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Abstract The accuracy of conventional global navigation

satellite systems (GNSS) positioning in dense urban areas

is severely degraded due to blockage and reflection of the

signals by the surrounding buildings. By using 3D mapping

of the buildings to aid GNSS positioning, the accuracy can

be substantially improved. However, positioning perfor-

mance must be balanced against computational load. Here,

a likelihood-based 3D-mapping-aided (3DMA) GNSS

ranging algorithm is demonstrated that enables signals

predicted to be non-line-of-sight (NLOS) to contribute to

the position solution without explicitly computing the

additional path delay due to NLOS reception, which is

computationally expensive. Likelihoods for an array of

candidate positions are computed based on the difference

between the measured and predicted pseudoranges. How-

ever, a skewed distribution is assumed for those signals

predicted to be NLOS on the basis that the ensuing ranging

errors are always positive. An overall position solution is

then extracted from the likelihood surface. GNSS mea-

surement data have been collected at several locations in

both traditional and modern dense urban environments.

Horizontal root-mean-square single-epoch position accu-

racies of 4.7, 5.6 and 6.5 m are obtained using, respec-

tively, a Leica Viva geodetic receiver, a u-blox EVK M8T

consumer-grade receiver and a Nexus 9 tablet incorporat-

ing a smartphone GNSS antenna and a GNSS chipset that

outputs pseudoranges. The corresponding accuracies using

single-epoch conventional GNSS positioning are 20.5, 23.0

and 28.4 m, about a factor of four larger. The 3DMA

GNSS algorithms have also been implemented in real time

on a Raspberry Pi 3 at a 1-Hz update rate.

Keywords GNSS � 3D mapping � Urban positioning �
NLOS reception � 3DMA GNSS

Introduction

Global navigation satellite systems (GNSS) positioning in

dense urban areas is poor because buildings block, reflect

and diffract the signals. By using 3D mapping, many of

these effects may be predicted, enabling positioning

accuracy to be substantially improved. A wide range of

applications could benefit, including situation awareness of

emergency, security and military personnel and vehicles;

emergency caller location; navigation for the visually

impaired; tracking vulnerable people and valuable assets;

intelligent mobility; enforcement of court orders; lane-level

road positioning for intelligent transportation systems;

advanced rail signaling; mobile mapping; aerial surveil-

lance; location-based services and augmented reality.

Buildings and other obstacles degrade GNSS positioning

in three ways. Firstly, where signals are completely

blocked, they are simply unavailable for positioning,

degrading the signal geometry. Secondly, where the direct

signal is blocked (or severely attenuated), but the signal is

received via a stronger reflected path, non-line-of-sight

(NLOS) reception occurs. NLOS signals exhibit positive

ranging errors corresponding to the difference between the

reflected and direct paths. These are typically a few tens of

meters in dense urban areas, but can be much larger if a

distant building reflects a signal. Thirdly, where both direct

line-of-sight (LOS) and reflected signals are received,

multipath interference occurs. This can lead to both
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positive and negative ranging errors, the magnitude of

which depends on the signal and receiver designs. The term

‘‘multipath’’ is often used to describe NLOS reception.

However, this is misleading as the two phenomena have

different characteristics and can require different mitiga-

tion approaches (Groves 2013a, b; Bhuiyan and Lohan

2012). 3D-mapping-aided (3DMA) GNSS techniques lar-

gely compensate for the effects of NLOS reception.

3D mapping can be used to aid GNSS positioning in

several different ways. The simplest is terrain height aid-

ing. For most land applications, the user antenna is at a

known height above the terrain, so a digital terrain model

(DTM) or digital elevation model (DEM) can be used to

constrain the position solution to a surface. In conventional

least squares positioning, this is done by generating a vir-

tual ranging measurement (Amt and Raquet 2006). In open

areas, this only improves the vertical position solution.

However, in dense urban areas where the signal geometry

is poor, terrain height aiding can improve the horizontal

accuracy by almost a factor of two (Adjrad and Groves

2017).

3D building models can be used to predict which signals

are blocked and which are directly visible at any location

(Bradbury et al. 2007; Suh and Shibasaki 2007). This can

be computationally intensive. However, the real-time

computational load can be reduced dramatically by pre-

computing building boundaries for each candidate position.

