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Likelihood-based estimation of
continuous-time epidemic models from
time-series data: application to measles

transmission in London
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We present a new statistical approach to analyse epidemic time-series data. A major
difficulty for inference is that (i) the latent transmission process is partially observed and
(ii) observed quantities are further aggregated temporally. We develop a data augmentation
strategy to tackle these problems and introduce a diffusion process that mimicks the
susceptible–infectious–removed (SIR) epidemic process, but that is more tractable
analytically. While methods based on discrete-time models require epidemic and data
collection processes to have similar time scales, our approach, based on a continuous-time
model, is free of such constraint. Using simulated data, we found that all parameters of the
SIR model, including the generation time, were estimated accurately if the observation
interval was less than 2.5 times the generation time of the disease. Previous discrete-time
TSIR models have been unable to estimate generation times, given that they assume the
generation time is equal to the observation interval. However, we were unable to estimate the
generation time of measles accurately from historical data. This indicates that simple models
assuming homogenous mixing (even with age structure) of the type which are standard in
mathematical epidemiology miss key features of epidemics in large populations.

Keywords: susceptible–infectious–removed model; Cox–Ingersoll–Ross model;
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1. INTRODUCTION

Over the last century, mathematical epidemiology has
played a critical role in our understanding of the spread
of communicable diseases in human populations.
Continuous-time mechanistic models constitute the
backbone of the discipline. One of the most studied
models is the susceptible–infectious–removed (SIR)
model, in which individuals are successively susceptible
to infection, infectious and removed (may no longer
transmit the disease). Denoting St and It, the numbers
of susceptibles and infectives in the population at time
t, respectively, new infections occur at rate bStIt;
recoveries at rate gIt (Soper 1929; Bailey 1975;
Anderson & May 1991).

Likelihood-based estimation of the parameters of
such a model would be relatively straightforward if the
times of infection and removal were observed for each
case (Becker & Britton 1999); but this detail of data is
rarely obtained in practice. In general, the underlying
transmission process is partially observed (e.g. times of
infection are observed, but not the times of removal;
orrespondence (s.cauchemez@imperial.ac.uk).
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some cases are not reported), and observed quantities
may be further aggregated (e.g. times of detection are
aggregated weekly, monthly.). In this context, calcu-
lation of the likelihood quickly becomes intractable
since it requires to integrate over all unobserved
quantities.

Other concepts have therefore been used in an
attempt to develop easier methods of estimation. For
example, Becker (1989) and Becker & Hasofer (1997)
rested on martingale methods to estimate transmission
parameters when observations consist of the initial
state of the epidemic, plus (i) the final state of the
epidemic or (ii) the whole removal process. The
approach provided simple but nevertheless efficient
estimators of key quantities and approximate confi-
dence regions for the parameters. However, it would be
difficult to extend it to more complex situations, such as
the one we are interested in, where (i) times of detection
are temporally aggregated, (ii) the initial state of the
system is unknown, and (iii) we must account for
under-reporting, seasonality (and possibly long-term
variations) in transmission rates. It seems that only
likelihood-based methods can provide an integrated
framework to deal simultaneously with these issues.
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Over the last decade, data augmentation methods
have been extensively used to tackle the missing data
problem that makes likelihood-based estimation so
tedious. The idea is to augment the observed data with
the pieces of information required to write easily the
likelihood; here the times of infection/removal. In a
Bayesian setting, the joint posterior distribution of
parameters and augmented data is then explored by
Markov chain Monte Carlo (MCMC) sampling (Gilks
et al. 1996). Using reversible jump MCMC sampling
(Green 1995), the methodology has been extended to
the situation where the exact amount of missing data is
unknown, for example owing to under-reporting
(Gibson & Renshaw 1998; Auranen et al. 2000;
Cauchemez et al. 2006). Although the method is flexible
and allows investigation of complex models, it is
essentially limited by the size of the augmented data,
which increases with the number of cases. Conse-
quently, the approach has been used only for the data
collected in small communities such as households
(Auranen et al. 2000; O’Neill et al. 2000; Cauchemez
et al. 2004) or schools (Cauchemez et al. 2006), when
the number of cases does not exceed a few thousands.
Computation times would become prohibitive when
dealing with larger datasets, such as those collected by
surveillance systems, for which the number of cases can
easily reach tens of thousands.

For large epidemics in large populations, there is
therefore no option but to find approximations of the
SIR model, which are analytically tractable. Consider,
for example, epidemic time-series data. These data
typically provide counts of cases reported daily, weekly
or monthly on a local or national ground. For inference,
a natural choice is to approximate continuous-
time models by discrete-time models (Finkenstadt &
Grenfell 2000; Morton & Finkenstadt 2005). In these
latter models, each time period is made of one
generation of cases; generation of period k is simply
the offspring of the generation of period kK1. However,
an important constraint is that one observation period
must effectively capture one generation of cases. This
may be achieved only if the generation time of the
disease (delay between infection of a case and infection
of their typical secondary case) is equal to the length T
of observation periods, or is a multiple of T. In the
latter case, the data must be further aggregated, which
may lead to an additional loss of information. There
are therefore a variety of situations where discrete-time
models cannot be used, since few generations may
occur during a single observation period.

In this paper, we design a statistical framework to
estimate the continuous-time SIR model from time-
series data, when (i) the number of cases is too large to
augment the data with the times of infection/removal
of each case and (ii) epidemic and data collection
processes have different time scales, so that the use of
discrete-time models is excluded. To tackle the problem
of temporal aggregation (and missing data), the data
are augmented with the latent state {IkT, SkT} at the
beginning of each observation period k (Ztime interval
]kT,(kC1)T ]). The main difficulty is then to define the
relationship between {IkT, SkT}, {I(kC1)T, S(kC1)T} and
the observation (number of infections reported for
J. R. Soc. Interface (2008)
period k). This is achieved by introducing a diffusion
process that mimics the SIR process, for which exact
solution is readily available. The diffusion process is the
Cox–Ingersoll–Ross process, which is commonly used in
finance to model interest rates (Cox et al. 1985). The
method is applied to measles time series in London in
the pre-vaccination era (1948–1964).
2. MATERIAL AND METHODS

2.1. The SIR epidemic model
2.1.1. The SIR model. The SIR epidemic model is a
continuous-time Markovian model that describes the
spread of a communicable disease in a population.
Denoting {St, It,Rt}, the numbers of susceptibles,
infectives and removed cases at time t, respectively,
and Ht the s-algebra generated by the history {Su, Iu,
Ru;0%u%t}, the model is defined by the following
equations:

PðdSt Z1jHtÞZnðtÞdtCoðdtÞ;
PðdSt ZK1;dItZ1jHtÞZbðtÞStIt dtCoðdtÞ
PðdIt ZK1;dRtZ1jHtÞZgIt dtCoðdtÞ;

;

8><
>: ð2:1Þ

where n is the birth rate; b is the transmission rate; and
1/g is the mean infectious period. In this formulation,
we neglect the mortality due to disease. We also neglect
the number of individuals who leave the susceptible
population owing to death or migration.

