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Abstract: The exploration of natural substrates for microbial conversion to synthesize industrial
platform and fuel chemicals seems to be inevitable within a circular bioeconomy context. Hemicel-
lulose is a natural carbohydrate polymer consisting of a variety of pentose (C5) sugar monomers
such as arabinose, mannose, erythrose, and xylose. Among the C5 sugars, L-arabinose (L-Ara) is the
second-most-abundant pentose sugar in the lignocellulosic biomass after xylose. L-Ara has been used
as an industrial carbon source to produce several value-added chemicals such as putrescine, which is
used to synthesize polymers in the textile industry; sugar alcohols that are used as sweeteners in diet
foods; and amino acids such as L-lysine, L-glutamate, L-arginine, and L-ornithine, which are used in
nutritional supplements, fertilizers, and other products in the food and beverage industries. L-Ara,
a natural non-caloric sweetener, is used as a substitute in the food and beverage industry, when
the risk of blood sugar and lipid levels could be reduced. Major use of L-Ara is also found in the
medical and pharmaceutical sectors to treat several conditions, including mineral absorption disorder,
constipation, and diabetes, among others. In recent years, there has been a rising interest in synthesiz-
ing various sugar alcohols and derivatives, including arabitol, xylitol, and 2,3-butanediol, through
the modification of producer organisms either genetically or metabolically to produce value-added
products. Understanding the current demand and the need to increase the diversified production
of industrial green chemicals with the reduced waste of useful lignocellulosic resources, this review
focuses on the background of L-Ara and its various sources, microbes that utilize L-Ara to produce
high-value-added products, and the future prospects for strain improvements to increase the yield of
high-value-added products.
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1. Introduction

In recent times, the term ‘Circular Bioeconomy’ is one of the keystones of the new
economical and societal era to reverse climate changes and produce sustainable green
chemicals from renewable carbon sources [1]. Among the various renewable resource
options, lignocellulosic biomass (LCB) seems to be the major contributor, with an annual
production of 0.2 trillion metric tons [2]. LCB also circumvents the food vs. fuel debate
that is prominent among developing countries that reserve the most-abundant non-edible
carbon feedstock either as an agro-industrial residue or as dedicated bioenergy crops. The
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plant biomass is mainly comprised of 65-85% of holocellulosic compounds (cellulose and
hemicellulose) and 15-20% of lignin [3-5]. Over recent decades, substantial efforts have
been taken for the conversion of cellulosic-derived glucose into biofuels and other value-
added products. Hemicellulose is a natural carbohydrate polymer consisting of a variety of
pentose (C5) sugar monomers such as arabinose, mannose, erythrose, and xylose. Among
the C5 sugars, L-arabinose (L-Ara) is the second-most-abundant C5 sugar in LCB after xy-
lose. L-Ara is used as an industrial carbon source to produce several value-added chemicals
such as putrescine (a polymer used in the textile industry), ethanol/sugar alcohols (artificial
sweeteners in diet foods, fuel addjitives, etc.), amino acids such as L-lysine, L-glutamate,
L-arginine, and L-ornithine (nutritional supplements), fertilizers, and other products in
the food and beverage industries [6-9]. Recent investigations revealed that the whole
LCB could be an efficient resource for chemical and fuel production through a biorefinery
framework, rather than only cellulose-based bio-renewables [10]. Therefore, a sustainable
utilization of LCB prerequisites a completely integrated biorefinery framework that is analo-
gous to a petroleum refinery. In a biorefinery, the holocellulosic fraction contributes a prime
role in the production of bio-renewables, owing to its efficient hydrolysis into monomeric
sugars that could be subsequently fermented into an array of high-value-added commodi-
ties. Table 1 represents a brief list of the value-added bioproducts that are produced. The
global market value of food-grade L-Ara is expected to reach USD 33 million by 2028 [11].
In this regard, the valorization of L-Ara could be a promising alternative carbon source
for industries that both economically and sustainably augment. There exists a bottleneck
in the effective utilization of C5 sugars through microbial fermentation, wherein only a
few industrially potent microbes are available for C5 sugar uptake through the specialized
intramembrane transport mechanism and metabolic pathways, with a low product yield.
However, the conventional metabolic pathway harbored by the microbial candidates pos-
sesses low-titer product yields. Hence, upgraded and adapted recent microbial technologies
such as adaptive laboratory evolution (ALE) [12,13], metabolic engineering, and synthetic
biology [14] have been recently emerging as a promising mitigation strategy to meet the
industrial utilization of L-Ara for chemical synthesis and the purpose of establishing a
sustainable greener technology [1]. To the best of the authors’ knowledge, this is the first
report to shed light on the significance of hemicellulose-derived L-Ara as a renewable
carbon source and its valorization toward several value-added commodity chemicals. It
also highlights the different metabolic pathways involved in the assimilation of L-Ara by
various microbial candidates for industrially important chemicals. In addition, different
research directions in terms of metabolic engineering, synthetic biology, and microbial
strain improvement strategies are discussed.