These describe the minimum elevation above which

satellite signals can be received at a series of azimuths. A

signal can then be classified as LOS or NLOS simply by

comparing the satellite elevation with that of the building

boundary (Wang et al. 2012). The 3D building models can

also be used to predict the additional path traveled by

NLOS signals, enabling affected pseudoranges to be cor-

rected. However, a practical precomputation technique for

this has yet to be developed, so processing load remains a

limitation.

GNSS shadow matching determines position by com-

paring the measured signal availability and strength with

predictions made using a 3D city model over a range of

candidate positions. This enables across-street position

accuracies of a few meters to be achieved in dense urban

areas (Groves 2011; Ben-Moshe et al. 2011; Suzuki and

Kubo 2012; Wang et al. 2013, 2015; Yozevitch and Ben-

Moshe 2015). However, the focus here is on 3D-mapping-

aided GNSS ranging.

Where the user position is already approximately

known, it is straightforward to use predictions from a 3D

city model to eliminate NLOS measurements from a con-

ventional least squares GNSS position solution (Obst et al.

2012; Bourdeau and Sahmoudi 2012; Peyraud et al. 2013).

However, for most urban positioning applications there is

significant position uncertainty. One solution is to define a

search area centered on the conventional GNSS position

solution and compute the proportion of candidate positions

at which each signal is receivable via direct LOS. This can

then be used to re-weight a least squares position solution

and aid signal selection and weighting by consistency

checking (Adjrad and Groves 2017).

More sophisticated approaches score a set of position

hypotheses using the GNSS pseudorange measurements

and satellite visibility predictions at each candidate posi-

tion. This enables different signals to be treated as NLOS at

different candidate positions. Several groups have used 3D

mapping to adjust the predictions of the pseudoranges at

each candidate user position in order to account for the

additional path delay due to NLOS reception (Suzuki and

Kubo 2013; Gu et al. 2015; Hsu et al. 2015). A likelihood

for each candidate position is then computed based on

some measure of consistency between the measured

pseudoranges and the predicted pseudoranges at that

position, adjusted for NLOS reception. A single-epoch

positioning accuracy of 4 m has been reported (Hsu et al.

2015). Kumar and Petovello (2014) have applied a version

of this technique to multipath interference whereby the

additional path delay measured using a correlator bank is

compared with predictions across an array of candidate

positions. However, as computation of the path delay due

to NLOS reception is computationally intensive, real-time

implementations of these techniques are limited to around a

hundred candidate positions. The urban trench approach

presented in Betaille et al. (2013) enables the path delays of

NLOS signals to be computed very efficiently, but only if

the building layout is highly symmetric, so it can only be

used in suitable environments.

To handle large initial position uncertainties in real time,

there is a need for a ranging-based positioning algorithm

that scores a set of position hypothesis using only the LOS/

NLOS predictions from a 3D city model, which can be

computed quickly. Suzuki (2016) presents an algorithm

that computes a least squares position solution using only

the signals predicted by the 3D city model to be direct LOS

at a given candidate position. Each candidate is then scored

according to the Mahalanobis distance between the candi-

date position and the corresponding least squares solution.

Here, a new approach is presented that enables those

signals predicted to be NLOS to also contribute to the score

for each candidate position hypothesis, but without

explicitly computing the additional path delay due to

NLOS reception. This substantially reduces the processing

load. As in previous approaches (Hsu et al. 2015), a like-

lihood for each candidate user position is computed based

on the difference between the measured and predicted

pseudoranges for both LOS and NLOS signals. However,

the predicted pseudoranges are not adjusted to account for

NLOS reception. Instead, a skewed measurement error
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distribution is assumed for those signals predicted to be

NLOS on the basis that the ensuing ranging errors are

always positive. Positions are currently computed from a

single epoch of GNSS measurement data.

A brief summary of the approach and some preliminary

results have been included in a conference paper alongside

other related work (Adjrad and Groves 2016). Here, the

final version of the algorithm is described in full, together

with the tuning process, and results are presented based on

new experimental data collected using a Leica Viva

geodetic receiver, a u-blox EVK M8T consumer-grade

receiver and a Nexus 9 tablet incorporating a smartphone

GNSS antenna and a GNSS chipset that outputs pseudor-

anges. The 3DMA GNSS algorithms have also been

implemented in real time on a Raspberry Pi 3 at a 1-Hz

update rate.