In practice, this continuous-time process is only
partially observed, and observed quantities are further
aggregated. Surveillance data typically consist of
numbers {Uk}kZ0, ., K of new infections occurring
during periods of length T, i.e. Uk is the number of
times in interval ]kT,(kC1)T ] when It increases byC1.

When epidemic and data collection processes have
the same time scale (1/gzT ), a discrete approxi-
mation of the model may be considered, where the
expected number of cases E(Uk) for period k is
proportional to the number of cases UkK1 for period
kK1 (Finkenstadt & Grenfell 2000; Finkenstadt et al.
2002). However, such relationship no longer holds when
1/gsT since few generations of cases may then occur
during a single observation period. There is then no
option but to come back to the continuous-time model.

Figure 1 shows two possible trajectories for the
number of infectives It consistent with four new
infections occurring during period k (UkZ4). The larger
rate of recovery in figure 1a implies that, although
the same number of new infections is observed in
figure 1a,b trajectories of It are very different. Owing
to stochastic fluctuations, important differences could
be observed between trajectories, even if the recovery
rate was the same.

Let us first assume that we observe {IkT, SkT}kZ0,., K,
the numbers of infectives and susceptibles at the
beginning of each observation period (in practice, this
is not the case; these terms will be considered as nuisance
parameters of the final inference framework). The
main issue for inference is to determine the probability
P(I(kC1)T, UkjIkT, SkT), the joint probability of the
number of infectives at the beginning of period kC1
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Figure 1. Examples of trajectories for the number of infectives It consistent with UkZ4, where Uk is the number of new infections
occurring during time period ]kT,(kC1)T ]: (a) IkTZ2, I(kC1)TZ2 and (b) IkTZ4, I(kC1)TZ7.
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and the number of new infections for period k given
IkT, SkT.

PðIðkC1ÞT ;Uk jIkT ;SkTÞ

ZPðIðkC1ÞT jIkT ;SkTÞPðUk jIðkC1ÞT ; IkT ;SkTÞ: ð2:2Þ

In the TSIR framework, which relies on the
relatively strong assumption that the number of
infectives It during time period k is constant and
equal to the number of new infections (soUkZI(kC1)T),
only the first term of equation (2.2) is needed (the
second term is equal to 1 for UkZI(kC1)T, 0 otherwise).
This simplification does not hold here. Consider, for
example, the situation in figure 1a; there is an infinity
of values for Uk consistent with I(kC1)TZ2 and IkTZ2
(any UkR0 is consistent I(kC1)TZ2 and IkTZ2).

Without loss of generality, let us assume kZ0.
2.1.2. Approximation: Cox–Ingersoll–Ross diffusion
process. Here, we need to make two additional
assumptions. We assume that length T of observation
periods is small enough to neglect within-period
changes in the number of susceptibles

H1 :ct 2 ½0;T ½ StzS0;

and that the transmission parameter is constant during
an observation period

H2 :ct 2 ½0;T ½ bðtÞzb0:

The value of S0 is discussed in appendix C.
Under assumptions H1 and H2, the number of

infectives It is a birth and death process over time
period [0,T ], with birth rate b0S0It and death rate gIt
at time t. When there is one infective at the beginning of
the period (I0Z1), the number IT of infectives at the
end of the period follows a geometric distribution
(Bailey 1964; Renshaw 1991). If I0O1, the distribution
of IT is still available, but the resulting expression is
‘really too messy to be of much practical use’ as I0
increases (Bailey 1964; Renshaw 1991). Considering
the development of a population of initial size I0 as
being equivalent to the development of I0 separate
J. R. Soc. Interface (2008)
populations each of initial size 1, it can be shown that
the distribution of IT is negative binomial; however, it
is unclear how large I0 may become before the
‘populations’ can no longer be assumed to develop
independently of each other (Renshaw 1991). Here, we
introduce an alternative approximation where the
assumption of independence is not required.

In the models described above, the number of
infectives is a discrete variable. Here, we intend to
model the effective number of infectives as a continuous
variable I 0t . A natural candidate is the diffusion process
that mimics the epidemic SIR process under H1 and
H2, i.e. with trend and volatility

EfI 0tCdtjI 0t gZ ðb0S0KgÞI 0t dt;

var I 0tCdtjI 0tf gZ ðb0S0 CgÞI 0t dt;

(

which is the solution of the stochastic differential
equation

dI 0t Z r0I
0
t dtCs0

ffiffiffiffi
I 0t

p
dW ; ð2:3Þ

where r0Zb0S0Kg, s20Zb0S0Cg and W is the
Brownian motion. Equation (2.3) characterizes the
Cox–Ingersoll–Ross process, which is used to model
interest rates on financial markets (Cox et al. 1985).
Interestingly, the exact solution of equation (2.3) is
readily available (Cox et al. 1985). It has a non-central c2

distribution with zero d.f. (Siegel 1979; see appendix A).
Instead of equation (2.2), inference will therefore

rely on

P I 0T ;U0jI 00;S0

� �
ZP I 0T jI 00;S0

� �
P U0jI 0T ; I 00;S0

� �
: ð2:4Þ

For I 00O0, the first term of equation (2.4) is (appendix A)

P I 0T jI 00;S0

� �
Z

expðKu0Þ if I 0T Z 0;

2c0f2u0
2c0I

0
Tð Þ otherwise;

(
ð2:5Þ

where c 0Z2r0ðer0T K1Þ=s0; u0Zc 0ðer0T K1ÞI 00; and f
is defined in appendix A. The mean and variance
of I 0T jI 00;S0 are er0TI 00 and ðs0Þ2er0T ðer0T K1ÞI 00=r0,
respectively.