Table 1. Value-added products and their corresponding yields.

ValueAdded Products Yield Microbe ‘C’ Source Reference
Lactic Acid: 12.1 g/L
Organic acids Fumaric Acid: 7.4 g/L Lactobacillus sakei WiKim31 Kimchi cabbage waste [15]
Acetic Acid: 4.5g/L
Putrescine 19g/L Clostridium glutamicum PUT21  Glucose [16]
L-Lysine: 9.9 g/L
Amino acids L-Ornithine: 25.8 g/L C. glutamicum ARG1 Glucose and L-Ara [6]

L-Arginine: 8.4 g/L

2. Abundance and Significance of L-Ara as a Bioresource

Hemicellulose, a heterogenous polymer that contains C5 sugars such as «- L-Ara and
(3-D-xylose, could reach 20-30% of the total LCB [17,18]. Figure 1 represents the potential
of LCB, its sugar composition, and its valuable application in industries through microbial
metabolic processes. In addition, some other sugars such as & -fucose and o-L-rhamnose
are also present to a small extent, albeit rarely [19]. Based on the composition, presence,
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and side-chain ratio of the constituents, hemicellulose is distinguished as xyloglucan, glu-
curonoxylan, glucuronoarabinoxylan, galactoglucomanan, arabinoxylan, glucomannan,
homoxylan, galactomannan, homomannan, arabinoxyloglucan, and arabinoglucuronoxy-
lan. Among these, a considerable amount of L-Ara was found in arabinoglucuronoxylan,
arabinoxyloglucan, glucuronoarabinoxylan, and arabinoxylan [20]. Rapid growth in the
fresh juice industry has led to the abundance of fruit processing waste, which is not being
efficiently utilized. Fruit processing waste such as pear peel, lime peel, orange peel, man-
darin peel, and apple pomace is rich in pectin, i.e., 12-35% of the biomass dry weight has
an insignificant amount of lignin (2%, w/w), compared to that of LCB [21-25]. Pectin is
a complex heteropolysaccharide composed of «-1,4 linked D-galacturonic acid that con-
tributes 70% of the total homogalacturonan polymer weight. When considering pectin, the
presence of a limited amount of lignin merely enables the breakdown of polymers into
monomers, where L-Ara becomes the most abundant of the C5 sugars. In addition to LCB,
agro-industrial by-products such as wheat bran, corn fiber, sugar beet pulp, brewer’s spent
grain, and sugarcane bagasse contain around 10.6%, 12.0%, 18.0%, 8.7%, and 1.3% of L-Ara,
respectively [26-31]. Table 2 represents the different feedstocks/sources of L-Ara and its
potential industrial applications. These abundant waste resources could be sustainably
tapped for the L-Ara waste production of chemicals through various microbial candidates,
which is discussed in the subsequent sections.
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Figure 1. Production of value-added products from LCB-derived L-Ara.
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Table 2. Different sources of L-Ara and its applications.
Feedstock Ll(go/?)m Heml(i/eoilulose Cel(l:/i l)ose l;rlzezr:;tgsgtirl:d]it,z:: Applications References
Food coatings, hydrogels,
Sugarcane Acid hydrolysis resulted packaging films, cationic
bagasse 25-32 19-24 32-43 in2.78 g/L of L-Ara biopolymers, and other [32-34]
biomedical uses
Acid hydrolysis resulted .
Corn stover 19 22 36 in 38.2% L-Ara yield in Ad"?.nced biofuels and [35-37]
L ivestock feed
8 h reaction time
Combined pre-treatment Biofuel and
Rice straw 15 18 35 methods resulted in othanol production [38-40]
2.7-4.5% of L-Arayield P
Sulphuric acid treatment Biothanol production
Water hyacinth 10 35 25 resulted in 33.3 g/L yield .  produich [41,42]
using Pichia stipitis
of L-Ara
Hot water and NaOH Adsorbents, packing
Wheat straw 16-25 23-24 28-39 treatment resulted in materials, bioplastic industry,  [43-45]
2.37 £ 0.09% of L-Ara and several other industries
Acid alkali pretreatment  Food industry, as a bakery or
Sugar beet 6 30 2904 along wi’Fh ultrafiltration confection?ry prgduct, apart [46,47]
molasses resulted in 92% recovery from being utilized as a
of L-Ara ruminant feed
Sulphuric acid treatment Bioethanol, animal feed,
Apple pomace 19 10 12 resulted in 90% yield citric acid, and several [48-50]
of L-Ara other applications
Orange peels 20 9 69 Acid Zl)l(l::i :f?;r;ent to Bloetha;o(;, l;sisost;ls’aal oils, [51,52]
Acid treatment to Fertilizer, feed for livestock,
Carrot pomace 17 7 28 dietary fiber, and production [53,54]
extract L-Ara .
of biofuels
Acid treatment to Fertilizer, feed for livestock,
Tomato pomace 7 31 38 dietary fiber, and production [54-56]

