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Likelihood analysis of CMB temperature and polarization power spectra

Samira Hamimeche* and Antony Lewis+
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(Received 8 January 2008; published 28 May 2008)

Microwave background temperature and polarization observations are a powerful way to constrain

cosmological parameters if the likelihood function can be calculated accurately. The temperature and

polarization fields are correlated, partial-sky coverage correlates power spectrum estimators at different l,

and the likelihood function for a theory spectrum given a set of observed estimators is non-Gaussian. An

accurate analysis must model all these properties. Most existing likelihood approximations are good

enough for a temperature-only analysis, however they cannot reliably handle temperature-polarization

correlations. We give a new general approximation applicable for correlated Gaussian fields observed on

part of the sky. The approximation models the non-Gaussian form exactly in the ideal full-sky limit and is

fast to evaluate using a precomputed covariance matrix and set of power spectrum estimators. We show

with simulations that it is good enough to obtain correct results at l * 30 where an exact calculation

becomes impossible. We also show that some Gaussian approximations give reliable parameter constraints

even though they do not capture the shape of the likelihood function at each l accurately. Finally we test

the approximations on simulations with realistically anisotropic noise and asymmetric foreground mask.

DOI: 10.1103/PhysRevD.77.103013 PACS numbers: 98.70.Vc

I. INTRODUCTION

The cosmic microwave background (CMB) anisotropies

are a powerful cosmological probe as they depend simply

on the primordial inhomogeneities, content and geometry

of the Universe. If the perturbations are Gaussian, the full-

sky power spectra of the CMB anisotropies and their

polarization contain all of the cosmological information.

Information in the polarization power spectra can help to

break degeneracies that are present if only temperature

information is used, and also helps to reduce cosmic vari-

ance uncertainty. Parameter constraints can therefore be

significantly improved by using polarization information

even if the data is significantly noisier than the

temperature.

An accurate joint likelihood analysis of the CMB tem-

perature and polarization data is crucial to estimate cos-

mological parameters reliably. In principle this is

straightforward at linear order if the primordial perturba-

tions are Gaussian as the distribution can be calculated

exactly. However calculating the likelihood exactly from

partial-sky data with anisotropic noise is computationally

prohibitive except at low l because large matrices need to

be inverted. Most analyses therefore rely on approxima-

tions to the likelihood function at high l, using only the

information in a set of estimators for the power spectra and

a covariance estimated (or calibrated) from simulations.

An alternative approach not considered further here would

be to use the Gibbs sampling approach of Ref. [1,2],

though this has serious convergence problems of its own

[3].

If the likelihood of the theory power spectrum Cl as a

function of the measured estimators Ĉl were Gaussian, the
likelihood could be calculated straightforwardly from the

measured Ĉl. However the distribution is non-Gaussian

because for a given temperature power spectrum Cl, the

Ĉl, a sum of squares of Gaussian harmonic coefficients,

have a (reduced) �-squared distribution. At large l the

distribution does tend to Gaussian by the central limit

theorem; for example, the mean and maximum likelihood

values of Ĉl converge as 1=l. However the precision with

which we can hope to measure the cosmological parame-

ters also improves at 1=lmax, so the relative bias due to the

non-Gaussianity is potentially independent of l. On all

scales the distribution must be modeled carefully to get

unbiased cosmological parameter constraints.

The importance of the non-Gaussianity of the tempera-

ture likelihood function at low l is well known, and there

are several well-established likelihood approximations to

model it [4–7]. Current polarization data only contributes

interesting information at low l where an exact likelihood

can be used [8–10], however in the future the small-scale

polarization signal will be less noise dominated and con-

tain useful information. On small scales the likelihood

function cannot be computed exactly in reasonable time,

and the likelihood function is significantly more compli-

cated than for the temperature because the temperature and

polarization fields are correlated. The only existing attempt

to model the polarized likelihood function at high l,
Ref. [7], relies on variable transformations that are not

guaranteed to be well defined, and is untested in practice.

We give a new general well-defined likelihood approxima-

tion that can be used with partial-sky Gaussian polarized

CMB data, or any other set of correlated Gaussian fields
*samira@ast.cam.ac.uk
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observed on part of the sky. It is exact in the full-sky limit,

and can easily be calibrated from simulations. We also

discuss under what circumstances a Gaussian likelihood

approximation is reliable.

The layout of the paper is as follows. In Sec. II we

present a brief overview of the exact full-sky likelihood

function for isotropic noise, and discuss the accuracy re-

quired in general for unbiased parameter estimation. We

start Sec. III with a review of various temperature like-

lihood approximations available in the literature, discuss

the accuracy of the various Gaussian approximations, and

move on to derive a new general likelihood approximation

[Eq. (47)] that is exact in the full-sky limit. In Sec. IV we

test the approximations by comparing with the exact like-

lihood function for azimuthal sky cuts and consistency

with the binned likelihood. Finally in Sec. V we check

the approximations with realistically anisotropic noise and

demonstrate consistent parameter estimation from simple

Planck-like simulations. Some mathematical and analysis

details are described in the appendices: Appendix A gives

identities relating expressions with symmetric matrices to

expressions with a vector of components; Appendix B

calculates the non-Gaussian correction to the full-sky ef-

fective chi-squared; Appendix C gives results for the like-

lihood function when using cross-power spectrum

estimators from different maps; Appendix D reviews the

basic pseudo-Cl estimator and exact likelihood formalism

and Appendix E slightly generalizes previous hybrid

pseudo-Cl estimators for anisotropic noise and gives de-

tails of our Planck-like test simulations.

We assume Gaussianity and statistical isotropy of the

fields, and focus on the idealized case of pure CMB ob-

servations without the complications of foregrounds, point

sources, nonlinear effects, anisotropic beams, and other

observational artefacts. Generalizing our work to more

realistic situations will be crucial for application to real

data. If the fluctuations turn out to be significantly non-

Gaussian or anisotropic a more complicated analysis may

also be required.

II. EXACT FULL-SKY LIKELIHOOD FUNCTION

Observations on the full sky can be decomposed into

spherical harmonics Ylm, for example, the temperature at

position � can be written

Tð�Þ ¼
X

lm

aTlmYlmð�Þ: (1)

The polarization field can be expanded analogously in

terms of E and B harmonics with opposite parity, see e.g.

Ref. [11]. If the CMB field is Gaussian, as expected in

linear theory, the corresponding harmonic components aTlm,
aElm and aBlm are Gaussian variables with zero mean. The

CMB power spectrum CXYl determines the variance, which

is independent of m if we assume statistical isotropy, so

that

hjaTlmj2i ¼ CTTl hjaElmj2i ¼ CEEl hjaBlmj2i ¼ CBBl :

(2)

The temperature and E-polarization fields are expected to

be correlated, so there is an additional correlation power

spectrum hjaTlmaElm ji ¼ CTEl , but for a parity-invariant en-

semble the B-polarization is expected to be uncorrelated to
the other fields and the other cross-correlation power spec-

tra are zero.

Since we only observe one sky, we cannot measure the

power spectra directly, but instead form the rotationally

invariant estimators, ĈXYl , for full-sky CMB maps given by

Ĉ XY
l � 1

2lþ 1

Xl

m¼�l
aXlma

Y
lm : (3)

The expectation values of these estimators are the true

power spectra, hĈXYl i ¼ CXYl .

To keep things general we consider n (correlated)

Gaussian fields, and define an n-dimensional vector alm
of the harmonic coefficients at each l and m. In the case of
the CMB alm ¼ ðaTlm; aElm; aBlmÞT . The covariance matrix at

each l is defined as

Cl � halmaylmi; (4)

and the equivalent estimator is

Ĉ l �
1

2lþ 1

X

m

alma
y
lm: (5)

Since the alm are assumed to be Gaussian and statistically

isotropic, they have independent distributions (for jmj �
0) and the probability of a set of alm at a given l is given by

� 2 lnðPðfalmgjClÞÞ ¼
Xl

m¼�l
½aylmC�1

l alm þ lnj2�Clj�

¼ ð2lþ 1ÞðTr½ĈlC�1
l � þ lnjCljÞ

þ const: (6)

The fact that this likelihood forCl depends only on the Ĉ
XY
l

(components of the matrix Ĉl) shows that on the full sky

the CMB data can losslessly be compressed to a set of

power spectrum estimators that contain all the relevant

information about the posterior distribution. In other words

Ĉl is a sufficient statistic for the likelihood. Integrating out

all the falmg with the same Ĉl (or normalizing with respect

to Ĉl) gives a Wishart distribution1 for Ĉl (for a thorough

review see Ref. [12]):

PðĈljClÞ /
jĈljð2l�nÞ=2
jCljð2lþ1Þ=2 e

�ð2lþ1ÞTrðĈlC�1
l

Þ=2: (7)

The likelihood function for Cl given the observed Ĉl is

1Technically ð2lþ 1ÞĈl �Wnð2lþ 1;ClÞ.
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LðCljĈlÞ / PðĈljClÞ, an invertedWishart distribution. It is

straightforward to show that the likelihood has a maximum

when Cl ¼ Ĉl, so Ĉl is the maximum likelihood estimator.

When n ¼ 1, for example, when only the temperature is

considered, the Wishart distribution reduces to

�2 lnPðĈljClÞ ¼ ð2lþ 1Þ

�
�

Ĉl=Cl þ lnðClÞ �
2l� 1

2lþ 1
lnðĈlÞ

�

þ const: (8)

Considered as a function of Ĉl this is a (reduced) �-squared
distribution with 2lþ 1 degrees of freedom; it has mean

hĈli ¼ Cl, but maximum at Ĉl ¼ Clð2l� 1Þ=ð2lþ 1Þ.
This skewness is also apparent in the likelihood distribu-

tion LðCljĈlÞ / PðĈljClÞ, which peaks at Cl ¼ Ĉl but has

mean value Ĉlð2lþ 1Þ=ð2l� 3Þ. The mean value of Cl
calculated from the estimators should be above the Ĉl,
which is why using a quadratic approximation symmetric

in Cl (with mean at Cl ¼ Ĉl) potentially biases results by

Oð1=lÞ at each l.
For n correlated Gaussian fields, there are in general

nðnþ 1Þ=2 distinct power spectra ½Cl�ij ¼ haðiÞ�lm a
ðjÞ
lmi, and

on the full sky their estimators have covariance given by

cov ð½Ĉl�ij; ½Ĉl�pqÞ ¼
1

2lþ 1
ð½Cl�ip½Cl�jq þ ½Cl�iq½Cl�jpÞ:

(9)

It is sometimes convenient to work with vectors rather than

matrices, so that Xl � vecpðClÞ is a vector of the nðnþ
1Þ=2 distinct elements of Cl, and similarly for the estima-

tors. The corresponding covariance matrix isMl � hðX̂l �
XlÞðX̂l �XlÞTi. For symmetric matrices A and B a useful

and somewhat unobvious identity is (see Appendix A)

vecp ðAÞTM�1
l vecpðBÞ ¼ 2lþ 1

2
Tr½AC�1

l BC�1
l �; (10)

which can be used to relate results involving Cl to results

involving Xl. In particular by writing Tr½ĈlC�1
l � ¼

Tr½ClC�1
l ĈlC

�1
l � we can write the Wishart distribution in

terms of the covariance Ml ¼ MlðXlÞ as

� 2 logPðX̂ljXlÞ ¼ 2X̂T
l M

�1
l Xl þ

2lþ 1

nþ 1
logjMlj

� 2l� 1

nþ 1
logjM̂lj þ const (11)

¼ 2ðX̂l �XlÞTM�1
l Xl

þ 2lþ 1

nþ 1
logjMlj �

2l� 1

nþ 1
logjM̂lj

þ const; (12)

where we used logjMlj ¼ ðnþ 1Þ logjClj þ const and

M̂l ¼ MlðX̂lÞ.

We now briefly review the standard Bayesian argument

to link the function Pðdj�Þ for the data d given parameters

�, to the posterior Pð�jdÞ, the distribution of the parame-

ters given the data. Bayes’s theorem states that the poste-

rior probability of � given the data is

Pð�jdÞ ¼ Pðdj�ÞPð�Þ
PðdÞ / Lð�jdÞPð�Þ; (13)

where the prior Pð�Þ gives information we already know

about the models. In the case of linear CMB power spectra,

the Cl can be computed essentially exactly from a set of

parameters using standard Boltzmann codes. The proba-

bility distribution function of a set of parameters given

observed data fĈlg � d is therefore given on the noise-free
full sky by

Pð�jfĈlgÞ / LðfClð�ÞgjfĈlgÞPð�Þ
¼
Y

l

LðClð�ÞjĈlÞPð�Þ: (14)

Since the prior depends on the models under consideration,

in this paper we analyze the methods for estimating the

likelihood LðfClgjfĈlgÞ, which is the required input to

cosmological parameter estimation codes such as

COSMOMC [13]. When analyzing the likelihood function

it is often convenient to normalize so that lnL ¼ 0 when

Cl ¼ Ĉl, i.e. to use

�2 lnLðfClgjfĈlgÞ ¼
X

l

ð2lþ 1ÞfTr½ĈlC�1
l �

� lnjĈlC�1
l j � ng: (15)

The expected value for this log likelihood is about nðnþ
1Þ=2 per l, corresponding to the nðnþ 1Þ=2 distinct com-

ponents of Cl. For a more detailed analysis and discussion

of ‘‘chi-squared’’ goodness of fit see Appendix B.

If there are multiple maps, for example, from different

frequencies and detectors, cross-map Ĉl estimators can be

used to avoid noise bias. If a set of cross estimators is used

the exact full-sky likelihood function is somewhat different

from the above, as discussed in Appendix C. However in

the limit of many maps the distribution becomes Wishart.

In the limit in which there are enough maps that the

information loss from using only cross estimators is small,

the approximations developed in this paper should there-

fore also be applicable.

