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Abstract

A great challenge in cooperative decentralized multi-agent reinforcement learning
(MARL) is generating diversified behaviors for each individual agent when receiv-
ing only a team reward. Prior studies have paid many efforts on reward shaping
or designing a centralized critic that can discriminatively credit the agents. In this
paper, we propose to merge the two directions and learn each agent an intrinsic re-
ward function which diversely stimulates the agents at each time step. Specifically,
the intrinsic reward for a specific agent will be involved in computing a distinct
proxy critic for the agent to direct the updating of its individual policy. Meanwhile,
the parameterized intrinsic reward function will be updated towards maximizing
the expected accumulated team reward from the environment so that the objective
is consistent with the original MARL problem. The proposed method is referred to
as learning individual intrinsic reward (LIIR) in MARL. We compare LIIR with
a number of state-of-the-art MARL methods on battle games in StarCraft II. The
results demonstrate the effectiveness of LIIR, and we show LIIR can assign each
individual agent an insightful intrinsic reward per time step.

1 Introduction

Many real-world problems, such as traffic light control [1], coordination of autonomous vehicles
[2], resources management [3] and multi-player video games [4, 5], can be naturally formulated into
cooperative multi-agent systems, where the objective is to maximize the return in the perspective of a
team of agents. When the agents are manipulated with a centralized controller which could access
the joint or global state of all the agents, coordination among the agents is easier and the main effort
of the controller is usually paid on finding an effective communication scheme among the agents.
Examples include a wide range of approaches on designing effective centralized MARL architectures
[5, 6, 7, 8].
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Unfortunately, when the agents are independently deployed and communications are disabled or
prohibitive, each agent has to predict its own action conditioning on its partial observation trajectory.
Without a centralized controller, each agent is responsible to collaborate with others on its own
decision. This pushes much burden on the capability of each agent’s policy. Worse still, in most of
the real-world MARL applications, the agents only receive a team reward, from which it is difficult to
deduce each agent’s contribution to the team’s success, making the learning and collaboration among
agents nontrivial. There have been many efforts paid on distinguishing the agents’ credit, known as
the credit assignment problem in MARL [9, 10]. A general way is reward shaping [5, 11, 12], which,
however, requires abundant human labor to assign precise rewards to each individual agent. Under
some real-world tasks, such as reducing the latency in a traffic network, there might even not exist any
clear choice of the reward functions for an individual agent (vehicle in the example). Another branch
of commonly adopted methods try to design a centralized critic that is capable to distinguish the
state-action values of the agents during training [9, 10], and then perform decentralized executions
during testing.

Our approach builds a connection between reward shaping and critic learning. That is, we propose to
learn each agent a parameterized individual intrinsic reward function by maximizing a centralized
critic. The optimal intrinsic reward problem has been introduced in [13] for single agent learning
scenarios and studied in some recent RL approaches [14, 15, 16]. Inspired by the concept, we propose
to introduce the intrinsic reward design into multi-agent systems to distinguish the contributions of
the agents when the environment only returns a team reward. Specifically, we learn each agent a
parameterized intrinsic reward function that outputs an intrinsic reward for that agent at each time
step to induce diversified behaviors. With these intrinsic rewards, we define each agent a distinct
proxy expected discounted return that is a combination of the real team reward from the environment
and the learned intrinsic reward. Using the actor-critic method, the individual policy of each agent
is updated under the direction of the corresponding proxy critic. The parameters of the intrinsic
reward functions are updated to maximize the standard accumulated discounted team return from the
environment. Therefore, the objective of the entire procedure is consistent with that of the original
MARL problem.

Insightfully, from an optimization perspective, the proposed method can be categorized to the bilevel
optimization, where the problem of solving individual proxy objectives is nested within the outer
optimization task which maximizes the standard multi-agent return. The parameters of the policy
and the intrinsic reward function are treated as the parameters of the inner and outer optimization
problems, respectively. We refer the proposed method to as learning individual intrinsic reward
(LIIR) in MARL. Empirically, we show that LIIR outperforms a number of state-of-the-art MARL
approaches on extensive settings in the battle game of StarCraft II. We also conduct insightful case
studies to visualize the learned intrinsic reward, and the results demonstrate that the learned intrinsic
reward function can generate diverse reward signals for the agents and the agents can also act diversely
in a collaborative way.