The second term PðU0jI 0T ; I 00;S0Þ of equation (2.4)
can only be approximated. We use the fact that,
given the expected number of new infections
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L0Zb0S0

ÐT
0 I 0t dt, the number U0 of infections occur-

ring in [0,T ] is Poisson distributed with mean L0.
Assuming that L0jI 0T ; I 00;S0 may be approximated by a
gamma distribution with mean M0 and variance V0 to
be determined, a first approximation of the distribution
PðU0jI 0T ; I 00;S0Þ is

PðU0jI 0T ; I 00;S0ÞZ
ðN
0
PðU0jL0ÞPðL0jI 0T ; I 00;S0ÞdL0;

ð2:6Þ

which characterizes the negative binomial distribution
with mean M0 and variance M0CV0 (Poisson distri-
bution with gamma distributed parameter). In this first
approximation, it is assumed that, givenL0, the number
of infections in [0,T ] is independent of ðI 0T ; I 00Þ. In
practice, however, there is the additional constraint that
if I 0TKI 00O0, the numberU0 of persons infected in [0,T ]
must beRI 0TKI 00. We therefore condition the negative
binomial distribution by U0Rmaxð0; I 0TKI 00Þ.

Eventually, to determine the mean M0 and variance
V0 of L0jI 0T ; I 00;S0, we rely on the linear model

L0 Z x0 Cy0I
0
T Ce0; ð2:7Þ

where e0 is the error. Denoting f~x0; ~y0g, the scalars that
minimize E½ðL0K x0K y0I

0
T Þ2� (minimization is per-

formed analytically and there is no need to use a
minimization routine; see appendix B), and ~v0 the
variance of L0K~x0K~y0I

0
T , we approximate the mean

M0 by ~x0C ~y0I
0
T , and the variance V0 by ~v0. We derive

~x0; ~y0; ~v0 from the Laplace transform of ðI 0T ;
ÐT
0 I 0t dtÞjI 00;

S0 (appendix B).
2.1.3. Approximation when the hypothesis of mass
action is violated. When the hypothesis of mass action
is violated, different authors have suggested to use the
force of infection b0S0ðItÞ1Ke with e close to 0 in general
(Finkenstadt & Grenfell 2000; Morton & Finkenstadt
2005). Unfortunately, the results of §2.1.2 apply only
for eZ0 since the exact solution of equation (2.3) is
not available otherwise. However, the force of infection
can be linearized for e close to 0. Denoting �I

0
0, the

expectation of the average number of infectives over
period [0,T ] given I 00;S0

�I
0
0 ZE

1

T

ðT
0
I 0t dtjI 00;S0

� �
;

the force of infection may be approximated by the
following term, linear in I 0t :

b0S0ðI 0t Þ1Kezb0S0
�I
0
0
Ke
I 0t : ð2:8Þ

We can use equation (2.8) in the model described in
§2.1.2 for inference. An approximation of �I

0
0 is given in

appendix C.
2.2. Statistical framework
2.2.1. Observed and augmented data. We consider the
situation where data consist of the time series
U �

kf gkZ0;.;K of numbers of reported cases, plus birth
rates fBkgkZ0;.;K . Unobserved variables required for
model specification are
J. R. Soc. Interface (2008)
(i) the total number of cases Uk (i.e. reportedC
unreported cases) during observation period
kZ0;.;K ,

(ii) the number of infectives I 0kT at the beginning
of observation period kZ0;.;K , and

(iii) the number of susceptibles S0 at the beginning
of the first period.

Given S0, fUk ;BkgkZ0;.;K , the number of susceptibles
at the beginning of period k, is given by the
deterministic relationship

SkT ZS0 C
XkK1

iZ0

ðBiKUiÞ: ð2:9Þ

In the statistical framework, observations
fU �

k ;BkgkZ0;.;K are augmented with fðUk ; I
0
kT ÞkZ0;.;K ;

S0g, which may be considered as nuisance parameters of
the model.
2.2.2. Joint distribution. Denoting Q, the parameters of
the model, the joint distribution of observations,
augmented data and parameters are

P I 0ðKC1ÞT ; I 0kT ;Uk ;U
�
k

� �
kZ0;.;K ;S0;QjfBkgkZ0;.;K

� 	
Z

Y
kZ0;.;K

fP U �
k jUk ;Qð ÞPðI 0ðkC1ÞT ;Uk jI 0kT ;S0;

fUi;BigiZ0;.; kK1;QÞ
�
PðS0; I

0
0jQÞPðQÞ: ð2:10Þ

The first term on the r.h.s. of equation (2.10)
characterizes the reporting process. Here, we assume
that the number of reported cases follows a binomial
distribution

U �
k jUkwBinðUk ; rÞ; ð2:11Þ

where r is the proportion of cases which are reported.
The second term has been discussed in §2.2.1

P I 0ðkC1ÞT ;Uk jI 0kT ;S0; fUi;BigiZ0;.; kK1;Q
� 	

ZP I 0ðkC1ÞT ;Uk jI 0kT ;SkT ZS0 C
XkK1

iZ0

ðBiKUiÞ;Q
 !

:

The third term models the state of the system at the
beginning of the follow-up. Denoting M, the size of the
population, we assume that I 00 and S0 are uniformly
distributed in [0,M ] and f0; 1;.;Mg, respectively.
For London in the period 1948–1964, we specified
MZ10 000 000.

The last term gives our priors for model parameters.
For parameters defined on ]0,N[, we specify an
exponentially distributed prior with mean 1010. This
distribution is flat on the range of values possible for the
parameters. The reporting rate r has a uniform prior
distribution U [0,1].
2.2.3. MCMC sampling. The joint posterior distri-
bution of augmented data and parameters was explored
by Metropolis–Hastings MCMC sampling (Gilks et al.
1996). The following steps were sequentially applied.
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(i) Update the parameters Q: parameters defined
on ]0, CN[ were updated by a random walk on
the log scale. Power parameter e was updated by
a random walk on the real line.

