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Abstract
Multivariate binary data arise in a variety of settings. In this paper, we propose a practical and efficient
computational framework for maximum likelihood estimation of multivariate probit regression
models. This approach uses the Monte Carlo EM (MCEM) algorithm, with parameter expansion to
complete the M-step, to avoid the direct evaluation of the intractable multivariate normal orthant
probabilities. The parameter expansion not only enables a closed-form solution in the M-step but
also improves efficiency. Using the simulation studies, we compare the performance of our approach
with the MCEM algorithms developed by Chib and Greenberg (1998) and Song and Lee (2005), as
well as the iterative approach proposed by Li and Schafer (2008). Our approach is further illustrated
using a real-world example.
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1 INTRODUCTION
Correlated binary data arise in a variety of applications related to biological, social, medical,
and engineering research. In industrial quality control experiments, for example, several quality
characteristics may be monitored simultaneously (Lu, 1998), or a single quality attribute may
be monitored over time (Girard and Parent, 2001). Since the work of Ashford and Sowden
(1970), the multivariate probit (MP) model has been a popular method for analyzing such data.
The MP model is described in terms of a correlated multivariate normal variable that is linked
to the observed multivariate discrete variable through a threshold specification.

Although the MP model can accommodate an arbitrarily complicated correlation structure, the
computational burden associated with the evaluation of its likelihood function makes the
general structure an uncommon choice. Instead special correlation structures have been
proposed (see, e.g., Kolakowski and Bock, 1981; Ochi and Prentice, 1984). With these
restrictive structures, the multivariate normal probabilities can be easily approximated using
numerical methods. This simplifies the problem but at the expense of being able to examine
the general correlation structure among variables.

Alternative approaches, including exploratory factor analysis models (Bock and Aitkin,
1981), have been proposed. These approaches are extendable to the general correlation case.
In particular, the correlation matrix is assumed to have the form ΛΛ′ + D2, where Λ is a p ×
m factor loading matrix, D2 is a p × p diagonal matrix, and p and m are the number of
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dichotomous responses and the number of latent factors, respectively. This model has been
extended by Bock and Gibbons (1996) to include fixed covariates and applied to studies on
early childhood development of psychiatric disorders (Gibbons and Lavigne, 1998) and health
service utilization and insurance coverage (Gibbons and Wilcox-Gok, 1998).

In these models, the normal orthant probabilities involved in the evaluation of the likelihood
function were approximated using high dimensional Gaussian-Hermite quadrature with five
or more quadrature points in each dimension. Meng and Schilling (1996) point out a reliability
problem for the Gaussian-Hermite quadrature in approximating the high dimensional normal
orthant integrals. Instead an MCEM algorithm was recommended for the maximum likelihood
(ML) estimation.

This MCEM approach was applied by Song and Lee (2005) in their confirmatory factor analysis
for MP models, which can also be extended to handle an arbitrary correlation structure.
Specifically, the correlation matrix is assumed to have the form Γ + cI, where I is an identity
matrix, c is a pre-assigned value, and Γ is a positive definite symmetric matrix. Although
extendable to the general correlation case, the choice of c has to be fixed before model
estimation, which is not realistic in practice. An inappropriate value of c can result in
convergence to a non-optimal point.

Likelihood analysis of MP models with a general correlation structure was also considered by
Chib and Greenberg (1998) using the MCEM algorithm. In the M-step, the correlation
coefficients were updated with a Newton-Raphson type routine. Li and Schafer (2008)
considered the MP model for longitudinal data, where the multivariate normal orthant
probabilities were approximated using the Genz method (Genz, 1992, 1993). The parameter
estimates were obtained by iteratively maximizing the log-likelihood with respect to one set
of parameters (i.e., regression coefficients or correlation coefficients) with the other set of
parameters fixed at their current values. While these approaches are general, the computational
effort can be rather heavy since both approaches involve high-dimensional optimizations.

Inspired by the idea of parameter expansion and its use in the Bayesian analysis of correlated
binary data (Lawrence, Bingham, Liu, and Nair, 2008), we propose a method for the maximum
likelihood inference in the MP model with a general correlation structure using a similar
expansion. This technique, in combination with the Monte Carlo technique, is used to overcome
the previously mentioned computational difficulties of the other methods. The parameter
expansion technique was originally proposed to accelerate the convergence rate of EM
algorithms (Liu, Rubin, and Wu, 1998). This approach is used here to simplify the M-step of
the MCEM algorithm, with the added benefit of faster convergence. Convergence of the
parameter expanded MCEM (PX-MCEM) algorithm is addressed using the Genz method.