The paper is structured as follows. Full details of the

algorithms are presented first. The experimental data col-

lection is then described, followed by the tuning and

optimization process. Selected sites and epochs are then

examined in detail, followed by a summary of the overall

positioning performance. Finally, the conclusions are pre-

sented and future and related work discussed.

Algorithm description

Figure 1 shows the components of the likelihood-based

3DMA GNSS ranging positioning algorithm. As position is

determined by scoring a series of candidate positions, the

first step is to determine those candidates. This requires an

initial position estimate. Here, this is provided by UCL’s

3DMA least squares positioning algorithm (Adjrad and

Groves 2017). This is about a factor of 2 more accurate

than conventional GNSS positioning in dense urban

environments, enabling a smaller search area to be used. In

a continuous positioning system, the position solution from

the previous epoch could be used.

A conventional single-epoch GNSS solution comprises

3 position components and the receiver clock offset. A

search grid of more than two dimensions is impractical.

Therefore, height is eliminated by associating a height with

each horizontal position using a terrain height database and

the receiver clock offset is eliminated by differencing

pseudorange measurements across satellites. Here, a 40-m-

radius circular search area with a 1-m spacing between

candidate positions is used. This was sufficient to encom-

pass the true position for all of the test data. As outdoor

positioning is assumed, indoor candidates are eliminated,

reducing the processing load. In future, the search area

could be scaled according to the uncertainty of the position

solution used for initialization (Groves et al. 2015).

The second step is to predict the satellite visibility at

each candidate position. This is done efficiently by com-

paring the satellite elevation with that of a precomputed

building boundary at the appropriate azimuth (Wang et al.

2012).

The third step is to compute measurement innovations.

First, the range from each candidate position, p, to each

satellite, j, is computed using

r̂pj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where reep ¼ xeep yeep zeep
� �T

is the Cartesian ECEF posi-

tion vector of candidate position p, r̂
e
ej ¼ x̂eej ŷeej ẑeej

� �T
is

the Cartesian ECEF position of satellite j, t jsa;a is the time of

signal arrival, ~t
j
st;a is the measured time of signal trans-

mission, which can be assumed the same for all candidate

positions, a denotes the user antenna. The Sagnac effect is

compensated using

CI
eðrpjÞ �

1 xierpj
�

c 0

�xierpj
�

c 1 0

0 0 1

0

@

1

A ð2Þ

where xi.e = 7. 292115 9 10-5 rad s-1 is the Earth rota-

tion rate and c = 299,792,458 m s-1 is the speed of light.

As (1) is recursive, r̂pj is first computed with CI
e ¼ I, and

then, the calculation repeated using CI
eðr̂pjÞ.

As measurements are differenced across satellites to

eliminate the receiver clock offset, a reference satellite is

required. In conventional positioning, the highest elevation

satellite is used. Here, a separate reference satellite, r(p), is

designated for each candidate position and is the highest

elevation satellite that is predicted to be LOS at that point

and all immediately adjacent points.Fig. 1 Block diagram of likelihood-based 3DMA GNSS ranging

positioning algorithm
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Measurement innovations at each candidate position are

then computed using

dzpj ¼ ~q j
a � ~q

rðpÞ
a � r̂pj þ r̂prðpÞ j 6¼ rðpÞ ð3Þ

where ~q j
a is the measured pseudorange from satellite j to

the user antenna, a. The measured pseudoranges are cor-

rected for satellite clock errors, ionosphere errors (using the

Klobuchar model) and troposphere errors [using the Neil

model (Neil 1996)]. SBAS ionosphere corrections could

also be used. The GLONASS measurements are also cor-

rected for the GLONASS-GPS interconstellation timing

offset, which is obtained from the GLONASS navigation

data message (Anon 2008). Interconstellation timing off-

sets are also applicable to Galileo and Beidou.

The fourth step is to modify the innovations for those

measurements predicted to be NLOS. NLOS signals have a

skewed error distribution as positive ranging errors are

much more likely than negative. By modeling a skewed

distribution within the positioning algorithm, NLOS rang-

ing measurements may contribute to the position solution

without introducing biases. However, it is more convenient

to work with Gaussian distributions. Therefore, NLOS

measurement innovations are adjusted to remap them onto

Gaussian distributions.

