et al., 2018; Yang et al., 2019; Liu et al., 2021g).
Lignocellulosic biomass is one of the most abundant resources,
which is a promising source of renewable energy (Du et al., 2019; Liu
et al., 2020a; Liu et al., 2020b; Wang et al., 2020; Liu et al., 2021d; Xu
et al., 2021a; Zhang et al., 2021a). Lignocellulosic biomass is mainly
composed of cellulose,hemicelluloses, and lignin (Liu et al., 2021e;
Liu et al., 2021f; Xu et al., 2020b; Liu et al., 2021h;Wang et al., 2021a).
Among them, lignin as a kind of biomass carbon precursor is
considered with broad application prospects due to its high
carbon yield, large space for molecular structure modification,
and abundant industrial sources (Dai et al., 2019; Li et al., 2019b;
Chen et al., 2020b; Chen et al., 2020c; Dai et al., 2020; Xu et al., 2020a;
Zhou et al., 2021; Park et al., 2022). In addition, researchers are
committed to designing and manufacturing advanced lignin carbon
fibers with high specific surface area, controllable porosity, and
appropriate pore size using electrostatic spinning technology, and

this technique has obvious advantages over other preparation
methods in controlling the fiber inner diameter, surface
morphology, and orientation degree (Qu et al., 2021; Thongsai
et al., 2021). However, pure lignin has a low molecular weight
and is not easily spinnable into fibers in practical applications (An et
al., 2019). Therefore, high-molecular-weight polymers such as
polyacrylonitrile (Szabó et al., 2021), poly(vinyl pyrrolidone) (Cao
et al., 2020a), polyethylene oxide (Dallmeyer et al., 2010), and
polyvinyl alcohol (Camiré et al., 2020) need to be added to the
lignin solution to improve the viscosity and spinnability of the fiber
preparation spinning solution. Furthermore, the mechanical
strength of spun fibers can be improved by using high-
molecular-weight polymers. Meanwhile, the introduction of
conductive polymer into carbon fiber can generate more
electrochemical active sites for a rapid charge–discharge
conversion reaction, thus further improving the electrochemical
performance (Zhang et al., 2017). Polypyrrole (PPy) is one of the
most widely studied conductive polymers, which has a broad
application prospect in supercapacitors due to its excellent energy
storage capacity, easy synthesis, and high conductivity (Tian et al.,
2019; Du et al., 2021; Yuan and Ma, 2021). Unfortunately, PPy as a
supercapacitor electrode undergoes continuous expansion and
contraction during the doping/de-doping process, which reduces
its cyclic stability and electrochemical performance (Tian et al.,
2021). Therefore, researchers used the strategy of depositing PPy on
carbon-basedmaterials to obtain enhanced capacitance performance
in practical applications (Fan et al., 2014). For example, Li et al. (He
et al., 2021) fabricated graphene/graphite/PPy composite fibers using
a vertical alignment method, and the 3D microelectrode was helpful
to improve electrochemical performance. Zhan et al. (2021)
developed electrode materials with high capacitance
(5,299mF cm−2) and mechanical flexibility by synthesizing PPy in
situ in cellulose nanofiber/sulfonated carbon nanotube composite
hydrogel. In the literature, our group reviewedmultifunctional lignin-
based composite materials and nano-lignin materials for emerging
applications (Deng et al., 2021; Ma et al., 2021a). Moreover, we
prepared the flexible N-doped carbon nanotubes/MXene/PAN
nanocomposite films with improved electrochemical properties via
the electrostatic spinning method (Li et al., 2021).

SCHEME 1 | Schematic of the preparation of lignin-based carbon fiber/PPy composites.
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In this paper, the method of preparing PPy-coated lignin
carbon fiber composite films by electrostatic spinning, in situ
chemical polymerization, and carbonization was proposed.
Electrostatic spinning combining carbonization has the
advantages of large specific surface area, uniform pore
distribution, and low density, compared with the vacuum
filtration method. In a three-electrode system, the high
capacitance of the composite films electrode was 213.7 F g−1 at
a current density of 1 A g−1. More importantly, biomass lignin

provided a possibility as a low-cost self-supporting electrode
material for energy storage devices.

EXPERIMENTAL SECTION

Materials
Lignin was purchased from Shandong Longli Biotechnology Co., Ltd.
Pyrrole, polyacrylonitrile (PAN) (Mw = 150,000), and

FIGURE 1 | SEM images of electrospun fibers after thermal stabilization with fiber diameter distribution graphs: (A) stabilized PAN fibers; (B) stabilized LPAN fibers;
(C) PPy; (D) LPAN/PPy.
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N,N-dimethylformamide (DMF) were purchased from Shanghai
Macklin Biochemical Co., Ltd. Ammonium persulfate
((NH4)2S2O8) and urea (CH4N2O) were purchased from Beijing
Chemical Plant Co., Ltd. All other chemicals were of analytical grade.

