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Abstract: Linear mixed models with normally distributed response are routinely

used in longitudinal data. However, the accuracy of the assumed normal distribu-

tion is crucial for valid inference of the parameters. We present a new class of asym-

metric linear mixed models that provides for an efficient estimation of the parame-

ters in the analysis of longitudinal data. We assume that, marginally, the random

effects follow a multivariate skew-normal/independent distribution (Branco and

Dey (2001)) and that the random errors follow a symmetric normal/independent

distribution (Lange and Sinsheimer (1993)), providing an appealing robust alter-

native to the usual symmetric normal distribution in linear mixed models. Specific

distributions examined include the skew-normal, the skew-t, the skew-slash, and

the skew-contaminated normal distribution. We present an efficient EM-type algo-

rithm for the computation of maximum likelihood estimation of parameters. The

technique for the prediction of future responses under this class of distributions is

also investigated. The methodology is illustrated through an application to Fram-

ingham cholesterol data and a simulation study.

Key words and phrases: EM-algorithm, linear mixed models, skew-normal/inde-
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1. Introduction

Linear mixed models (LMM; Laird and Ware (1982)) are the most frequently
used tool for longitudinal data analysis with continuous repeated measures. In a
LMM framework it is routinely assumed that the random effects and the within-
subject measurement errors have a normal distribution. While this assumption
makes the model easy to apply in widely used software such as SAS, its accuracy
is difficult to check and the routine use of normality has been questioned by many
authors (Verbeke and Lesaffre (1997), Pinheiro, Liu and Wu (2001), Zhang and
Davidian (2001), Ghidey, Lesaffre and Eilers (2004), and Lin and Lee (2008)).
The normality assumption suffers from a lack of robustness against departures
from the normal, particularly when data show multimodality and skewness, and
may not provide an accurate estimation of between-subject variation. For ex-
ample, Zhang and Davidian (2001) showed that the estimated subject-specific



304 VICTOR H. LACHOS, PULAK GHOSH AND REINALDO B. ARELLANO-VALLE

intercept from the Framingham heart study data was not normally distributed
and that the use of the normal distribution in this scenario may obscure important
features of between-subject variation. Thus it is of practical interest to develop
statistical model with considerable flexibility in the distributional assumptions
of the random effects, as well as the error terms.

There has been considerable work in this direction. Verbeke and Lesaffre
(1996) introduce a heterogeneous linear mixed model where the random effects
distribution is relaxed using normal mixtures. Pinheiro, Liu and Wu (2001)
proposed a multivariate t linear mixed (TLMM) model and showed that it per-
formed well in the presence of outliers. Lin and Lee (2006, 2007) developed some
additional tools for TLMM from the likelihood-based and Bayesian perspective.
Zhang and Davidian (2001) proposed a LMM in which the random effects fol-
low the so-called semi-nonparametric (SNP) distribution. Rosa, Padovani and
Gianola (2003) adopted a Bayesian framework to carry out posterior analysis
in LMM with the thick-tailed class of normal/independent (NI) distributions
(Lange and Sinsheimer (1993)). Ghidey et al. (2004) developed a LMM with
a smooth random effects density. Ma, Genton and Davidian (2004) considered
a generalized flexible skew-elliptical distribution for the random effects density
and proposed somewhat complicated algorithms for maximum likelihood (ML)
estimation and Bayesian inference via Markov Chain Monte Carlo (MCMC). Re-
cently, Arellano-Valle, Bolfarine and Lachos (2005a), Lin and Lee (2008), and La-
chos, Bolfarine, Arellano-Valle and Montenegro (2007) proposed a skew-normal
linear mixed model (SN-LMM) based on multivariate skew-normal (SN) distri-
bution introduced by Azzalini and Dalla-Valle (1996). They also developed an
EM-type algorithm for maximum likelihood estimation (MLE). A common fea-
ture of these classes of LMMs is that the normal linear mixed model (N-LMM)
is a member of the class.

In this paper we propose a parametric robust modeling of LMM based on
skew-normal/independent (SNI) distributions. In particular, we assume a SNI
distribution for the random effects, and a NI distribution for the within-subject
errors. Together, the observed responses follow a SNI distribution and define
what we call a skew-normal/independent linear mixed model (SNI-LMM). Par-
ticularly, the SNI distributions provide a group of skew-thick-tailed distributions
that are useful for robust inference and that contain as proper elements the skew-
normal (SN), the skew-t (ST), the skew-slash (SSL), and the skew-contaminated
normal (SCN) distributions. The marginal density of the observed quantities
are obtained analytically by integrating out the random effects, leading to an
observed (marginal) likelihood function that can be maximized directly by using
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existing statistical software such as Ox, R or Matlab. The hierarchical represen-
tation of the proposed model makes possible the implementation of an EM-type
algorithm, which for special cases and common situations yields “closed form”
expressions for the E and M-steps. We further analyze the longitudinal Fram-
ingham cholesterol data whose random effects distribution has been found to be
non-normal and positively skewed by Zhang and Davidian (2001), Ghidey et al.
(2004), and Lin and Lee (2008).

