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LIKELIHOOD AND OBSERVED GEOMETRIES

By O. E. BARNDORFF-NIELSEN

Aarhus University

In the differential geometric approach to parametric statistics, developed
by Chentsov, Efron, Amari, and others, the parameter space is set up as a
differentiable manifold with expected information as metric tensor and with a
family of affine connections, the a-connections, determined from the expected
information and the skewness tensor of the score vector. The usefulness of
this approach is particularly notable in connection with Edgeworth expan-
sions of estimators. Motivated by the conditionality viewpoint, an *“observed”
parallel to that theory is established in the present paper using observed
information and an “observed skewness” tensor instead of the above expected
quantities. The formula ¢|j|'/?L for the conditional distribution of the
maximum likelihood estimator is expanded (to third order) asymptotically
and the “observed geometries” are shown to have a role in this type of
expansion similar to that of the “expected geometries” in the Edgeworth
expansions mentioned above. In these new developments “mixed derivatives
of the log model function,” defined by means of an auxiliary statistic comple-
menting the maximum likelihood estimator, take the place of moments of
derivatives of the log likelihood function.

1. Introduction. A number of recent investigations have shown that in the
study of inference for parametric statistical models, particularly as regards
higher-order asymptotics, it is useful and illuminating to set the model, .# say,
up as a differentiable manifold equipped with a Riemannian metric and a family
of affine connections, the so-called a-connections. In that approach, the parame-
ter space of the model serves for the coordinate representation of .#, the metric
tensor employed is the expected information matrix

(1'1) irs = _E{ar asl}

and the family of a-connections is determined by (1.1) and the so-called skewness
tensor

(1.2) T. = E{0,13,01)

which is a covariant tensor of rank 3. Here [ denotes the log likelihood function of
the model, and with w, of dimension d, as the parameter of the model, we write
©=(&,...,0% and 3, = d/dw". The indices r, s, t,... run over 1,2,...,d. In
this framework it is, for instance, possible to give geometrical interpretations to
various of the terms arising in conditional and unconditional Edgeworth expan-
sions for the distribution of the maximum likelihood estimator & under curved
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exponential models. For these theoretical developments see Efron (1975), Amari
(1982a,b, 1983, 1984, 1985), and Amari and Kumon (1983) and the references
given there.

For many purposes the observed information matrix j, i.e.,

jrs = - ar asl’

is more natural to work with than the expected information i, and it therefore
seemed of interest to enquire whether the model .# can also be rigged with some
kind of “observed geometrical structures” paralleling the “expected geometrical
structures” given by (i, T') as defined by (1.1) and (1.2). We shall show that this is
indeed the case and that the resulting geometries are intimately connected with
a certain type of asymptotic expansion deriving from the formula c|/|"/%L
[Barndorff-Nielsen (1980, 1983)] for the conditional distribution of the maximum
likelihood estimator.

These new types of statistical geometries and expansions notably do not
involve integrations over the sample space, as is required in (1.1) and (1.2) and in
the calculation of the cumulants that occur in the Edgeworth expansions. Instead
they employ what may be referred to as mixed derivatives of the log model
function.

Furthermore, whereas the studies of expected geometries have been largely
concerned with curved exponential families, the approach taken here makes it
equally natural to consider other parametric models, and in particular transfor-
mation models.

The viewpoint of conditional inference has been instrumental for the construc-
tions in question. However, the observed geometrical calculus, as discussed below,
does not presuppose the existence of exact or approximate ancillaries but only
operates with an auxiliary statistic ¢ complementing the maximum likelihood
estimate &. Only when it comes to applications to problems of inference does
distribution constancy—and hence ancillarity—of a become essential.

Let the model # be given by (2, p(x; w), 2) where £ is the sample space, Q
is the parameter space, and p(x; w) is the model function, i.e., for a given value
of the parameter w the function p(x; ) is the probability density function of the
observation x € Z relative to a fixed dominating measure u on Z. Suppose the
minimal sufficient statistic ¢ for .# is of dimension k. We then speak of .# as a
(k, d)-model (d being the dimension of the parameter w). Let (&, a) be a
one-to-one transformation of ¢, where & is the maximum likelihood estimator of
w and a, of dimension &k — d, is an auxiliary statistic.

In most applications it will be essential to construct a so as to be distribution
constant either exactly or to the relevant asymptotic order. And then, according
to the conditionality principle the conditional model for & given a is considered
the appropriate basis for inference on .