(ii) Update the numbers of infections Uk, for
kZ0;.;K : an independence sampler was used
to updateUk (Gilks et al. 1996).New candidate ~Uk

was drawn as follows: ~UkZU �
k CXk, where Xk is

drawn from the negative binomial distribution
ðU �

k Ca; ððrCbÞ=ð1CaÞÞÞ with aZbZ10K5.
This choice is motivated by the fact that, if Uk is
Poisson distributed with gamma (a, b)-distribu-
ted parameter, the distribution of Uk jU �

k is the
proposal used here.

(iii) Update the numbers of susceptibles S0 at the
beginning of the follow-up: a random walk was
used.

(iv) Update the numbers of infectives I 0kT at the
beginning of period kZ0;.;K : a random walk
on the log scale was used.

To reduce correlation between the transmission rate
b and the initial number of susceptibles S0, it was useful
to reparametrize the transmission rate bZb�=S , with
SZ

PKK1
kZ0 SkT=K .

The standard deviations of the proposals were tuned
to obtain an acceptance rate of 20–40%. We performed
4 000 000 iterations for each run of the MCMC
algorithm. The first 400 000 were discarded as the
burn-in period. The output was then recorded on
every 200 iterations to constitute a sample from the
posterior distribution. One MCMC run took roughly
20 hours on a desktop. Convergence of the MCMC was
visually assessed.
2.3. Applications
2.3.1. Simulation study. We first considered the
situation where transmission rates vary every two
weeks with a period of 1 year, and where data are
collected every two weeks too (TZ14 days). Epidemics
were simulated from the continuous-time SIR model
with mean infectious period 1/g equal to 7, 14 and
21 days. We also simulated epidemics where the
hypothesis of mass action was violated (eZ3, 5, 7%).
Eventually, we simulated epidemics from the suscep-
tible–exposed (infected but not infectious)–infectious–
removed (SEIR) model, with constant or exponentially
distributed latent period (time period during which
the subject is infected but not infectious, mean LZ2,
3.5, 7, 10 days) and exponentially distributed infectious
period, with mean IZ7 days.

To assess how the method could cope with temporal
aggregation in the data, we also simulated an epidemic
for 20 years from the continuous-time SIR model with
mean infectious period 1/gZ14 days. In the simulation,
two seasons with high and low transmissibility, respect-
ively, were defined for each calendar year. We then
estimated parameters of the SIR model for different
levels of temporal aggregation. It is not always possible
to split seasons in equally sized observation periods. For
example, for a target duration of observation period of
eight weeks, each season (26 weeks) is split in three
J. R. Soc. Interface (2008)
observation periods with size 8, 8 and 10, respectively
(average duration: 8.7 days). We investigated scenarios
where the average duration of observation periods was
1, 2, 2.9, 4.3, 5.2, 6.5, 8.7 and 13 weeks. Note that the
length T of observation periods is not constant in a
dataset; themethod can account for these variations inT.

For all scenarios, birth rate in the simulations was
BZ2152 births per month, which is the average birth
rate in London between 1944 and 1964. Simulation
values for the parameters were defined, based on their
posterior mean given historical data on measles
transmission in London, and under appropriate con-
straints (e.g. mean infectious period equal to 7 days for
the scenario 1/gZ7 days). For some scenarios (e.g. SIR
model with 1/gZ14 days), simulation values were
simply equal to their posterior mean. For other
scenarios (e.g. eZK7%), parameters were adjusted so
that the average number of cases per year was roughly
consistent with the one observed in London between
1948 and 1964.
2.3.2. Comparison with existing methods: measles
epidemics in London. We also analysed the time series
of the number of measles cases, collected bi-weekly in
London between 1948 and 1964 (http://www.zoo.ufl.
edu/bolker/measdata.html; Finkenstadt & Grenfell
2000; Morton & Finkenstadt 2005).

Previous studies have shown that, for the pre-
vaccination era in the UK, models in which parameters
have only seasonal variations fail to exhibit the same
cyclical pattern as observed epidemics (Finkenstadt &
Grenfell 2000; Morton & Finkenstadt 2005). This
result, which was also observed with the method
presented here, is probably due to changes in the
structure of the population (through changes in birth
rates) that modify transmission parameters themselves.
The problem has been previously tackled by the use of
local regressions, leading to the estimation of a sequence
of reporting rates frkgkZ0;.;K (Finkenstadt & Grenfell
2000). Here, we use an alternative approach, where the
person-to-person transmission rate is inversely pro-
portional to the size of the core group—group of
individuals who contribute the most to the chain of
transmission—(De Jong et al. 1995). For measles, we
assumed that the core group consists of children with
age below 4 years (i.e. below 104 bi-weeklies), so that
the size of the core group for observation period k is

Nk Z
X103
jZ0

BkKj ;

and the contribution to the force of infection of an
infective is bkS k=Nk during this period, where bk varies
bi-weekly, with a period of 1 year.

For eZ0, the effective reproduction number Rt

(average number of persons infected by a typical case
at time t) is simply ðbk=gÞ:ðS k=NkÞ for time t in period
k. When the assumption of mass action is violated
(es0), the effective reproduction number also depends
on the number of infectives in the population
RtZðbk=gÞ:ðS k=NkÞ:ðItÞe. However, this quantity can
easily be computed from the output of our algorithm for
the sequence of times fkTgkZ0;.;T .

http://www.zoo.ufl.edu/bolker/measdata.html
http://www.zoo.ufl.edu/bolker/measdata.html
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simul 21 21 20.66 [19.46,21.84] 94 96 [91,101] 47.00 46.93 [46.83,47.04] K0.87 (1.27)
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Two runs of the MCMC algorithm were performed:
(i) all the parameters of themodel are estimated, including
themean infectious period 1/g and (ii) themean infectious
period of measles is known and equal to 1/gZ14 days.

For this dataset, the TSIR method is expected to be
applicable since it is reasonable to assume that the
generation time for measles is approximately two weeks.
For comparison purpose, we also estimated our model
with the TSIR method (Finkenstadt & Grenfell 2000;
Morton & Finkenstadt 2005). Under TSIR assumptions
(see above), equation (2.2) simplifies toPðUk jUkK1;SkT Þ,
where the number Uk of new infections occurring during
period k has a negative binomial distribution with mean
EkZrkSkT ðUkK1Þ1Ke, variance Ek/q and density

GðUk CqÞ
GðqÞUk !