The rest of the article is organized as follows. After a brief introduction
to SNI distributions in Section 2, the SNI-LMM is presented in Section 3; a
likelihood-based methodology is used for estimation and inference, including the
estimation of the random effects and the prediction of future values. In Section
4, a simulation study is conducted to examine the performance of the estimation
for subject-specific random effects and for prediction of futures values. The
advantage of the proposed methodology is illustrated through the Framingham
cholesterol data in Section 5, and some concluding remarks are presented in
Section 6.

2. Skew-Normal/Independent Distributions

To better motivate our proposed methodology, we give a brief introduction
of SNI distributions, starting with a definition of the SN-distribution. We say
that a p×1 random vector Y follows a SN-distribution with p×1 location vector
µ, p × p positive definite dispersion matrix Σ, and p × 1 skewness parameter
vector λ, and write Y ∼ SNp(µ,Σ, λ), if its probability density function (pdf)
is

f(y) = 2φp(y; µ,Σ)Φ(λ>y0), (2.1)

where y0 = Σ−1/2(y − µ), φp(.; µ,Σ) stands for the pdf of the p-variate normal
distribution with mean vector µ and covariate matrix Σ, Np(µ,Σ) say, and Φ(.)
is the cumulative distribution function (cdf) of the standard univariate normal.
Note for λ = 0 that (2.1) reduces to the symmetric Np(µ,Σ)-pdf, while for non-
zero values of λ, it produces a perturbed (asymmetric) family of Np(µ,Σ)-pdf’s.
Except for a straightforward difference in the parametrization considered in (2.1),
this model corresponds to that introduced by Azzalini and Dalla-Valle (1996),
with properties extensively studied in Azzalini and Capitanio (1999), and in
Arellano-Valle and Genton (2005b). Let Z = Y−µ. Since aZ ∼ SNp(0, a2Σ,λ),
for all a > 0, the SNI family can be defined as follows: a SNI distribution is that
of a p−dimensional random vector

Y = µ + U−1/2Z, (2.2)
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where U is a positive random variable with the cdf H(u; ν) and pdf h(u; ν), and
independent of the SNp(0,Σ,λ)-random vector Z. Here ν is a scalar or vector
parameter indexing the distribution of the mixing scale factor U . Given U = u, Y
follows a multivariate skew-normal distribution with location vector µ, scale ma-
trix u−1Σ, and skewness parameter vector λ, i.e., Y|U = u ∼ SNp(µ, u−1Σ,λ).
In other words, the SNI distributions are scale mixtures of the skew-normal dis-
tribution, where the distribution of the scale factor U is the mixing distribution.
Thus, by (2.1), the marginal pdf of Y is

f(y) = 2
∫ ∞

0
φp(y; µ, u−1Σ)Φ(u1/2λ>y0)dH(u;ν), (2.3)

where y0 = Σ−1/2(y−µ). The notation Y ∼ SNIp(µ,Σ,λ,H) will be used when
Y has pdf (2.3). When λ = 0, the SNI distributions reduces to the normal-
independent (NI) class, i.e., the class of scale-mixtures of the normal distribution
represented by the pdf f0(y) =

∫ ∞
0 φp(y; µ, u−1Σ)dH(u; ν). We use the notation

Y ∼ NIp(µ,Σ, H) when Y has distribution in the NI class.
The asymmetrical class of SNI distributions includes the skew-t, the skew-

slash, and the skew-contaminated normal. All these distributions have heavier
tails than the skew-normal and can be used for robust inferences. Some of these
distributions are described subsequently. For each element of this class, we also
compute the conditional moments ur = E {U r|y} and τr = E {U r/2WΦ(U1/2A)
|y}, where A = λ>y0 and WΦ(x) = φ1(x)/Φ(x), x ∈ R; these are useful in
the implementation of the EM-algorithm, the estimation of the random effects
and the prediction of futures values. The proof of the following results given in
Appendix A of the supplementary material.

Proposition 1. Let Y ∼ SNIp(µ,Σ, λ, H) and let U ∼ H be the mixing random
scale factor. Then

ur =
2f0(y)
f(y)

E {U r
yΦ(U1/2

y A)} and τr =
2f0(y)
f(y)

E {U r/2
y φ1(U

1/2
y A)},

where A = λ>y0 with y0 = Σ−1/2(y − µ), f0 is the pdf of Y0 ∼ NIp(µ,Σ, H),

and Uy
d= U |Y0 = y.