When the underlying fields are non-Gaussian, the analy-

sis in this paper does not apply directly. However in many

cases it is likely to be a good approximation to use the same

likelihood approximations but with the covariance re-

placed with its full non-Gaussian version including 4-point

terms. Non-Gaussianity associated with mode coupling

(e.g. from nonlinear evolution) can also change the effec-

tive number of modes at a given scale. For example the

B-mode CMB polarization power spectrum is generated by

lensing of anE field by a relatively small number of lensing
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convergence modes. This leads to strong correlations be-

tween l, and a drastically reduced number of modes com-

pared to l2max expected for Gaussian fields. Reference [6]

shows that using a likelihood approximation designed for

analyzing Gaussian fields, but allowing for the full covari-

ance from the non-Gaussianity, can give acceptable results.

They also demonstrate the importance of modeling the

non-Gaussianity of the likelihood function accurately

when analyzing fields that depend on a small number of

underlying modes.

Required accuracy

To assess how accurately we need to be able to model the

likelihood we need to know how biases on the posterior Cl
translate into constraints on parameters. The simplest case

is instructive: consider estimating an amplitude parameter

A, where Cl ¼ ACfl for some fiducial fixed spectrum Cfl.

For zero noise and a range of l with lmin � l � lmax, we

have

� 2 lnLðAjfĈlgÞ ¼
X

l

ð2lþ 1Þ
�
1

A
Tr½ĈlCfl�1�

� lnjĈlCfl�1j þ n logA� n

�

; (16)

and the maximum likelihood value is

Â ¼

P

l

ð2lþ 1ÞTr½ĈlCfl�1�

n
P

l

ð2lþ 1Þ : (17)

If Cfl is the underlying true model then hÂi ¼ 1 and the

Fisher variance is

�2
A � �

�
d2

dA2
lnLðAjfĈlgÞ

��1
��������A¼1

¼ 2

n
P

l

ð2lþ 1Þ

¼ 2

nððlmax þ 1Þ2 � l2minÞ
� 2

nl2max

(18)

for a range of l satisfying lmax 	 lmin. We therefore need

any biases to give �Â

ffiffiffiffiffiffiffiffiffiffiffiffi

ð2=nÞ
p

=lmax in order for the bias

on Â to be small compared to its error bar. If we have an

l-dependent bias �Cl, the bias on Â from Eq. (17) is small

compared to its error if

jh�Âij ¼
jP
l

ð2lþ 1ÞTrðC�1
l �ClÞj

n
P

l

ð2lþ 1Þ 

ffiffiffiffiffiffiffiffi

2=n
p

lmax

: (19)

The tolerated bias scales as 1=ð2lþ 1Þ, so this criterion

will be satisfied for lmax 	 lmin for any systematic error

with

1

n
jTrðC�1

l �ClÞj 

ffiffiffi

2

n

s

1

2lþ 1
�

ffiffiffiffiffiffi

1

2n

s

1

l
: (20)

For a multiplicative bias �Cl ¼ BlCl this criterion is

jBlj 
 ð2nÞ�1=2=l. Alternatively if Bl is a constant the

requirement is jBlj 

ffiffiffiffiffiffiffiffiffiffiffiffi

ð2=nÞ
p

=lmax. We shall loosely refer

to 1=ðl ffiffiffi
n

p Þ as the ‘‘systematic error,’’ and require biases to

be much smaller than this, which is appropriate for nearly

full-sky observations. For a realistic experiment with ef-

fective sky coverage fsky the bias can be �f�1=2
sky times

larger.

In the presence of noise the situation is more compli-

cated. For one field with Cl ! Cl þ Nl, using the Gaussian
approximation we require

��������

X

l

Bl
ð2lþ 1ÞC2

l

ðCl þ NlÞ2
��������



ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
X

l

ð2lþ 1ÞC2
l

ðCl þ NlÞ2

v
u
u
t : (21)

The bias should be smaller than the systematic error �1=l
where Nl 
 Cl, but there is greater tolerance where the

noise is important.

III. LIKELIHOOD APPROXIMATIONS

A. Single-field likelihood approximations

To approximate the likelihood on the cut sky, the usual

approach when analyzing the CMB temperature is to de-

velop a form for the log likelihood that is quadratic in some

function of the Cl, and hence can easily be generalized to

the cut sky using an estimate of the Cl covariance matrix.

Here we summarize some common approximations in their

full-sky form.

At large l, Eq. (8) is approximated by a symmetric

Gaussian distribution where the variance is determined

by the estimators themselves [4]:

� 2 lnLSðCljĈlÞ ¼
2lþ 1

2

�
Ĉl � Cl

Ĉl

�
2
: (22)

This approximation is well known to produce a poor fitting

to the true likelihood function at low l [4]; being symmetric

it biases posterior Cl low compared to the true likelihood

function. Approximating the exact likelihood of Eq. (8)

with a second order expansion in Ĉl=Cl � 1 gives the same

form but with Ĉl replaced by Cl in the denominator:

� 2 lnLQðCljĈlÞ ¼
2lþ 1

2

�
Ĉl � Cl
Cl

�
2
: (23)

This distribution is closer to the true likelihood, being

skewed in the right direction, however it is still a poor

approximation in general, this time biasing the posterior Cl
high. It is often somewhat misleadingly referred to as the

‘‘Gaussian approximation,’’ even though it does not have

the determinant term required for PðĈljClÞ to be a normal-

ized Gaussian distribution.2 Another possibility is

2For this reason we denote it LQ—for a quadratic approxi-
mation—rather than LG used by some other authors.
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� 2 lnLfðCljĈlÞ ¼
2lþ 1

2

�
Ĉl � Cl
Cfl

�
2
; (24)

where Cfl is some fixed fiducial model assumed to be

smooth and close to the model Cl under consideration.

This is more interesting as although the shape of the like-

lihood is wrong at any given l, as we shall see when

summed over a range of l it can give results consistent

with the exact likelihood function. It is equivalent to a

Gaussian approximation since the determinant term is a

constant when using a fixed fiducial model. Adding a

Cl-dependent determinant term to the quadratic approxi-

mation can also produce valid results; we refer to this as

GaussianD, given by

� 2 lnLDðCljĈlÞ ¼
2lþ 1

2

�
Ĉl � Cl
Cl

�
2
þ lnjClj: (25)

See Sec. III B for more details of this approximation.

Beyond these quadratic/Gaussian approximations, other

approximations that have been used include the log-normal

(LN) distribution where the log likelihood is quadratic in

the log of the power [4]

� 2 lnLLNðCljĈlÞ ¼
2lþ 1

2

�

ln

	
Ĉl
Cl


�
2
: (26)

This distribution is also somewhat biased [5,6]: it only

matches the exact full-sky result to second order in

Ĉl=Cl � 1.
A weighted combination of the quadratic and the log-

normal distributions can be a more accurate approximation

to the exact likelihood, being correct to third order in

Ĉl=Cl � 1. This approximation was adopted in the analysis

of the one, three and five-year WMAP data at high l [5]:

lnLWMAPðCljĈlÞ ¼
1

3
lnLQðCljĈlÞ þ

2

3
lnLLNðCljĈlÞ:

(27)

Reference [6] suggests even better approximations of the

form

�2 lnLðCljĈlÞ � ð2lþ 1Þ 9
2

	
2lþ �

2lþ 1



1=3

�
�	
Ĉl
Cl



1=3

�
	
2lþ �

2lþ 1



1=3
�
2

þ ð1� �Þ lnCl; (28)

where � is one (referred to as ‘‘ �1=3’’ approximation) or

minus one (referred to as ‘‘ 1=3’’ approximation). The

value � ¼ 1=3 corresponds to taking the distribution of

Ĉ1=3
l to be Gaussian. These approximations are correct to

third order in Ĉl=Cl � 1, and also very nearly correct to

fourth order.

B. Gaussian approximation for correlated fields

For a model Cfl with corresponding full-sky X̂l covari-

ance Mfl, a Gaussian approximation to the likelihood

function is given by

� 2 lnLfðCljĈlÞ ¼ ðXl � X̂lÞTMfl
�1ðXl � X̂lÞ

þ logjMflj (29)

¼ 2lþ 1

2

� Tr½ðCl � ĈlÞCfl�1ðCl � ĈlÞCfl�1�
þ ðnþ 1Þ logjCflj: (30)

In the second line we used Eq. (10). If Cfl is fixed (inde-

pendent of Cl) the determinant factors can be dropped,

giving the generalization of the approximation for one field

given in Eq. (24). It is worth studying this approximation

more carefully as it turns out to be very good for smooth

models even if the shape of the likelihood function at each l
is not accurate. To see this, consider how the total like-

lihood varies with a parameter �,

�2
@ lnLfð�jĈlÞ

@�
¼
X

l

ð2lþ1Þ

�Tr

�
@Cl
@�

Cfl
�1ðCl� ĈlÞCfl�1

�

; (31)

and compare with the equivalent result for the exact like-

lihood function

�2
@ lnLð�jĈlÞ

@�
¼
X

l

ð2lþ 1ÞTr
�
@Cl
@�

C�1
l ðCl � ĈlÞC�1

l

�

:

(32)

This will be zero for the maximum likelihood value �̂, and

if Cfl / Clð�̂Þ then �̂ will also maximize the approximate

likelihood function Lf. In other words the approximation

returns the exact best-fit value as long as the fiducial model

is proportional to the best-fit model. If the true model and

the fiducial model are both smooth functions of l, this will
often be approximately true locally, even if it is not strictly

true everywhere. An error in the normalization of Cfl

would effect the error bar on �̂. However since we can

easily choose a fiducial model with fractional difference

<Oð1=
ffiffi

l
p

Þ, this would only be a small fractional error on

the error. The numerical values of the log likelihoods

typically differ by OðlnðlmaxÞÞ (assuming the fiducial

model is accurate to Oð1=lÞ; cf. discussion in

Appendix B), but Lf is otherwise generally a good ap-

proximation for smooth models.

Note that the above comments only apply to the

Gaussian approximation using a fixed fiducial model. If

instead we make the covariance Ml a function of Cl the

best-fit model would differ from the exact result due to

additional terms in the derivative from the change in the
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covariance with parameters. However the Gaussian ap-

proximation is still quite accurate, and unbiased in an

average sense. To see this first consider the simple case

of estimating an amplitude parameter A, where the exact

result for the best-fit value was given in Eq. (17), or in

terms of Xl by

Â ¼ 1þ
2
P

l

�XlM
�1
l Xl

n
P

l

ð2lþ 1Þ ; (33)

where �Xl � X̂l �Xl. Using the Gaussian approxima-

tion withMfl ¼ MlðXlÞ and expanding we instead get the
best-fit value

Â 0 ¼ Âþ

P

l

½�XlM
�1
l �Xl � nðnþ 1Þ=2�

n
P

l

ð2lþ 1Þ=2

�
�
P

l

XlM
�1
l �Xl

n
P

l

ð2lþ 1Þ=2

�
2
þOð��1=2

l l�3=2Þ; (34)

where �l is the size of the range of l under consideration
(assuming l	 1). The second term has expectation value

zero in the true model, and typical variation of order

Oð��1=2
l l�1Þ. The third term is of order Oð��1

l l�1Þ. So
in almost all realizations with �l 	 1, l	 1 we have

Â0 ¼ ÂþOð��1=2
l l�1Þ. The Gaussian approximation is

therefore almost certainly good to within the required error

ofOð1=lÞ as long as �l 	 1. However unless �l is large it

will not be much better than required: local features are

likely to be more problematic than the overall amplitude

(determined from �l ¼ lmax). More generally we can con-

sider the expectation of the log likelihood

�2hlnLfðfXlgjfX̂lgÞit ¼
X

l

fðXl�X
ðtÞ
l ÞTMfl

�1ðXl�X
ðtÞ
l Þ

þTr½Mfl
�1M

ðtÞ
l �þ logjMfljg;

(35)

compared to the exact result

�2hlnLðfXlgjfX̂lgÞit ¼
X

l

ð2lþ 1ÞfTr½CðtÞ
l C

�1
l � þ logjCljg:

(36)

The exact mean log likelihood has a maximum at the true

model, when Xl ¼ X
ðtÞ
l . This is however also true of the

Gaussian approximation, both when Mfl is for a fixed

fiducial model, and also when we allow it to vary with

parameters Mfl ¼ MlðXlÞ. To the extent that Cl are con-

stant in l, so that summing over l effectively averages the

log likelihood, we therefore expect the Gaussian approx-

imations to be nearly unbiased.

In the case when Mfl ¼ MlðXlÞ the reliability of the

Gaussian approximation depends critically on the inclu-

sion of the determinant term. For example dropping the

determinant, the mean approximate log likelihood for A

where Xl ¼ AXðtÞ
l is

�2hlnLQðAjfX̂lgÞit ¼
X

l

�ð2lþ 1Þn
2

ð1�AÞ2
A2

þ nðnþ 1Þ
2A2

�

:

(37)

For large lmax the maximum is at Â� 1þ ðnþ 1Þ=lmax

rather than 1, so we expect A to be biased high by the order

of the expected error, confirming that LQ is not a good

approximation to the likelihood. If a fixed fiducial model is

used then the determinant does not affect the likelihood,

and we have

� 2hlnLfðAjfX̂lgÞit ¼
X

l

fð1� AÞ2XðtÞT
l Mfl

�1X
ðtÞ
l

þ Tr½Mfl
�1M

ðtÞ
l �Þ (38)

/ ð1� AÞ2 þ const; (39)

which has a minimum in agreement with the exact like-

lihood function (Â ¼ 1) regardless of the choice of fiducial
model (though the variance of A would be wrong by the

order of the fractional error in the fiducial model).

The case where Mfl ¼ MlðX̂lÞ is harder to analyze, but

it is not a good approximation because the covariance is

then correlated with the Ĉl (so the contribution of high-

fluctuating Ĉl is down-weighted by larger covariance

there).

C. Noise, binning and the Gaussian approximation

In the presence of isotropic uncorrelated noise nlm with

known power spectrum Nl, the observed field alm þ nlm is

just another Gaussian field with power spectrum Cl þ Nl.
The likelihood functions are then exactly the same as

without noise, where Cl and Ĉl are replaced with their

values including noise.