Preparation of Electrospinning Solution
The spinning solution was obtained by stirring lignin and PAN
(ratio: 0:1 and 1:4) in DMF solvent for 24 h at room temperature
until completely dissolved. The precursory solution was
transferred into a 5 ml syringe for electrospinning by using a
voltage in the range of 15–17 kV and a distance of 13–15 cm from
the needle tip to the aluminum foil collector. After spinning, the
fibers were collected, and the two kinds of electrospun fiber
membranes were named “PAN” and “LPAN,” respectively.

Preparation of Lignin/PPy Filament Fiber
The PPy-coated nanofiber films were prepared using a simple in
situ chemical polymerization. The above electrospun nanofiber
LPAN film was dipped into a beaker containing an aqueous
solution of 25 ml pyrrole (5 g L−1), which had been stirred for
several minutes in advance. Then, after soaking for 3 h, 25 ml of
(NH4)2S2O8 (0.2 moL L−1) solution was added dropwise, and
holding at 0°C for 4 h. The sample was removed from the solution
and rinsed with deionized water to remove PPy particles and
residual reactants and dried in an oven for 4 h. The film
containing PPy was named “LPAN/PPy.”

Preparation of Lignin-Based Carbon Fiber/
PPy Composites
The freestanding carbonized composites were fabricated as
follows. Pyrolysis of polymer fibers was performed in a tubular
furnace under the following condition: The heating rate was
1°C min−1 from room temperature to 250°C. The temperature was
set constant at 250°C for 1 h and from 250 to 900°C with 5°C
min−1 by blowing N2 gas. Then, the setup was maintained at that
temperature for 2 h and cooled to room temperature. The
preparation of lignin-based carbon fiber/PPy composites is
shown in Scheme 1, which are named “LCNFs/PPy.” For
comparison, the electrospun lignin-free carbon fiber film was
prepared and marked as CNFs. In addition, the composites
without adding PPy were prepared and marked as LCNFs.

Material Characterization
The morphologies of the electrospun fiber membranes, lignin/
PPy filament fibers, and lignin-based carbon fiber/PPy
composites were characterized via scanning electron
microscopy (SEM, SU8010, Hitachi, Japan). X-ray
diffractometry (XRD, Ultima IV, Rigaku, Japan) was carried
out to study the crystallographic information of the sample.
TG-DTA (TG209F3, Netzsch, Germany) was tested under air
to analyze the composition ration of the samples. The chemical
groups were characterized with a PerkinElmer Frontier Fourier
transform infrared (FT-IR) spectrometer.

FIGURE 2 | (A) Photographic image of the prepared samples. SEM micrographs of fibers after carbonization graphs: (B) CNFs; (C) LCNFs; (D) LCNFs/PPy.
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Electrochemical Measurements
All electrochemical tests were performed on an electrochemical
workstation (CHI 660D) using a three-electrode configuration
using a 1 M H2SO4 aqueous solution as the electrolyte at room
temperature. A Pt mesh electrode and an Hg/HgCl2 electrode
were used as the counter and reference electrodes, respectively.
The cyclic voltammetry (CV) curves were plotted in a potential
range between 0 and 1 V at different scan rates from 5 to
500 mV s−1. The EIS experiments in the frequency range of
1 MHz–0.01 Hz were executed at 5 mV AC amplitude. And
the specific capacitance was calculated from galvanostatic
charge/discharge (GCD) curves according to the following
equation (Liu et al., 2021c):

Cs � I × Δt

m × ΔU
, (1)

where Cs (F g−1) is the specific capacitance, I (A g−1) is the
discharge current, Δt (s) is the discharge time, ΔU (V)
represents the potential window, and m (g) is the electrode
material mass.