The rest of the paper is organized as follows. Section 2 describes the structure of the general
MP model. Implementation of the model using the PX-MCEM algorithm, along with the
convergence of the algorithm and standard error computations, is presented in Section 3. Data
from a real-world application are analyzed in Section 4, where a comparison of the performance
of our approach to methods proposed by Chib and Greenberg (1998), Song and Lee (2005),
and Li and Schafer (2008), is provided using simulation studies. This is followed by a brief
discussion.

2 THE MULTIVARIATE PROBIT MODEL
Let yi = (yi1, yi2, …, yip)′ be a vector that denotes the binary responses of the ith individual (i
= 1, 2, …, N). Let zi denote a p-variate latent variable that is normally distributed with a mean
vector βxi and variance-covariance matrix Σ, where xi = (1, xi1, …, xi,q−1)′ is a q-vector of
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covariates and β = (β0, β1, …, βq−1) is a p × q matrix of regression coefficients of z on x. The
observed binary vector yi is associated with the underlying zi in the following way:

where I(·) is an indicator function. This implies that the probability of the response yi, given
the covariates xi and the parameters β and Σ, is

where ϕp(t; βxi, Σ) is the density of a p-variate normal distribution with mean vector βxi and
variance-covariance matrix Σ. The interval Bij is (−∞, 0] if yij = 0 and (0, ∞) if yij = 1.

It has been noted by Chib and Greenberg (1998) that the parameters β and Σ are not identifiable
according to the observed-data likelihood. For any diagonal matrix D with positive diagonal
elements, it can be shown that

(1)

This implies that the variances in the matrix Σ cannot be estimated based on the likelihood
function. For simplicity, we set them to be unity. Thus the variance-covariance matrix Σ is
restricted to be a correlation matrix R = (ρij).

Augmenting the observed binary data y = [y1, y2, …, yN] with the latent variables z = [z1, z2,
…, zN], the complete-data likelihood function can be written as

(2)

where θ denotes the model parameters β and ρij’s. Integrating over zi’s in (2) yields the
observed-data likelihood of the MP model,

3 ML ESTIMATION VIA THE EM ALGORITHM
The EM algorithm is a powerful tool to turn to when incomplete data are involved (Dempster,
Laird, and Rubin, 1977). For MP models, a challenge arises in that the variance-covariance
matrix Σ is restricted to be a correlation matrix. The maximization step of the EM algorithm
with respect to the correlation coefficients does not have a closed-form solution. Direct
maximization of the conditional expectation of the complete-data likelihood function can be
computationally intractable for high-dimensional problems.

Inspired by the parameter expansion technique (Liu et al., 1998) and its use in the Bayesian
analysis of multivariate probit models (Lawrence et al., 2008), we propose expanding the
parameters in the following way:
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where V is a p × p diagonal matrix with positive diagonal elements. The transformed matrix
Σ becomes a general variance-covariance matrix. The parameter expansion preserves the
observed-data likelihood according to (1) and leads to the following expanded complete-data
likelihood:

Here θ* denotes the expanded parameters including α and the distinct values in Σ.

The E-step at iteration t of the EM algorithm with a current value of the parameter estimate
θ(t) involves evaluating Q(θ* | y, θ(t)) = E{log Lx-com (θ* | y, z) | y, θ(t)}, where the expectation
is taken with regard to the conditional distribution of z given the observed data y. It can be
shown that

This implies that the E-step involves only the computation of the sufficient statistics for the

expanded complete data, . The details of this step are described in Section
3.1.

Implementing the M step is trivial since a closed-form solution to the maximization of the
conditional expectation exists. Setting the derivative of Q(θ* | y, θ(t)) with respect to α and Σ
equal to zero yields the following updates of the expanded parameters:

Let D be the diagonal matrix whose diagonal elements are the same as those of Σ(t+1). The
original parameters β and R can then be updated via parameter reduction:
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3.1 Implementing the E-step via the Gibbs Sampler

To implement the E-step, we need to compute , where
the expectations are with respect to the density function f(zi | yi, θ(t)) (i = 1, 2, …, N), which is
a p-variate normal density, Np(βxi, R), truncated to the region specified by Bi = Bi1 × Bi2 × …
× Bip (Chib and Greenberg, 1998). Computing these conditional expectations is equivalent to
computing the first and second moments of a truncated multivariate normal distribution with
a general correlation structure, which has been known to be a difficult task (Meng and Schilling,
1996). To ease the problem, we use the idea of the Monte Carlo EM algorithm to approximate
these expectations via a Monte Carlo integration method (Wei and Tanner, 1990).