Consider a toy problem where we wish to constrain the

amplitude of the power spectrum A over some range of

scales over which the power spectrum is flat. If there are nm
Gaussian modes, and we estimate the power spectrum in nb
equal bins, each bin will have � � nm=nb modes. If each

mode has independent Gaussian noise with known variance

N, each Ĉb estimator then has a �2 distribution with �
degrees of freedom and mean Aþ N. The posterior mean

of A will differ systematically from its maximum like-

lihood Ĉb � N by �ðAþ NÞ=�, which we can take as an

estimate of the bias obtained in each bin by using a

Gaussian approximation. Using all the bins we can con-

strain A to within an error of�ðAþ NÞ= ffiffiffiffiffiffi
nm

p
. The criterion

for the bias to be much smaller than the error bar is then

nb 

ffiffiffiffiffiffi
nm

p
. Perhaps surprisingly this is independent of the

noise: when this inequality is violated a Gaussian approxi-
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mation would be biased for a given bin, even if the signal is

noise dominated. Of course if the bin width is increased so

that the signal to noise in each bin remains constant, then

the Gaussian approximation for the binned estimates does

improve as the noise increases.

In the case of observations of the CMB over a fraction

fsky of the sky, with useful signal at lmin & l & lmax, the

number of modes is nm � fskyðl2max � l2minÞ, so for the

Gaussian approximation to be good for each bin we need

the number of bins nb 
 f1=2sky lmax (assuming l2max 	 l2min).

This is violated by the natural full-sky binning into lmax

bins, one at each l (which has optimal l-resolution), regard-
less of how large lmax is. For partial-sky observations with

bin width �ðbÞ
l in l, you would need �ðbÞ

l 	 f�1=2
sky for the

Gaussian approximation to be reliable. However often we

do not actually need each bin to be individually unbiased,

so this criterion can in practice be relaxed.

Binning different l’s together makes the distribution

more Gaussian, so binning full-sky Cl into bands of width

�ðbÞ
l 	 1 would allow any of the quadratic likelihood

approximations to be used with very small bias at each

bin. For basic vanilla models it is straightforward to assess

the impact of binning on parameter constraints: we gen-

erated a toy full-sky simulation at Planck sensitivity [14],

generated samples of the posterior parameter values from

the exact likelihood function using COSMOMC [15], and

then importance sampled using the exact likelihood func-

tion on binned values of the Cl (keeping the l < 30 spec-

trum unbinned where in realistic cases the likelihood could

also be calculated exactly). Using the quadratic approxi-

mation LQ in this case (with �ðbÞ
l ¼ 1) biases parameters

like the spectral index by around 1-sigma compared to the

exact result; however using Lf with a sensible fiducial

model produces unbiased constraints (see previous subsec-

tion). Binning with a width �ðbÞ
l ¼ 50 degrades parameter

error bars by only & 10% for basic models; this would be

sufficient to make the bias a tiny fraction (� 1=�ðbÞ
l ) of the

error bar on each bin. Bins of�l � 10would likely be wide
enough to render the error from a quadratic likelihood

approximation small relative to other systematic errors.

The cost of doing this is that some l-resolution of the

acoustic peak structure is lost, and any nonstandard models

with features that vary over a few l could not be analyzed

reliably (for example see Ref. [16]).

As we shall show, modeling the non-Gaussian distribu-

tion accurately is straightforward, and in any case a

Gaussian approximation is often adequate, so for full-sky

observations there is no need to degrade the data by bin-

ning. Note that binning may however be useful for other

reasons, for example, to increase the accuracy with which

the covariance can be estimated from a fixed number of

simulations, or to improve the optimality of the cut-sky Cl
estimator. Since almost all theoretical power spectra are

very smooth in l, binning is likely to lose little information

as long as the bins are narrow compared to the width of any

features.

D. Partial-sky likelihood function

When observations are obtained over part of the sky, or

part of the sky is obscured by foregrounds or there is

anisotropic noise, the maximum likelihood estimators Ĉl
can no longer be measured directly. The CMB is still

expected to be Gaussian however, so in principle there is

an exact pixel-based likelihood function of the form

L ðfClgjpÞ /
e�pTC�1

p p=2

jCpj1=2
; (40)

where p is a vector of pixel values and Cp is the pixel-pixel

covariance (a function of fClg). Equivalently the CMB

fields can be expanded in a set of modes that are orthogonal

and complete over the observed sky, and the likelihood in

terms of these mode coefficients will also be Gaussian

[8,17,18]. Neither likelihood function can be expressed

solely in terms of a set of maximum likelihood power

spectrum estimators, so an optimal analysis does not allow

radical compression. The problem with using the exact

likelihood function is that the number of pixels goes like

l2max, so the Cholesky decomposition required to calculate

C�1
p p will scale like l6max, which is prohibitive for lmax

larger than a few hundred and slow for l * 30. Gibbs
sampling methods avoid doing large matrix inversions,

but still have exponential convergence problems if an exact

analysis is attempted for general Cl. A sensible strategy is

therefore to use an exact likelihood only at low lwhere it is
numerically feasible, and to use an approximate analysis at

higher l [9,19,20]. The most obvious way to do this is to

compress the high-l data into a set of cut-sky power

spectrum estimators, and then find an approximate like-

lihood function that is a function only of these estimators.

There is some evidence that doing this is close to optimal,

and it has the advantage of being fast. This means that

numerous practical complications can be accounted for

simply by adding additional terms to the covariance matrix

estimated from simulations.

There are various possible estimators for the cut-sky

power spectrum that can be used, varying from maximum

likelihood to a variety of quadratic estimators. At high l
quadratic estimators can be close to the maximum like-

lihood and we focus here on the widely used pseudo-Cl
methods [19,21–27] that are in many cases equivalent to

methods based on correlation functions [28,29]. In princi-

ple the statistical distribution of these estimators could be

calculated exactly [22], but only at prohibitive numerical

cost in general. We therefore look for a fast likelihood

approximation that is a function only of the set of cut-sky

estimators fĈlg, an estimate of their covariance (e.g. from

simulations or calculated), and knowledge of the noise

contribution fNlg. One of the aims of this work is to
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quantify whether such a likelihood approximation is good

enough to obtain reliable and nearly optimal parameter

constraints. As our guide for modeling the non-Gaussian

shape of the likelihood function we will use the known

form in the full-sky limit; we aim for our approximation to

be exact when the fĈlg are calculated on the full sky with

isotropic noise.

E. New likelihood approximation for correlated fields

We now derive a new likelihood approximation that can

be used with Ĉl estimators calculated from correlated

Gaussian fields. It is exact on the full sky, and should

give reasonable results even for nonstandard models that

are not necessarily very smooth functions of l. The ap-

proximation involves a fiducial model so that the covari-

ance can easily be precomputed. However errors in the

fiducial model are automatically corrected, in that the

result remains exact on the full sky however wrong the

fiducial model is. We assume that the matrix of estimators

Ĉl is positive definite, which may break down for some

estimators at low l.

Given the observed estimators Ĉl for the covariance of n
Gaussian fields, the full-sky likelihood function can be

written

�2 logLðCljĈlÞ ¼ ð2lþ 1Þ
� fTr½ĈlC�1

l � � logjC�1
l Ĉlj � ng (41)

¼ ð2lþ 1ÞfTr½C�1=2
l ĈlC

�1=2
l �

� logjC�1=2
l ĈlC

�1=2
l j � ng (42)

¼ ð2lþ 1Þ
X

i

½Dl;ii � logðDl;iiÞ � 1�: (43)

The symmetric form is defined using the Hermitian square

root and C
�1=2
l ĈlC

�1=2
l ¼ UlDlU

T
l for orthogonal Ul and

diagonal Dl. In the presence of instrumental noise the Cl
and Ĉl should include the noise variance.

To generalize to the cut sky we want to make this look

quadratic, so we write

� 2 logLðCljĈlÞ ¼
2lþ 1

2

X

i

½gðDl;iiÞ�2

¼ 2lþ 1

2
Tr½gðDlÞ2� (44)

where

gðxÞ � signðx� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðx� lnðxÞ � 1
p

Þ;
and ½gðDlÞ�ij ¼ gðDl;iiÞ�ij. Although the sign of the func-

tion is irrelevant for consistency with the exact full-sky

result, this choice ensures consistency with the Gaussian

approximation and that gðxÞ is a smooth function at x ¼ 1.
We now want to relate this quadratic form to a version that

is quadratic in the matrix elements. To do this we use

Eq. (10) in the form

2lþ 1

2
Tr½ðCfl�1=2CglCfl

�1=2Þ2� ¼ XT
glMfl

�1Xgl; (45)

where Xgl � vecpðCglÞ [dimension nðnþ 1Þ=2] is the

vector of distinct elements of Cgl, and Mfl is the covari-

ance of X̂ evaluated for Cl ¼ Cfl. We therefore write the

exact result of Eq. (44) as

�2 logLðCljĈlÞ ¼
2lþ 1

2
Tr½ðCfl�1=2CglCfl

�1=2Þ2�

¼ Xgl
TMfl

�1Xgl; (46)

where Cgl � Cfl
1=2UlgðDlÞUT

l Cfl
1=2 for some fiducial

model Cfl. This can then be generalized to our final cut-

sky approximation where the estimators at different l may

be correlated:

� 2 logLðfClgjfĈlgÞ � XT
gMf

�1Xg

¼
X

ll0
½Xg�Tl ½Mf

�1�ll0½Xg�l0 : (47)

Here Mf is the fiducial model covariance block matrix

with nðnþ 1Þ=2� nðnþ 1Þ=2 blocks labeled by l and l0,
andXg is a ðlmax � lmin þ 1Þnðnþ 1Þ=2-row block vector:

½Mf�ll0 ¼ hðX̂l �XlÞðX̂l0 �Xl0ÞTif (48)

½Xg�l ¼ vecpðCfl1=2g½C�1=2
l ĈlC

�1=2
l �Cfl1=2Þ; (49)

where the matrix function g applied to a symmetric

positive-definite matrix is defined by application of g to

its eigenvalues. On the full sky with isotropic noise

½Mf�ll0 ¼ �ll0Mfl and the approximation is exact. It is

fast to evaluate because Mf
�1 is independent of Cl and

hence can be precomputed. Remaining diagonalizations on

the small matrices at each l are fast. In principle the fiducial

model Cfl could also be chosen to be equal to Ĉl or Cl, but

for most purposes using a fixed smooth theoretical fiducial

spectrum that is a good fit to the data is likely to be most

convenient. For a general correlation structure Mf has

½ðlmax � lmin þ 1Þnðnþ 1Þ=2�2 elements (but is symmet-

ric). Remember that here Cl and Ĉl include the noise

contribution, so for a pure-theory (zero-noise) Cth
l the

approximation requires an (effective) noise Nl at each l,

a covariance matrix, and the set of estimators fĈlg.
If Cl is block diagonal, as in the case of CMB polariza-

tion with B modes, the exact full-sky likelihood is sepa-

rable in the blocks. On the cut sky the estimators for the

blocks may however be correlated; in particular, a sky cut

will correlate E- and B-mode polarization estimators. The

approximation can be applied with full ½ðlmax � lmin þ
1Þnðnþ 1Þ=2� vectors, or the approximation can be applied

to a truncated vector including only terms in each block.
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For example we could use Xl ¼ ½CTTl ; CTEl ; CEEl ; CBBl �T ,
with covariance allowing for correlations between E and

B power spectra, but ignoring any potential information in

components like ĈTBl (the full-sky likelihood is indepen-

dent of ĈTBl , but this may not be the case when there are

couplings between T, E and B). If the smaller vector is

used the transformation to Xg can be calculated for each

block separately.

For a single Gaussian field the approximation is simply

� 2 logLðfClgjfĈlgÞ �
X

ll0
½gðĈl=ClÞCfl�½Mf

�1�ll0

�½Cfl0gðĈl0=Cl0Þ�: (50)

1. Generalization

On the full sky, and in some generalizations, the distri-

bution of the estimators Ĉl scales approximately with Cl,

so that PðĈljClÞdĈl ¼ SlðĈl=ClÞðdĈlÞ=Cl for some func-

tion SðxÞ. The full-sky likelihood function considered

above is of this form. In general SðxÞ can differ from the

full-sky form, and could be estimated approximately from

simulations using a given fiducial Cl. The likelihood func-

tion is then given by LðCljĈlÞ / SlðĈl=ClÞ=Cl. We can

then use the same likelihood approximations as above,

where for each l

gðxÞ ¼ signðx� xmÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�2 log

�
xmSlðxmÞ
xSlðxÞ

�
s

; (51)

xm is the value of x that maximizes xSlðxÞ, and�2 ¼ varðxÞ
[on the full sky xm ¼ 1, �2 ¼ 2=ð2lþ 1Þ]. With multiple

fields a similar argument applies as long as the likelihood

function can be written in terms of C
�1=2
l ĈlC

�1=2
l . The

function SlðxÞ can then be estimated from the distribution

of the diagonal elements of C
�1=2
l ĈlC

�1=2
l at fixed Cl.

The exact distribution of single-field pseudo-Cl’s is dis-
cussed in Ref. [22] for azimuthally symmetric sky cuts.

Even in this simple case with no noise the marginalized

distribution at each l is of a different functional form from

the full-sky result, similarly for the corresponding Ĉl esti-
mators. Using pseudo-Cl estimators with our approxima-

tion using gðxÞ ¼ signðx� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðx� lnðxÞ � 1
p

Þ amounts

to approximating the marginalized distribution of the Ĉl as

�2 with �l degrees of freedom, where �l ¼ 2C2
l =varðĈlÞ.

At high l and for small cuts with uniform weighting outside

the cut �l � ð2lþ 1Þf2sky [30]; for binned estimators that

are nearly uncorrelated, �l � ð2lþ 1Þ�lfsky [23,31].

2. Gaussian approximation

The Gaussian approximations of Sec. III B generalize

straightforwardly to a ðlmax � lmin þ 1Þnðnþ 1Þ=2-vector
of cut-sky estimators X̂ with a covariance matrix Mf,

� 2 logLfðfXlgjfX̂lgÞ ¼ ðX̂�XÞTMf
�1ðX̂�XÞ

þ logjMfj: (52)

Note that even with no correlations between l this cannot
be written as a matrix variate normal distribution in the

form of Eq. (30) because a general M has many more

degrees of freedom than the exact full-sky matrix where

Ml [a symmetric nðnþ 1Þ=2� nðnþ 1Þ=2 matrix] can be

expressed in terms of the smaller matrix Cl (an n� n
symmetric matrix). From the discussion in Sec. III B we

expect the Gaussian approximations to be accurate for

lmax 	 1 in almost all cases where parameter variations

produce changes that are smooth in l.