However, distribution constancy of a is not assumed in the construction of the
observed geometries.

There will be no loss of generality in viewing the log likelihood [ = I(w) in its
dependence on the observation x as being a function of the minimal sufficient
(&, a) only. Henceforth we shall think of / in this manner and we will indicate



858 0. E. BARNDORFF-NIELSEN

this by writing [ = l(w; &, a). Similarly, in the case of observed information we
write j = j(w; &, a), etc. We may now take partial derivatives of [ with respect
to the coordinates &" of & as well as with respect to «”. Letting 0 = 9/9&" we
introduce the notation

(1'3) lrl...rp;sl...sq= arl"'arp aS|"'asql

and refer to these quantities as mixed derivatives of the log model function. The
function of w and a obtained from (1.3) by substituting « for & will be denoted
by l,l RN RPRp Thus, for instance,

lrs;t = lrs; (@)= lrs;t(w; a) = lrs;t("-’§ w, a).
Similarly,
J=He) =j(e;a) = j(w; 0, a).

The observed geometries, which will be introduced and illustrated in Section 2,
are expressed in terms of the mixed derivatives

(14) lrl...r'sl...s'

P q
So are the terms of an asymptotic expansion of
(1.5) p*(&; wla) = c|jI'"’L,

to be derived in Section 3. In (1.5) L denotes the normed likelihood function, i.e.,

L= el”z,

[ J | is the determinant of the observed information, and ¢ = ¢(w, @) is a norming
constant determined so as to make the integral of p*(&; w|a) with respect to &
for fixed a equal to 1.

For a ancillary the model function p*, given by (1.5), may be considered as an
approximation to the actual model function p(&; w|a) for the maximum likeli-
hood estimator & conditional on a. As such it is, in wide generality, correct to
order O(n~3/%) at least, under repeated sampling with n denoting sample size. In
fact, p*(&; w|a) equals p(&; wla) exactly for a considerable range of models,
including all transformation models, cf. Barndorff-Nielsen (1980, 1983, 1984b) and
Barndorff-Nielsen and Bleesild (1984). Some further discussion and applications
of (1.5) may be found in Barndorff-Nielsen and Cox (1984a, b), Barndorff-Nielsen
(1984a, 1985a, b) and McCullagh (1984a). In particular, in Barndorff-Nielsen and
Cox (1984a) a simple relation is established between the norming constant ¢ of
(1.5) and the Bartlett adjustment factors for log likelihood ratio tests of hypothe-
ses about w. [See also Barndorff-Nielsen and Cox (1984b).] We comment on this
relation in Section 3.

Besides being in a certain sense “closer to the actual data at hand,” the
“observed” quantities and formulas are in various respects simpler to work with
than their expected counterparts. For instance, in certain cases Bartlett adjust-
ment factors are more readily calculable in terms of the observed quantities.
Another example is provided by formula (3.15), cf. the discussion following that
formula.
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Some connections between expected and observed geometries and profile
likelihood, L-sufficiency, marginal likelihood, and transformation models have
been studied in Barndorff-Nielsen and Jupp (1984, 1985).

2. Observed geometries. We shall be interested in how various quantities
behave under reparametrizations of the model .#. Let v, of dimension d, be the
parameter of some parametrization of .#, alternative to that indicated by w.
Coordinates of ¢ will be denoted by 2, ¢°, etc. and we write 3, for d/3¢y* and
@), for dw'/dy°, o', for 8%"/dy* y°, etc. Furthermore, we write I({) for the
log likelihood under the parametrization by ¢, though formally this is in conflict
with the notation /(w), and correspondingly we let I, = d, = d,l(¢y), etc.;
similarly for other parameter-dependent quantities. Finally, the symbol ~ over
such a quantity indicates that the maximum likelihood estimate has been
substituted for the parameter.

Using this notation and that established in Section 1, and adopting the
summation convention that if a suffix occurs repeatedly in a single expression
then summation over that suffix is understood, we have

(2.1) I, =107,
(22) lab = lrsw;aw;b + lrw;ab’
(23) labc = lrstw;aw;bw;c + lrsw;abw;c[3] + lrw;abc’

etc., where [3] signifies a sum of three similar terms determined by permutation
of the indices a, b, c. On substituting & for « in (2.2) we obtain the well-known
relation

jab = jrs‘b;a&‘)ib
which, now by substitution of « for &, may be reexpressed as
(24) jab = jrsw;aw;b

or, written more explicitly,
dw” dw®

Tao(¥5 @) = fo(w; a)a—wa—w.