2.1. Multivariate skew-t distribution

The multivariate skew-t distribution (Branco and Dey (2001), and Azzalini
and Capitanio (2003)) with ν degrees of freedom, STp(µ,Σ, λ, ν) say, can be
derived from the mixture model (2.3), by taking U ∼ Gamma(ν/2, ν/2), ν > 0.
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The pdf of Y is

f(y) = 2tp(y; µ,Σ, ν)T
(√

ν + p

ν + d
A; ν + p

)
, y ∈ Rp, (2.4)

where tp(·; µ,Σ, ν) and T (·; ν) denote, respectively, the pdf of the p-variate
Student-t distribution, namely tp(µ,Σ, ν) and the cdf of the standard univariate
t-distribution, and d = (y − µ)>Σ−1(y − µ) is the Mahalanobis distance. A
particular case of the skew-t distribution is the skew-Cauchy distribution with
ν = 1. Also, as ν ↑ ∞, we get the skew-normal distribution as the limiting case.
Applications of the skew-t distribution to robust estimation can be found in Lin,
Lee and Hsieh (2007) and Azzalini and Genton (2007). Moreover, for this model
we have in Proposition 1 that Y0 ∼ tp(µ,Σ, ν), i.e., Y0|U = u ∼ Np(µ, u−1Σ)

and U ∼ Gamma(ν/2, ν/2). From the fact that Uy
d= U |Y0 = y ∼ Gamma((ν +

p)/2, (ν + d)/2), we find the conditional expectations of ur and τr.

Corollary 1. Suppose Y ∼ STp(µ,Σ, λ, ν). Then

ur =
f0(y)
f(y)

2r+1Γ((ν + p + 2r)/2)(ν + d)−r

Γ((ν + p)/2)
T

(√
ν + p + 2r

ν + d
A; ν + p + 2r

)
, and

τr =
f0(y)
f(y)

2(r+1)/2Γ((ν + p + r)/2)
π1/2Γ((ν + p)/2)

(ν + d)(ν+p)/2

(ν + d + A2)(ν+p+r)/2
.

2.2. Multivariate skew-slash distribution

Another SNI distribution, termed as the multivariate skew-slash distribution
and denoted by SSLp(µ,Σ, λ, ν), arises when the distribution of U is Beta(ν, 1),
ν > 0. Its pdf is given by

f(y) = 2ν

∫ 1

0
uν−1φp(y; µ, u−1Σ)Φ(u1/2A)du, y ∈ Rp. (2.5)

The skew-slash distribution reduces to the skew-normal distribution as ν ↑ ∞.
The conditional moments ur and τr for the skew-slash distribution (2.5) follow
by considering in Proposition 1 that Uy ∼ Gamma((2ν + p + 2r)/2, d/2)I(0,1).
Applications of the skew-slash distribution can be found in Wang and Genton
(2006).

Corollary 2. Suppose Y ∼ SSLp(µ,Σ, λ, ν). Then

ur=
f0(y)
f(y)

2Γ((2ν+p+2r)/2)
Γ((2ν+p)/2)

(2
d

)r P1((2ν+p+2r)/2,d/2)
P1((p + 2ν)/2, d/2)

E {Φ(S1/2A)}, and
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τr=
f0(y)
f(y)

2r/2+1/2Γ((2ν+p+r)/2)
Γ((2ν + p)/2)π1/2

d(2ν+p)/2

(d+A2)(2ν+p+r)/2

P1((2ν+p+r)/2,(d+A2)/2)
P1((p + 2ν)/2, d/2)

,

where Px(a, b) denotes the cdf of the Gamma(a, b) distribution evaluated at x and
S ∼ Gamma((2ν + p + 2r)/2, d/2)I(0,1).

We note in Corollary 2 that E {Φ(S1/2A)} can be computed as E {Φ(S1/2
0 A)

|0 < S0 < 1}, where S0 ∼ Gamma((2ν + p + 2r)/2, d/2), and can be approxi-
mated by Monte Carlo integration as follows: generate L samples S1, . . . , SL from
0 < S0 < 1, then approximate E {Φ(S1/2A)} directly by (1/L)

∑L
i=1 Φ(SiA). In

Appendix B, we give an algorithm to generate a truncated gamma random vari-
able.

2.3. Multivariate skew-contaminated normal distribution

The multivariate skew-contaminated normal distribution arises when the
mixing scale factor U is a discrete random variable taking one of two values.
The pdf of U , given a parameter vector ν = (ν1, ν2)>, is

nh(u;ν) = ν1I(u=ν2) + (1 − ν1)I(u=1), 0 < ν1 < 1, 0 < ν2 ≤ 1. (2.6)

It follows

f(y) = 2
{

ν1φp(y; µ, ν−1
2 Σ)Φ(ν1/2

2 A) + (1 − ν1)φp(y; µ,Σ)Φ(A)
}

.

This distribution is denoted by SCNp(µ,Σ, λ, ν1, ν2), 0 < ν1 < 1, 0 < ν2 ≤ 1.
Parameter ν1 can be interpreted as the proportion of outliers, while ν2 may
be interpreted as a scale factor. The skew-contaminated normal distribution
reduces to the skew-normal distribution when ν1 = ν2 = 1. In this case, consid-
ering that Uy is a discrete random variable with conditional probability function
h0(u|y) = (1/f0(y)){ν1φp(y;µ, ν−1

2 Σ)I(u=ν2)+(1−ν1)φp(y; µ,Σ)I(u=1)}, Propo-
sition 1 yields the following.