ðEk=qÞUk ð1CEk=qÞKUkKq:
season (month)

Figure 3. Posterior mean (solid line), 95% credible interval
(dotted lines) and simulation value (dashed line) of the ratio
b/g for the SIR epidemic simulated with 1/gZ14 days. b is
the transmission rate (seasonal variations with periodZ1
year) and 1/g is the mean infectious period.
3. RESULTS

3.1. Simulation study
3.1.1. SIR model. Figure 2 shows convergence of the
MCMC algorithm for the SIR epidemic simulation with
1/gZ7 days. Convergence is quickly obtained.

Table 1 gives simulation values, posterior mean and
95% credible interval of the mean infectious period 1/g,
the initial number of susceptibles S0 and the reporting
rate r. The mean (s.d.) of the relative error for b/g is
J. R. Soc. Interface (2008)
also given. For the three simulated datasets: posterior
means are close to simulation values; simulation values
are always within the 95% credible interval; and the
relative error of b/g is small (less than 3%). Figure 3



Table 2. Epidemics simulated when the hypothesis of mass action is violated (es0). (Simulation values, posterior mean and 95%
credible interval of the power e, the mean infectious period 1/g, the initial number of susceptibles S0 and the reporting rate r. The
mean (s.d.) of the relative error of b/g is also given. The force of infection is bStI

0
t
1Ke

. The duration of observation periods is
14 days.)

e (%) 1/g (days) S0 (!103) r (%) error b/g (%)

simul estimate simul estimate simul estimate simul estimate mean (s.d.)

0.00 0.28 14.00 13.50 160 163 47.00 46.96 0.37 (1.35)
[K0.10,0.68] [12.38,14.72] [150,179] [46.84,47.08]

3.00 3.27 14.00 13.79 180 182 47.00 46.92 1.82 (1.06)
[2.83,3.72] [12.48,15.15] [169,197] [46.80,47.03]

5.00 6.70 14.00 14.89 180 197 47.00 46.94 3.57 (3.14)
[5.00,8.42] [13.21,16.84] [170,233] [46.82,47.06]

7.00 9.42 14.00 14.72 180 154 47.00 47.04 30.12 (1.98)
[6.98,11.70] [12.93,16.66] [123,196] [46.92,47.15]

Table 3. Epidemics simulated from the SEIR model. (Simulation values, posterior mean and 95% credible interval of the mean
infectious period 1/g, the initial number of susceptibles S0 and the reporting rate r. The mean (s.d.) of the relative error of b/g is
also given. In the simulations, the latent period L is constant or exponentially distributed; the infectious period is exponentially
distributed with mean IZ7 days. The duration of observation periods is 14 days.)

data 1/g (days) S0 (!103) r (%) error b/g (%)

L LCI estimate simul estimate simul estimate mean (s.d.)

cst
2 9 9.23 [8.38,10.10] 415 416 [377,460] 47.00 46.89 [46.70,47.07] 1.00 (3.01)
3.5 10.5 10.80 [9.82,11.87] 415 402 [364,442] 47.00 47.01 [46.85,47.18] 3.69 (4.92)
7 14 13.82 [12.52,15.11] 415 414 [375,460] 47.00 46.90 [46.72,47.08] 0.02 (8.12)
10 17 17.11 [15.10,19.14] 415 415 [370,467] 47.00 47.09 [46.92,47,27] K0.14 (9.33)

exp
2 9 8.83 [8.01,9.74] 415 403 [361,446] 47.00 47.09 [46.90,47.27] 3.34 (3.01)
3.5 10.5 10.80 [9.72,11.97] 415 396 [351,448] 47.00 47.03 [46.83,47.21] 5.22 (4.32)
7 14 13.49 [12.15,14.84] 415 420 [377,470] 47.00 47.08 [46.88,47.27] K1.23 (6.57)
10 17 15.30 [13.78,16.67] 415 436 [397,485] 47.00 46.98 [46.79,47.18] K4.54 (7.57)
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shows the seasonal variations of the ratio b/g for the
epidemic simulated with 1/gZ14 days.
3.1.2. Estimation when the hypothesis of mass action is
violated. Table 2 gives the simulation values, posterior
mean and 95% credible interval of e, 1/g, S0 and r when
the hypothesis of mass action is violated. Power e is
correctly estimated when the simulation value is less
than 5%; it is overestimated otherwise. Estimates of
other parameters remain satisfying for e%5%. For
eZ7%, both the ratio b/g and the power coefficient e

are overestimated by 30%.
3.1.3. SEIR model. Table 3 gives the simulation values,
posterior mean and 95% credible interval of 1/g, S0 and
r when the epidemic is generated from an SEIR model.
In this context, the estimate of 1/g corresponds to the
generation time, i.e. the sum LCI of the latent and
infectious period, rather than to the effective infectious
period I. Estimates for other parameters and the
relative error of b/g remain satisfying.
3.1.4. Accuracy of estimates according to the level of
temporal aggregation. Table 4 gives the posterior
mean, 95% credible interval and relative error of
J. R. Soc. Interface (2008)
parameters according to the level of coarseness in the
data. We find that, so far as the average duration of
observation periods is less than or equal to 5.2 weeks
(Z2.5!generation time of the disease), relative
errors remain small for all parameters. For larger
degrees of temporal aggregation in the data, impor-
tant biases are observed.
3.2. Measles epidemics in London in the
pre-vaccination era

3.2.1. Posterior distribution. Table 5 gives the posterior
mean and 95% credible interval of 1/g, S0, r and e.
Figure 4 shows the seasonality, the trend of the
transmission rate and the effective reproduction num-
ber when 1/gZ14 days. Minimum transmission is
obtained during holidays, at the end of August.

When all parameters of the model are estimated,
including the mean infectious period, we find that the
mean infectious period is very short (3–4 days), the
number of susceptibles at the beginning of the follow-up
is roughly 400 000, half of the cases are reported and the
hypothesis of mass action is violated (eO0), although
the estimate of e is close to zero (95% credible interval:
0.46 and 1.30%). When the mean infectious period 1/g
is assumed to be known (Z14 days), the number of
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susceptibles at the beginning of the follow-up is halved
and the estimate of e doubles (posterior mean 2.09
instead of 0.88).