2 Related Work

When considering a centralized controller in MARL, the controller takes the joint or global observation
of the agents as input and outputs multiple actions for the agents in one step. Many studies have been
proposed on pursuing effective communication architecture among the agents within a centralized
controller. For example, densely connected communication layers or modules have been embedded
in a centralized controller that directly outputs multi-head predictions for the agents [6, 5]. Recurrent
neural networks (RNN) have also been introduced to enable a sequence of agents to communicate
through the recurrent module [7]. However, in many MARL applications, the agents have to
be separately deployed that each agent has to make its own decision conditioning on its partial
observation.

Decentralized methods naturally deal with the above situation. The simplest approach is learning
an individual policy or Q-function for each agent. This was first attempted with Q-learning [17],
which was then extended with deep neural networks applied [18, 19]. Fully decentralized methods
are limited under the case where only a team reward is given, since distinguishing the agents’
contributions is difficult. To address the credit assignment problem in decentralized MARL, many
existing methods utilize the framework with a centralized critic and decentralized policy. That is, the
policies are deployed independently by taking individual observation as input, while the centralized
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critic focuses on quantifying the differences among the agents. For example, the counterfactual
multi-agent policy gradient [9] uses a counterfactual baseline to assign credits for the agents; the
value decomposition network [20] decomposes the centralized value into a sum of individual agent
values to discriminate their contributions; the QMIX [10] method adopts a similar idea that assumes
the centralized Q-value function is monotonically increasing with the individual Q-values. Most of
the existing methods focus on the architecture design of the critic, even strong assumptions on the
value functions are unavoidable. Our method differs from these approaches that rather than working
on the value functions, we propose to learn each agent an intrinsic reward at each time step. The
benefits are that no assumptions are attached on the value functions and the agents are allocated an
explicit immediate intrinsic reward at each time step to assign their credits.

Our work is also related to the optimal intrinsic reward design problem in single agent setting
[21, 22, 23, 16, 24]. Some prior works have used heuristic metrics to define the intrinsic reward. For
example, in [22] the intrinsic reward is defined as the squared difference between two consecutive
states, and in [23] a metric named curiosity is used as the intrinsic reward. In [24] the learning
of intrinsic reward is integrated with the update of the policy. A recent approach [16] proposes
to parameterize the intrinsic reward function and alternatively updates the policy parameters and
the intrinsic reward parameters. In this paper, we extend the setting to multi-agent system and use
individual intrinsic reward function to distinguish the credits of the agents.

3 Background

3.1 Cooperative Multi-Agent Reinforcement Learning

We consider a fully cooperative multi-agent system, in which the agents need to be independently
deployed without a central controller. The system can be described as a tuple as 〈A, S, U, P, r, γ, ρ0〉.
Let A = {1, 2, · · · , n} denote the set of n agents. Denote observation space of the agents as
S = {S1, S2, · · · , Sn} and the action space of the agents as U = {U1, U2, · · · , Un} respectively. At
time step t, let st = {sit}

n
i=1 with each sit ∈ Si being the partial observation from agent i. Accordingly,

let ut = {ui
t}

n
i=1 with each ui

t ∈ Ui indicating the action taken by the agent i. We overload notations
and use st ∈ S to refer to the true state of the environment. P (st+1|st,ut) : S × U × S → [0, 1]
is the state transition function. r(st,ut) : S × U → R indicates the team reward function from the
environment. In order to differentiate the team reward from the environment and the intrinsic reward
that will be learned, we refer the team reward to as the extrinsic team reward rex(st,ut), following
the usage in [16]. γ ∈ [0, 1) is a discount factor and ρ0 : S → R is the distribution of the initial state
s0. Let πi(u

i
t|s

i
t) : Si × Ui → [0, 1] be a stochastic policy for agent i and denote π = {πi}

n
i=1. Let

J ex(π) = Es0,u0,··· [R
ex
0 ] with Rex

t =
∑∞

l=0 γ
lrex

t+l denoting the expected discounted extrinsic reward,

where s0 ∼ ρ0(s0), u
i
t ∼ πi(u

i
t|s

i
t) for i ∈ A, and st+1 ∼ P (st+1|st,ut). Define the extrinsic value

function as V ex
π (st) = Eut,st+1,··· [R

ex
t ]. We aim to find optimal policies π∗ = {π∗

i }
n
i=1 that achieve

the maximum expected extrinsic team reward J ex(π∗).