Equation (2.4) shows that j is a metric tensor on .#, for any given value of the
auxiliary statistic a. Moreover, in wide generality j will be positive definite on
A, and we assume henceforth that this is the case. In fact, for any & € Q we
have j = f', i.e., observed information at the maximum likelihood point, which is
generally positive definite (though counterexamples do exist).

Equipped with j as metric tensor .# becomes a Riemannian manifold. Notice
however that this Riemannian geometry depends on the value of the auxiliary a.
We call j the observed metric on /.

The Riemannian connection determined by j has connection symbols
0

0
given by T'7, = j"F,, and
0

Frst = é(arjst - atjrs + asjtr)‘

0
t
rs
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Employing the notation established in Section 1 we have 49,j,= —9,{,, =
— 1,4, 1» €tC., SO that

(2.5) Proo=foos= Hha + fou[3D).

As we shall now show, the quantity

(2.6) Trst == (lrst + brs; 1[3])

is a covariant tensor of rank 3, i.e.,

(27) Tabc = Trstw;awjbw}c'
First, from (2.3) we have
(28) labc = lrstw;aw;bw;c + lrsw;abw;c[3]'

Further, from (2.2) we obtain, on differentiating with respect to J¢ and then
substituting parameter for estimate,

(2.9) lab; c= lrs; 1697405505 + . 107507
Finally, differentiating the likelihood equation
/=0
we find
(2.10) Lot 1o =0,
or
(2.11) Vs = drs-

Combination of (2.6), (2.8), (2.9), and (2.11) yields (2.7).
It follows from the tensorial nature of 7' and from (2.5) and (2.11) that for any

real « an affine connection ¥ on .# may be defined by

7 t _ jtuf‘
with

a l-a
(212) Frst = lrs; t + TTrst’
In particular, we have
-1

1

rrst = lrs; 124 r rst = lt; rs?
where to obtain the latter expression we have used

lrst + lrs; t + lrt;s + r, st = O

which follows on differentiation of (2.10). It may also be noted that
1

1 -1 -1
at-l:"s = Frts + y‘ str = y‘str + y‘ rts
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and
a 1+al l1—a 2}
Frst= 2 rst 2 Frst‘

[54
The connections J', which we shall refer to as the observed a-connections, are
o

analogues of the expected a-connections I' of Chentsov (1972) and Amari (1982a),
which are given by

o

a
t _ stu
I‘lrs =1 I1rsu
and

l-a
F st E(lrslt) + TTrst’

where T is the skewness tensor (1.2). The analogy between f‘ and f‘ becomes
more apparent by rewriting T, , as
T = —E{lrst + lrslt[3]}’
the validity of which follows on differentiation of the formula
(2.13) E{l,+11}=0

which, in turn, may be compared to (2.10).

Under the specifications of a of primary statistical interest, one has that in
broad generality the observed geometries converge to the corresponding expected
geometries as the sample size tends to infinity.

For (%, k) exponential models

(2.14) p(x;0) = a(6)b(x)e’ ",

we have j=i and I'=I', a € R. More generally, for a curved subfamily of

(2.14), given by restricting 8 to be of the form § = §(w) where the dimension d of
the parameter w is less than k, the quantities j and T possess, under mild
regularity conditions, asymptotic expansions the first terms of which are given by

(2.15) Joe = bpe — 0}, 00K, ;0" + -+
and
(216) crrst = 71rst - {Ktjkalrs /t /)\[3]

+K110/r30/'t}\[3] + Kija/lrsta/jk}ax +oee
Here suffices i and j run from 1 to &, 6%, 87 denote coordinates of 6, Kk,;=3; 9k,
where k = k() = —log a(#) is the cumulant transform of ¢, and 9, = 3/ a6 i and
a®, A=1,...,k— d, are coordinates of an ancillary complement of &. For

instance, in the repeated sampling situation and letting a, denote the affine
ancillary, as defined in Barndorff-Nielsen (1980), we may take a = n~'/?a, and
the expansions (2.15) and (2.16) are asymptotic in powers of n~'/2, [For further
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comparison with Amari (1982a) it may be noted that the coefficient in the
e

first-order correction term of (2.15) may be written as 6),.6/,x,; = nH o

e
where H ., is Amari’s notation for the exponential curvature, or a-curvature

with a = 1, of the curved exponential model viewed as a manifold imbedded in
the full (&, £) model.]

