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Abstract

Beta regression models are a suitable choice for continuous response variables on

the unity interval. Random effects add further flexibility to the models and accommo-

date data structures such as hierarchical, repeated measures and longitudinal, which

typically induce extra variability and/or dependence. Closed expressions cannot be

obtained for parameter estimation and numerical methods, possibly combined with

sampling algorithms, are required. We focus on likelihood inference and related algo-

rithms for the analysis of Beta random effects models motivated by two problems with

response variables expressed by indexes taking values in the unit interval. The first is

a study on the life quality index of industry workers with data collected following an

hierarchical sampling scheme. The second is a study comparing indexes of water qual-

ity up and downstream hydroelectric power plants reservoirs with nested effects and a

longitudinal data structure. The random effects accounts for the grouped data struc-

tures. Model comparisons are used to assess relevant scientific hypothesis. Alternative

models and algorithms are compared. Analysis includes data-cloning as alternative to

numerical approximations and to assess identifiability. Confidence intervals based on

profiled likelihoods are compared with the ones obtained by asymptotic quadratic ap-

proximations, showing relevant differences for the parameters related to the random

effects.
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1 Introduction

Proportions, rates and indexes are measured in the interval [0, 1] and used as response vari-

ables in different subject areas. The usual linear (Gaussian) regression model is inappropriate

because observed and predicted values are not confined to the unity domain and is unable to

capture asymmetries.

Alternative models are considered in the literature. Kieschnick and McCullough (2003)

provides a summary and, based on the results of several case studies, advocates the adoption

of Beta regression models under which the distribution of the response variable can assume

a diversity of forms.

Regression models for independent and identically distributed Beta variables are proposed

by Paolino (2001), Kieschnick and McCullough (2003) and Ferrari and Cribari-Neto (2004).

The modelling inherits from the principles of generalised linear models (Nelder and Wed-

derburn, 1972), with a suitable link function relating covariates to the expectation of the

response variable. Simas et al. (2010) extends the models regressing both, the mean and the

precision parameters with covariates and also discussing non-linear forms for the predictor.

Smithson and Verkuilen (2006) adopts the Beta regression on an analysis of IQ data arguing

it provides a prudent and productive alternative to usual choices even if not always providing

the best fit. The model properly accounts for data bounded above and below, is able to fit

strongly skewed distributions, accommodates heterocedasticy, allows for separately testing

hypothesis on location and dispersion whilst being parsimonious with only two parameters

as in the Gaussian linear model.

Regression models for independent and identically distributed Beta variables are devel-

oped by Paolino (2001), Kieschnick and McCullough (2003) and Ferrari and Cribari-Neto
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(2004). The modelling inherits from the principles of generalised linear models (Nelder and

Wedderburn, 1972), relating the expected value of the response variable to covariates through

a suitable link function. Cepeda (2001), Cepeda and Gamerman (2005) and Simas et al.

(2010) extends the models regressing both, the mean and the precision parameters on the

covariates. The latter also contemplates non-linear forms for the predictor. Smithson and

Verkuilen (2006) explores the Beta regression with an application to IQ data and arguing

that, even if not always the best choice, it provides a prudent and productive alternative to

choices over usual choices by fitting strongly skewed distributions, accommodating hetero-

cedasticy, allowing for hypothesis on location and dispersion separately and data bounded

above and below whilst being parsimonious with two parameters as for the Gaussian linear

models.

Methods for likelihood based inference and model assessment are proposed by Espinheira

et al. (2008a), Espinheira et al. (2008b) and Rocha and Simas (2010). Bias correction for likeli-

hood estimators are developed by Vasconcellos and Cribari-Neto (2005), Ospina et al. (2006),

Ospina et al. (2011) and Simas et al. (2010). Branscum et al. (2007) adopts Bayesian infer-

ence analysing virus genetic distances. The Beta regression is implemented by the betareg

package (Cribari-Neto and Zeileis, 2010) for the R environment for statistical computing (R

Development Core Team, 2012). Extended functionality is added for bias correction, recur-

sive partitioning and latent finite mixture (Grün et al., 2011). Mixed and mixture models

are further discussed by Verkuilen and Smithson (2011). Time series dependence structure

is considered by (McKenzie, 1985), (Grunwald et al., 1993) and (Rocha and Simas, 2010).

More recently (da Silva et al., 2011) uses a Bayesian Beta dynamic model for modelling and

prediction of time series with an application to the Brazilian unemployment rates.

Dependence structures may arise in other contexts such as groups in the sampling mech-

anism, hierarchical model structures, longitudinal data and split-plot designs. Correlation

can be induced by random effects assigned to observations within the same group and the

total variability can be decomposed in within and between groups effects. Beta mixed models
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therefore allow for dependent and overdispersed data by inclusion of random effects, typi-

cally under the assumption they are Gaussian distributed, likewise usual specifications in

generalised linear mixed models.