The pseudorange error due to NLOS reception is always

positive (Groves 2013b). By using 3D mapping, it can be

shown that shorter path delays are more probable than

longer delays (Hsu, 2016, private communication). How-

ever, the other contributions to the pseudorange error are

conventionally modeled as zero-mean Gaussian distribu-

tions. It is therefore convenient to model the total distri-

bution of a measurement innovation subject to NLOS

reception using a skew-normal (Gaussian) distribution. By

adjusting the skewness, the relative contributions of the

NLOS path delay and the other pseudorange errors may be

varied. The probability density function of a skew-normal

distribution is given by (Azzalini 2011)

fS xð Þ ¼ 1

xp
exp � x� nð Þ2

2x2

" #

Z a x�n
xð Þ

�1
exp � t2

2

� �

dt ð4Þ

where n is the location, x is the scale and a is the shape of

the distribution. The mean, l, and variance, r2, are given

by

l ¼ nþ xc

ffiffiffi

2

p

r

r2 ¼ x2 1� 2d2

p

� �

ð5Þ

where

d ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p ð6Þ

To represent a GNSS measurement innovation, we can

write

l ¼ lN r2 ¼ r2j þ r2r þ r2N ð7Þ

where rj is the standard deviation of all errors of the jth

pseudorange measurement except for NLOS reception, rr
is the error standard deviation of the reference satellite

pseudorange measurement error (assumed LOS), rN is the

standard deviation of the NLOS reception contribution to

the pseudorange error and lN is the mean of the NLOS

reception contribution to the pseudorange error.

Where there is no NLOS error, i.e., rN = 0, the shape, a,

should be zero. Conversely, where there is only NLOS

error, i.e., rj = rr = 0, the shape, a, should be infinity

(giving zero probability density for negative inputs).

Therefore, we can define

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2N
r2j þ r2r þ r2N

s
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s

ð8Þ

Then, from (5), (7) and (8),
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The LOS error standard deviations are computed using

rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bL þ aL
1

c=n0ð Þ ja

s

rr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bL þ aL
1

c=n0ð Þra

s

ð10Þ

where C=N0ð Þ ja¼ 10 log10 c=n0ð Þ ja is the measured carrier-

power-to-noise density in dB–Hz. The LOS error variance

coefficients, aL, bL, and the mean, lN, and standard devi-

ation, rN, of the NLOS error are treated here as constants.

The tuning and optimization section describes how suit-

able values of these parameters were determined empiri-

cally from the experimental data and provides values for

each of the GNSS receivers used.

To remap an NLOS innovation (assuming the reference

satellite signal is direct LOS), the cumulative distribution

function (CDF) is first computed using

F ¼ 1

2
1þ erf

dzpj � n

x
ffiffiffi

2
p

� �
 �

� 2T
dzpj � n

x
; a

� �

ð11Þ

where erf is the integral of the normal distribution, given

by

erf xð Þ ¼ 2
ffiffiffi

p
p

Z x

0

exp �t2
� �

dt ð12Þ

and T is Owen’s T function, given by

T x; að Þ ¼ 1

2p

Z a

0

exp �1
2
x2 1þ t2ð Þð Þ
1þ t2

dt ð13Þ

where a is the shape of the distribution as defined in (8).
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A standard C function is used for computing the erf

function and an open source C library (https://www.sc.fsu.

edu) is used for computing Owen’s T function.

The NLOS measurement innovation is then remapped to

the corresponding direct LOS error distribution, which is a

zero-mean Gaussian distribution of variance r2j þ r2r , by

matching the CDF. This enables LOS and NLOS mea-

surements to be treated the same in the position hypothesis

scoring stage of the positioning algorithm.

The adjusted measurement innovation, dz0pj, is thus

obtained from F by solving

F ¼ 1

2
1þ erf

dz0pj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 r2j þ r2r

� 	

r

0

B

B

@

1

C

C

A

2

6

6

4

3

7

7

5

ð14Þ

using an open source C function for the inverse normal

CDF (https://www.sc.fsu.edu). For each direct LOS mea-

surement innovation, dz0pj ¼ dzpj.

The fifth step is to score the position hypotheses.