Our estimates are similar to those obtained with the
TSIR approach (see table 5 and figure 4a). The main
difference is obtained for the power coefficient e which is
twice larger for the TSIR method.
3.2.2. Model checking. We simulated epidemics from
the model, with parameters equal to their posterior
means. Simulations started at the beginning of year
1948 and birth rates for period 1944–1964 were an input
of the simulations. For the posterior distribution with
1/g estimated from the data (3.38 days), simulated
epidemics faded out. For 1/gZ14 days fixed, figure 5
compares the observed and expected (average of 40
realizations) time series. The model captures the
biannual pattern of the epidemics, although predicted
incidence for inter-epidemic years is slightly more
important than the observed one (figure 5a,c). The
model also captures the magnitude of biannual epi-
demics, except for two of the three very large epidemics
for which the incidence is underestimated (years 1955
and 1961; figure 5a). Predicted trend in the number of
susceptibles is relatively close to the observed one
(figure 5b).
4. DISCUSSION

We have presented a method to estimate continuous-
time epidemic models from time-series data. Compared
with existing methods based on discrete-time models,
the approach can be used when epidemic and data
collection processes have different time scales or when
data are collected at irregular intervals.

A diffusion process for which an exact solution is
readily available was introduced to approximate the
SIR epidemic process. In large populations, modelling
the number of infectives with a diffusion process does
not raise major concerns. Quite obviously, this choice
would be much more questionable for data collected in
small communities or households.

We proposed a simple approach to capture changes
in the transmission rate due to modifications in the
structure of the population. The basic idea is that an
individual’s number of contacts is fixed, so that each
infective does not contact 10% more people if the
population grows 10%. This leads to assuming that the
person-to-person transmission rate is inversely pro-
portional to the size of the core group (Anderson &May
1991; De Jong et al. 1995). The core group for measles is
clearly the group of young children, although defining a
clear cut-off appears to be relatively arbitrary. Here, we
specified the cut-off at 4 years because the birth rate at
a delay time of 4 years has been found to have a positive
effect on the number of cases and a negative effect on
the fade-out probability (Finkenstadt & Grenfell 1998).
This is consistent with an increase in the person-
to-person transmission rate when an important number
of children leave the group of children under 4 years old
(core group). Under the assumption that the core group
was the group of 4–6-year-old children (early school



Table 5. Transmission parameters for measles epidemics in London in the pre-vaccination era (1948–1964). (Posterior mean and
95% credible interval of the mean infectious period 1/g, the initial number of susceptibles S0, the reporting rate r and the power e.
Estimates obtained with the TSIR approach are also given (parameter qZ26.17 [22.19,30.51]). The duration of observation
periods is 14 days.)

1/g (days) S0 (!103) r (%) e (%)

1/g estimated 3.34 [3.12,3.56] 428 [410,448] 47.50 [47.25,47.75] 0.95 [0.54,1.38]
1/g fixed 14 — 220 [215,225] 48.25 [48.10,48.41] 2.25 [1.84,2.66]
TSIR — 246 [219,277] 48.04 [47.22,48.86] 4.63 [3.07,6.22]
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Figure 4. Seasonality and trend of the transmission rate and the effective reproduction number for measles epidemics in London,
estimated under the assumption that the mean infectious period is equal to 14 days. (a) Seasonality of the transmission rate
(solid line, posterior mean; dashed line, 95% credible interval; grey line, posterior mean of the daily transmission rate rk/14
estimated with the TSIR approach). (b) Trend of the transmission rate b/N. (c) Trend of the effective reproduction number (R).
The transmission rate for period k is bk/Nk where Nk is the size of the core group (children with age below 4 years). The formula
for the effective reproduction number is given in the main text. We correct for the fact that the measles latent period is 8 days
(Anderson & May 1991).
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years) and that there was a 4-year delay between birth
and introduction to the susceptible compartment, the
fit was similar to that for our baseline scenario. When
the core group was the group of 0–9 years old, there was
no improvement of the fit compared with the situation
where it is assumed that core group size and therefore
transmission rates remain constant over time (in both
cases, the expected period of epidemic cycles was 1
year). Further research could try to determine which
core group gives optimal fit in a more systematic way.

In a context where the TSIR approach is expected to
be applicable (generation timezduration of the obser-
vation period), we found that our estimates were
similar to those obtained with TSIR. The main
difference was observed for the power coefficient e,
which was larger for the TSIR model than our diffusion
method. One possible explanation is that the relatively
crude way TSIR deals with temporal aggregation in the
data leads to the overestimation of the ‘gap’ between
mass action and historical contact patterns. Apart from
this effect, our results validate the use of the TSIR
J. R. Soc. Interface (2008)
approach when generation timezduration of obser-
vation period.

When the observation interval and generation time
are not approximately equal, more refined statistical
models are needed, such as the one we presented here.
Using simulated data, we found that our approach
provided accurate estimates for all transmission para-
meters (including the mean infectious period) so long as
the observation interval was less than or equal to
2.5-fold more than the generation time of the disease.
This suggests that, using weekly surveillance data, our
approach could be used to study most of the more
common respiratory diseases, even those with very
short generation time (for influenza, for example, two
recent estimates of the generation time obtained from
independent datasets are 2.6 days (Ferguson et al.
2005) and 2.85 days (Wallinga & Lipsitch 2007),
respectively)). The relevance of the approach for
rare diseases is more difficult to assess since the
reporting rate may then vary dramatically with time.
When the effective reproduction number is high, the
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method might not be able to cope with the same level
of temporal aggregation as for measles, since the
assumption that the number of susceptibles is roughly
constant during one observation period might start
to break down. When we used an SEIR model to
generate the simulated data, we found that the estimate
of 1/g from the SIR diffusion model used to fit the
data corresponded to the generation time of the SEIR
model. When the assumption of mass action was
violated, estimates remained accurate so far as e was
relatively small.