Beta mixed model a suitable choice for the two examples considered here. The first is

a study on the life quality index of industry workers with data grouped by the hierarchical

structure. The second is a comparison of water quality indexes upstream and downstream

hydroelectric power plant reservoirs with data grouped on a longitudinal structure.

The likelihood function involves an integral which cannot be solved analytically. Gaussian

Quadrature, Monte Carlo and Laplace approximation were all considered for integrating the

random effects an our tests points the latter as the method of choice. We also consider

the Markov chain Monte Carlo (MCMC) based algorithm proposed by Lele et al. (2007)

for likelihood inference for generalized linear mixed models. Laplace approximation is less

demanding on computing time and suitable for model choice whereas the latter can be used

for further assessment of best fitted models.

Generalised linear mixed models and Beta regression models are widely discussed in the lit-

erature whereas Beta mixed models are recently considered by Figueroa-Zúñiga et al. (2013),

under the Bayesian perspective. We focus on likelihood based inference and data cloning

(Lele, 2010a) further investigated identifiability of the adopted models. Results obtained by

computationally less demanding linear nad non-linear moxed models are included for com-

parison.

The Beta regression model with random effects is defined in Section 2 and the general

setup for likelihood inference is presented in Section 3. The two motivating examples are

presented in Section 4, illustrating the flexibility of the model in accounting for relevant

features of the data structures which would be neglected under a standard Beta regression

assuming independent observations. The examples have different justifications and structures

for the random effects. The first specifies two, possibly correlated, random effects and the

second has a nested random effects structure as a parsimonious alternative to a fixed effects
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model. We compare results obtained with different models and algorithms and close with

concluding remarks on Section 5.

2 Beta mixed models

The Beta distribution parametrized in terms of mean and precision parameters (Jørgensen,

1997) has density:

f(y|µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−y)φ−1, 0 < y < 1, (1)

with 0 < µ < 1, φ > 0 and Γ(.) is the Gamma function. We denote Y ∼ B(µ, φ), E(Y ) = µ,

V (Y ) = µ(1−µ)
(1+φ)

and φ is a precision parameter, the greater its value the lesser the variance of

Y .

For random sample from Yi ∼ B(µi, φ), and assuming φ to be constant, the Beta re-

gression model (Ferrari and Cribari-Neto, 2004) is specified by g(µi) = xTi β = ηi, with

β = (β1, . . . , βk)
T a vector of the k unknown regression coefficients, xi = (xi1, . . . , xik)

T a

vector of k known covariates and ηi is a linear prediction. The model specification is com-

pleted the choice of a link function g(·) : (0, 1)→ <. We adopt the logit g(µ) = log(µ/(1− µ))

and other usual choices are the probit, complementary log-log and cauchit (Cribari-Neto and

Zeileis, 2010).

This model does not contemplates possible dependencies such as induced by multiple

measurements on the same observational unit, time or spatial structures. Inclusion of latent

random effects on grouped data structure is a parsimonious strategy in comparison to adding

parameters to the fixed part of the model, whilst still accounting for nuisance effects.

Denote Yij an observation j = 1, . . . , ni within group i = 1, . . . , q and yi denotes a ni-

dimensional vector of measurements from the ith group. Let bi a q-dimensional vector of
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random effects and assume the responses Yij are conditionally independent with density

fi(yij|bi,β, φ) =
Γ(φ)

Γ(µijφ)Γ((1− µij)φ)
y
µijφ−1
ij (1− yij)(1−µij)φ−1, (2)

with a link function g(µij) = xTijβ + zTijbi , a vectors of known covariates xij and zij with

dimensions p and q, respectively, a p-dimensional vector of unknown regression parameters

β and the precision parameter φ. The model specification is completed by [bi|Σ] ∼ N(0,Σ)

assuming Gaussian random effects.

2.1 Parameter estimation

Model parameters can be estimated by maximising the marginal likelihood obtained by in-

tegrating the joint distribution [Y,b] over the random effects. The contribution to the

likelihood from each group is

fi(yi|β,Σ, φ) =

∫ ni∏
j=1

fij(yij|bi,β, φ)f(bi|Σ)dbi. (3)

Assuming independence among the N groups, the full likelihood is given by

L(β,Σ, φ) =
N∏
i=1

fi(yi|β,Σ, φ). (4)

Evaluation of (4) requires solving the integral N times. For the simpler model with a single

random effect the integrals are unidimensional. More generally, the dimension equals the

number of random effects in the model which imposes practical limits to numerical methods

and approximations required to evaluate the likelihood. The integrals in our examples have

up to five dimensions and solved by Laplace approximation (Tierney and Kadane, 1986) for

the reported results. The marginal likelihood is maximised by the algorithm BFGS (Byrd,

1995) as implemented in R (R Development Core Team, 2012).