We now briefly consider four examples. In the first three the model is
transformational and the auxiliary statistic a is taken to be the maximal
invariant statistic, and thus a is exactly ancillary. In the fourth example a is
only approximately ancillary. Examples 2.1, 2.3, and 2.4 are concerned with
curved exponential models whereas the model in Example 2.2—the location-scale
model—is exponential only if the error distribution is normal.

ExampLE 2.1. Constant normal fractile. For known « € (0,1) and c €
(— o0, ), let A, . denote the class of normal distributions having the real
number ¢ as a-fractile, i.e.,

Ao o= {N(p,0%): (c—p)/o=u,},

where u, denotes the a-fractile of the standard normal distribution, and let
X,,..., X, be a sample from a distribution in 4, . The model for x = (x,,..., x,)
thus defined is a (2,1) exponential model, except for u_, = 0 when it is a (1,1)
model. Henceforth we suppose that u, # 0, i.e., « # ;. The model is also a
transformation model relative to the subgroup G of the group of one-dimensional
affine transformations given by

G = {[c(1 = X),A]: A >0},
the group operation being
[e(1 —A),A]l[e(1 = X),X] = [e(1 = AN), AX]
and the action of G on the sample space being
[e(t —A), AN (xp,. 0 x,) = (c(T —A) + Axp,...,c(1 = A) + Ax,).

(Note that G is isomorphic to the multiplicative group.)
Letting

a=(x-c)/s,

where ¥ = (x; + -+ +x,)/n and
1 7 2
S/2=—Z(xl—f) )
nt=l

we have that a is maximal invariant and, parametrizing the model by{ = log o,
that the maximum likelihood estimate is

§ = log(bs’),
where

b="0b(a) = (u,/2)a+ \/1 + {(uo‘/2)2 + 1}a2.
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Furthermore, (5c ,a) is a one-to-one transformation of the minimal sufficient
statistic (X, s’) and a is exactly ancillary.
The log likelihood function may be written as

E) = (8§ a) = n[€ = E = 3572269 4 (u, + ab~e5)P)],

from which it is evident that the model for { given a is a location model. )
Indicating differentiation with respect to { and { by subscripts { and ¢,
respectively, we find

Io=n{-1+ b=%%¢=9 + abYu, + ab—lesa—s“)efff}’
and hence
J=n{26"2+ ab Y(u, + 2ab7')},

lm = n{4b’2 + ab’l(ua + 4ab’1)},
1
l{f;f = —n{4b_2 + ab_l(ua + 4ab_1)} =7,

-1 1
liogg=n{4b72 + ab~Y(u, + 4ab )} = F = - T,

and the observed skewness tensor is
T =n{8b7%+ 2ab~Y(u, + 4ab~")}.
Note also that

F-af.

We mention in passing that another normal submodel, that specified by a
known coefficient of variation p/o, has properties similar to those exhibited by
Example 2.1.

ExXAMPLE 2.2. Location-scale model. Let data x consist of a samplex,,..., x,,
from a location-scale model, i.e., the model function is

p(x;u,o)zonﬁf(x,—y)

ag
for some known probability density function f. We assume that {x: f(x) > 0} is
an open interval and that g = —log f has a positive and continuous second-order
derivative on that interval. This ensures that the maximum likelihood estimate
(i, 6) exists uniquely with probability 1 [cf., for instance, Burridge (1981)].
Taking as the auxiliary a Fisher’s configuration statistic
xl - na xn - ﬁ)

a=(a1,...,an)=( PR R~

which is an exact ancillary, we find

00) =02[ sg(a,)  Za,g"(a,) ]

Eallg//(al’) n + Eazg//(al‘)
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and, in an obvious notation,

o= —0 °Zg"(a,),

l,m;a = —o¢ *Zag”(a,),
low=—07%(22g"(a,) + Za,g""(a,)},
Viois = -0 %2%a,g"(a,) + Zalg "(a;)},
looii= —0 *{4Za,g"(a,) + Zajg " (a,)},
ligis= —0’3{2n + 43a’g"(a,) + Zalg ’”(al)},
V= 07°2g " (a)),
lmw =07 %25g"(a,) + Za,g"(a,)},
fioo = 0 *{42a,8(a,) + Zafg " (a,)},

live = 0‘3{4n + 6Za’g”(a,) + Zalg ”’(al)}.
Furthermore,

= 207,((0,1); a),

1.
Tosa = =20 °,((0,1); @) + 267%,,,((0,1); @),
T,
T,

o= 407 %,((0,1); a) + 207%,,,((0,1); @),
oo = —607,,((0,1); @) + 207%,,,((0,1); a).