Because the measurements are differenced across satellites,

all measurement innovations are correlated. Therefore, it is

not possible to score individual satellites; only a joint

likelihood can be computed. With the NLOS measurement

innovations remapped, a multivariate zero-mean Gaussian

probability distribution may be assumed. The likelihood of

candidate position p is therefore

KRp ¼ exp �dz0Tp C
�1
dz;pdz

0
p

� 	

p 2 outdoor

0 p 2 indoor

(

ð15Þ

where the modified measurement innovation vector is

dz0p ¼ dz0p1 dz0p2 � � � dz0pm
� �T

and the measurement

error covariance matrix is

Cdz ¼

r21 þ r2r r2r � � � r2r
r2r r22 þ r2r � � � r2r

.

.

.
.
.
.

.
.

.
.
.
.

r2r r2r � � � r2m þ r2r

0

B

B

B

@

1

C

C

C

A

ð16Þ

where m is the number of satellites tracked in addition to

the reference satellite.

Probabilities can be obtained by normalizing the likeli-

hoods, i.e., dividing by the sum of likelihoods across the

search area. It is also convenient to define the log-

likelihood:

lRp ¼ lnKRp ¼ �dz0Tp C
�1
dz;pdz

0
p p 2 outdoor ð17Þ

The final step is to determine the 3DMA likelihood-

based ranging position solution. If the Easting grid

coordinate of point p is Ep and the Northing coordinate

is Np, the position solution in projected coordinates is

then

ÊR ¼
P

p KRpEp
P

p KRp

N̂R ¼
P

p KRpNp
P

p KRp

ð18Þ

Similarly, the latitude and longitude are

L̂R ¼
P

p KRpLp
P

p KRp

k̂R ¼
P

p KRpkp
P

p KRp

ð19Þ

It takes less than 130 ms to compute a position solution

from one epoch of GNSS measurement data using a Dell

Precision M2800 laptop computer with a 2.5 GHz quad-

core processor and less than 290 ms using a Raspberry Pi

3. These times include the initialization algorithm.

Experimental data collection

GPS and GLONASS measurements were collected in

October 2016 using a Leica Viva survey-grade GNSS

receiver, illustrated in Fig. 2, a u-blox EVK M8T GNSS

receiver and a HTC Nexus 9 tablet. u-blox data collection

was performed by interfacing the receiver via USB to a

battery-powered Raspberry Pi, which was configured as a

WiFi hot spot to which a smartphone was connected (using

the mobile SSH App) to configure the system and enable

data logging, effectively acting as a user interface. Figure 3

illustrates the u-blox-based hardware.

The Nexus 9 tablet, shown in Fig. 4, was running the

Nougat version of Android to enable capture of GNSS

‘‘raw data,’’ including pseudorange measurements, as well

as standard NMEA messages. Data were collected using a

purpose-written App. The tablet’s GNSS receiver and

antenna are similar to those found on smartphones, so the

results should be a good prediction of the performance of

smartphones capable of logging GNSS raw data.

Fig. 2 Leica Viva GNSS receiver
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Two rounds of data collection were performed using all

three devices in two different areas of London: 5 pairs of

points (10 in total), in the City of London and 4 pairs and a

triplet of points (11 in total) in Canary Wharf. Figures 5

and 6 illustrate these sites. The City of London area is

typical of a traditional European city with narrow streets

and buildings packed close together. The Canary Wharf

area is representative of a modern city environment, found

more commonly in North American and East Asian cities.

The streets are wider and the buildings taller with more

space between them. There is also a greater ratio of glass

and steel to brick and stone than in the City of London

district.

The data collection took place over 3 days. On each day,

one of the three sets of GNSS equipment was used and both

the City of London and Canary Wharf areas were visited.

The paired locations corresponded to data collected on

opposite sides of the street on the edge of the footpath next

to the road. The Canary Wharf triplet of locations included

a collection point located on an island in the middle of the

road. The truth was established to decimeter-level accuracy

using a 3D city model to identify landmarks and a tape

measure to measure the relative position of the user from

those identified landmarks. Before collecting data, time

was allowed for the receivers to download the satellite

ephemeris data and synchronize their clocks. Time syn-

chronization requirements are the same as for conventional

GNSS positioning. Interaction with the 3D mapping does

not impose additional constraints. The two 4-min rounds of

data at each site using each receiver were separated by

approximately 2 h, ensuring that the satellite positions in

the two datasets were independent. Each test location is

independent of the others because 3DMA GNSS perfor-

mance depends on the interaction of the satellite signals

with the buildings, which are different for each location.