Alternative methods are available and we report results from other numerical integration
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methods and also the data cloning algorithm (Lele et al., 2007) proposed in the context

of maximum likelihood estimation for generalised linear mixed models. Data cloning also

provides tools to assess identifiability (Lele, 2010a) which we believe is worth exploring for

the Beta mixed model.

The data-cloning algorithm is based on replicating (cloning) K−times the observations yi

from each group generating N×K cloned data denoted by yKi . The corresponding likelihood

LK(β,Σ, φ) has the same maximum as (4) and Fisher information matrix equals K times

the original information matrix. The method relies on the Bayesian approach to construct

a MCMC algorithm and using the fact the effect of prior vanishes as the number of clones

is increased. The model is therefore completed by the specification of priors π(β), π(Σ) and

π(φ), which combined with the cloned likelihood, lead to a posterior of the form

πK(β,Σ, φ|yij) =
[
∫
fi(yi|β,Σ, φ)f(bi|Σ)dbi]

Kπ(β)π(Σ)π(φ)

C(K; yij)
(5)

with the normalising constant

C(K; yij) =

∫
[

∫
fi(yi|β,Σ, φ)f(bi|Σ)dbi]

Kπ(β)π(Σ)π(φ)dβdΣdφ. (6)

Monte Carlo Markov chain (MCMC) algorithms (Robert and Casella, 2004) provide a

sample from the posterior. By increasing the number K of clones, the posterior mean should

converged to the maximum likelihood estimator and K times the posterior variance should

correspond to the asymptotic variance of the MLE (Lele, 2010a). Priors are used to run

the algorithm without affecting inference as the likelihood can be arbitrarilly weighted by

increasing the number of clones to the point that the effect of priors are negligible.

Despite the flexibility of the inferential mechanism, usual concerns on the specification of

hierarchical models applies. Realistic and suitable models for the problem and available data

can be complex and need to be balanced against identifiability, not often checked nor trivial

(Lele, 2010b).
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Data cloning provides a straightforward identifiability check which can be used for hier-

archical models in general. Lele (2010a) shows that under non-identifiability, the posterior

converges to the prior truncated on the non-identifiability space when the number of clones

is increased. As a consequence, the largest eigenvector of the parameter’s covariance ma-

trix does not converges to zero. More specifically, if identifiable, the posterior variance of a

parameter of interest should converge to zero when increasing the number of clones.

2.2 Prediction of random effects

Prediction of random effects are typically required as for the examples considered here. Under

the Bayesian paradigm the predictions can be directly obtained from the posterior distribution

of the random effects given by

fi(bi|yi,β,Σ, φ) =
fi(yi|bi,β, φ)f(bi|Σ)∫
fi(yi|bi,β, φ)f(bi|Σ)dbi

. (7)

which does not have a closed expression for the Beta model. The posterior mode maximizes

fi(yi|bi,β, φ)f(bi|Σ) providing a point predictor for b̂i and empirical Bayes predictions can

be obtained by replacing the unknown parameters by their maximum likelihood estimates.

3 Examples

3.1 Income and life quality of Brazilian industry workers

The Brazilian industry sector worker’s life quality index (IQVT, acronym in Portuguese)

combines 25 indicators from eight thematic areas: housing, health, education, integral health

and workplace safety, skill development, work attributed value, corporate social responsi-

bility, participation and performance stimulus. The index is constructed following the same

premisses of the united nations human development index1. Values are expressed in the unity

1http://hdr.undp.org/en/humandev/
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interval and the closer to one, the higher the industry’s worker life quality.

A pool was conducted by the Industry Social Service2 in order to assess worker’s life

quality in the Brazilian industries. The survey included 365 companies on the Federal District

and nine out of the 27 Brazilian federative units. IQVT was computed for each company

from questionnaires applied to workers according to a sampling design. Companies provided

additional information on budget for social benefits and other quality of life related initiatives.

A suitable model is aimed to assess the effects on IQVT of two company related covariates,

average income and size. The first is simply the total of salaries divided by the number of

workers expressing the capacity to fulfil individual basic needs such as food, health, housing

and education. The second reflects the industry’s quality of life management capability.

There is a particular interest in learn whether larger companies with 500 or so workers,

typically multinational working under regimes of worldwide competition, provide better life

standards in comparison with medium (100 to 499 workers) and small (20 to 99 workers)

sized industries. The federative unit where the company based is expected to be influential

due to varying local legislations, taxing and further economic and political conditions. Plots

on Figure 1 suggests IQVT is affect by income, size and federative units. The income is

expressed in logarithmic scale centred around their average.
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Figure 1: IQVT related to (centred log) average income, company size and federative unit.