IV. TESTING THE LIKELIHOOD

APPROXIMATIONS

For accurate parameter estimation we need to be able to

constrain the theory Cl accurately as a function of l given

the estimators Ĉl. On the full sky the likelihood approx-

imations can easily be compared to the exact likelihood

function. We fit an amplitude parameter A where

LðAjfĈlgÞ ¼ LðfCl ¼ ACin
l gjfĈlgÞ, over some range of l

using some fiducial model Cin
l . The Ĉl are simulated using

Cin
l , so that on average the best-fit value of A is A ¼ 1.

Since in almost all models the theory power spectra Cl are
smooth functions of l, and we wish to check that off-

diagonal correlations are being accounted for correctly,

we chose to fit over a range �l ¼ 10 in l. This was done
for l ¼ ðlmin ! lmax ¼ lmin þ �l� 1Þ, i.e., bins of size �l
with lmin and lmax being the lower and upper values of l in
each bin, respectively, as a function of lmin.

Using a standard search routine (golden section search in

Numerical Recipes), we searched for the best-fit value of

A, Â. In other words, for the exact likelihood and each

approximation, we numerically extracted the amplitude

that would maximize the likelihood. We then estimate

the variance of this estimated maximum likelihood value

of A compared to the true maximum likelihood in that

realization, hðÂi � ÂExactÞ2isimulations. This gives a measure

of any error introduced by the approximation. Note that

sincewe are using a range of�l ¼ 10 in l, the best-fit value
of A depends on the likelihood approximation at each l
value, and, in particular, probes the full range of deviations

of Ĉl from Cl expected from cosmic variance.

To quantify whether an approximation is good enough,

we consider how well we need to know the amplitude of

the Cl as a function of l to get unbiased results on an

amplitude parameter. We consider the noise-free case.

The cosmic variance error on a single l, is

ffiffiffiffiffiffiffiffiffiffi

2C2
l

ð2lþ1Þ

r

. Since

we are averaging over a range �l ¼ 10, the cosmic vari-

ance error we can obtain on A from a single bin will be

reduced by a factor of �l, hence a fractional error of

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
ð2lminþ1Þ�l

q

from one band. However as discussed in
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Sec. for unbiased results from the full spectrum we need a

fractional average systematic error on the Cl much smaller

than �Cl=Cl 
 n�1=2=l. We therefore require likelihood

approximations that give values that are unbiased to better

than the systematic error.

A. Full-sky tests

On the full sky with isotropic noise estimators at differ-

ent l are uncorrelated: the likelihood function is

LðAjfĈlgÞ ¼
Qlmax

l¼lmin
LðCl ¼ ACinl jĈlÞ, where L can take

the form of the exact likelihood or any of the approxima-

tions described in Sec. III A.

In Fig. 1 we show the results for the temperature like-

lihood approximations on the full sky. We calculate on

average over simulations the difference between the pos-

terior amplitudes, jhÂi � ÂExactij (to probe bias) and the

variance hjÂi � ÂExactj2i (to probe posterior differences in

each realization). We require both quantities to be smaller

than 1=l, where Âi is the best-fit value from one of the

likelihood approximations given in Sec. III A. As expected,

the symmetric Gaussian distributionLS shows a very poor

fitting as its variance is larger than the systematic error. The

quadratic approximation LQ gives results almost identical

to the systematic error and hence is not a good enough

approximation. The GaussianD results are probably good

enough, but the WMAP approximation and approximation

developed in Ref. [6] are much better. The fiducial

Gaussian approximation is exactly unbiased in this simple

test and is not shown. Any of these last four approxima-

tions should be adequate for temperature parameter esti-

mation, at least assuming cut-sky accuracy with realistic

noise follows the full-sky behavior. The new likelihood

approximation by construction is also exactly correct in

this full-sky case.

B. Cut-sky tests

We now move on to test the approximations on the cut

sky. In particular we want to check that any bias on

parameter constraints is much smaller than the posterior

error, and that the likelihood function has the right shape.

To do this we calculate simple pseudo-Cl estimators for

azimuthal cuts with isotropic noise where the exact like-

lihood function can also be computed in reasonable time.

Although idealized, realistic cuts are often approximately

azimuthal due to the disk shape of the galaxy, and consis-

FIG. 1 (color online). The plot compares various likelihood approximations on the full sky for the case of a single field (temperature

only) and no noise. The left-hand panel shows the difference between best-fit posterior amplitude of a �l ¼ 10 bin with the likelihood
approximations and the exact likelihood over 10 000 simulations where AExact is the best-fit amplitude of the exact likelihood and AS,
AQ, AD and AWMAP are the best-fit amplitudes of the symmetric Gaussian, quadratic, GaussianD and WMAP approximations,

respectively. The right-hand panel shows the root-mean-square difference. These two quantities are compared to the systematic error

tolerance. Only the symmetric Gaussian and the quadratic approximations are clearly not good enough. The fiducial Gaussian and new

likelihood approximations are not shown as they are exactly unbiased in this simple test case with a correct fiducial model.

SAMIRA HAMIMECHE AND ANTONY LEWIS PHYSICAL REVIEW D 77, 103013 (2008)

103013-10



tency in this simple case is clearly necessary (if not strictly

sufficient) to justify the use of a given likelihood approxi-

mation. An azimuthal cut introduces most of the qualitative

differences in a cut-sky analysis, namely, correlations be-

tween different l and not-exactly Wishart distributions of

the Ĉl. The detailed derivations of the pseudo-Cl estima-

tors, the covariance matrix and the exact likelihood for

correlated fields are reviewed in Appendix D. We test the

more general case of anisotropic noise and asymmetric

cuts later in Sec. V.

1. Single-field results

The approximations used in the analysis of the tempera-

ture power spectra in the cut sky are given below, where Cl
are taken to include noise and ½M�1�ll0 is the inverse of the
covariance matrix ½M ¼ MðXÞ; M̂ ¼ MðX̂Þ� when only a

single field is considered:

�2 lnLWMAP ¼
1

3

X

ll0
ðĈl�ClÞ½M�1�ll0ðĈl0 �Cl0Þ

þ 2

3

X

ll0
ln

	
Ĉl
Cl




Cl½M�1�ll0Cl0 ln
	
Ĉl0

Cl0




: (53)

�2 lnL�1=3 ¼ 9
X

ll0
ðĈ�1=3

l � C�1=3
l ÞClĈ1=3

l ½M̂�1�ll0Ĉ1=3
l0

� Cl0ðĈ�1=3
l0 � C�1=3

l0 Þ; (54)

� 2 lnLD ¼
X

ll0
ðĈl � ClÞ½M�1�ll0ðĈl0 � Cl0Þ þ logjMj;

(55)

� 2 lnLf ¼
X

ll0
ðĈl � ClÞ½Mf

�1�ll0ðĈl0 � Cl0Þ; (56)

where ½Mf�ll0 is the covariance of some fiducial model,

similar to the one used in new likelihood [see Eq. (50)].

Figure 2 shows the exact likelihood and the approxima-

tions presented in this subsection as a function of the

posterior amplitude for a bin in one simulation. We con-

sider both cases of noise-free and noisy power spectra. The

approximations compare well to the exact result in both

cases, though the results for the Gaussian approximations

are not the right shape far away from the peak. Simulations

were performed for azimuthal cuts with fsky ¼ 0:862.3 We

have also fixed Ĉl at l � 30 to Ĉl ¼ Cl to prevent occa-

sional negative values in the simulations.

2. Correlated-field results

To obtain unbiased results on an amplitude parameter

from n noise-free correlated fields we need the systematic

fractional bias on the amplitude to be
 1=l
ffiffiffi
n

p
. With more

than one field there is of course a lot more freedom than

simply a change in amplitude. Nonetheless it is a useful

FIG. 2 (color online). Single-field likelihood approximation results for the likelihood as a function of bin amplitude, A. The plot

compares the likelihood approximations to the exact likelihood for an azimuthal galactic cut with fsky ¼ 0:862, lmax ¼ 600 and bin

located at 200 � l � 209 for one realization.

3That is a galactic cut of 20�.
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first test as many important parameters, such as those

governing the primordial power spectrum, affect the Cl
essentially through an l-dependent scaling. If there is an

apparent systematic error �Cl in the Cl spectrum, the

criterion for an unbiased amplitude is Tr½C�1
l �Cl�=n


1=l
ffiffiffi
n

p
. Since in practice polarization observations are

likely to be noise dominated compared to the temperature

for the near future, any approximation that satisfies this

criterion will be more than adequate. We should however

also test for accuracy of the likelihood to other changes in

the spectrum, for example, the degree of cross correlation,

as an amplitude scaling is a very special (if relevant) case.

We first test the approximate likelihood function com-

pared to the exact result [see Eq. (34) for exact likelihood

function used]; the result is shown in Fig. 3. The new

likelihood approximation compares quite well with the

exact likelihood, though it is slightly broader due to the

loss of information from compressing the data into a set of

pseudo-Cl power spectrum estimators Ĉl. The fiducial

Gaussian approximation shows significant deviations

from the shape of the exact likelihood far from the peak.

For a quick analysis, the tests in the rest of this section

were performed for spin-0 T- and E-mode only, i.e. the

E-polarization was simulated as a scalar field similar to

temperature so that E=B mixing may be ignored (but T-E

correlations are correctly accounted for). For all simula-

tions, we also fix Ĉl at l � 30 to Ĉl ¼ Cl to avoid negative
estimators and use a bin size of �l ¼ 10.
The first consistency check is that on average over

simulations jhÂi � 1j 
 1=l
ffiffiffi
n

p
: this is sufficient to check

that there is no significant bias in the posterior amplitude.

We ran simulations for an azimuthal cut with fsky ¼ 0:826
with the results shown in Fig. 4. The new likelihood and the

fiducial-Gaussian approximations appear to be unbiased.

We can also check the consistency of the likelihood

function by comparing the binned and unbinned likeli-

hood: as discussed in Sec. III C the likelihood function

for bins with �ðbÞ
l 	 1 should be accurately Gaussian.

For a smooth power spectrum binning can be performed

with very little loss of information, and so the likelihood

PðfCbgjfĈbgÞ can be calculated essentially exactly in the

Gaussian approximation. We can check that this is consis-

tent with the likelihood approximation evaluated using

each l; if it is, then we are using the information in the

Ĉl essentially optimally, at least when the spectrum is very

smooth (even if compressing the sky into a set of Ĉl
estimators is not optimal). Similar to the full-sky single-

field analysis, we calculate on average over simulations the

difference between the posterior amplitudes, jhÂa � Âbij

FIG. 3 (color online). The likelihood as a function of bin

amplitude, A, for the temperature and polarization fields in

one realization. The black (solid) line is the exact likelihood, the

red (dotted) line is the new likelihood and the blue (dashed) line

is the fiducial-Gaussian distribution. Unlike the fiducial-

Gaussian distribution which only agrees well around the peak,

the new likelihood captures the shape of the exact one well. We

used an azimuthal cut with fsky ¼ 0:862, lmax ¼ 500 and bin at

150 � l � 159. Noise is isotropic and uncorrelated and the E
and B modes noise is twice the T noise.

FIG. 4 (color online). The difference between the average of

the posterior amplitude and the true input model compared to the

systematic error [red (solid) line]. The blue (long-dashed) and

the black (dashed) lines represent the differences for the new

likelihood and fiducial Gaussian, respectively. The curves clearly

do not show any significant bias in the posterior amplitudes. The

averages were taken over 5000 simulations (realizations) for

lmax ¼ 800. Simulations were performed for spin-0 T- and

E-mode only and for azimuthal cuts with fsky ¼ 0:862 and a

bin size set to 10.
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and the variance which is the square of the difference,

hjÂa � Âbj2i. We again require both quantities to satisfy

the criterion set earlier, i.e. jhÂa � Âbij, hjÂa � Âbj2i1=2 

1=l

ffiffiffi
n

p
. Figure 5 compares fiducial Gaussian, binned fidu-

cial Gaussian, new likelihood, binned new likelihood and

GaussianD. The plot clearly demonstrates that these ap-

proximations would produce the same results and are good

enough to be used in analyzing CMB data. Figure 6 shows

the comparison between the LS approximation (Gaussian

with variance given by Ĉl), binned LS Gaussian, new

likelihood and binned new likelihood. This shows that

LS is strongly biased when used with unbinned estimators,

but when the data is binned it can produce consistent

results as expected.

The Gaussian approximation with varying covariance,

GaussianD, is significantly slower to compute than the

other approximations. It is compared to the fiducial-model

Gaussian in Fig. 7 for a small number of simulations. Since

the fiducial-Gaussian result is unbiased this shows that

GaussianD is also unbiased to good enough (though not

excellent) accuracy in this case.

V. PARAMETER ESTIMATION TESTS WITH

ANISOTROPIC NOISE

So far we have been using azimuthally symmetric cuts

and assuming that the noise is isotropic. Isotropic noise is

particularly simple case because the variance of the Ĉl
estimators scales as / ðCl þ NlÞ2 to a good approximation.

When the noise is anisotropic, as in realistic observations,

this is no longer the case in general and it is important to

test the likelihood approximations in this more realistic

situation. For example, using a fiducial model covariance

in our approximation of Eq. (47) was motivated in the case

where everything is a function only of (Cl þ Nl). In gen-

eral it may be necessary to instead evaluate the covariance

for each theoretical model to correctly account for the

more complicated scaling of the covariance with the signal.

This could be done, for example, by rescaling a sum of

covariance matrices calculated for noise-only, signal-only

and signal plus noise realizations in some fiducial model.

Although perfectly tractable, we shall see that in the case

of Planck the simpler fiducial model approximation ap-

pears to be adequate.

FIG. 5 (color online). Comparison between various binned and unbinned likelihood approximations. The left plot shows the average

of the difference between the posterior amplitudes of these likelihoods and the right plot shows the variance, both compared to the

systematic error [red (solid) line]. The black (dashed), the cyan (long-dashed), the black (dashed long-dashed), and the blue (dash-

dotted) lines represent the comparison between binned fiducial Gaussian and new likelihood, binned new likelihood and new

likelihood, fiducial Gaussian and binned new likelihood, and binned fiducial Gaussian and binned new likelihood, respectively.