The first dataset was used for calibration, as described in

the tuning and optimization section. The second dataset

Fig. 3 u-blox EVK M8T-based data logging hardware

Fig. 4 Nexus 9 tablet running Android Nougat operating system

Fig. 5 Data collection sites in

the City of London (GoogleTM

earth)
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was then used for testing the positioning algorithms as

reported in the case studies and positioning performance

results sections.

A 3D city model covering both areas, from Ordnance

Survey (OS), was used to generate the building boundary

data used for the subsequent analysis. The model is stored

in the Virtual Reality Modeling Language (VRML) format.

Figures 7 and 8 illustrate the 3D model used in this study.

Tuning and optimization

The likelihood-based 3DMA GNSS ranging algorithm

described in the algorithm description section incorporates

a number of tuning parameters. The first set of data from

each site was used to determine suitable values of these

parameters.

The LOS error variance coefficients, aL and bL, are user-

equipment-dependant as both the multipath error and

tracking noise depend on the receiver design (Groves

2013a). Independent values were therefore determined for

each of the three receivers using the measurements from all

test sites that were predicted to be direct LOS using the

building boundary and the true position. Pseudorange

errors were estimated by differencing measured pseudor-

anges with corresponding pseudoranges computed using

the true position and the receiver clock offset solution. The

clock offset was obtained by conventional GNSS least

squares positioning using only those satellites predicted to

be direct LOS at the true position.

A pseudorange error variance was then computed for

each value of C/N0. The values of aL and bL used in the

likelihood-based 3DMA GNSS ranging algorithm were

then determined by fitting a linear function, Y ¼ bL þ aLX

to the data. Figure 9 illustrates the relationship between the

LOS pseudorange error standard deviation and C/N0 for the

u-blox receiver.

The mean, lN, and standard deviation, rN, of the NLOS

error are treated as receiver-independent constants. In

practice, they will be environment dependent. However,

the aim here was to find a single pair of values that are

suitable for all of the test sites. The values of both lN and

rN were, therefore, varied from 20 to 60 m with a step of

Fig. 6 Data collection sites in

the Canary Wharf area—

London—3D view (GoogleTM

earth)

Fig. 7 3D model of City of London used in the experiments

Fig. 8 3D model of Canary Wharf used in the experiments
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5 m and values selected that minimized the root-mean-

square (RMS) position error across all test sites.

Table 1 lists the values of the tuning parameters used for

the tests presented in the following sections.

Case studies

Likelihood-based 3DMA GNSS ranging (LBR) scoring

maps for test site 3, City of London, are presented in

Figs. 10, 11 and 12 for the Leica Viva, u-blox and Nexus 9

data, respectively. In each figure, the black star represents

the true position, the white star the LBR solution, the blue

star the least squares 3DMA GNSS ranging (LSR) solution

and the red star the conventional GNSS solution. In all

cases, the LBR position solution is much closer to the true

position than either the LSR or conventional position

solution. The highest scoring candidate positions are all

clustered within a few meters with the other candidate

positions scoring much lower. However, significant dif-

ferences between the three receivers can be observed. The

incorrect candidate positions score significantly lower

using the Viva data and significantly higher using the

Nexus 9 data, with the scores from the u-blox receiver in-

between the other two. Thus, the receiver and antenna

quality does have a notable effect. Figure 13 illustrates

further examples of the LBR scoring maps from the u-blox

data in the City of London and Canary Wharf area. In each

case, the LBR solution is closest to the true position and the

conventional GNSS solution furthest away.

Positioning performance results

Table 2 shows the root-mean-square (RMS) single-epoch

position errors obtained with the three receivers using the

new likelihood-based 3DMA GNSS ranging algorithm, the

least squares 3DMA GNSS ranging algorithm described in

Adjrad and Groves (2017) and a conventional GNSS

positioning algorithm. Along-street, across-street and hor-

izontal (i.e., 2 dimensional) RMS position errors are shown

for each site. Figure 14 shows the all-site horizontal RMS

position errors for each receiver and positioning method.