3.2 Centralized Learning with Decentralized Execution

Centralized learning with decentralized execution (CLDE) is a commonly used architecture to learn
a centralized critic to update the decentralized policies during training. In CLDE, actor-critic (AC)
style methods [25, 26, 27, 28, 29] are often selected. In our case, AC algorithms use n independent
parameterized policies πθi for i ∈ A and update θi by maximizing the expected extrinsic reward
J ex(θ1, θ2, · · · , θn) = Es,u [Rex] using the policy gradient

∇θiJ
ex(θ1, θ2, · · · , θn) = Es,u [∇θi log πθi(ui|si)Aπ(s,u)] , (1)

where Aπ(s,u) is the centralized critic. There are several ways to estimate Aπ(s,u). For example,
Aπ(s,u) = rex(s,u) + V ex(s′)− V ex(s) is the standard advantage function [27, 28], where s′ is the
successive state of the agents. In [9], Aπ(s,u) is defined as an estimated state-action value function
minus a counterfactual baseline.

3.3 Parameterized Intrinsic Reward

A recent study [16] has investigated learning a parameterized intrinsic reward function in single agent
setting. The idea is to explicitly define the intrinsic reward function as rin

η (s, a) for a state-action pair
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(s, a) of the agent, and it is summed up with the extrinsic reward rex(s, a) from the environment to
serve as the return signal for updating the policy. The intrinsic reward parameter η is updated towards
maximizing the expected extrinsic reward J ex. The intuition for updating η is to find the effect that
the change on η would influence the extrinsic value through the change in the policy parameters. This
technique can be viewed as an instance of meta learning [30, 31, 32]; the intrinsic reward function
serves as a meta-learner that learns to improve the agents objective. In our case, we extend the
intrinsic reward learning method to deal with decentralized MARL problem and we use the intrinsic
rewards to diversely stimulate the agents to learn from the environment.

4 Method

In this section, we formally propose the LIIR method. We first provide a formal definition of the
considered problem based on what have been introduced in Section 3, then we introduce a bilevel
optimization algorithm for solving the proposed objective.

4.1 The Objective

By defining an intrinsic reward function rin
ηi
(si, ui) which is parameterized by ηi and takes a state-

action pair (si, ui) of an individual agent i as input, we propose to assign agent i a distinct proxy
reward

r
proxy
i,t = rex

t + λrin
i,t, (2)

at time step t. In (2), we have omitted the arguments of the reward functions for simplicity, and λ is a
hyper-parameter that balances the extrinsic team reward and the distinct intrinsic reward. Note that in
the standard MARL problem with a team reward, there does not exist any distinct reward for each
agent. Now, after creating each agent a proxy reward r

proxy
i,t at time step t, we accordingly define a

discounted proxy reward for each agent i as

R
proxy
i,t =

∞
∑

l=0

γl(rex
t+l + λrin

i,t+l), (3)

and the proxy value function for agent i as

V
proxy
i (si,t) = Eui,t,si,t+1,···[R

proxy
i,t ]. (4)

Different from the extrinsic (standard) value V ex, these proxy value functions V
proxy
i ’s do not have

any physical meanings and they will be only used for updating the individual policy parameters θi’s.
Now, the considered overall objective is defined as

max
η,θ

J ex(η), (5)

s.t. θi = argmax
θ

J
proxy
i (θ,η), ∀i ∈ [1, 2, · · · , n]

where J
proxy
i := Esi,0,ui,0,···

[

R
proxy
i,0

]

depending on θi and η, η indicates the intrinsic reward parame-

ter set {η1, η2, · · · , ηn} and θ indicates the policy parameter set {θ1, θ2, · · · , θn}.