extract L-Ara of biofuels

2.1. 2,3-Butanediol

2,3-Butanediol (2,3-BD) or 2,3-butylene glycol has various applications, such as as
a chemical feedstock, a solvent, a liquid fuel, and a raw material for several resins and
synthetic polymers [57]. A microorganism, identified as Enterobacter cloacae, was found to
produce meso-2,3-BD as its primary product during fermentation. There are reports that
pathogenic bacteria and other microbes produced 2, 3-BD. Klebsiella pneumoniae had the
most significant 2, 3-BD titer of any bacterium, measuring 150 g/L [58]. Another productive
maker of 2,3-BD, classified as a class 2 bacteria, was K. oxytoca, and this strain produced 2,
3-BD concentrations up to 130 g/L. Three bacteria with the Generally Recognized as Safe
(GRAS) designation are effective 2, 3-BD producers: Bacillus amyloliquefaciens, B. licheniformis,
and B. subtilis. The discovery of new strains and the enhancement of optical clarity has
received abundant interest. Industrially applicable hosts, such as L. lactis, Saccharomyces
cerevisiae, and Escherichia coli, are better-suited for large-scale production than indigenous
hosts due to their effective genetics and well-proven cultivation techniques [59].

In a study conducted by Saha and Bothast, the authors checked the production of
2,3-BD by E. cloacae NRRL B-23289 by utilizing each of the following carbon sources
individually: xylose, glucose, and L-Ara. The study was conducted at a pH of 5.0, a
temperature of 30 °C, and 200 rpm. It showed that E. cloacae NRRL B-23289 utilizes the
above-mentioned carbon sources in the order: xylose < glucose < L-Ara. About 0.37 g of
glucose and 0.38 g of xylose were consumed in 63 h, and 0.43 g of L-Ara was consumed in
39 h. The bacteria were cultivated on mixtures of A and B, made of sugar, in proportions
of 1:1:1 and 1:2:1 for glucose, xylose, and L-Ara, respectively. The bacterium variety was
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found to favor glucose over xylose and L-Ara over xylose. After a significant amount of
L-Ara was consumed and only after all of the glucose was used up, the xylose started to
vanish. Thus, the authors could use the E. cloacae NRRL B-23289 strain for the enhanced
production of 2,3-BD using L-Ara as a carbon source [60].

For an array of sectors, including those in the chemical, cosmetics, agriculture, and
medicine fields, 2,3-BD holds enormous potential. 2,3-BD has broad industrial applications,
such as as a promising bulk chemical, which has plenty of further use. Its high heating
value makes it an excellent drop-in fuel. It can also be converted to octane after adding the
methyl ethyl ketone (MEK) and hydrogenation reaction, which is then used to produce
superior aviation fuel. It is widely used to manufacture antifreeze agents, pharmaceuticals,
synthetic rubber, fumigants, foodstuffs, perfumes, fuel additives, and printing inks [61].

2.2. Other Value-Added Products

For the past two decades, the market value for amino acids such as L-tryptophan,
DL-methionine, L-lysine, L-aspartic acid, L-threonine, and L-glutamic acid has drastically
increased owing to their wide range of applications in the food, cosmetics, agriculture,
and pharmaceuticals sectors [62]. Recent studies reported the utilization of hemicellulose-
derived L-Ara as the sole carbon source by engineering microbial strains for organic acids
(lactic acid and succinic acid) and amino acids production [7,63,64]. Metabolic engineering
of the Corynebacterium glutamicum ATCC 31831 strain resulted in the production of L-amino
acids, namely, L-ornithine, L-lysine, L-threonine, L-methionine, L-glutamate, diamine
putrescine (1,4-diaminobutane), and organic acids upon arabinose transporter gene (araE)
expression [6,7,65]. On the other hand, overexpression of the ornithine decarboxylase gene
(speC) from E. coli resulted in a high yield of putrescine by the C. glutamicum strain [16].

3. Overview of Distinct Natural Metabolic Pathways of L-Ara Assimilation by
Microbes

Native microbes are able to grow on L-Ara derived from the hemicellulosic fraction
of LCB via three distinct pathways, namely, the isomerase pathway, oxido-reductase
pathway, and non-phosphorylative pathway (Figure 2). Firstly, the assimilation of L-Ara
in eubacteria such as Streptomyces sp., lactococcus, Corynebacterium, and E. coli is initiated
with the substrate uptake that is mediated by the active sugar transporters, followed by
isomerization with L-arabinose isomerase to form L-ribulose. L-ribulose enters the central
carbon metabolism (CCM) as D-xylulose-5-P through direct phosphorylation (catalyzed by
L-ribulokinase) and epimerization (catalyzed by L-ribulose 5-P 4-epimerase) [1,66].