Although our approach provided accurate estimates
of the generation time for simulated data, estimation of
the generation time for measles from historical data
was, disappointingly, unsuccessful. There were two
contradictory observations regarding the quality of
the fit for estimated g (1/gZ3.34 days) and fixed g

(1/gZ14 days). First, likelihood comparison suggests
that the model with estimated g (log-likZK7011) has a
better fit than the model with fixed g (log-likZK9226).
However, epidemics simulated with 1/gZ3.34 days fade
out quickly, while those simulated with 1/gZ14 days
gave a good fit. A possible explanation is that the long-
and short-term predictions contradict each other,
perhaps because more refined modelling is required
to capture structural changes in contact patterns. It
is also possible that the high removal rate we estimated
for compartment I is due to an overestimated flow
into this compartment. This might for example happen
if the reporting rate is positively correlated with
the number of cases, which is a plausible phenomenon.
However, estimates of 1/g were unchanged when
we defined different reporting rates for high/low
incidence periods.
J. R. Soc. Interface (2008)
Our inability to estimate the generation time of
measles therefore has an intriguing and novel interpre-
tation. It suggests that standard models assuming
homogenous mixing (even within an age-defined core
group) miss key features of epidemics in large popu-
lations. Possible ways to relax the assumption of
homogenous mixing models are of course well known
(Anderson & May 1991)—for example allowing for
heterogeneity in susceptibility/infectiousness, the age
structure of the population, spatial substructuring or
network structure. Determining which of these
elements are needed to improve parameter estimates
would provide an important insight into which are the
most important determinants of epidemic patterns in
large populations. This is the topic of ongoing research.

Assuming that the generation time was known, the
method we developed provided estimates of other
parameters consistent with estimates from the TSIR
model (when the TSIR is applicable) and the model
captured both the magnitude and biannual pattern of
measles epidemics. The most relevant epidemiological
model for measles is the SEIR model with a latent
period of 6–9 days and an infectious period of 6–7 days
(Anderson & May 1991). It is therefore relatively
unlikely that measles cases are effectively infectious for
14 days. We nonetheless assumed 1/gZ14 days
because we found that, when our approach was applied
to data simulated from the SEIR model, the estimate of
1/g corresponded to the generation time of the disease
(sum of the latent and infectious periods).

In general, it is not possible to identify both the
reporting rate and the transmission parameters. For
surveillance data on influenza for example, by appro-
priate re-scaling of the transmission parameters, it is
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probable that data would be consistent with a wide
range of reporting rates. The fact that here we were able
to obtain a precise estimate of the reporting rate is
therefore relatively intriguing. Our ability to estimate
the reporting rate for measles (as our inability to
estimate it for influenza) is due to the fact that measles,
as opposed to influenza, confers permanent immunity.
In a context where the system is roughly stationary (i.e.
no major change in epidemic patterns over time and
relatively similar birth rates over time), we expect that
the number of susceptible individuals in the population
is roughly stationary too. This is possible only if the
flow of births is compensated by the flow of infections.
In this context, a very intuitive estimate of the
reporting rate is the coefficient a of the linear
regression: (cumulated number of infections)Za
(cumulated number of births)Cb, with aZ0.478. For
diseases like influenza that do not confer permanent
immunity, strong assumptions on the reporting process
or the history of immunity are needed to estimate
transmission parameters (Finkenstadt et al. 2005).

Standard results on the Cox–Ingersoll–Ross model
(Cox et al. 1985) provided the distribution I 0T jI 00;S0.
However, more work was required to relate I 0T and I 00
to the observation, i.e. the number U0 of infections in
[0,T ]. No exact solution could be obtained for
PðU0jI 0T ; I 00;S0Þ; we could derive only an approximated
form of the distribution. We used that, given the
expected number of new infections L0Zb0S0

ÐT
0 I 0t dt,

the number U0 of infections should be Poisson
distributed with mean L0. The main issue was then to
find a good predictor of L0 given I 0t ; I

0
0;S0. The analysis

of the Laplace transform (appendix C) suggests that the
linear predictor ~x0C ~y0I

0
t used here has satisfying

properties

(i) L0 and I 0T are highly correlated

corðL0;I
0
T jI 00;S0ÞZ

ffiffiffi
3

p

2
COðr0TÞz0:866COðr0TÞ;

and
(ii) The predictor explains a large part of the variance

of the expected number of new infections

varðL0K~x0K~y0I
0
T jI 00;S0Þ

varðL0jI 00;S0Þ
Z

1

4
COðr0TÞ:

We therefore assumed that L0jI 0T ;I 00;S0 was gamma
distributed with mean ~x0C~y0I

0
T and variance

varðL0K~x0K~y0I
0
T Þ. The choice of the gamma distri-

bution had no theoretical foundation, but simplified the
computation since the number of infectionsU0 had then
a negative binomial distribution.

In the pre-vaccination era, in large cities like
London, measles was endemic and it is not necessary
to model introduction of cases (Morton & Finkenstadt
2005). In smaller towns, fade outs were common. The
statistical framework could be extended to take into
account the introduction of cases in this context. Under
the assumption that cases are introduced at the
beginning of each observation period, stochastic differ-
ential equation (2.3) would still apply.
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In the standard SIR model, it is assumed that the
duration of infectiousness is exponentially distributed.
This is motivated by mathematical tractability (under
this assumption, the system is Markovian) rather than
biological realism. Data augmentation techniques can
cope with more realistic distributions for the duration
of infectiousness (Cauchemez et al. 2004), but those
techniques are available for relatively small datasets
only. For time-series data, designing estimation
methods that do not rely on the Markovian assumption
is the subject of further research.

We thank the MRC, European Union FP6 SARSTRANS and
INFTRANS projects, and the NIGMS MIDAS initiative for
research funding.
APPENDIX A. NON-CENTRAL c2 SOLUTION
OF SDE

Consider the solution of the stochastic differential
equation (2.3)

dI 0t Z r0I
0
t dtCs0

ffiffiffiffi
I 0t

p
dW :

Denoting c0Z2r0ðer0T K1Þ=s0 and u0Zc0ðer0T K1Þ
I 00, 2c0I

0
T jI 00;S0 has a non-central c2 distribution with

zero d.f. and with non-centrality parameter 2u0.
Described by Siegel (1979), the non-central c2 distri-
bution with zero d.f. has a mass at 0, which corresponds
here to the probability of extinction of the outbreak. If
Y wc2

0ðlÞ where l is the non-centrality parameter,

PðY Z 0ÞZ expðKl=2Þ:
The positive part of the distribution has a density fl in
the sense that, if Y wc2