In problem (5), the goal is to maximize J ex through optimizing η, while the policy parameter θi is
optimized by maximizing the proxy expected discounted return J

proxy
i for agent i. The advantage is

that by learning a distinct intrinsic reward for each agent per time step, the agents will be diversely
stimulated and this will accumulatively influence the policy learning via the policy gradient. Moreover,
from an optimization perspective, problem (5) can be viewed as a bilevel optimization problem,
since the problem of maximizing the individual proxy expected returns is nested within the outer
optimization task, which is maximizing the extrinsic expected return. In the next subsection, we will
discuss how J ex is connected with the intrinsic reward parameter η.

4.2 Algorithm

As a bilevel optimization problem, at each iteration, the policy parameters are updated with respect to
the inner proxy tasks, while the intrinsic reward parameters are updated to maximize the extrinsic
expected return.
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Figure 1: Architecture of the LIIR method. The architecture contains four parameter components:
θi’s for policies, ηi’s for intrinsic reward, and ϕi’s and φ’s for extrinsic and proxy values respectively.

Specifically, the policy parameter of each agent is updated by the policy gradient with its proxy critic.
Given a trajectory generated by the policy πθi , θi can be updated by applying the policy gradient
defined in (1):

∇θi log πθi(ui|si)A
proxy
i (si, ui), (6)

where A
proxy
i (si, ui) is the proxy critic that can be chosen in a variety of ways [25, 26, 27, 28]. For

example, A
proxy
i (si, ui) = R

proxy
i leads to the REINFORCE algorithm [26]. In this paper, we choose

A
proxy
i (si, ui) = r

proxy
i (si, ui) + V

proxy
ϕi (s′i) − V

proxy
ϕi (si) as the advantage function [27, 28], where

V
proxy
ϕi is the proxy value parameterized by ϕi and s′i is the next state of agent i in the trajectory.

Given (6) and a policy learning rate α, the updated policy parameter θ′i can be represented as
θ′i = θi + α∇θi log πθi(ui|si)A

proxy
i (si, ui).

Then, we build the connection between η and J ex and specify the updating procedure for η. Given
the updated policy parameters θ′i’s, using the chain rule, we have

∇ηi
J ex = ∇θ′

i
J ex∇ηi

θ′i. (7)

The spirit of (7) is to formulate the effect of the change of ηi on influencing J ex through its influence
in the updated policy parameter θ′i. This is a commonly adopted technique in meta-gradient learning
[30, 31, 32, 33]. Computing the meta-gradient ∇ηi

J ex requires new samples generated by the updated
policy parameter θ′i, while this can be avoid by reusing the samples generated by θi with importance
sampling [16]. In (7), ∇θ′

i
J ex can be estimated by stochastic gradient as

∇θ′

i
log πθ′

i
(ui|si)A

ex(s,u), (8)

where Aex(s,u) is the centralized extrinsic critic. Similar to proxy critics, we choose Aex(s,u) =
rex(s,u) + V ex

φ (s′)− V ex
φ (s), where V ex

φ (s) is the extrinsic value parameterized by φ. The second

term in (7) can be derived as

∇ηi
θ′i = ∇ηi

[θi + α∇θi log πθi(ui|si)A
proxy
i (si, ui)]

= αλ∇θi log πθi(ai|si)∇ηi
r

proxy
i (si, ui). (9)

Fig. 1 gives an illustration of the entire architecture of the LIIR method. A sketch of the optimization
algorithm is presented in Algorithm 1.

5 Experiments

In this section, we first evaluate LIIR on a simple 1D pursuit game specifically designed for the
considered settings to see whether LIIR can learn reasonable distinct intrinsic rewards. Then, we
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Algorithm 1 The optimization algorithm for LIIR.

Input: policy learning rate α and intrinsic reward learning rate β.
Output: policy parameters θ and intrinsic reward parameters η.