Examining the results shows that the new likelihood-based

3DMA GNSS ranging method consistently outperforms both

of the other methods. It is nearly twice as accurate as the least

Fig. 9 u-blox receiver LOS pseudorange standard deviation as a

function of C/N0. The black stars show the measured values and the

red line shows the function fitted to these values

Table 1 Likelihood-based 3DMA GNSS ranging algorithm tuning

parameters

Parameter Leica

Viva

u-blox EVK

M8T

Nexus 9

tablet

LOS error variance

coefficient aL (m2 Hz)

19,500 205,700 297,500

LOS error variance

coefficient bL (m2)

3 18.72 87.72

NLOS error mean, lN (m) 50 50 50

NLOS error standard

deviation, rN (m)

35 35 35

Fig. 10 Likelihood-based 3DMA GNSS scoring map—Leica Viva

receiver, City of London, location 3

Fig. 11 Likelihood-based 3DMA GNSS scoring map—u-blox recei-

ver, City of London, location 3
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squares 3DMA ranging algorithm and four to five times as

accurate as conventional GNSS positioning. Both the Leica

and u-blox receivers givemore accurate results than theNexus

9 tablet. This is because the tablet has a linearly polarized

GNSS antenna, like on a smartphone. Linearly polarized

antennas do not distinguish between the right-hand circular

polarization (RHCP) of the signals received directly from the

satellite and the left-hand circular polarization (LHCP) or

mixed polarization of the reflected signals. By contrast, the

u-blox and Leica receivers use circularly polarized antennas

that attenuate LHCP signals compared to RHCP signals.

Consequently, the pseudorange measurements made by the

tablet exhibit larger multipath errors, resulting in larger

position errors with all three positioning methods.

Using all three positioning methods, the Leica receiver

is slightly more accurate than the u-blox receiver overall,

though the u-blox receiver performed better at many of the

City sites. This is because the survey-grade Leica equip-

ment has an antenna with high polarization discrimination

and its receiver has a high bandwidth, enabling more

sophisticated correlator-based multipath mitigation. Leica

pseudorange measurements are also carrier-smoothed.

However, most practical applications of 3DMA GNSS

would use a smartphone or a consumer-grade receiver.

Comparing the two test areas shows that the Canary

Wharf sites were more challenging that the City of London

sites with larger RMS position errors for all receivers and

methods. This could be because the buildings are generally

further apart so the path delays of the NLOS signals are

higher. The reflected signals are also stronger because

metallized glass is a stronger reflector at GNSS wave-

lengths than brick and stone. Comparing the along-street

and across-street results, it can be seen that the across-

street errors are larger for all receivers and positioning

Fig. 12 Likelihood-based 3DMA GNSS scoring map—Nexus 9

receiver, City of London, location 3

Fig. 13 Likelihood-based

3DMA GNSS scoring map—u-

blox receiver, City of London

(top two plots Locations 2 and

5) and Canary Wharf (bottom

two plots Locations 1 and 3)
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methods. This is because more GNSS signals are blocked

in the across-street direction, resulting in better signal

geometry (and thus lower dilution of precision) in the

along-street direction.

Conclusions, future and related work

A likelihood-based 3D-mapping-aided GNSS ranging

algorithm has been demonstrated that enables those signals

predicted to be non-line-of-sight to contribute to the posi-

tion solution without explicitly computing the additional

path delay due to NLOS reception. Likelihoods for an array

of candidate positions are computed based on the differ-

ence between the measured and predicted pseudoranges.

However, a skewed distribution is assumed for those sig-

nals predicted to be NLOS on the basis that the ensuing

ranging errors are always positive. Horizontal RMS single-

epoch position accuracies of 4.7, 5.6 and 6.5 m are

obtained in dense urban areas using data from, respec-

tively, a Leica Viva geodetic receiver, a u-blox EVK M8T

consumer-grade receiver and a Nexus 9 tablet incorporat-

ing smartphone GNSS antenna and chipset that outputs

pseudoranges. These results constitute a factor of four

accuracy improvement over single-epoch conventional

GNSS positioning using the same measurements. They are

also 35% more accurate than results obtained using a 3D-

mapping-aided least squares GNSS positioning algorithm.

The difference in performance between the different

receivers reflects their differing susceptibility to multipath

interference due to variations in antenna quality and

receiver bandwidth.