Corollary 3. Suppose Y ∼ SCNp(µ,Σ, λ, ν1, ν2). Then

ur =
2

f(y)

{
ν1ν

r
2φp(y; µ, ν−1

2 Σ)Φ(ν1/2
2 A) + (1 − ν1)φp(y; µ,Σ)Φ(A)

}
, and

τr =
2

f(y)

{
ν1ν

r/2
2 φp(y; µ, ν−1

2 Σ)φ1(ν
1/2
2 A) + (1 − ν1)φp(y; µ,Σ)φ1(A)

}
.

3. The Skew-Normal/Independent Linear Mixed Model

We consider a generalization of N-LMM in which the within-subject errors
are assumed to follow a NI distribution and the random effects are assumed to
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have a multivariate SNI distribution within the class (2.3). Simultaneously, the
model can be written as

Yi = Xiβ + Zibi + εi, (3.1)

with the assumption that(
bi

εi

)
ind.∼ SNIni+q

((
0

0

)
,

(
D 0

0 Σi

)
,

(
λ

0

)
,H

)
, i = 1, . . . , n, (3.2)

where the subscript i is the subject index, Yi is a ni × 1 vector of observed
continuous responses for subject i, Xi is the ni×p design matrix corresponding to
the fixed effects, β is a p×1 vector of population-averaged regression coefficients
called fixed effects, Zi is the ni × q design matrix corresponding to the q × 1
vector of random effects bi, and εi is the ni × 1 vector of random errors. The
matrices D = D(α) and Σi = Σi(γ), i = 1, . . . , n, are dispersion matrices
corresponding to the between and within subjects variability, and depend on
unknown and reduced parameters α and γ, respectively. Finally, as was indicated
in the previous section, H = H(·; ν) is the cdf-generator that determines the
specific SNI model that we assume.

Remarks.

(i) From Lemma 1 in Appendix A it follows that, marginally,

bi
iid∼ SNIq(0,D, λ,H) and εi

ind.∼ NIni(0,Σi,H), i = 1, . . . , n. (3.3)

Thus this model considers that the εi’s, related to within-subject errors are
symmetrically distributed, while the distribution of random effects is as-
sumed to be asymmetric. That is, the skewness parameter λ incorporates
asymmetry in the distribution of the random effects only, and in the vector of
observed responses Yi, i = 1, . . . , n, which will be shown to have, marginally,
a multivariate SNI distribution.

(ii) Since for each i = 1, . . . , n, bi and εi are indexed by the same scale mixing
factor Ui, they are not independent in general. Independence corresponds to
the case Ui = 1 (i = 1, . . . , n), so that the SNI-LMM reduces to the SN-LMM
as defined in Arellano-Valle et al. (2005a) and Lin and Lee (2008). However,
conditional on Ui, bi and εi are independent for each i = 1, . . . , n, which
implies that bi and εi are uncorrelated, since Cov(bi, εi) = E {biε

>
i } =

E {E {biε
>
i |Ui}} = 0. Thus, an attractive and convenient way to specify

(3.2) is the following:

bi|Ui = ui
ind.∼ SNq(0, u−1

i D,λ), εi|Ui = ui
ind.∼ Nni(0, u−1

i Σi), i = 1, . . . , n,
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and they are independent, where Ui
iid∼ H, i = 1, . . . , n.

(iii)When λ = 0 and the Ui
iid∼ Gamma(ν/2, ν/2), the SNI-LMM reduces to

the (hierarchical) Student-t LMM proposed by Pinheiro et al. (2001), and
when λ = 0 the SNI-LMM reduces to the NI-LMM defined by Osorio (2006).
Moreover, when the bi’s are normally distributed, the SNI-LMM reduces to
the robust LMM defined by the Rosa et al. (2003).

Classical inference on the parameter vector θ = (β>, γ>, α>, λ>, ν>)> is
based on the marginal distribution for Yi (Verbeke and Molenberghs (2000)),
which we present below. The proof follows directly from Corollary 2 in Arellano-
Valle et al. (2005a), replacing the scale matrix Ψi by u−1

i Ψi there.

Proposition 2. Under the SNI-LMM at (3.1)−(3.2), the marginal distribution
of Yi is

f(yi; θ) = 2
∫ ∞

0
φni(yi;Xiβ, u−1

i Ψi)Φ
(
u

1/2
i λ̄

>
i Ψ−1/2

i (yi − Xiβ)
)
dH(ui;ν).

(3.4)
Thus Yi

ind.∼ SNIni(Xiβ,Ψi, λ̄i, H), i = 1, . . . , n, where Ψi = Σi + ZiDZ>
i ,

Λi = (D−1 + Z>
i Σ−1

i Zi)−1 and λ̄i =
Ψ−1/2

i ZiDζ√
1 + ζ>Λiζ

, with ζ = D−1/2λ.