0ðlÞ and 0%a!b, then

Pða!Y!bÞZ
ðb
a
flðyÞdy;

flðyÞZ 0:5
l

y

� �0:5

expð0:5ðlCyÞÞI 0
1

ffiffiffiffiffi
ly

pn o
;

where I 0
1f$g is the modified Bessel function of the first

kind. Note that fl is not a proper density sinceÐN
0 flðyÞdyZ1KexpðKl=2Þ!1. The distribution has
mean l and variance 4l, and may be approximated by
the normal distribution N(l, 4l) when l is large.
APPENDIX B. ANALYSIS OF THE LAPLACE
TRANSFORM

The Laplace transform of ðI 0T ;
ÐT
0 I 0t dtÞjI 00;S0 is (Ben-

Ameur et al. 2006)

Fðn;uÞZE exp KnI 0TKu

ðT
0
I 0t dt

� �
jI 00;S0


 �

Z expðKY ðn;uÞI 00Þ;
where

xðuÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 20 C2us20

q
;

Y ðn;uÞZnðxðuÞKr0CexðuÞTðxðuÞCr0ÞÞC2uðexðuÞT K1Þ
ns2

0CxðuÞKr0
� �

ðexðuÞT K1ÞC2xðuÞ
:
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Define ð~u; ~vÞ the scalars that minimize the function

Lðu; vÞZE

ðT
0
I 0t dtKuKvI 0T

� �2

jI 00;S0

" #
:

The solution can be obtained analytically

vL

vu
ð~u; ~vÞZ 0

vL

vv
ð~u; ~vÞZ 0

5

E
ÐT
0 I 0t dtjI 00;S0

h i
K~uK~vE½I 0T jI 00;S0�Z 0;

E I 0T :
ÐT
0 I 0t dtjI 00;S0

h i
K~uK~vE ðI 0T Þ2jI 00;S0

� 
Z 0;

8>>>>>><
>>>>>>:

8>>>>>><
>>>>>>:

~v Z
cov I 0T ;

ÐT
0 I 0t dtjI 00;S0

� 	
varðI 0T jI 00; S0Þ

;

~u ZE
ÐT
0 I 0t dtjI 00;S0

� 	
K ~vEðI 0T jI 00;S0Þ:

8>>><
>>>:

Standard results on Laplace transforms give

cov I 0T ;
ÐT
0 I 0t dtjI 00;S0

� 	
Z v2F=vn vujð0;0Þ;

varðI 0T jI 00;S0ÞZ v2F=v2njð0;0Þ;

E
ÐT
0 I 0t dtjI 00;S0

� 	
ZK

vF

vu

�����
ð0;0Þ

;

E I 0T jI 00;S0ð ÞZK
vF

vn

�����
ð0;0Þ

:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Eventually, ð~u; ~vÞ are equal to

~v Z
v2F=vnvu

v2F=v2n

�����
ð0;0Þ

Z
1

r0
K

T

er0T K1
;

~u ZK
vF

vu

�����
ð0;0Þ

C ~v
vF

vn

�����
ð0;0Þ

Z
I 00ðer0T K1Þ

r0
K ~vI 00e

r0T :

8>>>>><
>>>>>:

Denoting ZTZ
ÐT
0 I 0t dtK ~uK ~vI 0T , the residual, the

Laplace transform of ðI 0T ;ZT ÞjI 00;S0 is

Gðn;uÞZEfexp KnI 0TKuZT

� �
jI 00;S0g

ZE exp KvI 0TKu

ðT
0
I 0t dtK~uK~vI 0T

� �
jI 00;S0

� �
 �

ZFðvKu~v;uÞexpðu~uÞ:

It is easy to check that the residual has mean 0 and
variance

~z Z
v2G

v2u
Z

I 00s
2
0ð1Ce2r0TKer0T ð2Cr 20T

2ÞÞ
r 30ðer0T K1Þ :

Scalars f~x0; ~y0; ~v0g are then straightforward
to calculate from f~u; ~v; ~zg and the definition of
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L0Zb0S0

Ð
T
0 I 0t dt

~y0Zb0S0ð1=r0KT=ðer0T K1ÞÞ;

~x0Zb0S0I
0
0ðer0T K1Þ=r0KI 00 e

r0T ~y0;

~v0Zðb0S0Þ2
I 00s

2
0ð1Ce2r0TKer0T ð2Cr 20T

2ÞÞ
r 30ðer0T K1Þ :

8>>>>>>>><
>>>>>>>>:

ðB1Þ

APPENDIX C. AVERAGE NUMBER OF
SUSCEPTIBLES AND INFECTIVES

We need to approximate the average numbers of
susceptibles S0 and infectives �I

0
0 over time period ½0;T �.

Assume first that there is no birth in the population.
A natural choice is to specify S0 equal to the number S0

of susceptibles at the beginning of the period. In this
case, the expected number of infections in ½0;T ½ is (from
the Laplace transform of appendix B)

U 0 Z b0S0E

ðT
0
I 0t dtjI 00

� �
Z b0S0I

0
0

ðeðb0S0KgÞT K1Þ
b0S0Kg

;

and the average number of susceptibles in the interval
can be roughly approximated by

S0KU0=2

ZS0 1K b0
ðexp b0S0TKgTð ÞK1Þ

2b0S0K2g
I 00

� �
: ðC 1Þ

This value underestimates the average number of
susceptibles when births occur. To correct for this bias,
we simply assume that half of the births occur at the
beginning of the period and that there is no birth during
the period. Equation (C 1) becomes

S0ZðS0C0:5B0Þ

1Kb0
ðexpðb0ðS0C0:5B0ÞTKgTÞK1Þ

2b0ðS0C0:5B0ÞK2g
I 00

� �
: ðC2Þ

We use this last value in our inference framework.
The same type of iterative approach can be used

when the hypothesis of mass action is violated

�I
0
0 Z

I 00
T

exp bðS0C0:5B0ÞI 00
Ke

TKgT
� �

K1

bðS0C0:5B0ÞI 00
Ke

Kg
;

S0ZðS0C0:5B0Þ

1Kb0 �I
0
0
Ke exp b0 �I

0
0
KeðS0C0:5B0ÞTKgT

� �
K1

2b0 �I
0
0
KeðS0C0:5B0ÞK2g

�I
0
0

0
@

1
A:

8>>>>>>>>>><
>>>>>>>>>>:

ðC3Þ
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