2Serviço Social da Indústria - SESI
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The Beta random effects model for IQVT is

Yij|bi ∼ Beta(µij, φ)

g(µij) = (β0 + bi1) + β1Mediumij + β2Smallij + (β3 + bi2)Incomeij

bi ∼ NMV (0,Σ) with Σ =

 , 1/τ 21 ρ

ρ 1/τ 22

 ,
parametrized such that β0 is associated with large size companies and β1 and β2 are differ-

ences with the medium and small sized, respectively. Random intercept bi1 and slope bi2

associated with income account for the effect of the federative units. The link function is the

logit g(µij) = log{µij/(1 − µij)}. Model parameters to be estimated consists of the regres-

sion coefficients (β0, β1, β2, β3), the random effects covariance parameters (τ 21 , τ
2
2 , ρ) and the

precision parameter φ.

A sequence of sub-models are defined for testing relevant effects. Model 1 is the null

model with simply the intercept. Model 2 includes the covariate size and Model 3 the

income. Model 4 adds random intercepts and Model 5 adds a random slope to income. For

comparison, we also fit corresponding Gaussian linear and non-linear (mixed) models which

are widely used in practice.

A special care was taken to obtain comparable results between the models which does

and does not involves numerical integration of the random effects.

Parameter estimates for the Beta models using Laplace approximation for the random

effects are given in the top part of Table 1 and maximised log-likelihoods for the five model

structures are given in Table 1.

Likelihood computations for models including random effects require solving integrals for

which the Laplace approximation is used. The data and R (R Development Core Team, 2012)

code will be made available at the paper companion web-page3.

Results for models 1-3 confirms the effects of the covariates and the increasing values for

3http://www.leg.ufpr.br/papercompanion/betamixed
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Table 1: Parameter estimates for the Beta models (top) and maximised likelihood for different
methods and alternative models (bottom) - IQVT.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5
β0 0.35 0.45 0.43 0.40 0.40
β1 -0.11 -0.09 -0.07 -0.07
β2 -0.16 -0.14 -0.13 -0.13
β3 0.42 0.47 0.47
φ 53.97 56.80 72.86 94.19 94.19
τ 21 62.36 62.35
τ 22 51480.17
ρ 0.85
Method/Model Maximised likelihood
Laplace 472.20 481.51 526.94 561.79 561.80
LMM 470.42 479.96 523.85 558.89 558.90
NLMM 470.42 479.96 523.77 558.96 558.96

the estimates of φ from 53.97 on model 1 to 72.85 on model 3 confirms further explanation

of the data variability. The random intercept clearly improves the model fit expressing

the variability of the IQVT among the federative units with an increase of 34.85 in the

log-likelihood, however addition of the random slope did not prove relevant. Final choice

based on likelihood ratio tests points to Model 4, including the two covariates and just

the random intercept. Accuracy of the approximations of the log-likelihood may differ for

different combinations of parameter values in particular close to the borders of the parameter

space.

The Beta mixed model model is not commonly adopted in the literature and this motivates

us to consider the data cloning as distinct approach for likelihood computations and also

allows for assessing the model identifiability. The results are reassuring with similar estimates

and standard errors obtained by maximization of the approximated marginal likelihood and

data cloning as shown in Table 2.

Interval estimates obtained by both, the asymptotic quadratic approximation with stan-

dard errors returned by data clone and by profile likelihoods are presented in Table 3. The

latter can be asymmetric and with closer to nominal coverage rates. Intervals are similar

all the parameters except for τ 21 with an artefactual negative lower bound for the quadratic
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Table 2: Parameter estimates and standard errors for Model 4 by marginal likelihood and
data-cloning - IQVT

Parameter Marginal likelihood Data-clone
Estimate Std. error Estimate Std. error

β0 0.40 0.05 0.40 0.05
β1 -0.07 0.03 -0.07 0.03
β2 -0.13 0.03 -0.13 0.03
β3 0.47 0.04 0.47 0.04
φ 94.19 7.03 94.17 6.98
τ 21 62.36 32.00 62.03 32.08

Table 3: Asymptotic and profile likelihood based confidence intervals, Model 4 - IQVT
Parameter Asymptotic Profile

2.5% 97.5% 2.5% 97.5%
β0 0.30 0.50 0.29 0.50
β1 -0.13 -0.02 -0.13 -0.02
β2 -0.19 -0.07 -0.19 -0.07
β3 0.39 0.55 0.39 0.55
φ 80.49 107.84 81.09 108.65
τ 21 -0.85 124.91 19.74 156.48

approximation.