The result presented in Proposition 2 facilitates implementation of inferences
with standard optimization routines and existing statistical software such as the
optim routine in platform R. In this paper we use the EM algorithm (Dempster,
Laird and Rubin (1977)) for parameter estimation via two simple modifications,
including the ECM algorithm (Meng and Rubin (1993)) and the ECME algorithm
(Liu and Rubin (1994), and Meng and Van Dyk (1997)).

3.1. Maximum likelihood estimation

In this section, we demonstrate how to use the EM-type algorithm for ML es-
timation of the SNI-LMM. A key feature of this model is that it can be formulated
in a flexible hierarchical representation that is useful for theoretical derivations.
From (2.2) and the marginal stochastic representation of a SN random vector
(see Lachos et al. (2007)), it follows that

Yi|bi, Ui = ui
ind.∼ Nni(Xiβ + Zibi, u

−1
i Σi); bi|Ti = ti, Ui = ui

ind.∼ Nq(∆ti, u
−1
i Γ);

Ti|Ui = ui
ind.∼ HN1(0, u−1

i ); Ui
i.i.d.∼ H(ui; ν), (3.5)
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i = 1, . . . , n, where HN1(0, σ2) is the half-N1(0, σ2) distribution, ∆ = D1/2δ,
and Γ = D − ∆∆>, with δ = λ/(1 + λ>λ)1/2 and D1/2 being the square root
of D containing q(q + 1)/2 distinct elements. Let yc = (y>,b>, t>)>, with
y = (y>

1 , . . . ,y>
n )>, b = (b>

1 , . . . ,b>
n )>, u = (u1, . . . , un)>, t = (t1, . . . , tn)>,

and let θ(k) = (β(k)>, γ(k)>, α(k)>,λ(k)>, ν̂(k))>, denote the estimate of θ at the
kth iteration. It follows from (3.5) that the complete-data log-likelihood function
is of the form

`c(θ;yc) =
n∑

i=1

[
− 1

2
log |Σi| −

ui

2
(yi − Xiβ − Zibi)>Σ−1

i (yi − Xiβ − Zibi)

−1
2

log |Γ| − ui

2
(bi − ∆ti)>Γ−1(bi − ∆ti) + log h(ui; ν)

]
+ C,

where C is a constant that is independent of the parameter vector θ. Given the

current estimate θ = θ̂
(k)

, the E-step calculates

Q(θ; θ̂
(k)

) = E {`c(θ;yc); θ̂
(k)

,y}

=
n∑

i=1

Q1i(θ1; θ̂
(k)

) +
n∑

i=1

Q2i(θ2; θ̂
(k)

) +
n∑

i=1

Q3i(ν; θ̂
(k)

),

where θ1 = (β>, γ>)>, θ2 = (α>, λ>)>, and Q3i(ν; θ̂
(k)

) = E{log h(Ui; ν);

θ̂
(k)

,y},

Q1i(θ1; θ̂
(k)

) = −1
2

log |Σ̂
(k)

i | − 1
2
û

(k)
i (yi − Xiβ̂

(k)
)>[Σ̂

(k)

i ]−1(yi − Xiβ̂
(k)

)

+(yi − Xiβ̂
(k)

)>[Σ̂
(k)

i ]−1Zi(̂ub)
(k)

i

−1
2
tr

{
[Σ̂

(k)

i ]−1Zi
̂(ubb>)

(k)

i Z>
i

}
,

Q2i(θ2; θ̂
(k)

) = −1
2

log |Γ̂
(k)

| − 1
2
tr

{
[Γ̂

(k)
]−1

(
̂(ubb>)

(k)

i − (̂utb)
>(k)

i ∆̂
(k)

−∆̂
>(k)

(̂utb)
(k)

i + (̂ut2)
(k)

i ∆̂
(k)

∆̂
>(k)

)}
,

where tr{Z} indicates the trace of matrix Z. The calculation of these func-

tions require expressions for û
(k)
i = E {Ui|θ̂

(k)
,yi}, (̂ub)

(k)

i = E {Uibi|θ̂
(k)

,yi},
̂(ubb>)

(k)

i = E {Uibib>
i |θ̂

(k)
,yi}, (̂ut)

(k)

i = E {UiTi|θ̂
(k)

,yi}, (̂ut2)
(k)

i = E {UT 2
i

|θ̂
(k)

,yi}, and (̂utb)
(k)

i = E {UiTibi|θ̂
(k)

,yi}. These can be readily evaluated as
(see Appendix B)

(̂ut)
(k)

i = û
(k)
i µ̂

(k)
i +M̂

(k)
i τ̂

(k)
1i , (̂ut2)

(k)

i = û
(k)
i [µ̂(k)

i ]2+[M̂ (k)
i ]2+M̂

(k)
i µ̂

(k)
i τ̂

(k)
1i , (3.6)
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(̂ub)
(k)

i = û
(k)
i r̂(k)

i +ŝ(k)
i (̂ut)