1: Init: initialize θ and η;
2: while termination is not reached do
3: Sample a trajectory D = {s0,u0, s1,u1, · · · } by executing actions with the decentralized

policies {πθ1 , · · · , πθn};
4: Update θ according to (6) with learning rate α;
5: Compute (8) using new samples from {πθ′

1
, πθ′

2
, · · · , πθ′

n
} or reuse D to replace (8) with

∇θ′
i
πθ′

i
(ui|si)

πθi
(ui|si)

Aex(s,u);

6: Update η according to (7), step 5 and (9) with learning rate β;
7: end while

comprehensively study LIIR in several challenging micromanagement games in the game of StarCraft
II, and compare LIIR with a number of state-of-the-art MARL methods.2

5.1 A Simple 1D Pursuit Study

0.0 0.2 0.4 0.6 0.8 1.0
Intrinsic reward rin

0

250

500

750

1000

1250

1500
Ac

tio
n 

fre
qu

en
cie

s
Good actions
Bad actions

Figure 2: The distribution of the learned intrinsic re-
wards v.s. frequencies (counts) of taking “Good” and
“Bad” actions from 1000 1D pursuit games.

We design a simple game named 1D Pursuit
to provide a fast verification for the quality of
the intrinsic reward learned by LIIR. In 1D pur-
suit, a team of two agents are initially assigned
with some random integers denoted by x and y
respectively, and each agent could take actions
from {+1,−1, 0} to either increase, decrease or
keep its value to approach a target value z that
is unknown to the agents. For a collaborative
setting, the team reward for the two agents is
set to be inversely proportional to the summa-
tion of their absolute differences between their
values and the target value. That is, both the
two agents should adjust their values towards
the target value. The observation of each agent
is a two-dimension vector containing its current
integer value and another agent’s integer value.
The team reward is set to be +0.01 if both agents take actions that approaching the target value,
−0.01 if both agents take actions that moving away from the target value, and 0 otherwise. The target
value is set to be 0. The initial integers for the two agents are randomly generated from {−10, ..., 10}.

We implement LIIR based on the architecture depicted in Fig. 1. The detailed network structure is
provided in the supplementary material. In Fig. 2, we plot the histogram of the distributions of the
intrinsic reward averaged from 1000 episodes. We denote actions approaching the target as “Good”
actions and actions moving away from the target as “Bad” actions. The result shows that LIIR can
assign reasonable intrinsic reward to the agents.

5.2 StarCraft II Micromanagement

In this subsection, we comprehensively evaluate the proposed LIIR method in the game of StarCraft
II based on the learning environment SC2LE [34] and mini-game settings in SMAC [35]. We compare
the LIIR method with a number of state-of-the-art MARL methods that use the CLDE architecture.
We also provide some insightful case studies to visualize the learned intrinsic rewards.

StarCraft II is a popular real-time strategy game and it has been studied under MARL settings
[9, 10, 7, 36, 37]. In the experiments, we consider symmetric battle games in StarCraft II , where
both single type agents and mixed type agents are considered.

Specifically, the considered scenarios contain 3 Marines vs. 3 Marines (3M), 8 Marines vs. 8 Marines
(8M), 2 Stalkers & 3 Zealots vs. 2 Stalkers & 3 Zealots (2S3Z), and 3 Stalkers & 5 Zealots vs. 3

2The source codes of LIIR are available through https://github.com/yalidu/liir.
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Stalkers & 5 Zealots (3S5Z). In these settings, Marine and Stalker are units of Terran and Protoss,
respectively, and both of them can attack enemies at a distance, while Zealot is a melee unit of Protoss
and it can only attack enemies who stand close to it. In all these games, only the units from self side
are treated as agents.

Each agent is described by several attributes including the health point (HP), weapon cooling down
(CD), shield (for 2S3Z and 3S5Z), unit type, last action and the relative distance of the observed units.
The enemy unit is described in the same way except that CD is excluded. The partial observation of
an agent is composed by the attributes of the units, including both the agents and the enemy units,
shown up within its view range that is a circle with a certain radius. The action space contains 4 move
directions, k attack actions where k is the fixed maximum number of the enemy units in a map, stop
and none-operation. The input dimension and the output action dimension are fixed with a certain
ordering over the agents and enemy units. Dead enemy units will be masked out from the action
space to ensure the executed action is valid. At each time step, the agents receive a joint team reward
which is defined by the total damage of the agents and the total damage from the enemy side. In
all the scenarios, following the configurations in [9, 10], we train the agents against the build-in AI
opponent. More detailed settings can be acquired from the SMAC environment [35].