Averages were taken over 200 simulations (realizations) for lmax ¼ 800. Simulations were performed as previously mentioned.

Results are all consistent to the required accuracy.
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We test the likelihood approximations by performing

parameter estimation using single-sky maps simulated cor-

responding to an idealization of the combined Planck

143 Ghz channels with 7 arcmin symmetric Gaussian

beam [14]. The Planck satellite scanning strategy samples

points near the ecliptic poles more densely than near the

equator, and so there is a large (� 100 factor) range of

FIG. 6 (color online). Similar comparison as in Fig. 5 but using the symmetric Gaussian approximation LS. Unlike the binned and

unbinned fiducial Gaussian, the binned and unbinned symmetric Gaussian approximations LS show significant bias. Averages are over

100 simulations (realizations) for lmax ¼ 1000.

FIG. 7 (color online). A test over 20 simulations to compare

the GaussianD and Gaussianf distributions for lmax ¼ 300 and

bin width �l ¼ 10.

FIG. 8 (color online). Smoothed regularized inverse-noise

weight map with WMAP kp2 cut as used by our test Plank-

like simulation analysis. Noise is lowest in the cuspy regions

around the ecliptic poles. The cut gives zero weight to regions

around the galactic plane and numerous point sources. Noise and

cut are smoothed with a 7 arcmin-FWHM Gaussian.
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noise values across the sky [32]. In addition we use the

‘‘kp2’’ map [33,34] as a semirealistic sky cut to simulate

masking out the galaxy and point sources. Details of our

simulation, hybrid pseudo-Cl analysis and covariance

model (following Ref. [19]) are given in Appendix E. In

the high signal to noise regime the hybrid estimator uses an

approximate inverse-noise weighted map with sky cut. As

shown in Fig. 8 this is highly anisotropic. This inverse-

noise weighted map is combined with a uniform-weighted

map to give Cl estimators that are fairly close to optimal on

all scales with l * 30. For our simple test we assume a

noise level average equivalent to the number for the

143 Ghz channel quoted in the Planck science case [14].

We take the polarization and temperature pixel noise to be

uncorrelated and proportional, with the polarization noise a

factor of 4 larger than the temperature.

We use the range 30 � l � 2000 for test parameter

estimation from simulations; the low l likelihood is prob-

lematic because the pseudo-Cl estimators are not guaran-

teed to be positive definite, and the covariance structure

becomes complicated due to E=Bmixing effects on the cut

sky. It may be possible to obtain reliable results from the ~Cl
directly (without inverting to the unbiased estimators),

using maximum likelihood or other more optimal estima-

tors, however at low l the likelihood function can also be

calculated essentially exactly in reasonable computational

time, so here we focus on the higher l region where an

exact analysis is intractable. Investigation of the low l
likelihood function for Planck-like noise, how to combine

with higher-l approximations, and dealing with real-world

complications such as foregrounds is beyond the scope of

this paper.4
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FIG. 9 (color online). Parameter constraints from six idealized Planck-like single map simulations with anisotropic noise as

described in the text. The 1-dimensional marginalized posteriors are from using the new likelihood approximation with hybrid

pseudo-Cl temperature, E-polarization and cross-correlation estimators at l > 30. The optical depth was fixed, and the simulation

input parameters are shown with vertical lines. Very similar results are obtained if the noise-dominated B-polarization estimators are

included with no tensor modes.

4If only temperature is used then the new likelihood approxi-
mation works reliably with pseudo-Cl estimators down to l ¼ 2
in almost all realizations.
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From the simulated Ĉl estimators we calculate the like-

lihood function of a given theoretical model using a like-

lihood approximation. This is used in the COSMOMC

[13,35] parameter estimation code to sample from the

posterior parameter distribution [15]. For our tests we

consider a vanilla adiabatic flat �-CDM model, with

baryon density �bh
2, dark matter density �ch

2, ampli-

tude, spectral index and running of the primordial power

spectrum (As, ns and nrun), and the parameter �, 100 times

an approximation of the ratio of the sound horizon to the

angular diameter distance at recombination. The age,

Hubble parameter (H0 km s�1 Mpc�1) and matter density

relative to critical�m are derived parameters. Since we are

only considering the likelihood at l � 30 we fix the optical
depth to reionization; our simulated parameter constraints

are therefore tighter than expected from a full realistic

analysis.

Figure 9 shows the consistent marginalized parameter

constraints obtained when using the new likelihood ap-

proximation to analyze a set of sky simulations. Very

similar constraints are obtained whether noise-dominated

B power spectrum estimators are included or not, at least

when there are no tensor modes. The new likelihood ap-

proximation seems to work well with realistically aniso-

tropic noise.

Since in reality we will not know a priori exactly what

fiducial model to choose, it is important that results be

robust to choosing a slightly wrong model. Figure 10

compares the results from one simulation using the new

likelihood approximation compared to using the fiducial-

model Gaussian approximation; the fiducial models have

ns ¼ 1 (wrong) and ns � 0:955 (true), a difference of

many sigma at Planck sensitivity. All the results are

broadly consistent, but the fiducial-model Gaussian ap-

FIG. 10 (color online). Parameter constraints from single idealized Planck-like simulations with anisotropic noise. The 1-

dimensional marginalized posteriors are from using the new likelihood and the fiducial-Gaussian approximations, and compare the

results obtained when assuming an exactly correct fiducial model or using a wrong ns ¼ 1 model. The red (dotted) line is the new

likelihood with the right model, the black (solid) line is new likelihood with the wrong model, which agree very well. The green

(dashed) line is the fiducial Gaussian with the right model and the blue (dash-dotted) line is the fiducial Gaussian with the wrong

model. The new likelihood results are consistent but the fiducial-Gaussian results are slightly affected by the choice of the model.
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proximation shows some dependence on the choice of

fiducial model. The new likelihood approximation results

are more independent of the choice of fiducial model, and

so appear to be more robust as expected.5 The values of the

goodness-of-fit parameter �2
eff (see Appendix B) are also

much more stable for the new approximation compared to

the fiducial Gaussian; the new likelihood approximation

best fits differ by ��2
eff � 4, but the fiducial-model

Gaussian approximations differ by ��2
eff � 400. With a

fiducial model chosen to be sensibly closer to the maxi-

mum likelihood model both numbers should be signifi-

cantly smaller.

Although detailed analysis of secondary signals is be-

yond the scope of this paper, in Appendix E 4 we show that

with Planck noise levels our likelihood approximations

also work when applied to lensed CMB fields and the

covariance is estimated simply by using the lensed power

spectra.

VI. CONCLUSIONS

In this paper we have attempted to find solutions to the

problems facing the likelihood analysis of the CMB tem-

perature and polarization estimators on small scales. With

realistic data we need to be able to calculate the likelihood

accurately from partial-sky observations. Previous at-

tempts have established some excellent approximations

to model the non-Gaussianity of the temperature likelihood

function. However, no good general approximation has

been derived to model the polarized likelihood. At large l
computing the likelihood function exactly is computation-

ally prohibitive and the correlation between the tempera-

ture and polarization fields makes it more complicated than

for the temperature field only. We gave a new general

approximation that can account for this correlation and is

exact on the full sky. This new approximation is fast to

evaluate as it involves a precomputed covariance indepen-

dent of Cl, and appears to be more than adequate to obtain

robust parameter constraints from clean small-scale CMB

temperature and polarization data.

In summary, our conclusions regarding the modeling of

the likelihood function of power spectrum estimators are:

(i) In the case of binned power spectra, the number of

modes per bin (nm=nb) must be much larger than the

number of bins (nb) for non-Gaussian corrections to

the likelihood function to be unimportant in all

cases; i.e. nb 

ffiffiffiffiffiffi
nm

p
is required to ensure that pa-

rameter bias is much smaller than the error bar.

(ii) A Gaussian approximation with fixed fiducial-

model covariance gives unbiased results for smooth

power spectra at high l, but error bars have some

dependence on the choice of the fiducial model.

Goodness-of-fit estimators �2
eff can be misleading

even for small differences between the fiducial and

true model.

(iii) A Gaussian approximation with covariance that

varies with parameters can give reliable results at

high l for smooth spectra, but only if the determi-

nant term is consistently included; the quadratic

approximation without determinant, LQ, is biased

in general.

(iv) The new likelihood approximation presented in

Sec. III E appears to work well for power spectrum

estimators with correlated fields and can give nearly

optimal results when applied to good power spec-

trum estimators. It is fast to evaluate as it relies on a

precomputed fiducial-covariance matrix, but is in-

sensitive to small errors in the fiducial model. We

recommend it for future work.

(v) Most likelihood approximations with binned esti-

mators (nb 

ffiffiffiffiffiffi
nm

p
) can produce consistent results

by the central limit theorem; for smooth

power spectra consistency of parameter constraints

with those from binned power spectra is a good

check.

Since the new likelihood approximation is based on

estimators and a covariance matrix, it is likely to generalize

well to more realistic data where additional uncertainties,

non-Gaussianities and correlations can be accounted for

via changes to the estimator covariance. It is also likely to

produce good results down to low l if positive-

definite estimators are used, though this has not been the

focus of this paper. Complications such as correlated noise

may be well encapsulated in the covariance of a set of

maximum likelihood (or similar) estimators, giving a fast

alternative to much slower brute-force likelihood calcula-

tions. If the approximation is nearly correct, importance

sampling techniques could be used to correct the

results with a much smaller number of high-accuracy

calculations.

We have not touched at all on the complications of

foreground modeling, point sources, nonlinear and non-

Gaussian anisotropies (e.g. due to Sunyaev-Zel’dovich),

beam uncertainties, or a plethora of other real-world com-

plications. Extending our work to account for these will be

crucial for the correct interpretation of future data.
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APPENDIX A: USEFUL RESULTS FOR MATRIX

VECTORIZATION

In this appendix we review some results from matrix

theory relating equations involving matrices to those in-

volving vectors of their components, and establish Eq. (10)

in the main text. For further details and references see e.g.

Ref. [12].

The elements of a general matrix A can be assigned

columnwise into a vector vecðAÞ. For matrices A and B

Tr ½ATB� ¼ vecðAÞTvecðBÞ: (A1)

The Kronecker product of an m� nmatrixA with an p�
q matrix B is defined to be the mp� nq matrix

A  B ¼

A11B A12B . . . A1nB

A21B A22B . . . A2nB

..

. ..
. ..

.

Am1B Am2B . . . AmnB

0

B
B
B
B
@

1

C
C
C
C
A
: (A2)

Using this we can write

vec ðABCÞ ¼ ðCT AÞvecðBÞ; (A3)

and using Eq. (A1) this implies

Tr ½ATDEF� ¼ vecðAÞTðFT DÞvecðEÞ: (A4)

For a symmetric n� n matrix there are only nðnþ 1Þ=2
distinct elements, and we define vecpðAÞ to be the corre-

sponding vector of distinct components of A

vecp ðAÞ ¼ A11; A21; . . . An1; A22; A32; . . .
� �

T :

(A5)

The matrix n2 � nðnþ 1Þ=2 matrix Bn is defined so that

for a general square matrix A

vecp ðAÞ ¼ BT
nvecðAÞ ¼ BT

nvecðAþATÞ=2: (A6)

For example, a 2� 2 matrix A has BT
nvecðAÞ ¼

A11; ðA12 þ A21Þ=2; A22

� �
T . The pseudoinverse Bþ

n �
ðBT

nBnÞ�1BT
n can be used to construct vecðAÞ from

vecpðAÞ when A is symmetric:

vec ðAÞ ¼ ðBþ
n ÞTvecpðAÞ: (A7)

Applying Eq. (A4) to symmetric matrices A, C, D and E

we then have

Tr ½ACDE� ¼ vecpðAÞTBþ
n ðE  CÞðBþ

n ÞTvecpðDÞ;
(A8)

and since ðA BÞ�1 ¼ A�1  B�1 (for nonsingular ma-

trices) also

Tr ½AC�1DE�1� ¼ vecpðAÞT½BT
n ðE  CÞBn��1vecpðDÞ:

(A9)

The Ĉl covariance matrix of Eq. (9) is defined by

M l � hvecpðĈl � ClÞvecpðĈl � ClÞTi
¼ BT

n hvecðĈl � ClÞvecðĈl � ClÞTiBn; (A10)

where since Ĉl �
P

malma
y
lm=ð2lþ 1Þ we have

vec ðĈlÞ ¼
1

2lþ 1

X

m

alm  a�lm: (A11)

Using the general results (for appropriately sized matrices)

that ðA  BÞðC DÞ ¼ ðACÞ  ðBDÞ and ðA BÞT ¼
AT  BT gives

vec ðĈlÞvecðĈlÞT ¼ 1

ð2lþ 1Þ2
X

mm0
ðalm  a�lmÞðaylm0  aT

lm0Þ

¼ 1

ð2lþ 1Þ2
X

mm0
ðalmaylm0Þ  ðalmaylm0Þ�:

(A12)

Hence since halmaylm0i ¼ �mm0Cl we have

hvecðĈl � ClÞvecðĈl � ClÞTi ¼
2

2lþ 1
ðCl  ClÞ; (A13)

so that Ml ¼ 2BT
n ðCl  ClÞBn=ð2lþ 1Þ. Then from

Eq. (A9) we have

Tr ½AC�1
l DC�1

l � ¼ 2

2lþ 1
vecpðAÞTM�1

l vecpðDÞ;
(A14)

establishing Eq. (10). As a special case

vecp ðClÞTM�1
l vecpðClÞ ¼

ð2lþ 1Þn
2

: (A15)

If C has eigenvectors feci g with eigenvalues f�ci g then
ðC DÞðeci  edj Þ ¼ ðCeci Þ  ðDedj Þ ¼ �ci�

d
j ðeci  edj Þ;

(A16)

so the determinant is jC Dj ¼ Q

ij�
c
i�

d
j ¼ jCjnjDjn.