(k)

i , (̂utb)
(k)

i = r̂(k)
i (̂ut)

(k)

i +ŝ(k)
i (̂ut2)

(k)

i ,

̂(ubb>)
(k)

i = B̂(k)
i +û

(k)
i r̂(k)

i r̂>(k)
i +r̂(k)

i ŝ>(k)
i (̂ut)

(k)

i +ŝ(k)
i r̂(k)>

i (̂ut)i+ŝ(k)
i ŝ>(k)

i (̂ut2)
(k)

i ,

where, omitting the supraindex (k), M̂i = [1 + ∆̂
>
Z>

i Ω̂
−1

i Zi∆̂]−1/2, µ̂i =

[M̂i]2∆̂
>
Z>

i Ω̂
−1

i (yi−Xiβ̂), B̂i = [Γ̂
−1

+Z>
i Σ̂

−1

i Zi]−1, r̂i = B̂iZ>
i Σ̂

−1

i (yi−Xiβ̂),

ŝi = (Iq − B̂iZ>
i Σ̂

−1

i Zi)∆̂, Ω̂i = Σ̂i + ZiΓ̂Z>
i , and, as were defined in Section 2,

û
(k)
i = û

(k)
1i = E {Ui|θ̂

(k)
,yi}, and τ̂1i = E {U1/2

i WΦ[(U1/2
i µ̂

(k)
i )/(M̂ (k)

i )]|θ̂
(k)

,yi},
with WΦ(x) = φ1(x)/Φ(x), x ∈ R.

Since Yi
ind.∼ SNIni(Xiβ,Ψi, λ̄i, H) and Ai = (µTi)/(MTi) = λ̄

>
i y0i, with

y0i = Ψ−1/2
i (yi−Xiβ), i = 1, . . . , n, in each step, the conditional expectations ûi

and τ̂1i can be easily derived from the result given in Section 2. For the skew-t and
skew-contaminated normal distributions of the SNI class we have computationally
attractive expressions that can be easily implemented. However, for the skew-
slash case, Monte Carlo integration may be employed, which yields the so-called
MC-EM algorithm. Once at the kth iteration, the conditional moments û

(k)
i and

τ̂
(k)
1i need to be approximated by Monte Carlo integration (see Corollary 2).

The CM steps then conditionally maximize Q(θ; θ̂
(k)

) with respect to θ,

obtaining a new estimate θ̂
(k+1)

, as follows.

CM-step 1: Fix γ̂(k) and update β̂
(k)

as

β̂
(k+1)

= (
n∑

i=1

û
(k)
i X>

i Σ̂
(k)−1

i Xi)−1
n∑

i=1

X>
i Σ̂

(k)−1

i (û(k)
i yi − Zi(̂ub)

(k)

i ). (3.7)

CM-step 2: Fix β̂
(k+1)

and update γ̂(k) as γ̂(k+1) = argmaxγ{Q1i(β̂
(k+1)

,

γ; θ̂
(k)

)}.

CM-step 3: Update ∆̂
(k)

as ∆̂
(k+1)

= (
∑n

i=1 (̂utb)
(k)

i )/(
∑n

i=1 (̂ut2)
(k)

i ).

CM-step 4: Fix ∆̂
(k+1)

and update Γ̂
(k)

as

Γ̂
(k+1)

=
1
n

n∑
i=1

(
̂(ubb>)

(k)

i − (̂utb)
(k)

i [∆̂
(k+1)

]> − ∆̂
(k+1)

[(̂utb)
(k)

i ]>

+(̂ut2)
(k)

i ∆̂
(k+1)

[∆(k+1)]>
)

.



SNI- LINEAR MIXED MODEL 313

CM-step 5: Update ν̂(k) by optimizing the constrained actual marginal log-

likelihood function ν̂(k+1) = argmaxν{f(y; θ̂
(k+1)

1 , θ̂
(k+1)

2 , ν)}, where f(y;
θ) is as in Proposition 2.

The more efficient CM-step 5 follows Liu and Rubin (1994) (ECME, see
also Meng and Van Dyk (1997)). It is referred to as conditional marginal
likelihood step (CML-step), where we replace the usual M-step by a step
that maximizes the restricted actual log-likelihood function. Further, this
step along with the CM-step 2 can be easily accomplished by using, for
instance, the ”optim” routine in R software. Another strategy for speeding
up the convergence rate is to use the PX-EM algorithm of Liu, Rubin and
Wu (1998); however, its application is not straightforward for SNI-LMM,
and requires further exploration. The skewness parameter vector, and the
parameters of the scale matrix of the random effects b, can be estimated

by noting that D̂(k) = Γ̂
(k)

+ ∆̂
(k)

[∆(k)]> and λ̂
(k)

= [D̂(k)]−1/2∆̂
(k)