Secondly, in filamentous fungi, L-Ara metabolism is carried out by the oxido-reductive
pathway. Similar to the isomerase pathway, L-Ara assimilation initiates with its uptake by
relative sugar transporters. Concurrently, L-Ara reduces into L-arabitol by L-arabitol reduc-
tase (NADPH dependent) and then dehydrogenates into L and D-xylulose catalyzes by a
series of enzymes such as L-arabitol dehydrogenase, L-xylulose reductase, and xylitol dehy-
drogenase. Finally, the phosphorylated D-xylulose enters the CCM pathway to recombine
with glyceraldehyde-3-phosphate or its precursor molecule fructose-6-phosphate [26,67,68].
Though the overall pathway of L-Ara metabolism in filamentous fungi is redox-neutral,
there exists a constraint in which a dissimilarity in the utilization of redox cofactors is ob-
served. Thereby, making the C5 sugar, such as xylose, and L-Ara utilization as the sole car-
bon source possesses a major bottleneck for fermentative application. This is mitigated by
employing a metabolic engineered yeast for fermentation [69]. Nevertheless, Pichia stipitis
follows a distinct non-oxidative route, where D-xylulose is reduced into D-arabitol and
then oxidized to D-ribulose by D-arabitol dehydrogenase and D-ribulose reductase, respec-
tively [70]. This makes it a potent microbial candidate for C5 sugar fermentation.
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Figure 2. Native metabolic pathways for assimilation of L-Ara. ADP: Adenosine Diphos-
phate; ATP: Adenosine Triphosphate; L-ribulose-5-P: L-ribulose-5-Phosphate, D-xylose-5-P:
D-xylose-5-Phosphate; NAD(P)H: Nicotinamide Adenine Dinucleotide Phosphate Hydro-
gen; NAD(P)*: Nicotinamide Adenine Dinucleotide Phosphate; NADH: Nicotinamide
Adenine Dinucleotide Hydrogen; NAD: Nicotinamide Adenine Dinucleotide, KDA dehy-
dratase: 2-Keto-3-Deoxy-l-Arabinonate; KDPG aldolase: 2-Keto-3-Deoxy-6-Phospho Gluconate
aldolase; ’KGSA dehydrogenase: aKeto Glutarate Semialdehyde Dehydrogenase; Fructose-6-P:
Fructuose-6-Phosphate; GAP: Glyceraldehylde-3-Phosphate; CoaSH: Coenzyme A; Pi: inorganic
phosphate; TCA: tricarboxylic acid.

The third pathway, known as non-phosphorylating pentose, is prevalent in archae
bacteria where L-Ara is converted into either glycolaldehyde (Dahms pathway) and
o-2-ketoglutarate («KG) (Weimberg pathway) converges with CCM during the tricar-
boxylic acid cycle [71,72]. Enzymes such as L-arabinose dehydrogenase, L-arabinose
lactonase, L-arabonate dehydratase, 2-keto-3-deoxy-l-arabinonate (KDA) dehydratase, and
ketoglutarate semialdehyde («KGSA) dehydrogenase are prominently involved in catalyz-
ing L-Ara assimilation by the Weimberg pathway, as shown in Figure 2. The end product
2-keto-3-L-deoxypentonate formed in the Weimberg pathway takes an alternate route to
form glycolaldehyde, which is catalyzed by 2-keto-3-deoxy L-pentanoate (KDP) aldolase
and followed by «KGSA dehydrogenase to enter the CCM pathway. The promiscuity of
metabolic enzymes remains uncertain owing to their redox cofactors” dependence and also
the co-existence of the Dahms and Weimberg biochemical routes in the same microbes, as
represented in Figure 2 [1,73,74].
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Kinetics of L-Ara Uptake by Different Microbes

In the near future, structural insights into highly conserved L-Ara catabolic enzymes
and their substrate binding niche are likely to significantly progress. Herein, microbial
genome data revealed that 30-40% of proteins belong to the paralogous/orthologous
families, where the enzyme mechanism, the biochemical function, the oligomerization state,
and protein-ligand interaction are uncovered by the protein structures [75,76]. In particular,
Vermersch et al. [77] performed a mutation (Pro to Gly) in the L-Ara binding protein
hinge, thereby enhancing and altering the binding and specificity. Thus, the structural
and kinetic studies of the CAZymes in the L-Ara metabolic pathway provide an in-depth
understanding of the enzyme mechanism for the entire pathway.