ExaMPLE 2.3. Hyperboloid model. Let (uy, v,),...,(u,,v,) be a sample from
the hyperboloid distribution

(2.17) plu, v; x, @) = (27) 'Ae’sinh u exp| —A{cosh x cosh u

—sinh x sinh u cos(v — ¢)}].

Here 0 < u < o0, 0 < v < 27 and the parameters x and ¢ vary in [0, 00) and
[0, 27), respectively, while A > 0 is a precision parameter which we consider as
known.

This distribution is analogous to the von Mises—Fisher or Langevin distribu-
tion for three-dimensional unit vectors, but pertains to observations on the
positive unit hyperboloid in R? rather than the unit sphere. The distribution was
introduced in Barndorff-Nielsen (1978) and its most important properties, includ-
ing those on which we build below, have been unravelled by Jensen (1981); see
also Blaesild and Jensen (1981).

The hyperboloid model (2.17) is a transformation model, the acting group
being the special pseudo-orthogonal group SO '(1,2), and

a= {(E cosh u;)? — (2 sinh u,cos v;)° — (Z sinh u,sin vl)Q}

is maximal invariant after minimal sufficient reduction. Furthermore, the
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maximum likelihood estimate (%, ) of (X, ¢) exists uniquely, with probability 1,
(a, X, @) is minimal sufficient, and the conditional distribution of (§, ) given the
ancillary a is again hyperboloidic, as in (2.17) but with u, v, and A replaced by %,
¢, and aA (the von Mises-Fisher distribution having a similar property). It may
also be noted that s = a — n follows the gamma distribution

}\n—l
[(n - 1)8

n72e—>\s

It follows that the log likelihood function is

Ux,9) = Ux, 9; % 9, a)
= —aM{cosh x cosh ¥ — sinh x sinh § cos($ — ¢)}

and hence
o o [14 o
Y‘XXX = FXX‘P = FX(PX = F‘P‘P‘P = O’

rxw = aA cosh x sinh x,

[44

¥ oox = —@Acosh x sinh x,
whatever the value of a. Thus, in this case, the a-geometries are identical.

We note again that whereas the auxiliary statistic ¢ is taken so as to be
ancillary in the various examples discussed—exact distribution constant in the
three examples above and asymptotical distribution constant in the one to follow
—ancillarity is no prerequisite for the general theory developed in this paper.

Furthermore, let a be any statistic which depends on the minimal sufficient
statistic ¢, say, only and suppose that the mapping from ¢ to (&, a) is defined and
one-to-one on some subset 7, of the full range J of values of ¢ though not,
perhaps, on all of 7. We can then endow the model .# with observed geometries,
in the manner described above, for values of ¢ in 7. The next example illustrates
this point.

The above considerations allow us to deal with questions of nonuniqueness and
nonexistence of maximum likelihood estimates and nonexistence of exact
ancillaries, especially in asymptotic considerations.

ExXaAMPLE 24. Inverse Gaussian—Gaussian model. Let x(¢) and y(*) be
independent Brownian motions with a common diffusion coefficient ¢2 = 1 and
drift coefficients p > 0 and £, respectively. We observe the process x(*) until it
first hits a level x, > 0 and at the time u when this happens we record the value
v = y(u) of the second process. The joint distribution of uz and v is then given by

(2.18) plu,v;p, 8) = 2m) xgeoruZexp[ — 1(xd + 0?)u?]

Xexp[— 1pPu + ¢v — %§2u].
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Suppose that (u,, v,),...,(u,, v,) is a sample from the distribution (2.18) and
let ¢ = (&, ©), where & and © are the arithmetic means of the observations. Then
t is minimal sufficient and foliows a distribution similar to (2.18), specifically

n
p(u,o;u, €)= (277)_1x0ne““"17‘2exp[— E(xg + 62)17‘1]
(2.19)

no,_ _n
X exp —E,u u+n§v—5£ ul.