To simulate samples efficiently from f(zi | yi, θ(t)), one can create a Gibbs sampler by cycling
though the univariate conditional distributions, which are truncated normal variables (Horrace,
2005). Specifically, the conditional distribution f(zij | yij, θ(t)) is a univariate normal distribution,
N(ν, σ2), truncated to Bij, where

Here μij is the jth element of the mean vector βxi, μi, −j is the vector excluding the jth element
of βxi, (R−1)jj is the jth diagonal element of R−1, and (R−1)j, −j is the jth row of R−1 excluding
the jth element. Samples from univariate truncated normal distributions are generated using
the exponential accept-reject method (Robert, 1995) when the acceptance region is far away
from the mean, and by a ratio of uniforms method otherwise (Kinderman and Monahan,
1977).

Once we have M draws of  from f(zi | yi, θ(t)) for each individual i, the
conditional expectations of the sufficient statistics can be approximated as follows

It has been demonstrated by Wei and Tanner (1990) that the number of imputations M should
be large in order to decrease the Monte Carlo error in the E-step, although it is inefficient to
start with a large M when the parameter update is still far away from the true value. Because
of this, it was suggested that M should be increased from one iteration to the next (Wei and
Tanner, 1990). In situations where the imputation is expensive, the computational cost of this
approach can be quite prohibitive.

Alternative algorithms that make more efficient use of the imputed missing values include the
cumulative implementation of the MCEM algorithm (Kou, Liu, and Wu, 1998). It generates a
small number of draws in each iteration of the EM algorithm and updates the parameter
estimates using draws obtained from the current and the previous iterations within an adaptively
growing window.
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3.2 Convergence of PX-MCEM
A direct way of determining the convergence of the PX-MCEM algorithm is to monitor the
plot of the parameter updates θ(t) against the iteration t. Due to the simulation variability
introduced in the E-step, the parameter updates can still fluctuate after convergence. Wei and
Tanner (1990) recommended that the algorithm be terminated when the iterates appear to
fluctuate randomly. This may be impractical when the number of parameters is large. One
alternative is to monitor the observed-data likelihood values, which involves computing the
multivariate orthant probabilities, using the Monte Carlo procedure proposed by Genz (1992,
1993). This method allows efficient and accurate computation and can be used with a readily
available routine, pmvnorm, in the mvtnorm package of the statistical programming language
R. When the log-likelihood values are plotted against t, convergence can be claimed when the
plot appears to fluctuate randomly.

3.3 Standard Error Calculations
In the EM literature several approaches have been proposed to obtain the asymptotic variance-
covariance matrix of the ML estimates (see, e.g., Louis, 1982). We adopt an approach similar
to what was proposed by Meilijson (1989). This approach requires the computation of the score
vector, si, based on the observed-data log-likelihood function. The score can be obtained
through the expectation of , which is the score vector based on the complete data, conditional
on the response yi. The asymptotic variance-covariance matrix is thus obtained by inverting
the empirical Fisher information matrix,

Here the complete-data score vector  can be obtained as follows:

where dRjk is a p × p matrix with the (j, k)th and (k, j)th elements being 1 and other elements
being 0.

The conditional expectations of the above complete-data score functions need to be evaluated
only at the last iteration of the EM algorithm. Additional draws are generated to approximate
the expectations by their Monte Carlo estimates. In our examples, 20,000 additional draws of
the random samples are generated to compute the standard errors.

4 EXAMPLES
4.1 Simulation Study I

The goal of this simulation study is to compare the performance of the PX-MCEM algorithm
with the MCEM approaches developed by Chib and Greenberg (1998) (CG-MCEM) and Song
and Lee (2005) (SL-MCEM), and the iterative algorithm of Li and Schafer (2008) (LS).
Multivariate probit models with p = 3 and p = 6 binary variables were considered. The latent
variables zi’s were assumed to follow a multivariate normal distribution with mean vector
βXi = β0 + β1xi and correlation matrix R, where xi’s were drawn independently from a uniform
distribution on (0, 1). For each of the binary variables, the true value of the intercept was taken
to be −1 and the slope was taken to be 2. For the correlation matrix R = (1 − ρ)I + ρJ, two
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choices of ρ were considered, a moderate correlation among the latent variables of ρ = 0.5 and
a high correlation of ρ = 0.9. Here I is a p × p identity matrix and J is a p × p matrix of ones.
For each of the four combinations of p and ρ, a sample of size 100 was generated. In order for
the CG-MCEM and SL-MCEM approaches to be comparable to the PX-MCEM, we
implemented all three methods using the cumulative Monte Carlo technique. A total of 5 draws
was generated from each iteration and random draws from the last one third of the iterations
were utilized in approximating the conditional expectations.