Identifiability is assessed by the data clone method as described in Section 2. We use

the package dclone (Sólymos, 2010), with the JAGS (Plummer, 2003) MCMC engine with 1,

5, 10, 20, 30, 40 and 50 clones. For each number of clones we use 3 independent chains of

size 6500, and burn-in of 1500. Results are summarised in Figure 2 with chains increasingly

concentrated around the maximum likelihood estimate with increasing number of clones.

A flat normal prior (zero mean and precision 0.001) for the regression parameters is not

influential. Results for Bayesian inference (K = 1) are similar for the original and the 50 fold

cloned data. The prior for precision parameters is a Gamma(0.1, 0.001) producing posterior

means for φ and τ 21 for the original data compared with the obtained with cloned data.

Following the data clone idea, under identifiability the posterior variance should converge

to zero for increasing number of clones K with variance decreasing at rates 1/k. Such trend is

detected as shown in Figure 3 which uses logarithmic scale to ease the visualisation. Variances

decrease satisfactorily at nearly expected rates with a slight but not relevant difference for

12



Number of clones

β 0 ● ● ● ● ● ● ●

1 5 10 20 30 40 50

0.
30

0.
40

0.
50

x

x
x x x x x

x

x
x x x x x

Number of clones

β 1 ● ● ● ● ● ● ●

1 5 10 20 30 40 50

−
0.

12
−

0.
08

−
0.

04

x

x
x x x x x

x

x
x x x x x

Number of clones

β 2 ● ● ● ● ● ● ●

1 5 10 20 30 40 50

−
0.

18
−

0.
14

−
0.

10

x

x
x x x x x

x

x
x x x x x

Number of clones

β 3 ● ● ● ● ● ● ●

1 5 10 20 30 40 50

0.
40

0.
45

0.
50

0.
55

x

x
x x x x x

x

x
x x x x x

Number of clones

φ ●
● ● ● ● ● ●

1 5 10 20 30 40 50

80
85

90
95

10
5

x

x
x x x x x

x

x
x x x x x

Number of clones

τ 12

●

● ● ● ● ● ●

1 5 10 20 30 40 50

20
40

60
80

10
0

x

x
x x x x x

x

x
x

x x x x

Figure 2: Sampled parameter values for different number of clones, Model 4 - IQVT.

the τ 21 parameter supporting the conclusion that the model is identifiable with the current

data.

Fitted coefficients support the initial conjectures that the size has a relevant effect on the

IQVT with expected decrease of 3.01% and 5.70% changing from large to medium and small

sizes, respectively. These are figures obtained setting the other factors to baseline and/or

zero values. Increasing income clearly affects positively the IQVT confirming and quantifying

an expected behaviour. Finally, allowing for variations between federative units by adopting

the random intercept terms increase the log-likelihood on 34.85 units, clearly a significant

effect confirming the statements that there is a substantial variation in the quality of life

among the federative units. Table 4 summarises the results with the figures of the predicted

IQVT for different federative units and sizes and computed of a lower (R$500.00) and higher

(R$2, 500.00) levels of income.

Table 4 shows positive effects were for Mato Grosso do Sul (MS), Paraná (PR), Ama-

zonas (AM), Ceará (CE) and the best case of Paràıba (PB), with IQVT 9.9% above the

global average for small size business with average income of R$500.00. Negative effects were
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Figure 3: Identificability diagnostics with data-cloning for the Beta model with random
intercept - IQVT.

Table 4: Predicted indexes and percentual diferences (within parenthesis) to the global av-
erage for Model 4 - IQVT.

Federative R$ 500,00 R$ 2.500,00
Unity Large Medium Small Large Medium Small
AM 52.91(1.52) 51.11(1.58) 49.60(1.63) 70.55(0.95) 69.02(1.00) 67.72(1.04)
CE 54.48(4.52) 52.68(4.70) 51.17(4.85) 71.84(2.80) 70.35(2.95) 69.08(3.07)
DF 46.5(-10.77) 44.71(-11.13) 43.23(-11.43) 64.95(-7.06) 63.29(-7.39) 61.88(-7.68)
MT 50.82(-2.49) 49.01(-2.58) 47.51(-2.65) 68.78(-1.58) 67.21(-1.66) 65.87(-1.73)
MS 54.22(4.04) 52.42(4.20) 50.92(4.33) 71.63(2.51) 70.14(2.64) 68.86(2.75)
PB 56.91(9.20) 55.13(9.58) 53.64(9.90) 73.79(5.60) 72.37(5.90) 71.15(6.16)
PR 53.83(3.29) 52.03(3.42) 50.52(3.52) 71.31(2.04) 69.81(2.15) 68.52(2.24)
RO 49.17(-5.66) 47.36(-5.86) 45.86(-6.03) 67.34(-3.64) 65.73(-3.82) 64.36(-3.97)
RR 50.11(-3.85) 48.31(-3.99) 46.80(-4.1) 68.17(-2.45) 66.58(-2.58) 65.22(-2.68)
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estimated for Mato Grosso (MT), Roraima (RR), Rondônia (RO) and Distrito Federal (DF),

the worse case with IQVT 11.43% below the global average.