Now, assume ¢ equal to p. The model (2.19) is then a (2,1) exponential model,
still with ¢ as minimal sufficient statistic. The maximum likelihood estimate of p
is undefined if ¢ & .7, where

To={t=(u,0): x5+ 0 =0},
whereas for ¢t € 7, ji exists uniquely and is given by
(2.20) p=Yxo+o0)U

The event ¢ ¢ 7, happens with a probability that decreases exponentially fast
with the sample size n and may therefore be ignored for most statistical
purposes.
Defining, formally, i to be given by (2.20) even for ¢ & 7, and letting
a =0 (;2nx,2np?),

where ®(:; x, ¢) denotes the distribution function of the inverse Gaussian
distribution with density function

(2.21) o (x;x,9)= (2'rr)—1/2‘,/§e\/ﬁ;vc‘3/2exp[—%(xx"1 + )],
we have that the mapping ¢ — (i, @) is one-to-one from 9= {¢ = (u, ©): & > 0}
onto (—o0, + ) X (0,00) and that a is asymptotically ancillary and has the
property that p*(fi; pla) = c|j|/2L approximates the actual conditional density
of i given a to order O(n~3/2), cf. Barndorff-Nielsen (1984a).

Letting ® _(-; x, ) denote the inverse function of ®(-; x, ¥) we may write
the log likelihood function for p as

p) = Up; b, a)
(2.22) = n{(xy, + O)p — up®}
= n®_(a; 2nx2,2np2){20p — p?}.

From this we find

l,= —2n®_(a;2nx2,2np%),
so that
j= 2h<I)_(a;2nx§,2n,u2),

Imm =0
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and
Vs = 8n°u(@ 0 @ /@, )(a;2nx3,2np?)
1 -1

= ruuu= —3 rmm’

where @, denotes the derivative of ® (x; x, ¢) with respect to . By the
well-known result [Shuster (1968)]

& (x;x, %) = ¢(¢1/2x1/2 _ Xl/2xf1/2) + e2m®(—(¢1/2x1/2 + X1/2x_1/2)),

where @ is the distribution function of the standard normal distribution, @,
could be expressed in terms of ® and ¢ = @".

For any m = 2,3,... a covariant tensor on .# of rank m is given by
(2.23) E{3,.148,.1--- 3,ml},

the first two of which, i.e., i and T, determine the expected geometries studied by
Amari and others, as discussed briefly in the foregoing. The tensors j and 7 are
observed analogues of i and T and it seems natural to enquire whether, similarly,
there exists observed analogues of (2.23) for m > 3.

For m = 4 an approach like that used above to derive 7 does not, in any
obvious way at least, lead to a fourth-rank tensor. However, one may proceeld

otherwise by noting that 7T equals the covariant derivative of j relative to the I
connection. In fact, denotlng the operatlon of covariant differentiation with

respect to »” and relative to ]f by D we have

a o «
Dot = dudha = Fidis = T
tdrs tars rtdus stdru

=a

(2.24)

rst

1 a
and hence 7,,, = D,]... Similarly, with D indicating covariant differentiation as

determined by the expected connection I', we have

(2.25) D, = o,

Formulas (2.24) and (2.25) are special cases of a more general differential-geomet-
ric result due to Lauritzen (1984). Taking now the covariant derivative of 7., we
obtain

1 1 1 1

‘puj‘rst = auTst - r;}uj‘stv - r:"uj;‘tv - rguj;‘sv
_lrstu - lrst; u[4] - lrs; tu lrt; su lst; ru
_lru; wTstvjuw - lsu; wTrtijw - ltu; wTrsujuw'

In contrast to 7, this expression is not symmetric in the four indices. To obtain

r
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symmetry we introduce

- 4p Trst[4]
== {lrstu + b u[4] + é(lrs; tut s thuojvw)[G]}

which is a covariant tensor of rank 4. This may be compared to each of the
“expected tensors”

(226) rstu

1
T = iDuTrst[‘i]

(227) rstu

= —E{l g + Lol [4] + 5(L 0, + L0, + 11T, i [6])}

rstu
and

(2.28) M., =E{dl1d]ldld,l}.