RESULTS AND DISCUSSION

Figure 1 shows the SEM images of the PAN, LPAN, PPy, and
LPAN/PPy films prepared by electrostatic spinning and in situ
chemical polymerization, which could intuitively reflect the
microscopic morphology and structural differences of the
precursor fibers. As shown in Figure 1A, the pure PAN fiber
morphology was regular without beading or bending, which had
uniform thickness and a diameter of about 289 nm. When the
lignin:PAN ratio was 1:4, part of the fiber beaded and fractured
(Figure 1B), and the fiber diameter was within the range of
248 nm. The interaction between lignin and PAN may
contribute to the agglomerated, beading, and defective
fibers. In addition, some lignin groups changed the polarity
of the spinning solution, inducing the phenomenon of large
fluctuation in the process of high-pressure spinning, which
further affected the regularity of fiber diameter (Wang et al.,
2013). Figure 1C shows the SEM image of PPy particles
prepared by the chemical oxidation method. Besides, as
shown in Figure 1D, the electrospinning fibers were coated

FIGURE 3 | FT-IR spectra (A) of protofilament fibers and carbon fibers, XRD patterns (B), N2 adsorption–desorption isotherms (C), and pore-size distribution (D) of
the carbon fiber composite electrodes.
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with PPy evenly, and the diameter was mainly distributed at
about 200–300 nm.

Compared with lignin-based filament fibers prepared by the
electrospinning method, the diameter of carbon fibers after pre-
oxidation and high-temperature carbonization was significantly
smaller, and part of the fiber showed a state of curvature and
connection. It could be more intuitively observed from the digital
image in Figure 2A that the sample area had a certain contraction
after carbonization at 900°C. This could be attributed to the
fracture, removal, and cyclization of lignin groups in the fiber
(Ding et al., 2016; Ma et al., 2020). The LCNFs (Figure 2C)
exhibited a smaller diameter than CNFs (Figure 2B), which
increased the specific surface area and porosity, thereby
improving the cyclic stability and specific capacitance. On the
contrary, the carbon nanofibers connect and bridge with each
other to form a highly conductive network structure that
facilitated rapid electron transfer during charging and
discharging processes, thus improving the rate capacity. In
addition, PPy on the surface of carbon fiber was closely
attached (Figure 2D), which also contributed to the
improvement of electrochemical properties.

FT-IR was performed to determine the chemical structure of
the prepared samples (Figure 3A). The peak at 3,433 cm−1 was

attributed to N-H in PAN, and O-H in the aromatic ring of lignin.
In addition, the peaks of PAN at 2,937 and 2,243 cm−1 were
attributed to C-H and C≡N, respectively (Si et al., 2009; Xu et al.,
2021c). It was noted that the O-H peak increased with the
increase of lignin content and had a trend of low-wavelength
shift, and C≡N cyanine peaks gradually weakened. And the peaks
at 1,183 and 1,077 cm−1 were C-N and C-H in a PPy long chain,
respectively (Si et al., 2008; Wang et al., 2015). The results showed
that the pyrrole rings were mainly connected by an α-α bond after
the composite PPy on the surface of the filament. The FT-IR
spectra of carbon fibers displayed three emblematic bands at
3,430 (N-H stretching), 1,610 (C=C stretching), and 1,370 cm−1

(-CH3 bending), respectively (Si et al, 2013; Ma et al., 2021b).
After calcination at 900°C, the groups (cyanogenic C≡N in PAN)
of the filament basically disappear, which was due to the
decomposition of organic compounds at high temperature and
the formation of amorphous carbon. The XRD patterns of carbon
fibers are demonstrated in Figure 3B. The carbon peak position
had been located at 26.6° and 44°, which corresponded to the
(002) and (100) diffraction planes of disordered stacking of
graphite structures (Jayachandran et al., 2021). It was also
confirmed that the linear structure of the fiber was
transformed into a heat-resistant trapezoidal structure during

FIGURE 4 |CV curves of LCNFs (A) and LCNFs-600 (B) at different scan rates with a potential range of 0–1 V. GCD cycle curves of LCNFs (C) and LCNFs-600 (D)
with different charge densities.
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the pre-oxidation process, and the graphitization crystal structure
could provide good structural stability, which was advantageous
to improve the capacitive performance. In addition, a large
specific surface area provided more active sites for charge
storage, which improved the electrochemical performance of
supercapacitors. The N2 adsorption–desorption isotherms and
pore-size distribution of composite carbon fibers are illustrated in
Figures 3C,D, respectively. According to IUPAC classification,
the N2 adsorption–desorption isotherms of the three samples all
exhibited a mixed type Ⅰ curve and type IV curve with a steep
increase of N2 adsorbed at low pressure and a distinct hysteresis
loop at high-pressure regions (0.4 < P/P0 < 1.0), indicating the
coexistence of microporous and mesoporous structures

(Schneidermann et al., 2017; Bai et al., 2020). The micropores
increased the specific surface area of the material, increasing the
active site of pseudo-capacitance reaction, and the mesopores
provided a smooth channel to help electrolyte ions quickly enter
the reaction interface of the material bulk phase. Therefore, the
existence of these pores directly affected the specific capacity of
the electrode material. Compared to CNFs (519.81 m2 g−1 and
3.55 nm), the BET surface area and pore diameter of LCNFs were
746.37 m2 g−1 and 2.76 nm, respectively. It was noted that the
specific surface area of LCNFs/PPy reached 872.60 m2 g−1 and the
average pore size decreased to 2.50 nm after the composite by
PPy, which may be caused by the filling of the fiber gap with PPy
to form smaller pores.