There are many potential topics for further research. The

models of the pseudorange error distributions of both the

NLOS and the direct-LOS signals could be improved.

Examination of the pseudorange error statistics of the

direct LOS signals suggests a potential dependence on the

elevation angle in addition to the C/N0 dependence. Thus,

including an elevation-dependent term in the LOS error

standard deviation used within the likelihood-based 3DMA

ranging algorithm has the potential to improve perfor-

mance. Further experimental data are needed to quantify

this and determine a suitable model. Elevation-dependent

Table 2 RMS position errors for different positioning methods, receivers and test sites

Receiver Method Along-street RMS error (m) Across-street RMS error (m) Horizontal RMS error (m)

City Canary Wharf City Canary Wharf City Canary Wharf

Leica Viva Conventional 4.4 4.7 18.0 21.9 18.5 22.4

Least squares 3DMA ranging 3.3 2.7 5.7 7.2 6.6 7.7

Likelihood-based 3DMA ranging 1.8 2.3 3.9 4.5 4.3 5.1

u-blox EVK M8T Conventional 7.2 11.0 12.8 28.6 14.7 30.7

Least squares 3DMA ranging 3.1 5.5 4.2 9.7 5.3 11.1

Likelihood-based 3DMA ranging 2 3.9 3.3 6.2 3.9 7.3

Nexus 9 tablet Conventional 10.3 19.6 19.9 27.9 22.4 34.1

Least squares 3DMA ranging 4.0 6.5 6.6 10.0 7.7 11.9

Likelihood-based 3DMA ranging 3 4 3.4 7.4 4.5 8.4

Fig. 14 Overall horizontal RMS positioning errors using each

receiver. The green bars show the conventional GNSS positioning

(Conv) errors, the dark blue bars show the LSR positioning errors and

the light blue bars show the LBR positioning errors
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modeling of the NLOS error distribution should also be

investigated. Simple parameters derived from the 3D

mapping, such as street width, could also potentially

contribute.

Here, only single-epoch positioning is considered.

However, conventional GNSS receivers improve accuracy

and reliability by also computing a velocity solution and

using this to filter the position solution over multiple

epochs, smoothing many of the error sources. Similar

benefits can be expected from filtering 3DMA GNSS

positioning. Therefore, a multi-epoch version of the like-

lihood-based 3DMA ranging algorithms presented here is a

high priority.

The results presented here use only GPS and GLONASS

signals. Adding Galileo and Beidou signals should improve

performance, particularly once those constellations reach

full maturity. 3DMA GNSS positioning could also be

deployed on micro air vehicles operating in urban areas. A

3D position search area would be computationally expen-

sive. However, use of a height solution from a barometric,

radar or ultrasonic altimeter enables the search area to be

constrained to two dimensions as for terrestrial applica-

tions. There’s also the potential to deploy 3DMA GNSS

ranging indoors, possibly in combination with high-sensi-

tivity signal processing techniques.

As shown in Table 2, 3DMA GNSS ranging produces a

position solution which is more accurate in the along-street

direction than the across-street direction. GNSS shadow

matching works better in the across-street direction. The

two techniques are therefore complementary and, as they

share the same building boundary data, derived from 3D

mapping, they are also synergistic. It is thus logical to

integrate the two techniques. Preliminary results presented

in Adjrad and Groves (2016) show that integrated 3DMA

GNSS positioning is consistently more accurate than either

shadow matching or 3DMA ranging on their own. Opti-

mization of the integration algorithms and further data

collection is currently ongoing.

Regarding practicality, UCL’s 3DMA GNSS algorithms

have been implemented in real time on a Raspberry Pi 3 at

a 1-Hz update rate. Thus, implementation on a smartphone

with a GNSS chip that outputs pseudorange measurements

is also feasible. Sourcing and distribution of the 3D map-

ping or building boundary data is discussed in Groves

(2016), while assisted GNSS could be used to provide

satellite ephemeris data and receiver clock synchroniza-

tion. A further practical consideration is determining when

to use 3DMA GNSS, when to use conventional GNSS

positioning and when to use alternative positioning tech-

nologies. To address this, context determination algorithms

for distinguishing open, urban and indoor environments

using GNSS data are under development (Gao and Groves

2016).
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