Also for symmetric C, so that C  C ¼ ðC  CÞBnB
þ
n ,

we have

BT
n ðC  CÞBnB

þ
n ðei  ejÞ

¼ ½BT
n ðC  CÞBnðBT

nBnÞ�1�BT
n ðei  ejÞ

¼ �i�jB
T
n ðei  ejÞ: (A17)

So there are nðnþ 1Þ=2 distinct eigenvectors BT
n ðei  ejÞ

of ½BT
n ðC  CÞBnðBT

nBnÞ�1�, and hence

jBT
n ðC  CÞBnðBT

nBnÞ�1j ¼
Y

i

Y

j�i
�i�j ¼ jCjnþ1:

(A18)

The matrixBT
nBn is diagonal with n unit entries and nðnþ

1Þ=2� n ¼ nðn� 1Þ=2 that are a half, so jBT
nBnj ¼

2�nðn�1Þ=2 and hence
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jBT
n ðC  CÞBnj ¼ 2�nðn�1Þ=2jCljnþ1: (A19)

The covariance matrix therefore has determinant

jMlj ¼
2n

ð2lþ 1Þnðnþ1Þ=2 jCljnþ1: (A20)

APPENDIX B: FULL-SKY GOODNESS OF FIT

Often people like to quote a chi-squared value as a crude

measure of how well the data fit a given model. In the

context of the full-sky CMB, where the alm are Gaussian,

we could define

�2 �
X

l

ð2lþ 1ÞTr½ĈlC�1
l � (B1)

so that PðfalmgjCÞ / e��
2=2. This is minimized (�2 ¼ 0)

when the alm take their maximum likelihood values (zero).

The mean is h�2i ¼ P

lð2lþ 1Þn and variance
P

l2ð2lþ
1Þn.

Alternatively, we could define an ‘‘effective’’ chi-

squared, measuring the goodness of fit of the fClg to fĈlg
[5]:

�2
eff � �2 lnðPðfClgjfĈlgÞ

¼
X

l

ð2lþ 1ÞfTr½ĈlC�1
l � � logjĈlC�1

l j � ng (B2)

(to within a Cl-independent constant). This is normalized

so that if Cl ¼ Ĉl then �
2
eff ¼ 0. To assess the goodness of

fit we could compare �2
eff to the value expected if Cl were

the true model. The expectation value under the Wishart

distribution can be calculated by performing a Cholesky

decomposition into a lower triangular matrix L, where

C
�1=2
l ĈlC

�1=2
l ¼ LLT , and using the independence of Lij

(the off-diagonal elements being Gaussian distributed, the

diagonal elements chi-squared) [12]. The result is

h�2
effi ¼

X

l

ð2lþ 1Þ
�

n lnðlþ 1=2Þ �
Xn

i¼1

 ðlþ 1� i=2Þ
�

;

(B3)

where  ðxÞ � dðln�ðxÞÞ=dx. For l	 n we have

ð2lþ 1Þ
�

n lnðlþ 1=2Þ �
Xn

i¼1

 ðlþ 1� i=2Þ
�

¼ nðnþ 1Þ
2

þ 1

12

nð2n2 þ 3n� 1Þ
2lþ 1

þOð1=l2Þ; (B4)

so for a large range of l with n
 lmin � l � lmax we have

h�2
effi � ðlmax � lmin þ 1Þnðnþ 1Þ

2
þ 1

24
nð2n2 þ 3n� 1Þ

� lnðlmax=lminÞ: (B5)

The first term is just what we would expect for a Gaussian

distribution in X̂l, the nðnþ 1Þ=2 distinct components Ĉl.

The second term is the logarithmic leading-order correc-

tion. For lmin ¼ 30, lmax ¼ 2000 it is �0:7 (for n ¼ 1),
�4:6 (for n ¼ 2) and�13:7 (for n ¼ 3). The variance can
be calculated similarly, giving

varð�2
effÞ ¼

X

l

ð2lþ 1Þ
�

ð2lþ 1Þ
Xn

i¼1

 0ðlþ 1� i=2Þ � 2n

�

(B6)

¼
X

l

�

nðnþ 1Þþ 1

3

nð2n2 þ 3n� 1Þ
2lþ 1

þOð1=l2Þ
�

(B7)

� 2h�2
effi þ

1

12
nð2n2 þ 3n� 1Þ lnðlmax=lminÞ;

(B8)

where the prime denotes the derivative.

Note that even on the full-sky CMB lensing and other

secondaries would give a nonzero connected four-point

function that would change the variance of the Ĉl from

that calculated here for Gaussian fields.

APPENDIX C: MULTIPLE MAPS

In realistic experiments there are often many maps at

different frequencies, from different detectors, and/or from

different observation periods. Often the noise on these

maps can be taken to be independent to an excellent

approximation. Here we consider the very simple case

where each map has isotropic noise. If there are two

maps að1Þlm and að2Þlm , each containing sky signal plus noise,

the difference map að1Þlm � að2Þlm will be independent of the

signal. With n maps, there are therefore n� 1 linear

combinations that do not depend on the signal, and hence

can be integrated out of the likelihood function. The re-

maining uncorrelated linear combination is the inverse-

noise weighted combined map

aðtÞlm �
P
n
i¼1ðNðiÞ

l Þ�1aðiÞlm
P
n
i¼1ðNðiÞ

l Þ�1
: (C1)

A similar argument applies in real space with anisotropic

noise. The combined map faðtÞlmg is a sufficient statistic for
the likelihood function, and the likelihood analysis could

therefore be based on Cl estimators from the combined

map aðtÞlm. Alternatively we could consider estimating a set

of ĈðijÞ
l from all possible combinations of maps

Ĉ
ðijÞ
l ¼ 1

2lþ 1

X

m

aðiÞ�lm a
ðjÞ
lm: (C2)

In the simple case considered above, the optimal linear

combination of the Ĉijl is / P

ijðNðiÞ
l Þ�1ðNðjÞ

l Þ�1ĈðijÞ
l , and
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using this would be equivalent to using the estimator ĈðtÞ
l

from the combined map aðtÞlm. The likelihood approxima-

tions in the main text could be applied directly to realistic

pseudo-Cl generalizations of this estimator.

An alternative is to use only the off-diagonal correla-

tions, where i � j [30]. In the simplest case we can define

the optimal weighted combination

Ĉ off
l �

P

ij

ðNðiÞ
l Þ�1ðNðjÞ

l Þ�1ĈðijÞ
l ð1� �ijÞ

P

ij

ðNðiÞ
l Þ�1ðNðjÞ

l Þ�1ð1� �ijÞ
: (C3)

Since hĈoff
l i ¼ Cl the estimator is an unbiased estimator of

the Cl regardless of the noise. In some instances it might

therefore be more robust than including the diagonal cor-

relations, where an error in the noise model can lead to an

immediate bias in the estimator. However this estimator is

no longer equivalent to the estimator on the weighted map

aðtÞlm, and has a different distribution. In particular it is not

positive definite. If Ĉoff
l are to be used for parameter

estimation, in principle it may therefore be necessary to

use a different likelihood approximation from those de-

signed for analyzing Wishart-like distributions.

To see how different the distribution is we consider the

very simplest case of foreground-free full-sky maps where

all the maps have identical isotropic noise NðiÞ
l ¼ Nl, and

we consider only a single scalar field (no polarization). We

can define a n-dimensional vector of aðiÞlm, alm. The estima-

tor is then

Ĉ off
l ¼ 1

ð2lþ 1Þnðn� 1Þ
X

m

aylmðeey � IÞalm; (C4)

where e is a vector of ones, ei ¼ 1. The covariance of the
alm is given by

M l � halmaylmi ¼ Clee
y þ NlI: (C5)

The distribution of the Ĉoff
l is then given by

PðĈoff
l jCl; NlÞ ¼

Z

dalmPðalmjMlÞ�
	

Ĉoff
l � �ln

X

m

aylmðeey � IÞalm



¼ 1

2�

Z 1

�1
dk

e�ikĈ
off
l

jI� 2ik�lnMlðeey � IÞjlþ1=2
;

(C6)

where the last line follows from writing the �-function as a Fourier transform and ��1
ln � ð2lþ 1Þnðn� 1Þ. Substituting

for Ml and using jIþ aeeyj ¼ 1þ na, the characteristic function (Fourier transform of the distribution function) is

therefore given by

~PðkjCl; NlÞ ¼
1

½ð1þ 2ik�lnNlÞn�1ð1� 2ikð2lþ 1Þ�1ðCl þ Nl=nÞÞ�lþ1=2
: (C7)

The quantity Cl þ Nl=n � Cl þ NðtÞ
l is just the expectation value of CðtÞ

l from the optimal map. The distribution of Ĉoff
l is

therefore the same as that of the variable ĈðtÞ
l �P

n�1
j¼1 N̂

ðtÞðjÞ
l =ðn� 1Þ, where N̂ðtÞðjÞ

l is the estimator from one of n� 1
independent realizations of the noise. In the limit of many maps, n! 1 keeping the total noise NðtÞ

l fixed, we have

lim
n!1

PðĈoff
l jCl; NlÞ ¼

1

2�

Z 1

�1
dk

e�ikðN
ðtÞ
l
þĈoff

l Þ

½1� 2ikð2lþ 1Þ�1ðCl þ NðtÞ
l Þ�lþ1=2

: (C8)

This evaluates to the exact full-sky likelihood for CðtÞ
l , so

asymptotically with many maps Ĉoff
l þ NðtÞ

l has the same

distribution as CðtÞ
l , and hence the likelihood can be ap-

proximated using the same approximations.

The distribution of Ĉoff
l can be calculated analytically

for the special case n ¼ 2 (as for the marginal distribution

of CTEl [7]), but usually the off-diagonal estimator would

be used only when there are several maps. In general the

moments and cumulants of the distribution of Ĉoff
l can be

calculated from the characteristic function, since

hðĈoff
l Þpi ¼

�

i�p
dp ~PðkÞ
dkp

�

k¼0

	p ¼
�

i�p
dp log ~PðkÞ

dkp

�

k¼0
:

(C9)

In particular we have

	1 ¼ hĈoff
l i ¼ Cl (C10)

	2 ¼ hðĈoff
l � ClÞ2i ¼

2

2lþ 1

	

ðCl þ NðtÞ
l Þ2 þ ðNðtÞ

l Þ2
ðn� 1Þ




(C11)

	3 ¼ hðĈoff
l � ClÞ3i ¼

8

ð2lþ 1Þ2
	

ðCl þ NðtÞ
l Þ3 � ðNðtÞ

l Þ3
ðn� 1Þ2




(C12)
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	p ¼ 2p�1ðp� 1Þ!
ð2lþ 1Þp�1

	

ðCl þ NðtÞ
l Þp þ ð�1Þp ðNðtÞ

l Þp
ðn� 1Þp�1




:

(C13)

The terms involving ðCl þ NðtÞ
l Þ are the equivalent results

for CðtÞ
l . The distribution of Ĉoff

l is therefore slightly less

skewed than for the optimal estimator, but (as expected)

with a slightly broader distribution. The third and higher

moments will be close to those for CðtÞ
l if n	

1þ NðtÞ
l =ðNðtÞ

l þ ClÞ. We therefore anticipate that if there

are enough maps that this criterion is satisfied, n	 2, the
likelihood approximations presented in this paper should

also work well using the estimator Ĉoff
l þ NðtÞ

l .

Note that even though Ĉoff
l is unbiased regardless of the

noise, the posterior mean of Cl will depend on the noise,

and there could therefore be a posterior bias on parameters

even if there is no bias directly on the estimators. This bias

due to noise error is however suppressed by a factor of

�1=l compared the direct bias that would arise from using

CðtÞ
l with an incorrect noise model.

APPENDIX D: CUT-SKY ESTIMATORS,

COVARIANCE AND EXACT LIKELIHOOD

1. Calculating the CMB cut-sky estimators

For limited sky coverage the temperature field is ob-

served over only part of the sky. For full-sky observations

part of the sky is likely to be dominated by galactic fore-

grounds, and CMB observations are effectively only avail-

able over the region of the sky outside a galactic (and point

source) cut. In addition noise properties are generally not

uniform across the sky; indeed a cut sky can be thought of a

full-sky observation with infinite noise in the cut region.

For these reasons it is useful to define a weighted tempera-

ture field ~T given by

~Tð�Þ � WTð�ÞTð�Þ; (D1)

where WT is a weighting function defined over the whole

sky that lies in the range 0 to 1. The simplest weighting

function is zero in the cut region and one in the region with

useful data; however more general window functions can

be useful to obtain more optimal estimators. The pseudo-

harmonics ~aTlm are then defined by the spherical harmonic

transform of ~Tð�Þ. They are related to the underlying

unweighted full-sky coefficients by

~a Tlm ¼
X

l0m0
Wmm0
ll0 aT

l0m0 ; (D2)

where the harmonic window function is defined as

Wmm0
ll0 ¼

Z

d�WTð�ÞYl0m0ð�ÞY�
lmð�Þ:

This can also be expressed as [23]

Wmm0
ll0 ¼

X

l00m00
wT
l00m00

	ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ
4�



1=2

ð�1Þm

� l l0 l00

0 0 0

 !
l l0 l00

�m m0 m00

 !

; (D3)

with the spherical harmonic transform coefficient of the

window function given by

wTlm ¼
Z

WTð�ÞY�
lmð�Þd�:

Similarly, for the polarization field the cut-sky pseudo-

harmonic modes can be expanded as (see for example [18])

~a Elm ¼
X

l0m0
ðþWmm0

ll0 aE
l0m0 þ i�W

mm0
ll0 aB

l0m0Þ; (D4)

~a Blm ¼
X

l0m0
ðþWmm0

ll0 aB
l0m0 � i�W

mm0
ll0 aE

l0m0Þ: (D5)

Here

þW
mm0
ll0 � 1

2ð2Wmm0
ll0 þ �2W

mm0
ll0 Þ; (D6)

�W
mm0
ll0 � 1

2ð2Wmm0
ll0 � �2W

mm0
ll0 Þ; (D7)

with the spin-weighted harmonic window function for spin

s ¼ �2 given by

sW
mm0
ll0 ¼

Z

d�Wpð�ÞsYl0m0ð�ÞsY�
lmð�Þ; (D8)

where sYlmð�Þ are the spin-weighted harmonic functions.