There are larger differences to the global average for incomes around R$500.00 becoming

smaller for incomes around R$2, 500.00, indicating lesser influence of company size and feder-

ative unity for increasing incomes. The more pronounced importance of size and State for low

incomes are compatible with Brazilian conditions. There are several governmental supporting

policies for low income workers such as social assistance unified system, young agent, social

and food security, food support, popular restaurants, community catering, family health,

maintenance and development educational fund among other Brazilian governmental social

programs4. Such programs effectively improves quality of life of low income workers. Addi-

tionally companies internal supporting incentives for low income workers such as catering,

transportation, basic shopping supply, among others, makes the workplace relevant for the

worker quality of life. On the other hand, the greater the income the lesser the dependence

on such benefits with the income becoming the main, if not the single, maintainer of the life

quality and therefore less influenced by conditions such as size and federative unit. Interpre-

tations based on the fitted model are therefore compatible with the subjective information

about the working circumstances in the country. Observed data and fitted values for the

random intercept model for each business size is shown on Figure 4.

Figure 4 shows IQVT values concentrated between 0.35 and 0.80 and within this range

the relation with the log-income is nearly linear with a satisfactory adherence to the data.

Some outliers for small business at Mato Grosso State did not show influence on the overall

model fit.

3.2 Water quality on power plant reservoirs

The energy company COPEL operates 16 hydroelectric power plants in Paraná State, Brazil,

generating over 4.500 MW. The reservoirs at the power plants are also used for leisure activ-

4listed at http://www.portaltransparencia.gov.br
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Figure 4: Observed and fitted values for the random intercept model for each business size.

ities, navigation and water supply. Effective functioning of the power plants is related to the

water quality which is important on its own and determinant for the growth of organisms

and aquatic flora. Assessing the effect of the reservoirs on the water quality is relevant for

the water supply and environmental impacts. In compliance with operating licenses, the con-

cessionaire company regularly monitors water quality in the reservoirs, as well as upstream

and downstream the dammed rivers.

Monitoring includes comparing nine indicators of water quality agianst reference values

given by standards for water suply. The water quality indicators are: dissolved oxygen,

temperature, faecal coliform, water pH, biochemical oxygen demand (DBO), total nitrogen,

total phosphorus, turbidity and total solids; having the public water supply as reference. The

indicators are combined to produce a single water quality index (IQA, acronym in Portuguese)

based upon a study conducted in the 70’s by the US National Sanitation Foundation and

adapted by the Brazilian company CETESB5.

The main goal of the monitoring and analysis is to identify possible impacts and changes

in the water quality possibly attributable to the presence of the dams. The effect is assessed

by the comparison of measurements of the water quality between locations considered directly

5Companhia de Tecnologia de Saneamento Ambiental
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unaffected and affected by the reservoir. Measurements taken upstream the main river are

considered unimpacted reference values to be compared with measurements taken at the

reservoir and downstream, possibly affected by the water contention and passage through

the power plant, respectively.

Water quality indicators are measured quarterly on the 16 operating hydroelectric power

plants. We consider here the data collected during the year of 2004. Main interest is in

the effect of the covariate LOCAL, with levels upstream, reservoir and downstream. Other

covariates are the power plant identification (USINAS ) and the quarter of data collection.

This amounts to 190 data with 12 measurements (four quarters × tree locals) for each of the

16 power plants with only two missing data.
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Figure 5: Summaries for the IQA data.

A data summary can be seen in Figure 5. There is a clear left asymmetry on the histogram

(5 A), as usual for this kind of data. IQA varies between power plants as seen in Figure 5 B.

Figure 5 C suggests an increase from upstream to the reservoir and a decrease from reservoir

to downstream. Figure 5 D shows a pattern is expected to be repeated the over years with

lower values for first and forth quarters, the warmer periods.

This brief exploratory analysis suggests that in order to investigate the effect of the posi-

tion relative to the dam represented by the covariate LOCAL, the remaining effects of quarter

and plant ID should be accounted for, including the possibility of distinct quarter effects for

different plants in the form of an interaction. A further assumption for the analysis is to

consider the power plant as a random effect. This is a choice of parsimony since considering

main effects and interactions under fixed effects would amount 80 degrees of freedom. These
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are regarded as a possible sample from a population of environments. Although this can be

disputed, the assumption is not only convenient for our intended method of analysis but also

has proven sound for this particular data-set.