5.2.1 Compared Methods and Training Details

The considered methods for evaluation include

• independent Q-learning (IQL) [17]: IQL trains decentralized Q-functions for each agent.
Since the observation and action spaces of the agents are the same within a specific environ-
mental setting, a policy will be shared across all the agents;

• independent actor-critic (IAC) [9]: IAC is similar to IQL except that it adopts the actor-critic
method;

• Central-V [9]: the method learns a centralized critic with decentralized policies. Similarly,
all agents share the same policy network;

• COMA [9]: the method learns a centralized critic that is the state-action value minus a
counterfactual baseline;

• QMIX [10]: the method learns decentralized Q-function for each agent with the assumption
that the centralized Q-value is monotonically increasing with the individual Q-values. In
the implementations, the agents share the same Q-function;

• LIIR: the proposed method. In the experiments, the agents share the same policy, intrinsic
reward function and proxy critic. Since each agent has its own partial observation, sharing
policy parameters does not imply that they act the same.

For COMA and QMIX, we use their original implementations, in which the main policy network or Q-
network consist of some fully connected (FC) layers and a GRU module.3 All the other methods adopt
similar network structures compared to COMA and QMIX. As depicted in Fig. 1, the parameters
of LIIR contain 4 components corresponding to the shared policy parameter θ, intrinsic reward
parameter η, proxy value parameter ϕ and extrinsic value parameter φ. To achieve fair comparison,
we set the policy network structure, i.e., θ, as what is exactly used for COMA’s policy network. Then,
we compress the other parameters η, ϕ and φ to let their total size equal to the parameter size of the
remaining part in COMA. More details can be found in the supplementary material. All the methods
are trained with 3 millions of steps in 3M and 8M, and with 10 millions of steps for 2S3Z and 3S5Z.
The hyper-parameter λ in (2) is set to 0.01 throughout the experiments (we tried different choices of
λ while we found that the results did not differ much). We use a fixed learning rate of 5e-4 and use
batches of 32 episodes for all the methods. We use 32 actors to generate the trajectories in parallel,
and use one NVIDIA Tesla M40 GPU for training.

5.2.2 Results

To evaluate the performance of each method, we freeze the training every 100 episodes and test the
model over 20 episodes to compute an average test winning rate. The entire training procedure is

3https://github.com/oxwhirl/pymarl
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Figure 3: Test winning rates vs. training steps of various methods on all the scenarios.

repeated for 5 times to plot the winning rate curve with standard deviation. The results are reported
in Fig. 3, where the averaged winning rates vs. the training steps on all the battle scenarios are given.

In 3M which is the simplest game, all the test winning rates keep increasing as the training steps
increase. In 8M, 2S3Z and 3S5Z, the independent learning methods, i.e., IQL and IAC, fail to learn
a good policy for the agents and the methods using a CLDE architecture always outperform the
independent learning methods. In 3M and 8M, COMA and Central-V show comparable performance,
while in 2S3Z and 3S5Z, Central-V outperforms QMIX and COMA. For all these scenarios, the LIIR
method consistently shows the best performance, and it achieves around 90% winning rate in all the
scenarios. This demonstrates that learning the intrinsic reward function can ultimately induce better
trained policies.

5.2.3 Visualizing the Learned Intrinsic Reward

In addition to evaluate the performance of the trained policy in Section 5.2.2, we are more curious
about how much effect the learned intrinsic reward function actually contributes to the policy learning.
In order to figure out what has been learned in the intrinsic reward function, we propose to explicitly
visualize these rewards. That is, we plot the learned intrinsic reward of each agent at each time step
in a complete trajectory during testing. It is worth mentioning that during testing the intrinsic rewards
are independent with the learned policy, and these rewards will not be used at all when generating the
trajectory. For clarity, we randomly choose two test replays in 3M and 2S3Z which contain fewer
agents to plot all the agents’ intrinsic rewards. Figs. 4 and 5 show the intrinsic rewards in 3M and
2S3Z, respectively. We also attach some auxiliary snapshots to explain some interesting segments in
the curves. In all the snapshots, the red colored units indicate the agents controlled by LIIR.