deGroot et al. [78] constructed a mathematical model based on the characterization of
the kinetic parameters in various L-Ara catabolizing enzymes of Aspergillus niger such as L-
arabitol dehydrogenase, D-xylose reductase, and L-arabinose reductase. The kinetic param-
eters of the relative enzymes such as L-arabinose reductase EW found to be Vimax —70 U/mg
and K, —70 mM and Vpax —96 U/mg and K, —89 mM for L-arabitol dehydrogenase
and Vmax-57 U/mg and Ky-93 mM for D-xylose reductase in fungal L-Ara catabolism.
Similarly, for A. nidulans, De Vries et al. [79] demonstrated that an increase in the production
of L-Ara catabolizing enzymes enhances the accumulation of arabitol and, thus, reveals
that sugar alcohol is a precise inducer of the system. Thus, the metabolic model could be
used for analyzing the metabolite concentration and its flux in the L-Ara catabolic pathway,
as indicated in Figure 2. Whereas, in the case of yeast, Fonseca et al. [80] investigated the
L-Ara uptake kinetics for P. guilliermondii PYCC 3012 and Candida arabinofermentans PYCC
5603T, which showed a rapid and higher substrate-uptake rate. This study revealed that
the aldopentose reductase of C. arabinofermentans PYCC 5603T such as aldose reductase or
L-xylulose reductase (AR/LXR) showed a higher affinity toward the substrate, i.e., the L-
Ara with 2.1 and 1.9 U/mg of Vmax, respectively, was higher than its counterpart. Recently,
Lee et al. [81] intensified the thermophilic L-arabinose isomerase in the L-Ara catabolic
pathway that is involved in catalyzing the L-Ara and L-ribulose interconversion. In detail,
a comparative analysis of L-Ara catabolic protein structures such as AraA, AraB, AraD, and
AraF was assessed to predict the L-Ara binding modules of Geobacillus stearothermophilus.
In this study, the catalytic turnover rate (Kcat) of the mutant strains (11.9 to 27.8 s~!) was
found to be three-fold less than that of the parental strain (33.8 s!), which reveals that
the mutation significantly reduced the K¢.t. However, the Ky, values of the mutant strains
were observed to be two-fold higher, while L-Ara is used as the sole carbon source when
compared to the wild type. Thereby, the catalytic efficiency (Kcat/Km) of mutant strains
such as E333, E261, and D195 was lowered as expected, which could play a vital role in the
L-Ara binding affinity of G. stearothermophilus L-arabinose isomerase.

4. Native L-Ara Fermenting Strains and Its Metabolic Pathway

Among the C5 sugars predominant in hemicellulose hydrolysate, D-xylose is more
often studied as a significant bioresource, whereas L-Ara utilization by any native in-
dustrial microbes remains unexplored. The catalytic pathways of the L-Ara in native
fermenting strains are divided into the isomerase and oxidoreductase pathways for bac-
teria and fungi, respectively. The native fungal L-Ara pathway constitutes AR/LXR cou-
pled with NAD(P)H oxidation to NADP+, whereas D-xylitol dehydrogenase (XDH) and
L-arabitol-4-dehydrogenase (LAD) are coupled with the NAD+ cofactor followed by D-
xylulose phosphorylation by D-xylulokinase (XK) [82,83]. The bacterial pathway for L-Ara
catabolism is relatively simple when compared to the aforementioned fungal pathway,
where araA encoding L-arabinose isomerase, araB encoding L-ribulose kinase, and araD
genes encoding L-ribulose-5-phosphate-4-epimerase are the key enzymes involved [84].
In both pathways, D-xylulose-5-phosphate is formed from L-Ara, which is then either
ideally metabolized by the phosphate ketolase pathway (as in C. acetobutylicum) or by the
non-oxidative phase of the pentose phosphate pathway [85].
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The native fungal pathway of C5 sugars such as L-Ara and xylose would share three
enzymes in common: (NAD(P)H-specific AR/LXR and NAD"-specific xylose dehydro-
genase. Thus, the redox balance of the metabolic pathway in fungi under an aerobic
condition leads to effective cell growth, whereas under an anaerobic condition L-arabitol is
produced, owing to the NAD+ limitations that are lacking in the bacterial pathway of L-Ara.
Among the 116 identified native arabinose fermenting microbes, three Candida sp. and one
Ambrosiozyma monospora were able to catabolize L-Ara (80 g/L) as the sole carbon source,
and the ethanol yield was found to be 0.18 g/g under an oxygen-limited condition [86].
Meanwhile, Millan and Boynton [87] screened and evaluated the efficiency of 15 native
xylose-fermenting strains’ ability to ferment L-Ara for ethanol production. In this study, L-
Ara assimilated strains such as yeast (C. tropicalis, C. shehatae, Pachysolen tannophilus Y-2460,
P. tannophilus Y-12891, Scheffersomyces stipitis, and Torulopsis sonorensis), mold (A. oryzae),
and bacteria (Erwinia chrysanthemi) were identified as fermenting L-Ara combined with
glucose and xylose as a co-substrate. During L-Ara metabolism, only S. stipitis produced
0.15 g/g of ethanol and yielded 0.24 g/g of arabitol compared to its other counterparts.

In general, the transport of sugar across the cell membrane is the foremost step in
C5 sugar metabolism; nevertheless, only a meager amount of information is available on
the yeast-based L-Ara transporters that could utilize L-Ara. In the case of C. shehatae, a
native xylose-fermenting strain possesses a proton/L-Ara symporter [88]. Several types of
yeast were identified as L-Ara assimilators, which produce cell biomass under aerobic and
oxygen-limited conditions for L-arabitol production [80,89].