The model for the IQA data is specified as:

Yijt|bj, bj,t ∼ B(µijt, φ)

g(µijt) = β0 + β1,i + β2,t + bj + bj,t

bj ∼ N(0, τ 2U) ; bjt ∼ N(0, τ 2T )

for the ith relative location, jth power plant e tth quarters. Under the adopted parametrization

for the fixed effects, β1,i, i = 2, 3 relates to the change from upstream to reservoir and

downstream, respectively. Likewise β2,t, t = 2, 3, 4 compares the first quarter with the others.

The random intercept bj captures the deviations of each power plant to the overall mean and

bj,t are the effects of each quarter within each power plant. The logit link function is used

for g(·).

Hypotheses of interest are tested comparing submodels starting by setting β1,i, β2,j, τ
2
U , τ

2
T =

0 and including each of these parameters, sequentially, up to the full model. Point estimates

of the model parameters are presented in Table 5. Numerical estimates are obtained by the

BFGS algorithm for maximizing the likelihood and computations use the Laplace approxi-

mation for models including random effects.

As expected the likelihood increases with the addition of terms in the model however with

no substantial increase from Model 5 to 6. Although formal tests could be considered, in

this example it is clear that the model including the random effect bjt is unnecessary. Some

criteria can be used to decide the final model, for instance the difference in likelihood is just

1.1091 between models 5 and 6 which under regularity would return a p-value of 0.1363 under

a likelihood ratio test.

The likelihood evaluation for the larger model requires the solution of a five dimensional
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Table 5: Parameter estimates for the Beta models (top) and maximised likelihood for different
methods and alternative models (bottom) - IQA.

Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
β0 1.40 1.27 1.14 1.14 1.15 1.15
β12 0.23 0.23 0.24 0.24 0.24
β13 0.15 0.15 0.16 0.15 0.16
β22 0.21 0.22 0.22 0.22
β23 0.29 0.31 0.32 0.32
β24 0.05 0.05 0.06 0.06
φ 23.36 24.25 25.78 30.47 42.19 42.20
τ 2U 28.97 43.54
τ 2UT 11.19 15.04
Method/Model Maximised likelihood
Laplace 215.38 218.90 224.62 231.04 237.08 238.19
LMM 198.23 202.12 208.68 213.68 220.39 225.01
NLMM 198.23 202.12 208.72 214.88 223.12 223.91

Table 6: Parameter estimates and standard errors for Model 5 by marginal likelihood and
data-cloning - IQA.

Parameter Marginal likelihodd Data-clone
Estimate Std. error Estimate Std. error

β0 1.15 0.09 1.15 0.10
β12 0.24 0.05 0.24 0.07
β13 0.15 0.01 0.15 0.07
β22 0.22 0.01 0.22 0.13
β23 0.32 0.03 0.31 0.13
β24 0.06 0.01 0.06 0.13
φ 42.19 4.14 42.30 5.32
τ 2UT 11.19 3.31 10.99 3.12

integral for each reservoir. Integral approximations such as Gauss-Hermite, Monte-Carlo

integration and Laplace proved time-consuming and accuracy was an issue which could impact

the hypotheses tests. Laplace approximation was the method of choice after attempts with

these possible options. Alternatively, we have considered the data-cloning algorithm which

does not demand integral approximation and numerical maximization. Parameter estimates

obtained both ways for Model 5 are presented Table 6.

Point estimates are similar for the mean parameters however with differences for the

standard errors. Overall, smaller values are obtained by the likelihood based on the numerical
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hessian which presented challenges and required adjustments on the finite differences methods

in order to obtain numerically valid estimates. Data-cloning is more robust at the expense

of a greater computational effort and time.

Quadratic approximation of the likelihood does not hold and symmetric confidence inter-

vals based on the standard deviations are clearly inappropriate for parameters φ e τT and we

turn to intervals based on profile likelihoods. Figure 6 shows the profile likelihoods for the

precision parameters reparametrised on log scale for computational convenience. The Figure

also includes plots from data-cloning results for diagnostics of identifiability. The profile like-

lihood for log(τ 2UT ) is asymmetric and this parameter is more sensitive than φ to the choice

of prior, as indicated by the boxplots. The scaled log-likelihood plots shows a slightly faster

decay in variance than expected for the corresponding number of clones, however the larger

eigenvalue for the covariance matrix is always smaller than 1.1, an indicator of identifiability.
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Figure 6: Profile likelihoods for precision parameters and identifiability diagnostics for
Model 5.

The model of choice with reassuring results on the identifiability checks provides a confi-

dence interval based on the profile likelihood for the random effects related to the power plants
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which clearly assures they improve the model fit. Empirical Bayes predictions of the random

effects can be obtained and are overlaying the observed values on Figure 7 and separated by

the relative position.
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Figure 7: Prediction under the fitted models - IQA.