FIGURE 5 | (A)CV curves at 5 mV s−1; (B)GCD curves at 1 A g−1; (C) specific capacitances at different current densities; (D)Nyquist plots (insets show a Randles
cell equivalent circuit and zoomed plot of each curve); (E) conductivities of LCNFs/PPy, LPAN/PPy, LCNFs, LCNFs-600, and CNFs, respectively; (F) small bulb test.

TABLE 1 | Comparison of supercapacitive performance of recently reported lignin-based and PPy-based composite electrodes.

Electrode material Specific capacitance Electrolyte Refs.

Lignin/PAN 148.0 F g−1 (50 mV s−1) 0.5 M KOH Thongsai et al. (2021)
Lignin/LaMnO3 95.2 F g−1 (1 A g−1) 6 M KOH Gang et al. (2021)
Lignin/KHCO3 114.0 F g−1 (0.5 A g−1) 2.5 M KNO3 Mutuma et al. (2021)
Lignin 197.3 F g−1 (0.2 A g−1) 6 M KOH Sima et al. (2021)
Lignin 155.0 F g−1 (0.5 A g−1) 6 M KOH Rong et al. (2021)
Alkali lignin 168.3 F g−1 (10 mV s−1) 3 M KCl Rois et al. (2021)
PPy-thieno[3,4-b]thiophene 28.1 F g−1 (0.1 mA cm−2) 2 M LiCl Wang et al. (2021b)
N,B-codoped graphene/PPy 160.3 F g−1 (0.5 A g−1) 1 M H2SO4 Xin et al. (2021)
PPy/birnessite 183.0 F g−1 (0.5 A g−1) 1 M Na2SO4 Zhuang et al. (2021)
Lignin/PPy 213.7 F g−1 (1 A g−1) 1 M H2SO4 This work
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To explore the electrochemical capacitive properties of carbon
fibers at different temperatures, after that, the stabilized lignin/
PAN fiber film was carbonized by heating to 600°C as the control
sample, denoted as LCNFs-600. The capacitive properties of
LCNF and LCNF-600 electrodes were measured in 1 M H2SO4

using a three-electrode system. From the electrode under
different scan rate cyclic voltammetry (CV) curves, it is found
that the curve area of the LCNFs (Figure 4A) was larger than that
of the LCNFs-600 (Figure 4B). And at low scanning rates, the CV
curves of LCNFs were closer to rectangles. These results clearly
showed that the calcination temperature was 900°C and the
graphitization and amorphous area of carbon fibers increased,
further improving the specific surface area for better permeation
H+ to access more active sites. Furthermore, at different current
densities of 1–20 A g−1, the GCD curves of the LCNFs were near
the isosceles triangle shapes (Figure 4C). Compared to LCNFs-
600, the LCNF electrode had an ideal capacitance and ion
adsorption/desorption mode during the energy storage process
(Figure 4D).

Figure 5A shows the CV curves of composite electrode
materials at 5 mV s−1. It was evident that the LCNF/PPy
composite films approximated rectangles, which showed good
electrochemical reversibility. Compared with LCNF composite
films without PPy composite, the area was larger and the specific
capacitance was higher, indicating that the addition of conductive
polymer PPy could improve the specific capacitance of carbon
fibers. In addition, with the addition of lignin, the charge storage

capacity of the material significantly enhanced. This was
attributed to the natural pore structure and complex
functional groups of lignin, which enhanced the specific
surface area and electrochemical reversibility of carbon fibers
after calcination (Cao et al., 2020b). In order to better compare
the electrochemical performance, chronopotentiograms are
drawn for the samples at a constant current density of 1 A g−1