5. Metabolic Engineering of Microbial Cell Factories for Improved L-Ara Fermentation

The biosynthesis of biomass-based liquid biofuels and building block chemicals has
been regarded as a renewable alternative to the conventional petroleum refinery. Over
recent decades, extensive fundamental research on strain improvement has revealed that
S. cerevisiae, E. coli, and Zymomonas mobilis possess innumerable desired characteristic
features to be ideal candidates for the metabolic engineering and industrial production
of the product spectrum such as sugar alcohols, biofuels, and value-added chemicals
for a biomass-based biorefinery [90-93]. Different strategies for strain improvement
such as mutagenesis, specific gene knockout, metabolic engineering, and ALE could
aid a microbial candidate’s amenability for the significant production of different value-
added products [94-99].

5.1. Engineering Zymomonas Mobilis for L-Ara Fermentation

Z. mobilis, a promising ethanologenic candidate; the homologous recombination of genes
such as xylose reductase-XR (which improves xylose utilization), lactate dehydrogenase-IdhA,
alcohol dehydrogenase-adhB and pyruvate decarboxylase-pdc (which has a lower lactate
and ethanol yield which improves the succinate from glucose, respectively), and glucose
fructose oxidoreductase-gfo (which reduces in ethanol production under ethanol, heat,
and osmotic stress), were selected as a target of specific gene knockout for improving the
specific phenotype (Figure 3) [100,101]. ALE in a model organism emerged as a prevailing
strategy, where adaptation and metabolic engineering were synergistically employed in
S. Cerevisiae [94-97], E. coli [98,99], and Z. mobilis for strain improvement. In the case of
Z. mobilis, certain features such as the simultaneous utilization of glucose and C5 sugars and
inhibitor tolerance were developed by many researchers through ALE to substitute ligno-
cellulosic hydrolysate as an alternate for a conventional biorefinery. Among them, Z. mobilis
CP4 (pZB5) and Z. mobilis CP4 (pZB206) were the first recombinant strains developed,
where operons encoding pentose phosphate, the xylose assimilation pathway, and five
L-Ara metabolic genes were introduced from E. coli, which could ferment C5 sugars such as
xylose and L-Ara into 86% and 98% theoretical ethanol yields, respectively [102,103]. Then,
Zhang et al. [104] constructed a co-fermenting strain (Z. mobilis 206C (pZB301)) for glucose
and C5 sugars’ fermentation that resulted in 82%-84% of ethanol. However, the stability of
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recombinant strains is highly undesirable in large-scale fermentation; thereby, the genetic
stability of the Zymomonas genome was enhanced by integrating all the necessary genes of
pentose utilization to obtain a stable co-fermenting strain, Z. mobilis AX101 [105]. Compared
to E. coli, Z. mobilis was developed as an effective ethanologenic-engineered strain, owing
to its distinct metabolic pathway with a higher restriction-modification system of enzyme
activity that is not borne by bacteriophages [93]. In addition, its osmo-tolerant ability
benefits in industrial fermentation, by tolerating a high sugar medium and the utilization
of C5 sugars (xylose, L-Ara) in addition to glucose, makes it a novel candidate for future
biomass-based biorefineries [106]. Functional genomics, omics-related approaches, clus-
tered regularly interspaced short palindromic repeats (CRISPR)/Cas system, Zinc-finger
nucleases, global transcription machinery engineering, genome shuffling, and site-specific
recombinase provide a base to improve the robustness and fitness toward environmental
stress in order to enhance cellular traits. Further implementation of these representative
biotechnologies will pave the way for a promising future in optimizing the metabolic
pathway of Z. mobilis for the production of biofuels and value-added commodity chemicals
to establish a sustainable green chemistry, as represented in Figure 3 [107-112].
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Figure 3. Schematic representation of L-Ara utilization pathway of Z. mobilis and its metabolic
engineering strategies. XylA: Xylose isomerase; XyIB: Xylulose-5-P kinase; AraA: Arabinose isomerase;
AraB: Arabinose-5-P kinase; AraD: L-Arabinonate dehydratase; ED Pathway: Entner-Doudoroff
pathway; Glyceraldehyde-3-P: Glyceraldehyde-3-Phosphate; Pdc: Pyruvate dehydrogenase complex;
AdhA/B: Alcohol dehydrogenase genes; LdhA: Lactate dehydrogenase gene.