For azimuthal cuts the coupling matrices are diagonal inm,

so Wmm0
ll0 ¼ �mm0Wm

ll0 , and they can be calculated quickly

using a set of recursion relations [18].

The pseudo-Cl power spectra are defined by

~CTTl � 1

2lþ 1

X

m

~aTlmð~aTlmÞ�

~CTEl � 1

2lþ 1

X

m

~aTlmð~aElmÞ�

~CEEl � 1

2lþ 1

X

m

~aElmð~aElmÞ�

~CBBl � 1

2lþ 1

X

m

~aBlmð~aBlmÞ�:

(D9)

Their expectation values are related to the full-sky power

spectra via the relation

h ~CTTl i
h ~CTEl i
h ~CEEl i
h ~CBBl i

0

B
B
B
B
B
@

1

C
C
C
C
C
A

¼
X

l0

MTT
ll0 0 0 0

0 MTE
ll0 0 0

0 0 MEE
ll0 MEB

ll0

0 0 MBE
ll0 MBB

ll0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

CTT
l0

CTEl0

CEE
l0

CBB
l0

0

B
B
B
B
B
B
@

1

C
C
C
C
C
C
A

;

(D10)
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where the coupling matrices are [36]

M TT
ll0 ¼ 1

2lþ 1

X

mm0
jWmm0

ll0 j2 ¼ ð2l0 þ 1Þ�TTðl; l0;W TTÞ

(D11)

MTE
ll0 ¼ 1

ð2lþ 1Þ
X

mm0
jWðmm0Þ

ll0 ðþWðmm0Þ
ll0 Þj

¼ ð2l0 þ 1Þ�TEðl; l0;W PTÞ (D12)

MEE
ll0 ¼ MBB

ll0 ¼ 1

ð2lþ 1Þ
X

mm0
jðþWðmm0Þ

ll0 Þj2

¼ ð2l0 þ 1Þ�EEðl; l0;W PPÞ (D13)

MEB
ll0 ¼ MBE

ll0 ¼ 1

ð2lþ 1Þ
X

mm0
jð�Wðmm0Þ

ll0 Þj2

¼ ð2l0 þ 1Þ�EBðl; l0;W PPÞ: (D14)

The window function enters via its power spectrum W XY
l

given by

W XY
l ¼ 1

2lþ 1

X

m

!X
lm!

Y�
lm ; (D15)

and X and Y being either T or P. For isotropic noise tests
we only consider !X

lm ¼ !Y
lm. The symmetric �-matrices

are defined by

�TTðl1; l2; ~WÞ �
X

l3

ð2l3 þ 1Þ
4�

~Wl3

l1 l2 l3

0 0 0

 !
2

;

�TEðl1; l2; ~WÞ �
X

l3

ð2l3 þ 1Þ
8�

~Wl3
ð1þ ð�1ÞLÞ

� l1 l2 l3

0 0 0

 !
l1 l2 l3

�2 2 0

 !

;

�EEðl1; l2; ~WÞ �
X

l3

ð2l3 þ 1Þ
16�

~Wl3
ð1þ ð�1ÞLÞ2

� l1 l2 l3

�2 2 0

 !
2

;

�EBðl1; l2; ~WÞ �
X

l3

ð2l3 þ 1Þ
16�

~Wl3
ð1� ð�1ÞLÞ2

� l1 l2 l3

�2 2 0

 !
2

;

(D16)

for L ¼ l1 þ l2 þ l3. All other coupling matrices are zero.

Provided that the sky cut is small (the usable region is

larger than half the sky), the coupling matrix in Eq. (D10)

is invertible and pseudo-Cl estimators for the power spec-

trum are given by (see for example [19,29])

ĈTT

ĈTE

ĈEE

ĈBB

0

B
B
B
@

1

C
C
C
A
¼

MTT 0 0 0
0 MTE 0 0
0 0 MEE MEB

0 0 MBE MBB

0

B
B
B
@

1

C
C
C
A

�1 ~CTT

~CTE

~CEE

~CBB

0

B
B
B
@

1

C
C
C
A
:

(D17)

The estimators are unbiased, hĈli ¼ Cl. When the ob-

served area is small the matrix is not invertible. In this

case the Cl can be binned into bands to construct band-

power estimates of the power spectrum [23] in an analo-

gous manner. Here we shall focus on nearly full-sky ob-

servations such as expected from the Planck satellite where

estimates can be obtained for each Cl individually.
Unlike in the full-sky case, the exact cut-sky likelihood

function cannot be written purely in terms of a set of

pseudo-Cl estimators, so the compression of the observed

data to the estimators is not lossless. However it can be a

good approximation, and the estimators are convenient

because the correlations between the Ĉl induced by the

sky cut are accounted for easily.

2. Covariance matrix

The covariance matrix of the ~CTTl is given by

h� ~CTTl � ~CTTl0 i ¼ 2

ð2lþ 1Þð2l0 þ 1Þ
X

mm0

X

l1m1

X

l2m2

CTTl1 C
TT
l2
W
mm1

ll1

� ðWm0m1

l0l1
Þ�Wm0m2

l0l2
ðWmm2

ll2
Þ�: (D18)

As suggested by Ref. [19], this expression of the ~CTTl
covariance matrix may be simplified for the case of a

narrow galactic cut. In this case, CTTl1 and CTTl2 can be

replaced with CTTl and CTT
l0 , respectively, and then by

applying the completeness relation for spherical harmonics

[37], the temperature ~Cl’s covariance matrix would be

given by

h� ~CTTl � ~CTTl0 i ¼ 2CTTl CTT
l0 �TTðl; l0;W TTÞ: (D19)

The covariance matrix of the Ĉl estimators is then given

by

h�ĈTTl �ĈTTl0 i ¼
X

l1l2

M�1
ll1
M�1

l0l2
h ~CTTl1 ~CTTl2 i: (D20)

Unfortunately, the other covariances do not simplify as

easily since the completeness relation works only for the

spherical harmonics with similar spin. For our azimuthal

tests we use WTð�Þ that takes values 1 or 0 and approxi-

mate the pseudocovariances by the following

h� ~CTTl � ~CTTl0 i � 2
CTTl CTT

l0

ð2l0 þ 1ÞM
TT
ll0 ; (D21)
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h� ~CTEl �~CTEl0 i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CTl C
T
l0C

E
l C

E
l0

q

ð2l0 þ 1Þ MTE
ll0 þ CTEl CTE

l0

ð2l0 þ 1ÞM
TT
ll0 ;

(D22)

h� ~CEEl � ~CEEl0 i � 2
CEEl CEE

l0

ð2l0 þ 1ÞM
EE
ll0 þ 2

CBBl CBB
l0

ð2l0 þ 1ÞM
EB
ll0 ;

(D23)

h� ~CBBl � ~CBBl0 i � 2
CBBl CBB

l0

ð2l0 þ 1ÞM
BB
ll0 þ 2

CEEl CEE
l0

ð2l0 þ 1ÞM
EB
ll0 ;

(D24)

h� ~CTTl � ~CEEl0 i � 2
CTEl CTE

l0

ð2l0 þ 1ÞM
TT
ll0 ; (D25)

h� ~CTTl � ~CTEl0 i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CTTl CTT
l0

q

ðCTEl þ CTE
l0 ÞMTT

ll0

ð2l0 þ 1Þ ; (D26)

h� ~CEEl � ~CTEl0 i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CEEl CEE
l0

q

ðCTEl þ CTE
l0 ÞMTE

ll0

ð2l0 þ 1Þ ; (D27)

h� ~CEEl � ~CBBl0 i �
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CEEl CEE
l0

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CBBl CBB
l0

q

Þ2

2ð2l0 þ 1Þ MEB
ll0 : (D28)

Note that in the presence of isotropic noise the Cl here
include the noise contribution.

At high l one can approximate MTE
ll0 ¼ MEE

ll0 ¼
MBB

ll0 ¼ MTT
ll0 , since the spin�2 harmonics become close

to the spin zero ones. Note our approximations in

Eqs. (D26) and (D27) differ from those in Ref. [25]: since

the CTEl can be negative we require consistency with the

exact result on the full sky rather than forcing these terms

to be positive. Also, note the difference in Eqs. (D23) and

(D24) from those in Ref. [25]. More general results appli-

cable with anisotropic noise and general weight function

are given in Appendix E. More accurate results accounting

for the complications of E=Bmixing are given in Ref. [31];

see also Ref. [27]. Note that inaccuracies in the covariance

matrix generally only affect the error bars; to this extent

accuracy is less crucial than getting the estimators or like-

lihood function accurate, since there an inaccuracy could

introduce biases.

The covariance of the Ĉl estimators can be calculated

from the ~Cl covariance using the relevant coupling

matrices.

3. Exact likelihood for temperature and polarization

Although an exact likelihood calculation is prohibitively

slow in general, for azimuthal sky cuts the relevant matri-

ces are block-diagonal in m and the calculation is numeri-

cally tractable. For the special case of azimuthal cuts we

can therefore test cut-sky likelihood approximations

against the exact result.

For each m we can define a vector of pseudoharmonic

coefficients

~X �
~aTlm

~aEl þ i~aBlm
~aElm � i~aBlm

0

B
@

1

C
A

¼
WðmÞ
ll0 0 0

0 2W
ðmÞ
ll0 0

0 0 �2W
ðmÞ
ll0

0

B
B
@

1

C
C
A

aT
l0m

aE
l0m þ iaB

l0m
aE
l0m � iaB

l0m

0

B
@

1

C
A;

(D29)

which can simply be written as

~X ¼ diagðWðmÞ
ll0 ; 2W

ðmÞ
ll0 ;�2W

ðmÞ
ll0 ÞX: (D30)

For Gaussian fields ~X is just a linear combination of

Gaussian harmonics, and hence also Gaussian. However

due to the sky cut the coupling matrix is not directly

invertible, as the W-matrices will have eigenvalues very

close to zero (corresponding to modes localized in the

unobserved region). However we can use a singular value

decomposition (SVD) to isolate the observable indepen-

dent modes following Ref. [17,18]. We diagonalize the

transformation matrix as diagðWðmÞ
ll0 ; 2W

ðmÞ
ll0 ;�2W

ðmÞ
ll0 Þ ¼

UDUy and define new linear combinations:

X 0 ¼ D̂�1=2Ûy ~X ¼ D̂1=2ÛyX: (D31)

Here D̂ denotes the smaller square matrix obtained fromD

by deleting nearly zero rows and columns. Û is the corre-

sponding rectangular matrix obtained from U by deleting

the corresponding columns.

The signal correlation is

S ¼ hX0X0yi ¼ D̂1=2ÛyhXXyiÛD̂1=2

¼ D̂1=2Ûy
CTTl CTEl CTEl
CTEl CEEl þ CBBl CEEl � CBBl
CTEl CEEl � CBBl CEEl þ CBBl

0

B
@

1

C
AÛD̂1=2:

(D32)

If the noise is isotropic and uncorrelated, this frame

structure provides a diagonal noise correlation [18]:

h ~XN
~Xy
Ni ¼ �2

N diagðWðmÞ
ll0 ; 2þW

ðmÞ
ll0 ; 2�W

ðmÞ
ll0 Þ ) N

¼ hX0
NX

0y
N i ¼ �2

N diagð1; 2; 2Þ; (D33)

where we have considered �T2N ¼ �2
N and �E2N ¼ �B2N ¼

2�2
N for simulation purposes.

Given that the signal and noise are Gaussian, the like-

lihood function is then given by
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L ðfCTl ; CEl ; CTEl ; CBl gjX0Þ / exp½� 1
2X

0yðSþNÞ�1X0�
jSþNj1=2 :

(D34)

The only approximation is in the choice of cutoff value for

the SVD; for nonzero noise the result is insensitive to this

choice as long as it is small.

APPENDIX E: ANISOTROPIC NOISE:

ESTIMATORS AND TEST SIMULATION

1. Hybrid pseudo-Cl estimators with cross weights

We consider pixelized maps with anisotropic but uncor-

related pixel noise variance�2
s (in this section theCl do not

include noise). We generalize the hybrid pseudo-Cl
method of Ref. [26] slightly to include pseudo-Cl estima-

tors from mixed weights, e.g. using a set of pseudo-Cl’s

~C XY;ij
l � 1

2lþ 1

X

m

~aX;ilm ~aY;j�lm ; (E1)

where ~aX;ilm is defined using weight function wi. For each X
and Y there are therefore nðnþ 1Þ=2 distinct estimators if

X ¼ Y, or n2 if X � Y, where n is the number of weight

functions. For high signal to noise the best weight function

should be close to uniform to minimize cosmic variance,

for low signal to noise it should be proportional to the

inverse noise to minimize the noise [19]. Combining re-

sults from two weight functions, one with uniform and one

with inverse-noise weighting, is therefore perhaps the most

natural choice, especially if the polarization noise is pro-

portional to the temperature noise in each pixel as we

assume for our test simulations. Including the cross esti-

mator between maps with different weight functions is

particularly useful for estimating CTEl : since the polariza-

tion noise is much larger than the temperature, over a wide

range of scales the cross estimator between uniform and

inverse-noise weighted maps is much better than using

uniform/uniform or inverse noise/inverse noise. Even for

the temperature case there is a range of scales in between

noise and signal domination where the cross estimator can

be useful. Including more than two weighting functions

seems to gain very little, so we use just two.

The unbiased Ĉl estimators are constructed using the

coupling matrix

Ĉ
XY;ij
l ¼ ½MXY;ij��1

ll0
~CXY;ij
l0 ; (E2)

where

M
XY;ij
ll0 ¼ ð2l0 þ 1Þ�XYðl; l0; ~WijÞ;

~Wij � 1

2lþ 1

X

m

wilmw
j
lm ;

(E3)

and the coupling matrices are defined in Eq. (D16).

The noise contribution to the pseudo-Cl is given, for

uncorrelated pixel noise ð�Ts Þ2, ð�Qs Þ2, ð�Us Þ2 and pixel area

�s, by

~NTT;ij
l ¼ 1

4�

X

s

ð�Ts Þ2wiðsÞwjðsÞ�2
s ; (E4)

~N EE;ij
l ¼ ~NBB;ij

l ¼ 1

8�

X

s

½ð�Qs Þ2 þ ð�Us Þ2�wiðsÞwjðsÞ�2
s ;

(E5)

with other combinations being zero. We then have

hĈXY;ijl i ¼ CXYl þ ½MXY;ij��1 ~NXY;ij
l .