The latter may, as appears by differentiation of (2.13) twice, be rewritten as
(2.29) M= —E{ly + Lodu[4] + 10,031 + 01,161}

The tensors (2.26) and (2.27) are closely analogous. In particular, they are
identical for (%, k) exponential models, with common value —E{{,,,}. In con-
trast to this, M,,,, does not equal the common value of 7., and T,,,, for such
models. But if instead of the fourth moment of the score vector, i.e., M,,,, we

consider the fourth cumulant, i.e.,
Kpgtu = Mgy, — Llyy [3]»
then we find that this is also a tensor, that
K, = _E{lrstu Lisid, [4] + ( wt Lldy + (lrsltlu s tu))[6]}

and that for (%, k) exponential models Tsm =T =Krou

More generally, for m = 2,3,... let K, , denote the mth-order cumulant of
the score vector 9l = (d,4,...,d dl ). From the tensorial nature of the moments
(2.23) of dl and from the general formulae relating moments and cumulants, cf.
for instance Speed (1983) or McCullagh (1984b), we find that K, T is a
covariant tensor of rank m. Furthermore, writing 7., for j., 7., for L., and
defining 7, , and 7, , recursively by

Ty

1

1
Tovra = Do T [m 1]

and
= D m+1
[N m+1 Tm+1 rl [ ]
we have T,‘ vrn =T, ... =K, ., for(k, k) exponential models and for any
m = 2.

3. Expansion of c|J| '3 L. We shall derive an asymptotic expansion of (1.5),
by Taylor expansion of c|j|*/2L in & around w, for fixed value of the auxiliary a.
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The various terms of this expansion are given by mixed derivatives [cf. (1.4)] of
the log model function. It should be noted that for arbitrary choice of the
auxiliary statistic a the quantity c| ]|1/ 2L, constitutes a probablhty (density)
function on the domain of variation of & and the expansions below are valid.
However, ¢|j|'/*L furnishes an approximation to the actual conditional distribu-
tion of & given a, as discussed in Section 1, only for suitable ancillary specification
of a.

To expand c|j|'/?L in & around « we first write L as exp{/ — {} and expand !
in w around &. By Taylor’s formula,

—j= Z ry "‘(w—@)r"(ar, 3r,l)(°3)
whence, expanding each of the terms (J 4, 1) (&) around w
E s (_ )V ry
I-1=Y% (60— w)" - (- w)
y=2 v!
(3.1) - 1
XZ_‘:’_w)SI"'(‘:)_w)spasl'“aslr...r‘
0=0 p1 o' 11 v
Consequently, writing § for & — w and 8™ for (& — w) (& — w)® - -+, we have

1—7= —18%6 + 1674], ,+2
(32) j (lrs,t 3 rst)

+ 2]_48rStu(61rs; tu + 8lrst; u + 3lrstu) + o

Next, we wish to expand log{|j|/| f|}/% in & around «. To do this we observe that
if A is a d X d matrix whose elements a,, depend on w then
3 Jog|A| = |A|"" 9,|A]
=a* d,a,,,
where a”™ denotes the (r, s)-element of the inverse of A. Furthermore, using
d3,a™ = —a™a" d,a

ow?

which is obtained by differentiating a,,a** = §° with respect to «’ and solving
for a”, we find

d,0, loglA| = —a®%a*" d,a,, d,a,,+ a®d,d,a,,
It follows that
log{I71/17)"* = = 585" (et + 11s;.)
(3.3) = et + st + Hrus o+ Fry )
I st + by Yo + Do)} + -
By means of (3.2) and (3.3) we therefore find

(3.4) AJIVL = (2m)Peq (6 — 0; PD{1+ A + Ay + -+ ),
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where ¢ (+; f) denotes the density function of the d-dimensional normal distri-
bution with mean 0 and precision (i.e., inverse variance—covariance matrix) f and
where

(3.5) A= =387 (Lo + Lod) + 387 Lyt + 3rat)
and
Ay = 5[ =382 Jroru + Fratyu + Drows e+ Do)
+ @77 = ) B+ Fret) oo e + Fowon)}
(3.6) + 87 (3 et + sty + 6l 1)
=67 ows w + Fown) (Frss e + $ree)}

+38rstuvw(lrs; .+ % rst)(luv; wT %luow)] s

A, and A, being of order O(rn !/2) and O(n™'), respectively, under ordinary
repeated sampling.
By integration of (3.4) with respect to & we obtain