5.2. Engineering Saccharomyces Cerevisiae for L-Ara Fermentation

As reported in earlier studies, the L-Ara metabolic pathway in bacteria is cofactor-
dependent, and lacks an effective enzymatic assay, and the pathway optimization was
not straightforward in S. cerevisine. Based on this study, the E. coli genes (araA, araB,
and araD) expressed in S. cerevisinze were not able to assimilate L-Ara; however, only
after the replacement of the isomerase gene, along with the araA from B. subtilis with an
ALE, then ethanol was produced from L-Ara [113,114]. Further, improvement in L-Ara
utilization was investigated by modifying the bacterial codon usage to be the ideal yeast
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codon [115]. Thus, the L. plantarum metabolic genes for L-Ara were found to be more
closely matched with the S. cerevisiae genes. Further, overexpression of this metabolic gene
resulted in a high ethanol yield (0.43 g/g), with a 0.70 g/h/g dry cell weight (DCW) of
the L-Ara consumption rate under an anaerobic condition [78]. Similarly, Wang et al. [116]
modified the L-Ara metabolic pathway and transporter genes to investigate the metabolic
ability of evolved S. cerevisiae with the overexpressed strain, where the recombinant strain
resulted in a maximum ethanol yield of 0.43 g/g from L-Ara fermentation. Though
many studies are focused on developing the D-xylose that assimilates S. cerevisiae strains,
some [11-84,84-113,113-119] are focused on the heterologous expression of the fungal and
bacterial pathways of the L-Ara metabolism. For instance, the heterologous expression
of the xyl1, xyI2, and xyl3 genes from the Scheffersomyces stipitis in S. cerevisiae possessed
with NAD(P)H-dependent heterologous XDH, AR, and XDH genes showed a 50% higher
L-Ara metabolism rate. Further, expressing LXR from A. monospora ALX1 and the LAD of
T. reesei LAD1 in the parent recombinant strain assimilated 45 g/L of L-Ara into 10 g/L of
ethanol [117,118,120]. In addition, the fungal metabolic pathway of L-Ara is considered
to be non-redox-neutral, as it prefers dual cofactors (NAD(P)H and NADH), while the
bacterial pathway is redox-neutral.

In order to enhance the D-xylose fermentation, ALE is proven to be an effective
metabolic engineering strategy for both the bacterial and fungal pathways in an engi-
neered strain of S. cerevisiae. Nevertheless, only engineered strains of S. cerevisiae with a
bacterial L-Ara pathway were unveiled for ALE, as the optimization of multiple strate-
gies is required to overcome the redox imbalance in S. cerevisize during the heterologous
expression of the fungal L-Ara pathway [82,121,122]. On the other hand, specific sugar
transporters of L-Ara could be expressed to improve sugar fermentation; for example,
S. cerevisige could uptake L-Ara with some glucose sugar transporters (Hxt5 and Hxt7).
It was reported that S. cerevisine Gal2 had contributed to anaerobic fermentation with a
high affinity toward L-Ara when used as the sole carbon source. The ability of some
heterologous L-Ara-specific transporters in sugar uptake ranges from 116.7 mmol/h/g for
DCW N. crassa LAT-1 to 0.13 mmol/h/g DCW for S. cerevisiae GAL2. Similar to xylose, in
L-Ara metabolism, catabolism is more limited than the non-specific uptake of L-Ara by the
engineered S. cerevisiae strain [116,123-126].

Both types of metabolic pathways of L-Ara are well-established in a native ethanolo-
genic S. cerevisiae, yet it lacks the ability to ferment L-Ara. The engineered S. cerevisiae strain
expresses NADH-specific genes (AR and LXR) to reduce the redox imbalance associated
with the fungal metabolic pathway, where the arabitol yield was high with 0.48 g/g of
sugar consumption when co-fermented with L-Ara and xylose [127,128]. Thus, the sugar
uptake rate is the foremost step in utilization and prerequisites an efficient sugar transporter
in order to attain enhanced C5 fermentation. Some of the hexose (Hxt5 and Hxt7) and
galactose transporters (Gal2) show a high affinity toward C5 sugar assimilation [129,130].
Meanwhile, some of the C5 transporters such as XAT-1 specifically differentiate and effec-
tively transport L-Ara rather than D-xylose. As reported earlier, the L-Ara fermentation
of the engineered S. cerevisiae using hemicellulosic hydrolysates remains as the major bot-
tleneck, Li et al. [126] functionally characterized the two transporters, namely, LAT-1 and
MLAT-1 from Neurospora crassa (FGSC 2489) and Myceliophthora thermophila (ATCC 42464),
respectively. Thus, heterologous expression of C5 sugar-specific transporters could alleviate
the inhibition of sugar uptake as well as enhance the co-fermentation of C5 and C6 sugars
by rewiring the pentose assimilation [131].

Though many studies highlighted the native organism involved in L-Ara assimilation,
the commercial application has been limited owing to its inhibition by furfurals and
low tolerance toward ethanol. As S. cerevisige is an amenable industrial candidate for
metabolic engineering, owing to it resistance in various stress environments, Ye et al. [132]
recently performed the heterologous integration of the fungal L-Ara pathway by deleting a
phosphatase gene (PHO13). Herein, this gene deletion enhanced the consumption rate of
L-Ara and the specific productivity of ethanol, and further TALI gene activation resulted in
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the depletion of sedoheptulose. Thus, engineering the PHO13 gene in a recombinant strain
has ample potential as an industrial strain for L-Ara assimilation to ethanol. A schematic
representation of the construction of a recombinant S. cerevisiae strain for the production of
second-generation ethanol and arabitol using L-Ara is shown in Figure 4.
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5.3. Fusants-A Distinct Hybrid Yeast