From multiple pseudo-Cl estimators with different

weight functions one can either attempt to apply the like-

lihood approximations directly to the complete set of esti-

mators, or one can compress into a single hybrid estimator.

At low l it is likely to be beneficial to also include more

optimal estimators than pseudo-Cl, especially for the po-

larization [26].

A hybrid pseudo-Cl estimator can be constructed fol-

lowing Ref. [26]: this is defined by constructing the best-fit

Cl to the multiple estimators by minimizing the Gaussian

approximation to the likelihood using the approximate full

covariance. We do this separately for each temperature-

polarization spectrum, so that the hybrid estimator is just a

linear combination of the individual estimators rather than

mixing estimators of different type. Since the polarization

noise is higher than for the temperature, we consider cross

spectra of the form C
TE;ij
l where i � j, and the weight

functions are ordered so that lower i are more optimal in

the case of lower noise. We then have the same number of

cross-weight spectra for each of the power spectra. Since

the hybrid estimators are just linear combinations of the

separate estimators, their covariance can easily be calcu-

lated from the coupling matrices and full covariance matrix

approximations given below. When including CBBl we

impose a uniform weight function at l < 120 to minimize

E=B mixing effects and ensure that the covariance matrix

approximations below remain accurate. This is suboptimal

but unbiased; we do not investigate the more difficult

problem of optimally constraining the tensor amplitude

here.

2. Covariance matrix approximations

Approximations for some components of the covariance

matrices for the pseudo-Cl’s were given in Ref. [26] for a

general pixel-weighting function wðsÞ (pixels area�s) and

anisotropic but uncorrelated instrumental pixel noise ð�Ts Þ2
and ð�Qs Þ2 ¼ ð�Us Þ2. The approximations essentially make

as many assumptions as necessary for the result to simplify

to the forms given; the approximations should be reason-

ably accurate for small cuts at high l (where sYlm � Ylm)
and noise-dominated B-polarization spectra. Here we sum-

marize these results with slight generalization, and extend

to include all the terms needed for the full polarized and
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correlated estimator covariance. We only consider the case

of using pseudo-Cl estimators from single maps of T, Q
andU with various weighting; the noise properties of cross

spectra between multiple maps with independent noise are

a simple generalization.

Assuming the polarization and temperature noise are

uncorrelated, the covariance of the pseudo-Cl estimators

can be estimated using the approximations (for l	 1 and

significant noise so that E=B mixing effects are small and

large fsky):

h� ~CTT;ijl � ~CTT;pq
l0 i � CTTl C

TT
l0 ½�TTðl; l0; ~WðipÞðjqÞÞ þ�TTðl; l0; ~WðiqÞðjpÞÞ�

þ ðCTl CTl0 Þ1=2½�TTðl; l0; ~W2TðipÞðjqÞÞ þ�TTðl; l0; ~W2TðiqÞðjpÞÞ þ�TTðl; l0; ~W2TðjqÞðipÞÞ
þ�TTðl; l0; ~W2TðjpÞðiqÞÞ� þ�TTðl; l0; ~WTTðipÞðjqÞÞ þ�TTðl; l0; ~WTTðiqÞðjpÞÞ; (E6)

h� ~CTE;ijl � ~CTE;pq
l0 i � ðCTTl CTT

l0 C
EE
l CEE

l0 Þ1=2�TEðl; l0; ~WðipÞðjqÞÞ þ CTEl CTE
l0 �TTðl; l0; ~WðiqÞðjpÞÞ þ�TEðl; l0; ~WTQðipÞðjqÞÞ

þ ðCTTl CTT
l0 Þ1=2�TEðl; l0; ~W2QðipÞðjqÞÞ þ ðCEEl CEE

l0 Þ1=2�TTðl; l0; ~W2TðjqÞðipÞÞ; (E7)

h� ~C;EE;ijl � ~CEE;pq
l0 i � CEEl CEE

l0 ½�EEðl; l0; ~WðipÞðjqÞÞ þ�EEðl; l0; ~WðiqÞðjpÞÞ� þ ðCEEl CEE
l0 Þ1=2½�EEðl; l0; ~W2QðipÞðjqÞÞ

þ�EEðl; l0; ~W2QðiqÞðjpÞÞ þ�EEðl; l0; ~W2QðjqÞðipÞÞ þ�EEðl; l0; ~W2QðjpÞðiqÞÞ�
þ�EEðl; l0; ~WQQðipÞðjqÞÞ þ�EEðl; l0; ~WQQðiqÞðjpÞÞ; (E8)

h� ~C;BB;ijl � ~CBB;pq
l0 i � CBBl CBB

l0 ½�EEðl; l0; ~WðipÞðjqÞÞ þ�EEðl; l0; ~WðiqÞðjpÞÞ�
þ ðCBBl CBB

l0 Þ1=2½�EEðl; l0; ~W2QðipÞðjqÞÞ þ�EEðl; l0; ~W2QðiqÞðjpÞÞ þ�EEðl; l0; ~W2QðjpÞðiqÞÞ
þ�EEðl; l0; ~W2QðjqÞðipÞÞ� þ�EEðl; l0; ~WQQðipÞðjqÞÞ þ�EEðl; l0; ~WQQðiqÞðjpÞÞ; (E9)

h� ~C;EE;ijl � ~CBB;pq
l0 i � ½ðCEEl CEE

l0 Þ1=2 þ ðCBBl CBB
l0 Þ1=2�2 1

2
½�EBðl; l0; ~WðipÞðjqÞÞ þ�EBðl; l0; ~WðiqÞðjpÞÞ�

þ ðCEEl CEEl0 Þ1=2½�EBðl; l0; ~W2QðipÞðjqÞÞ þ�EBðl; l0; ~W2QðiqÞðjpÞÞ þ�EBðl; l0; ~W2QðjpÞðiqÞÞ
þ�EBðl; l0; ~W2QðjqÞðipÞÞ� þ�EBðl; l0; ~WQQðipÞðjqÞÞ þ�EBðl; l0; ~WQQðiqÞðjpÞÞ; (E10)

h�~C;TT;ijl � ~CTE;pq
l0 i � 1

2ðCTTl CTT
l0 Þ1=2ðCTEl CTE

l0 Þ½�TTðl; l0; ~WðipÞðjqÞÞ þ�TTðl; l0; ~WðiqÞðjpÞÞ�
þ 1

2ðCTEl þ CTE
l0 Þ½�TTðl; l0; ~W2TðipÞðjqÞÞ þ�TTðl; l0; ~W2TðjpÞðiqÞÞ�; (E11)

h� ~C;EE;ijl � ~CTE;pq
l0 i � 1

2ðCEEl CEE
l0 Þ1=2ðCTEl CTE

l0 Þ½�EEðl; l0; ~WðipÞðjqÞÞ þ�EEðl; l0; ~WðiqÞðjpÞÞ�
þ 1

2ðCTEl þ CTE
l0 Þ½�EEðl; l0; ~W2QðipÞðjqÞÞ þ�EEðl; l0; ~W2QðjpÞðiqÞÞ�; (E12)

h� ~CTT;ijl � ~CEE;pq
l0 i � CTEl CTE

l0 ½�TTðl; l0; ~WðipÞðjqÞÞ þ�TTðl; l0; ~WðipÞðjqÞÞ�; (E13)

where the various window functions appearing are determined by the power spectra

~W ðijÞðpqÞ
l ¼ 1

2lþ 1

X

m

wijlmw
pq�
lm ; (E14)

~W TTðijÞðpqÞ
l ¼ 1

2lþ 1

X

m

ðwT;ijlm wT;pq�lm Þ; ~WTQðijÞðpqÞ
l � ~WTUðijÞðpqÞ

l ¼ 1

2lþ 1

X

m

ðwT;ijlm wQ;pq�lm Þ; (E15)

~W 2TðijÞðpqÞ
l ¼ 1

2lþ 1

X

m

ðwijlmwT;pq�lm Þ; ~W2QðijÞðpqÞ
l � ~W2UðijÞðpqÞ

l ¼ 1

2lþ 1

X

m

ðwðijÞ
lm w

Q;pq�
lm Þ; (E16)
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~W QQðijÞðpqÞ
l � ~WQUðijÞðpqÞ

l � ~WUUðijÞðpqÞ
l ¼ 1

2lþ 1

X

m

wQ;ijlm wQ;pq�lm ; (E17)

and the harmonic coefficients are given as sums over pixels

with area �s as

wijlm ¼
X

s

wiðsÞwjðsÞ�sYlmðsÞ�;

wT;ijlm ¼
X

s

ð�Ts Þ2wiðsÞwjðsÞ�2
sYlmðsÞ;

(E18)

w
Q;ij
lm � w

U;ij
lm ¼

X

s

ð�Qs Þ2wiðsÞwjðsÞ�2
sYlmðsÞ: (E19)

At the level of approximation considered here �EE �
�TT ��TE, so there is some ambiguity in which particu-

lar form to use in the approximations. Note that the con-

tribution of E to the ~CBl covariance is neglected, which is a

poor approximation when the noise is not dominant; more

accurate approximations are given in Ref. [31]. If the

B-polarization contribution to the variance becomes im-

portant relative to the noise, the non-Gaussianity of the

lensed B-polarization field also becomes an issue (see e.g.

Ref. [6]). For Planck noise levels the B-lensing signal is

well below the noise and E=B mixing effects are also well

below the noise at l * 100.
The covariance matrix for the Ĉl estimators is deter-

mined straightforwardly by applying the inverse coupling

matrix to the above results. The covariance of the hybrid

estimator is then just a contraction of the full multiestima-

tor covariance with the hybrid mixing matrix.

3. Test simulations

The diagonal of the covariance matrix approximations

given above agree very well with simulations at l * 30 if

the weight map does not have too much small-scale power.

The covariance approximations are more sensitive to

small-scale power in the noise and weights than the cou-

pling matrices; for this reason we use a smoother mask and

noise map than is needed to obtain an accurate coupling

matrix. This avoids numerical issues in our tests so that we

can focus on any errors due to the likelihood approxima-

tions. We use a HEALPIX [38,39] pixelization at Nside ¼
2048, upgrading the simulated Planck noise map [32] and

convolving it with 7 arcmin Gaussian kernel so that it is

smooth on this scale. For the mask we take the WMAP kp2

map, upgrade toNside ¼ 2048 (12� 20482 pixels), smooth

with 7 arcmin kernel, set negative pixels to zero, and

smooth again with a 7 arcmin kernel. This gives point

source cuts that still go to essentially zero, while having

edges smoothly tapering to one. To calculate the pseudo-Cl
estimators we take w1 as uniform weighting (multiplied by

the cut), and a regularized inverse-noise weighting given

by w2ðsÞ / 1=ð�2
s þminð�2

sÞÞ, smoothed with a 7 arcmin

kernel and then multiplied by the cut. We use the same

weight functions for temperature and polarization, and take

ð�Qs Þ2 ¼ ð�Us Þ2 ¼ 4ð�Ts Þ2 for simplicity. Gaussian simula-

tions are done to lmax ¼ 2200 with zero monopole and

dipole. The simulation code is available on the web [35].

4. Lensed simulation

The largest nonlinear effect on intermediate scales is

expected to be that of CMB lensing [40]. Detailed model-

ing of the non-Gaussian distribution induced by this effect

is beyond the scope of this paper, however for Planck noise

levels the non-Gaussianity can be neglected to good ap-

proximation when performing parameter analyses from the

lensed CMB power spectra [41]. The effect of lensing on

the power spectrum is many percent, and must be included

to obtain correct parameters with Planck. We update the

LENSPIX code [42] to quickly simulate high-resolution

lensed maps accurately. Our simulation method is as fol-

lows: (1) we simulate a HEALPIXmap of a realization of the

lensing deflection angle from a Gaussian realization of the

lensing potential; (2) Divide the sphere into a number of

slices separated by lines at constant polar angle �, and
assign each slice to a different processor (with some over-

lap given by the largest �-deflection); (3) each processor

simulates a Gaussian unlensed CMB map over its assigned

slice on an equicylindrical grid; (4) interpolate from the

equicylindrical grid to the deflected positions correspond-

ing to the center of HEALPIX pixels offset by the deflection

angles. Equations used for simulating gradient maps, de-

flecting points along geodesics, and appropriately rotating

Stokes parameters are given in Ref. [42]. Our updated code

is publicly available [43].

For our simulation we use Nside ¼ 2048, and generate

equicylindrical unlensed grids with points at 6144 different

� values (interpfactor ¼ 1:5, effectively the same resolu-

tion as HEALPIX at Nside ¼ 2048). The number of 
-pixels
is chosen for each slice to be of the form 2n3m (for integer

n, m) so that fast Fourier transforms can be performed

quickly, with lowest spacing roughly the same as the

spacing in �. To interpolate we use an extended cubic

interpolation algorithm TOMS760 [44]; this is signifi-

cantly slower than a basic bicubic interpolation scheme,

but more accurate and stable—it ensures our results con-

verge as the number of equicylindrical pixels is increased.

Averaged over simulations our simulated lensed CMB

power spectra then agree at the 0.1%-level with theoretical

expectations for the same lmax [40,45]. Other simulation

methods are discussed in Refs. [46–49], though nonlinear

evolution effects are minor at Planck noise levels. Since the

unlensed CMB is not bandlimited but contains residual

power at l � 2000 our method does not rely on bandlim-

ited interpolations and works directly with maps that con-
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tain power up to the highest simulated lmax. On a modern

few-node cluster lensed maps with polarization can be

simulated in a few minutes.

Figure 11 shows parameter estimation constraints gen-

erated using a set of simulated lensed maps with Planck-

like noise, and modeling the covariance as in the unlensed

case simply by using the lensed power spectra instead of

the unlensed ones. A more optimal analysis would use the

non-Gaussian information in the lensed field to indirectly

constrain the lensing potential and hence cosmological

parameters (see e.g. references in [40]), though it is unclear

how much can be gained in the presence of real-world

complications.
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