In Fig. 4(a), agent 1 is dead at time step 9, and we can observe that its intrinsic reward turns to be
very low after time step 6 compared to the other two agents. As revealed by Figs. 4(b) and (c), at
time step 6, all the three agents focus fire on one of the enemy Marine, while agent 1 has the lowest
HP; after that, agent 1 still keeps firing instead of running away from the enemies and the intrinsic
reward function predicts a low rin

1 , indicating that u1 = attack is not a good action at that time;
finally, agent 1 dies at time step 9 and the corresponding intrinsic reward is very low.

In Fig. 5(a), after time step 27, we see that agent 2’s intrinsic reward increases a lot compared to
the other agents. Figs. 5(b) and (c) provides a clear explanation that at time step 27, agent 2 (with
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𝑡 = 7

(a) Intrinsic reward

Agent 1

Agent 2

Agent 3

(b) t = 6

Attack

(c) t = 9

Figure 4: An example of the intrinsic reward curves and auxiliary snapshots on 3M.

𝑡 = 27

(a) Intrinsic reward

Agent 2

(b) t = 27

Agent 2

Attack

Move

(c) t = 32

Figure 5: An example of the intrinsic reward curves and auxiliary snapshots on 2S3Z.

low HP) stops firing and runs along the red arrows (the move actions only take 4 directions here) to
avoid the attack from the enemy Zealot; until reaching an enemy Stalker at time step 32, agent 2
starts attacking the Stalker which is finally killed. Moreover, the overall trend of both the curves in
Figs. 4(a) and 5(a) keeps increasing, indicating that the controlled team finally wins the game.

Besides visualizing the two episodes illustrated above, we also provide overall statistics of the learned
intrinsic reward. We collect the intrinsic reward for the action “attack” when the corresponding health
points are lower than 50% from 100 test episodes. We then compute the cosine similarity (a value
in [-1, 1]) between the health point and the intrinsic reward. The averaged cosine similarity is 0.55
for 2S3Z and 0.67 for 3M. The results show that the health point and intrinsic reward are positively
correlated. That is, when the health point is low, the intrinsic reward is generally low for taking the
“attack” action as well, which is reasonable in this scenario.

The above case studies demonstrate that the learned intrinsic reward can indeed provide diverse
feedback signals for the agents and these signals are very informative in evaluating the agents’
immediate behaviors.

6 Conclusion

We have proposed a novel multi-agent reinforcement learning algorithm, which learns an individual
intrinsic reward for each agent. The method can assign each agent a distinct intrinsic reward so
that the agents are stimulated differently, even when the environment only feedbacks a team reward.
Given the intrinsic reward for each agent, we define each of them a proxy critic to direct their policy
learning via actor-critic algorithms. We show that the formulated multi-agent learning problem can
be viewed as a bilevel optimization problem. Our empirical results carried on the battle games in
StarCraft II demonstrate that learning the intrinsic reward function could eventually induce better
trained policy compared with a number of state-of-the-art competitors. We further perform two case
studies to visualize the learned intrinsic reward values, and the results provide clear explanations on
the effects of the learned intrinsic rewards.

For future work, we are interested in applying the LIIR method to more challenging scenarios, such
as real-world traffic control with many agents and competitive multi-agent systems. Moreover, in
addition to the simple summation form in (2), it is also interesting to investigate the optimal form of
the proxy reward function.
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[11] Marek Grześ. Reward shaping in episodic reinforcement learning. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems, pages 565–573. International
Foundation for Autonomous Agents and Multiagent Systems, 2017.

[12] Patrick Mannion, Sam Devlin, Jim Duggan, and Enda Howley. Reward shaping for knowledge-
based multi-objective multi-agent reinforcement learning. The Knowledge Engineering Review,
33, 2018.