The genetic manipulation of microbes has opened new avenues in biomanufacturing.
Among the different strategies, protoplast fusion technology (PFT) is a type of modification
at the genomic level by the fusion of two protoplasts to form a hybrid cell, called a fusant.
This PFT was proven to be a potential genetic manipulation, wherein the digestion of
the cell wall by enzymes and the transfer of genetic material to the host strain enabled
the combination of the superior traits of two different strains in a single producer strain.
Some studies reported that yeast hybrids, known as fusant yeasts, attained through PFT
are able to produce arabitol from fermentable sugars. Lin et al. [133] investigated the
efficacy of a Schizosaccharomyces pombe and Lentinula edodes hybrid to produce L-arabitol
with a yield of 0.76 g/g, using L-Ara as the sole carbon source. Karyoductants, obtained
after a distinct fusion between the nuclei and protoplast of P. stipitis CCY 39501 and
S. cerevisiae, respectively, would assimilate L-Ara; however, fusants named SP-K7 are
identified by the ability to produce a high amount of L-arabitol (16.3 to 18.9 g/L) under the
optimum condition [134].

5.4. Engineering Bacteria for L-Ara Fermentation

Recent studies are focused on improving the microbial capabilities for the overproduc-
tion of sugar alcohol such as sorbitol, xylitol, and mannitol by bacteria through various
metabolic engineering strategies, for example, the co-expression of mannitol dehydroge-
nase, the facilitator protein of glucose, and formate dehydrogenase for mannitol production
in Corynebacterium glutamicum; whereas, xylitol production is enhanced in E. coli through
the heterologous expression of xylose reductase from yeast as well as achieving a higher
sorbitol yield from glucose by overexpressing the sorbitol-6-phosphate dehydrogenase in
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L. plantarum that is deficient in the lactate dehydrogenase gene [135]. In a native strain such
as E. coli, the deletion of some genes such as pyruvate formate lyase (pfl) and lactate dehy-
drogenase (Idh) was required in order to enable ethanol fermentation using L-Ara [136].
Nevertheless, K.oxytoca lacks adh and pdc genes encoding alcohol dehydrogenase and
pyruvate decarboxylase, respectively. Thus, Bothast et al. [137] studied the strain fer-
mentabilities by introducing Z. mobilis genes to enable L-Ara-based ethanol fermentation.
Recently, Xiong et al. [138] engineered metabolically versatile oleaginous Rhodococcus jostii
RHA1 through the heterologous expression of araBAD, a catabolic operon from E. coli, and,
thus, the recombinant strain could assimilate L-Ara as the sole carbon source. Further, the
cell biomass and lipid yield were improved by the overexpression of the L-Ara transporter
gene araFGH and the atfl gene (diglyceride acyltransferase) from E. coli and R. opacus
PD630, respectively. Kawaguchi et al. [139] investigated the functional analysis of the gene
cluster that encompassed the 6-cistron transcription unit that is involved in the utilization
of L-Ara in C. glutamicum ATCC 31831. In this study, catabolic genes and operons such as
araE and araBDA expression induced L-Ara and were negatively regulated by the AraR
transcriptional regulator. Further, a unique L-Ara regulon (group of genes or operons) was
found to be a distinct regulatory mechanism from the carbon catabolite repression of other
bacterial strains. Table 3 represents the different organism types that were employed for
L-arabitol production by utilizing L-Ara.

Table 3. L-Arabitol from L-Ara metabolizing yeast, fusants, and recombinants.

. . . Product . 1
Type of Organism Name of Organism/Strain Produced Product Yield (g g—") References
Debaryomyces nepalensis NCYC 3413 0.48 [140]
Yeast P. guilliermondii L-Arabitol 0.54 [80]
C. entomeae 0.77 [141]
Intergeneric fusant S. pombe and L-Arabitol 0.80 [133]
& L. edodes hybrid '
. isine AH22 .62 114
Recombinant S. cerevisiae L-Arabitol 06 [114]

S. cerevisine TMB 3664 0.48 [128]

6. Conclusions and Future Perspectives

The advent of lignocellulosic biomass-based biorefining strategies paves the way for
the valorization of agro-industrial waste with abundant C5 sugars into various biofuels
and high-value-added products. L-arabinose (L-Ara), a C5 sugar, is the second-most-
predominant pentose sugar in LCB that has been utilized as an industrial carbon source
for the production of various value-added chemicals such as ethanol, sugar alcohols, pu-
trescine, fertilizers, and amino acids. There is a need for the exploration of non-conventional
sugars (other than glucose) for microbial fermentation, which seems to be inevitable for
an economic edge in bioproducts” development at an industrial scale. This review could
provide a comprehensive aspect of arabinose, its natural availability, and an abundance of
the lignocellulosic residue and microbial candidates suitable for arabinose valorization to
chemicals and fuels. Though many industrial microbial candidates are able to naturally
produce bio-compounds, genetic engineering strategies such as laboratory adaptive evolu-
tion have been widely explored for enhanced production. Whereas, non-native microbial
candidates could be altered through metabolic engineering to facilitate the assimilation of
hemicellulose-derived L-Ara. This would direct researchers and industry to explore the
potential benefits of arabinose.
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