in Figure 5B. It could be observed that the LCNF/PPy composite
film had a visibly larger discharging time (Δt) than the other
samples. The relationships between specific capacitances and
current densities of these five samples are shown in
Figure 5C. The highest specific capacitance of 213.7 F g−1 was
obtained for the LCNF/PPy electrode at a current density of
1 A g−1, compared with specific capacitances of 193.8 F g−1,
132.8 F g −1 117.3 F g−1, and 82.3 F g−1 for LCNFs, CNFs,
LPAN/PPy, and LCNFs-600, respectively. And the LCNF/PPy
electrode also showed a higher specific capacitance, compared
with other recently reported lignin and PPy composite electrodes
(Table 1). To further verify the excellent properties, EIS
measurements were performed in the frequency range from
1MHz to 0.01 Hz, as shown in Figure 5D. The series
resistance of the LCNFs/PPy was only 2.7Ω, and the small
semicircle reveals the low charge transfer resistance (Rct).
Moreover, it showed a high slope in the high-frequency
region, which indicated good ion diffusion process and
double-layer behavior in the electrochemical reaction
process. Furthermore, the four-probe method was used to

FIGURE 6 | CV curves of LCNFs/PPy at different scanning rates (A), GCD curves at different current densities (B), cyclic performance of 1,000 charge–discharge
cycles at current density 4 A g−1 (C), relationship between the specific capacitance of LCNFs/PPy and discharge time (D), capacitive contribution to charge storage at
scan rates of 5 and 500 mV s−1 (E), and percentage of capacitance contribution at different scan rates (F).
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test the conductivity of the composite films, and the results are
shown in Figure 5E. The addition of PPy into LCNFs has been
demonstrated to be an effective strategy to reduce resistivity.
The low resistivity of LCNFs/PPy (5.58 Ω cm−1) is also
demonstrated in the small bulb test in Figure 5F.
Moreover, the poor conductivity of the calcined sample at
600°C should be caused by its low graphitization degree and
long charge diffusion path.

To further clarify the electrochemical behavior of LCNF/PPy
films, the complete CV curves and GCD curves of the SCs are
plotted in Figures 6A,B, respectively. The results in Figure 6A
showed that all CV curves maintain the similar shape at different
scanning rates, demonstrating well capacitance performance and
relatively good rate capability. Subsequently, the GCD curves of
the LCNFs/PPy are displayed in Figure 6B. The curves had a
shape of a symmetrical triangle that showed good capacitive
behavior. It was important to assess the long-cycle stability of
LCNF/PPy positive material by repeating the GCD test at 4 A g−1.
Figure 6C shows a well stability of about 77% after 1,000 cycles.
For further understanding the charge storage process of LCNFs/
PPy, the electrochemical dynamics of electrode composite films
were studied. The capacitance C could be calculated by (Lin et al.,
2015)

C � K1 + K2T
1/2, (2)

where T is the discharge time of the GCD test, k1 corresponds to
the surface capacitance effect (usually from the double-layer
capacitance, T→0), and k2T

1/2 corresponds to the capacitance
effect of diffusion control (affected by the charge and discharge
rates, T→∞). Figure 6D shows the relationship between specific
capacitance and discharge time of LCNFs/PPy. When T→0, the
intercept was k1, representing the specific capacitance contributed
by the double-layer effect. The double-layer capacitance of
LCNFs/PPy reached 148.7 F g−1, accounting for 69.6% of the
total capacitance, which showed that the capacitance effect
mainly came from double-layer adsorption (Chen et al.,
2021a). In addition, the capacitance control and diffusion
control in total charge storage could be further calculated and
quantified by (Zhang et al., 2021b)

i � k1v + k2v
1/2. (3)

In short, at a certain voltage (v), the current response (i) consisted
of two parts, wherein k1v and k2v

1/2 corresponded to the surface
control process (pseudo-capacitance and double-layer capacitance)
and the diffusion control process, respectively (Chen et al., 2021b).
As could be seen from Figures 6E,F, the capacitance contribution of

the LCNF/PPy positive electrode film enlarged from 7 to 70% with
the increase of scanning rate, which was caused by the relatively low
ion diffusion rate at large scanning rates.

CONCLUSION

In summary, carbon fiber precursors with lignin and PAN (ratio 1:
4) were prepared by the electrostatic spinning method, and PPy
was in situ polymerized to improve electrochemical performance.
In addition, lignin/PPy composite films were produced without the
use of any crosslinking agents and physical/chemical activation
during thermal stabilization and carbonization. Lignin/PPy
composite films with microporous and mesoporous structures
were designed as the positive materials of the supercapacitor.
Among them, the LCNF/PPy electrode had a large specific
surface area, high pore volume, and the specific capacitance of
213.7 F g−1 at the current density of 1 A g−1. This work has the
potential to use lignin to produce carbon fibers as a low-cost
electrode material for high-performance supercapacitors.
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