(3.7) 2m)c=1+C + -+,
where C, is obtained from A, by changing the sign of A, and making the
substitutions
§7s __)jrs’
8rslu _)lirs tu[3]’
8rstuvw__)jrsjtujvw[15],

the 3 and 15 terms in the two latter expressions being obtained by appropriate
permutations of the indices (thus, for example, 871 — jrofte 4 jrfsu 4 frufsty
Combination of (3.4) and (3.7) finally yields

(3.8) JI"?L = @(& — w; H{1+ A, + (A, + C) + -+ )

with an error term which in wide generality is of order O(n~3/2) under repeated
sampling. In comparison with an Edgeworth expansion it may be noted that the
expansion (3.8) is in terms of mixed derivatives of the log model function, rather
than in terms of cumulants, and that the error of (3.8) is relative, rather than
absolute.

In particular, under repeated sampling and if the auxiliary statistic is (ap-
proximately or exactly) ancillary such that

p(&; wla) = p*(&; wla){1 + O(n=32)}
(cf. Section 1) we generally have
(39)  p(&;wla)=g,d—w; ){1+A + (4, + C) + O(n"3%)}.

For one-parameter models, i.e., for d = 1, the expansion (3.8) with 4,, A,, and
C, as given above reduces to an expansion derived in Barndorff-Nielsen and Cox
(1984a). Using that expansion confidence limits for w, valid to order O(n~3/2),
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have been derived in Barndorff-Nielsen (1985a). In the former of those two
papers a relation valid to order O(n~%/2?) was established, for general d, between
the norming constant ¢ of (1.4) and the Bartlett adjustment factors for likelihood
ratio tests of hypotheses about w. By means of this relation such adjustment
factors may be simply calculated from the expression for C,.

ExaMPLE 3.1. Suppose .# is a (k, k) exponential model with model function
(2.14). Then the expression for C; takes the form
C, = 21—4{3K,stux’sx‘” = K,k o 267 KK + 3x’3x‘”x”w)},
where, for d, = /36" and x(8) = —log a(f),
=29,0,...x(8)

and where x"° is the inverse matrix of .

KI‘S..

From (3.8) we find the following expansion for the mean value of &:
Eo=w"+pf+p5+---,

where p? is of order O(n™!), u$ is of order O(n~2), and

(310) = =T = =TT
Hence, from (3.8) and writing §’ for § — p,,
AJI7L = 9g(& = @ = pys {1 + (A = 8T p)) + )
= ‘Pd(‘:’ W Ty j){l + %hmt(b\/; j)(lrs;t + % rst) + o },
where the error term is of order O(n™!) and where A" *"(+; j) denotes the

tensorial Hermite polynomial [as defined by Amari and Kumon (1983)], relative
to the tensor j,s. Using (2.12) we may rewrite the last quantity in (3.11) as

-1/3

(3.11)

(3.12) Irs; ¢t % rst = F rst T Rrst’
where

(3.13) Rrst = %(lrs;t - %(lrt;s + sl;r))'
Since

(3.14) R85 f) = 8778787 — jro87[3]
we find

R85 )Ry =0

and hence (3.11) reduces to

- i ~1/3
(315) c|]|1/2L - q)d(w - = j){l _ %hrst(S/; j) r P },

the error term being O(n™1).
Suppose, in particular, that the model is an exponential (%, d ) model. We may
then compare (3.15) with the Edgeworth expansion for an efficient, bias adjusted
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estimate of w given an ancillary statistic, provided by formulas (3.33) and (3.25)
in Amari and Kumon (1983). It appears that hsH( 8, j) 17‘ et Of (3 15) is the

counterpart of Amari and Kumon’s F wpch® — H wohCRE + H,‘Mhah“‘.

Thus (3.15) offers some simplification over the corresponding expression provided
by the Amari and Kumon paper.
Note that, again by the symmetry of (3.14), if

-1/3

(3.16) I .l3]=0

for all r, s, ¢t then the first-order correction term in (3.15) is 0. Furthermore, for
43

any one-parameter model .# the quantity J' with a = — 1 can be made to

vanish by choosing that parametrization for which w is the geodesic coordinate

for the — § observed connection. (Note that generally this parametrization will

depend on the value of the ancillary a.) An analogous result holds for the
Edgeworth expansion derived by Amari and Kumon (1983), referred to above.

The parametrization making the ¢ = — 1 expected connection F vanish has the
interpretation of a skewness reducing parametrlzatlon, cf. Kass (1984).
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