[13] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically motivated
reinforcement learning: An evolutionary perspective. IEEE Transactions on Autonomous Mental
Development, 2(2):70–82, 2010.

[14] Jonathan Sorg, Richard L Lewis, and Satinder P Singh. Reward design via online gradient
ascent. In Advances in Neural Information Processing Systems (NeurIPS), pages 2190–2198,
2010.

[15] Xiaoxiao Guo, Satinder Singh, Richard Lewis, and Honglak Lee. Deep learning for reward
design to improve monte carlo tree search in atari games. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelligence (IJCAI), pages 1519–1525, 2016.

[16] Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. In Advances in Neural Information Processing Systems (NeurIPS), pages 4644–4654,
2018.

10



[17] Ming Tan. Multi-agent reinforcement learning: independent versus cooperative agents. In
International Conference on Machine Learning (ICML), pages 330–337, 1993.

[18] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, King’s
College, Cambridge, 1989.

[19] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru,
Jaan Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement
learning. PloS one, 12(4), 2017.

[20] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi,
Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-
decomposition networks for cooperative multi-agent learning based on team reward. In Pro-
ceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), pages 2085–2087, 2018.

[21] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical
deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In
Advances in Neural Information Processing Systems (NeurIPS), pages 3675–3683, 2016.

[22] Nat Dilokthanakul, Christos Kaplanis, Nick Pawlowski, and Murray Shanahan. Feature control
as intrinsic motivation for hierarchical reinforcement learning. IEEE Transactions on Neural
Networks and Learning Systems, 2019.

[23] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International Conference on Machine Learning (ICML),
volume 2017, 2017.

[24] Bingyao Liu, Satinder Singh, Richard L Lewis, and Shiyin Qin. Optimal rewards for cooperative
agents. IEEE Transactions on Autonomous Mental Development, 6(4):286–297, 2014.

[25] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine Learning, 8(3-4):229–256, 1992.

[26] Richard S Sutton, Andrew G Barto, and Francis Bach. Reinforcement learning: An introduction.
MIT press, 1998.

[27] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust
region policy optimization. In International Conference on Machine Learning (ICML), pages
1889–1897, 2015.

[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[29] Qing Wang, Jiechao Xiong, Lei Han, Han Liu, Tong Zhang, et al. Exponentially weighted
imitation learning for batched historical data. In Advances in Neural Information Processing
Systems (NeurIPS), pages 6288–6297, 2018.

[30] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent
by gradient descent. In Advances in Neural Information Processing Systems (NeurIPS), pages
3981–3989, 2016.

[31] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In International Conference on
Machine Learning (ICML), pages 1842–1850, 2016.

[32] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

[33] Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. In
Advances in Neural Information Processing Systems (NeurIPS), pages 2396–2407, 2018.

11



[34] Oriol Vinyals, Timo Ewalds, Sergey Bartunov, Petko Georgiev, Alexander Sasha Vezhnevets,
Michelle Yeo, Alireza Makhzani, Heinrich Küttler, John Agapiou, and Julian Schrittwieser.
Starcraft ii: A new challenge for reinforcement learning. arXiv preprint arXiv:1708.04782,
2017.

[35] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr, Jakob Foerster, and Shimon
Whiteson. The StarCraft Multi-Agent Challenge. CoRR, abs/1902.04043, 2019.

[36] Lei Han, Peng Sun, Yali Du, Jiechao Xiong, Qing Wang, Xinghai Sun, Han Liu, and Tong Zhang.
Grid-wise control for multi-agent reinforcement learning in video game ai. In International
Conference on Machine Learning (ICML), pages 2576–2585, 2019.

[37] Peng Sun, Xinghai Sun, Lei Han, Jiechao Xiong, Qing Wang, Bo Li, Yang Zheng, Ji Liu,
Yongsheng Liu, Han Liu, et al. Tstarbots: Defeating the cheating level builtin ai in starcraft ii in
the full game. arXiv preprint arXiv:1809.07193, 2018.

12