When fitting the model with an arbitrary correlation structure using the SL-MCEM algorithm,
the correlation matrix R is expressed as R = Γ + cI, where c ∈ (0, 1) is a pre-assigned fixed
value and Γ is a positive definite symmetric matrix with unknown off-diagonal elements and
the diagonal elements fixed at 1 − c. The value of c has to be very small for problems with high
correlation. We chose c = 0.2 when ρ = 0.5 and c = 0.02 when ρ = 0.9.

Figure 1 compares the performance of these methods in terms of the proximity to the true MLE,
which was obtained by directly maximizing the log-likelihood function. The three MCEM
algorithms were run for 60 seconds of CPU time and the LS algorithm was run for 5 iterations.
The log-likelihood values were plotted against the CPU time (in seconds). The starting values
for these approaches were the same, with the regression coefficient matrix β being equal to the
MLE based on the independent correlation structure and correlation matrix R being an identity
matrix. The optimization routine optim in R was used to complete the M-step of the CG-
MCEM approach and optimizations of the LS approach. The initial value for these
optimizations is taken to be the value obtained in the previous iteration.

Compared to the CG-MCEM algorithm, the performance of the PX-MCEM algorithm is
similar for the 3-variate model with a moderate correlation, with the PX-MCEM algorithm
showing a slight advantage in terms of computational time. The efficiency of the PX-MCEM
algorithm is more evident both in terms of the computational time and accuracy when the
dimension or the correlation of the observed data is high. The computational time of each
iteration for the PX-MCEM is slightly shorter than that for the CG-MCEM. This resulted in a
20% to 30% increase in the number of iterations within 60 seconds of CPU time. In addition,
the PX-MCEM algorithm approaches the neighborhood of the MLE much more rapidly. For
the 6-variate problems, at the 10th iteration, the sum of the squared deviations of the PX-MCEM
estimate from the true MLE was 0.012 under ρ = 0.5 and 0.11 under ρ = 0.9, while the
corresponding values were 0.22 and 1.35 for the CG-MCEM algorithm, respectively.

The SL-MCEM algorithm is competitive with the PX-MCEM in all four cases with the PX-
MCEM algorithm showing a slight edge over the SL-MCEM when p = 6. The computational
time for one iteration was comparable, hence the number of iterations completed in 60 seconds
were about the same for both methods. However, a disadvantage of the SL-MCEM algorithm
is that the fixed value c needs to be chosen before running the algorithm. In practice, this may
not be realistic since the correlation is typically unknown before estimation.

Compared to the three MCEM algorithms, the LS method approaches the true MLE in only a
few iterations. However, it is extremely time consuming to complete one iteration, especially
in high-dimensional problems. For the 6-variate problem with ρ = 0.9, the sum of squared
deviations of the LS approach was 3.08 after 5 iterations, which took about 2500 seconds to
complete. On the other hand, the PX-MCEM algorithm had a comparable value of the sum of
squared deviations at the 4th iteration, which only took 3.5 seconds. The sum of squared
deviations for the SL-MCEM approach was comparable at the 6th iteration, which took
approximately 4.7 seconds.
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The advantage of the PX-MCEM algorithm over the LS approach is even stronger when the
sample size is large. The LS approach uses a stepwise ascent method that iteratively maximizes
the log-likelihood function with respect to one parameter at a time, with others fixed at their
current value. With large sample sizes, the evaluation of the log-likelihood function involves
a large number of calculations of the multivariate normal probabilities, which can be quite time
consuming.

These methods were also compared via this study framework using a binary predictor variable
x, which was drawn from a Bernoulli distribution with probability 0.5. Again, the PX-MCEM
algorithm approached the neighborhood of the true MLE much more rapidly and achieved a
greater accuracy than other methods within a fixed amount of time. For such grouped data, the
computational burden of evaluating the likelihood is much less since the multivariate normal
probabilities only need to be evaluated for groups of individuals. Hence the relative
computational time for the LS approach was reduced, but it was still much longer than that of
the MCEM algorithms.