/(1 −
[∆(k)]>[D̂(k)]−1∆̂

(k)
)1/2. For the special (and common) situation in which

Σi = σ2
eRi, where Ri is a known matrix of dimension (ni ×ni) and γ = σ2

e ,
CM-step 2 reduces to the closed form

σ̂e
2(k+1) =

1
n

n∑
i=1

[
û

(k)
i (yi − Xiβ̂

(k+1)
)>R−1

i (yi − Xiβ̂
(k+1)

)

−(yi − Xiβ̂
(k+1)

)>R−1
i Zi(̂ub)

(k)

i − [(̂ub)
(k)

i ]>Z>
i R−1

i

×(yi − Xiβ̂
(k+1)

) + tr(R−1
i Zi

̂(ubb>)
(k)

i Z>
i )

]
.

In Appendix B we give the EM algorithm for restricted estimation of the
parameters, that can be used to construct, for instance, the likelihood ratio
statistics. A common problem, with any iterative optimization procedures, is
that one needs appropriate initial values to avoid divergence or time-consuming
computations. A simple way of selecting useful starting values is to use those
obtained under skew-normal assumption (Lachos et al. (2007) and Lin and Lee
(2008)) and repeat the iterations until the difference between two successive log-
likelihood evaluations (3.4) is small enough to achieve convergence. Information
criteria such as AIC and BIC (Lachos et al. (2007)), can be used in practice to
select between various SNI-LMM distributions.

Assuming the regularity conditions in Zacks (1971, Chap. 5) asymptotic
covariance of the ML estimates can be estimated by the inverse of the observed
information matrix, L(θ̂) =

∑n
i=1 ŝiŝ>i , where ŝi = [(∂ log f(yi; θ))/(∂θ)]|

θ=
bθ

is
the score vector corresponding corresponding to the observation yi evaluated at
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θ = θ̂. Expressions for the elements of the score vector with respect to θ, and
for each element of the SNI class, are given in Appendix C.

3.2. Estimation of random effects and prediction

In this section, we consider an empirical Bayes inference for the random ef-
fects that is useful for evaluating subject-specific quantities such as individual
intercepts and slopes. From (3.5), the conditional distribution of the bi given
(Yi, Ui) = (yi, ui) belong to the extended skew-normal (EST) family of distribu-
tions (Azzalini and Capitanio (1999)), and its pdf is

f(bi|yi, ui, θ) =
1

Φ(u1/2
i Ai)

φq(bi;µbi, u
−1
i Λi)Φ(u1/2

i ζ>bi),

where µbi = DZ>
i Ψ−1/2

i y0i and Ai = λ̄
>
i y0i, with y0i = Ψ−1/2

i (yi − Xiβ), and
Λi, ζ and λ̄i as in Proposition 2. Thus, from Lemma 2 in Appendix A, it follows
that

E {bi|Yi = yi, Ui = ui, θ} = µbi +
u
−1/2
i WΦ(u1/2

i Ai)√
1 + ζ>Λiζ

Λiζ.

The minimum mean-squared error (MSE) estimator of bi obtained by the con-
ditional mean of bi given Yi = yi is

b̂i(θ) = E {bi|Yi = yi, θ} = E {E {bi|Ui,Yi = yi,θ}|Yi = yi, θ},

= µbi +
τ−1i√

1 + ζ>Λiζ
Λiζ, (3.8)

where, τ−1i = E {U−1/2
i WΦ(U1/2

i Ai)|yi}. In practice, the empirical Bayes esti-
mators of bi, b̂i, can be obtained by substituting the ML estimate θ̂ into (3.8).
Furthermore, we are interested in the prediction of y+

i, a future υ × 1 vector of
measurement of Yi, given the observed measurement Y = (Y>

(i),Y
>
i )>, where

Y(i) = (Y>
1 , . . . ,Y>

i−1,Y
>
i+1, . . . ,Y

>
n ). If x+

i and z+
i denote υ × p and υ × q

matrices of prediction regressors corresponding to y+
i , we assume that[

Yi

y+
i

]
∼ SNIni+ν(X∗

i β,Ψ∗
i , λ̄

∗
i ; H),

where X∗
i = (X>

i ,x+>
i )>, Z∗

i = (Z>
i , z+>

i )>, Ψ∗
i = Σ∗

i + Z∗
i DZ∗>

i , Λ∗
i = (D−1 +

Z∗>
i Σ∗−1

i Z∗
i)−1, λ̄∗

i = (Ψ∗−1/2
i Z∗

iDζ)/(
√

1 + ζ>Λ∗
i ζ). From Lemma 1 in Ap-

pendix A, jointly with equation (2.2), it follows that Yi ∼ SNIni(Xiβ,Ψi,Ψ
1/2
i υ̃;

H), and

E {y+
i |Yi, ui,θ} = µ2.1 + u

−1/2
i

φ(u1/2
i υ̃>

i (Yi − Xiβ))

Φi(u
1/2
i υ̃>

i (Yi − Xiβ))