The fitted model predicts an increase of the IQA of 5.39% and 3.55% from upstream to

the reservoir and downstream, respectively. These figures are computed by setting random

effects to zero. The analysis confirms lower IQA values for the warmer first and forth quarters

compared with the mild second and third quarters. This is likely to be a cyclic behaviour and

expected to be repeated over the years. Besides such general behaviour, the random effects

imply that the magnitude of the differences in mean values vary between power plants and

quarters. The overall pattern is that the IQA substantially improves from upstream to the

reservoir however shifting back to the original values downstream, with substantial variation

between the power plants.

The adopted model and the algorithms implementing inferential methods proved satis-

factory. Some extreme measurements taken upstream in the first and second quarters are

smoothed on their fitted values. Differences between quarters suggest a possible temporal

structure which could be included if jointly modelling observations from consecutive years,
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possibly revising the assumption of independent effects for a sequence of years. A greater

range of IQA values for the first and forth quarter was detected in exploratory analysis. Ac-

commodating different scale parameters is not worthy for our single year analysis but can

be otherwise considered, possibly with interactions with power plant effects. Such addition

to the model shall be balanced against the usual difficulties with the increasing of dimen-

sionality of the random effects for the numerical algorithms. Possible workarounds such as

quasi-likelihoods, MCMC algorithms, possibly under the Bayesian paradigm, or approxima-

tions such as proposed by Rue et al. (2009) need to be tailored for the Beta random effects

models.

Our analysis under the Bayesian approach suggest sensitivity to priors seems to be an

issue for such model and are likely worsen with the larger numbers of random effects. The

data clone proved helpful in eliminating effect of priors and assessing identifiability, at the

expense of a greater computational time.

4 Conclusion

A Beta regression mixed model including random effects associated with grouping units on a

hierarchical model structure is adopted in the analysis of two datasets with response variables

on the unit interval, one on worker’s life quality and another on water quality. Different

approches were adopted for likelihood computations, numerical (Laplace) approximation and

a sampling based strategy by data cloning.

The first analysis shows the Brazilian industry life quality index is influenced by industry

size and workers income with relevant random effects associated with the federative units.

Findings based on the data analysis are compatible with subjective information validates

social science’s hypothesis. For the second no negative effects of the damns on the water

quality index was detect, which is relevant for licensing power plants operators. The Beta

random effects model accommodates environmental effects not fully captured by the measures
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variables. The random effects allows for a parsimonious model whilst considering extra

sources of variation and the grouping structure.

For the data analysis we follow the strategy of fitting and selecting models using likelihood

computations via the Laplace approximation followed by a detailed further assessment of the

best model by data-cloning.

Likelihood inference methods and algorithms were implemented using numerical approxi-

mations to integrate out the random effects on the likelihood computations Results are com-

parable and we favour Laplace as the method of choice. Confidence intervals based on profile

likelihood were obtained with distinct results from the ones obtained by asymptotic quadratic

approximations in particular for the parameters associated with random effects. By the time

we run our analysis there was no out-of-the box implementation implemented algorithms are

made available6. In general we obtained stable results on analysis, however computational

burden and accuracy of likelihood computations can be prohibitive with increasing number

of parameters associated with random effects. Numerically unstable Hessians were found in

the analysis of the larger model for water quality index with five random effects parameters.

Numerical marginal likelihood computations were compared with another inference strat-

egy based on a MCMC scheme for cloned data. The data clone algorithm is a relatively new

and promising proposal with little programming burden at the cost of increasing computing

time, which can be partially alleviated by parallel or multicore computations for the several

cloning numbers and chains. A particularly attractive feature is the possibility of investi-

gating identifiability, which holds for both data analysis considered here. Point and interval

estimates based on data-clone are comparable with the ones obtained by Laplace approxima-

tions. Profiling likelihoods with data cloning requires further developments (Ponciano et al.,

2009).

Bayesian analysis is frequently used for analysis of hierarchical models and computation-

ally corresponds to the step of the data cloning algorithm with no replicates of the data.

6http://www.leg.ufpr.br/papercompanions/betamix
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Sensibility analysis on the prior choice is relevant but attenuated by data-cloning however

mixing of MCMC chains and identifiability remains relevant. An alternative is to run data-

cloning using integrated nested Laplace approximations (Rue et al., 2009) which can be

adjusted to deal with random effects Beta mixed models saving the on computational burden

by avoiding the more time demanding MCMC schemes. This also requires checking the Beta

model against the usage of improper priors such as the ones commonly used for spatial or

temporal models, if not completely avoiding them.
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