4.2 Simulation Study II
The goal of this simulation study is to further examine the performance of the SL-MCEM
algorithm when an inappropriate c value is used. A data set with p = 6 and ρ = 0.9 was generated
according to the same simulation scheme as in Simulation Study I. Three values of c were
considered: a sensible value c = 0.05, an overly large value c = 0.2, and an overly small value
c = 0.001. Both PX-MCEM and SL-MCEM algorithms were run for 120 seconds in CPU time.
A total of 50 draws was generated from each iteration and random draws from the last one-
third of the iterations were utilized in approximating the conditional expectations.

Since 1 − c serves as an upper bound on the correlations, an inappropriate choice of c (typically
one too large) would prevent the algorithm from exploring the proper correlation space. This
can lead to convergence to a non-optimal point, which is seen from Figure 2 when c = 0.2. On
the other hand, a small value of c does not necessarily work without any problems. The latent
variable zi of the Song and Lee (2005)’s model is specified as follows:

where ωi ~ N(0, Γ), εi ~ N(0, cI), and ωi and εi are independent. In the Monte Carlo E-step, a
Gibbs sampler was used to simulate random draws from f(zi, ωi | yi), which is the joint density
function of zi and ωi given the observed data. When the value of c is small, the variances of
the conditional distributions f(zi | ωi, yi) and f(ωi | zi, yi) in the Gibbs sampler would be much
smaller than the variances of their corresponding marginals f(zi | yi) and f(ωi | yi). This implies
that the sampler would not mix very well and a large number of random draws would be needed
in order to estimate the quantities of the E-step. This can be seen from Figure 2 when c = 0.001.
Although for many problems with low to moderate correlations, it is not necessary to choose
a value of c as low as 0.001, our simulation study showed that the SL-MCEM algorithm
becomes less efficient as c decreases. Marked improvement on the convergence of the SL-
MCEM approach when c = 0.001 was noted when 500 instead of 50 random draws were
generated within each iteration.

The performance of the SL-MCEM algorithm is similar to that of the PX-MCEM algorithm
when c = 0.05, although the rate of convergence is still slightly slower. Further examination
of the log-likelihood values indicates that the speed of convergence of the SL-MCEM algorithm
slows down greatly as it nears the true MLE.
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Similar results were found when other values of p and ρ were examined. When an inappropriate
value of c is chosen, the SL-MCEM algorithm either fails to converge to the optimal point, or
requires a large number of Monte Carlo draws to converge. This suggests that multiple values
of c should be used for the SL-MCEM algorithm in order to estimate the general correlation
structure. This, however, reduces the efficiency of the SL-MCEM algorithm.

4.3 Simulation Study III
The objective of this simulation study is to examine the performance of the large-sample
standard errors for the PX-MCEM algorithm. Five hundred samples of sizes N = 100 and N =
500, each with p = 4, were generated with the true parameter values shown in Table 1. The
latent zi’s were assumed to follow a multivariate normal distribution with mean vector βXi =
β0 + β1xi, where the covariate xi’s were drawn independently from a uniform distribution on
(0, 1).

The results of the simulation are summarized in Table 1 using the mean and the standard
deviation of the MLEs of 500 samples. The 95% confidence interval was constructed based
on the large-sample standard errors and the coverage levels are also presented in the table. For
both sample sizes, the parameter estimates agree closely to the true values. The coverage levels
are very close to the nominal 95% except for the two high correlations between items 1 and 2,
and items 3 and 4 when the sample size is small (N = 100). Further examination of the
distributions of the MLEs for these two correlations revealed that the distributions of the MLEs
are highly skewed. This implies that a bootstrap approach may be used to produce more
appropriate confidence intervals in this case.

4.4 Drivers’ Perceptions of Headlight Glare
To further illustrate the performance of the PX-MCEM algorithm relative to the other MCEM
algorithms, we analyzed a real-world data set obtained from the Bureau of Transportation
Statistics (BTS). The Omnibus Survey is a national probability sample conducted monthly by
the BTS to monitor the public’s satisfaction with various transportation issues. Here, we focus
on drivers’ perceptions of headlight glare. Three questions pertinent to glare, specifically glare
from oncoming and following vehicles at night and from daytime running lights, were included
in the survey during the first six months of 2002.

Perceptions of glare were expressed on a 5-point scale, “not noticeable” “barely noticeable”,
“noticeable but acceptable”, “disturbing”, or “caused a crash or near miss”. These ratings were
dichotomized at the neutral category to create binary responses indicating whether traffic glare
was “disturbing” or “not disturbing”. To investigate whether difference with respect to glare
perceptions exists due to demographic factors, age and gender were included in the analysis.
Potential influence of the number of dark hours on drivers’ perceptions was investigated by
including the month of the interview.

The starting value of the parameters was chosen to be the MLE based on independent
correlations. A total of 5 draws was generated from each iteration and random draws from the
last one third of the iterations were utilized in approximating the conditional expectations. The
algorithms were stopped when the maximum change in parameter estimates was less than 0.001
for 5 consecutive iterations. After examining the estimates of the correlation coefficients from
the other two MCEM approaches, the value of c was chosen to be 0.2 for the SL-MCEM
algorithm.

The trajectory of the log-likelihood values across iterations (Figure 3) shows that the log-
likelihood values stabilized after 100 seconds in CPU time (approximately 20 iterations). While
all three algorithms converged to the optimal point, the PX-MCEM algorithm shows a slight
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advantage of efficiency compared to the others. Table 2 shows the maximum likelihood
estimates of the regression coefficients and correlations and the asymptotic standard errors
obtained from the PX-MCEM algorithm. Compared to males, female drivers were significantly
more concerned about the headlight glare from both oncoming and following traffic. Also,
drivers older than 35 years had more concerns about the oncoming traffic glare. The analysis
showed that for both oncoming and following glare, as the number of dark hours decreases
from January to June, drivers became less concerned. However, it did not have a significant
effect on the glare from the daytime running lights. Although perceptions on the traffic glares
are positively correlated, the highest correlation occurred for concerns with oncoming and
following traffic at night.

5 DISCUSSION
Correlated binary data are common in many areas including engineering and medical, social,
and biological sciences. In this article, we develop an efficient approach to the ML estimation
of multivariate probit models for analyzing these data. The proposed methodology can handle
variables that have arbitrarily complicated correlation structures. By using a parameter
expanded MCEM method, we not only avoid the direct evaluation of the likelihood values,
which involves computing multivariate normal orthant probabilities, but also improve the
efficiency of the algorithm. Another advantage of the PX-MCEM algorithm is its simplicity
compared to the CG-MCEM algorithm in that the PX-MCEM algorithm has an analytically
tractable M-step and hence does not require numerical optimization techniques. Although the
SL-MCEM algorithm also has an analytic M-step, it is sensitive to the choice of c. The
simulation studies show that, compared to the CG-MCEM, SL-MCEM, and LS approaches,
the PX-MCEM algorithm approaches the neighborhood of the MLE rapidly and provides
higher accuracy per unit CPU time. The large-sample standard errors are reliable measures of
the uncertainty in the regression coefficients. Our approach may be readily extended to
likelihood analysis of multivariate probit models for ordinal data.
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Figure 1.
Values of log-likelihood by Genz method against CPU time for the simulation study I

Xu and Craig Page 12

Technometrics. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Values of log-likelihood across iterations for the SL-MCEM with difference values of c in
comparison to the PX-MCEM for the simulation study II
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Figure 3.
Values of log-likelihood against CPU time for Drivers’ Perceptions data
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Table 2

ML estimates and asymptotic standard errors of the Drivers’ Perceptions data

Nighttime
Oncoming lights

Nighttime
Following lights

Daytime
running lights

Regression Coefficients

Intercept
−0.577 −0.589 −1.963

(0.054) (0.054) (0.118)

Age: 35–54 years
0.096 0.050 0.076

(0.044) (0.044) (0.104)

Age: 55 years or above
0.098 −0.024 0.121

(0.050) (0.050) (0.115)

Gender: female
0.153 0.218 −0.181

(0.037) (0.037) (0.082)

Month: February
0.039 −0.097 0.117

(0.060) (0.061) (0.123)

Month: March
0.013 −0.017 −0.104

(0.061) (0.061) (0.138)

Month: April
−0.145 −0.144 −0.091

(0.062) (0.062) (0.136)

Month: May
−0.093 −0.103 −0.158

(0.062) (0.063) (0.150)

Month: June
−0.135 −0.152 −0.105

(0.061) (0.061) (0.135)

Correlations

Nighttime following lights
0.561 - -

(0.018) - -

Daytime running lights
0.241 0.264 -

(0.050) (0.051) -
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