Ψ∗
22.1υ

(2)
i√

1 + υ
(2)>
i Ψ∗

22.1υ
(2)
i

,
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where µ2.1 = x+
i β + Ψ∗

21Ψ
∗−1
11 (Yi − Xiβ), Ψ∗

22.1 = Ψ∗
22 − Ψ∗

21Ψ
∗−1
11 Ψ∗

12, υ̃i =

(υ(1)
i + Ψ∗−1

11 Ψ∗
12υ

(2)
i )/(

√
1 + υ

(2)>
i Ψ∗

22.1υ
(2)
i ), with υi = Ψ∗−1/2

i λ̄∗
i = (υ(1)>

i ,

υ
(2)>
i )> and Ψ∗

11 = Ψi and Ψ∗
12 = Ψ∗

21. The minimum MSE predictor of yi is
the conditional expectation of yi given Yi, i.e.,

ŷ+
i (θ) = E {y+

i |Yi, θ} = E {E {y+
i |Ui,Yi}|Yi, θ}

= µ2.1 +
τ−1iΨ∗

22.1υ
(2)
i√

1 + υ
(2)>
i Ψ∗

22.1υ
(2)
i

. (3.9)

The prediction of y+
i can be obtained by substituting the ML estimate θ̂ into

(3.9), ŷ+
i = ŷ+

i (θ̂).

4. Simulation Study

In this section we present a simulation study to evaluate the performance
of the proposed method and of the conditional mean prediction of the subject-
specific effects proposed in Section 3. In particular, we want to asses the robust-
ness or bias incurred when one assumes a normal or skew-normal distribution for
random effects when the actual distribution is ST.

For the simulation, we generated 1,000 Monte Carlo data set from the model

Yij = β0 + tijβ1 + ωiβ2 + bi + eij , (4.1)

where, for j = 1, . . . , 5, tij = j − 3, β1 = 2, β2 = 1, eij ∼ t1(0, 0.52, 4), and
additional specifications to be described below. To show the advantage of the
skew-t distribution, we further generated the β0 +bi according to a ST1(1, 2, 3, 4)
distribution, yielding a highly skewed and heavy tailed distribution, as suggested
by the solid line in Figure 4.1(a).

Note that tij represents a covariate with values changing within individuals
and the same for all individuals, while ωi is the individual level-covariate, e.g.,
a treatment indicator. We took n = 100 with ωi = 1 if i ≤ 50 and ωi = 0 if
i > 50. For each of 1, 000 simulated data sets, model (4.1) was fit three times
under the assumption that the density of bi was (i) the ST, (ii) SN, and (iii)
Normal (N) distribution. We used, the Akaike information criterion (AIC) to
select the model that better fit the data.

When the data was actually generated from the ST case, four of AIC values
selected the SN-LMM specification for the 1,000 data sets, and none of AIC val-
ues selected the normal specification. Table 4.1 gives the numerical results when
the original data was generated from the ST and estimates obtained under skew-t
LMM (ST-LMM), normal LMM (N-LMM), and skew-normal LMM (SN-LMM).
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Figure 4.1. Simulation study based on 1,000 data sets of ST-LMM. (a)
box-plot of the mean absolute difference of the estimated and simulated
random effects for the 100 individuals. (b) True density of the random
effects (solid line) and Monte Carlo average estimated densities for 1,000
data set: using N-LMM (dashed-dotted), SN-LMM (dotted) and ST-LMM
(dotted-line) fitted. The solid lines are the respective means.

Table 4.1. Monte Carlo results based on 1,000 data sets, true ST1(0, 2, 3, 4)
distribution for the random effects and t1(0, 0.25, 4) for the random errors.
MEAN and SD are average and standard deviation of the estimates, AVE
SE is average of estimated standard errors. True values of parameters are in
parentheses.

Parameter MEAN SD AVE SE MEAN SD AVE SE MEAN SD AVE SE

(i) ST-LMM (ii) SN-LMM (iii) N-LMM

β0 (1) 1.0174 0.2037 0.1871 0.7666 0.2116 0.1982 2.3404 0.2258 0.2168

β1 (2) 1.9988 0.0179 0.0177 1.9988 0.0228 0.0260 1.9988 0.0228 0.0265

β2 (1) 0.9953 0.1920 0.1846 0.9807 0.2241 0.2232 1.0237 0.2994 0.3056

σ2
e (0.25) 0.2527 0.0307 0.0288 0.4904 0.1031 0.0378 0.4911 0.1035 0.0394

σ2
b (2) 2.0410 0.5388 0.5112 4.6433 1.5472 0.7758 2.1170 1.0270 0.3233

λ (3) 3.8644 2.2167 2.2016 6.8108 2.8361 3.3430 - - -

ν (4) 4.3234 1.1389 0.9708 - - - - - -

In the ST-LMM, the average of estimates of standard errors agreed well with the
Monte Carlo standard deviations. We can notice that the slope estimates were
similar among the three fitted models, however the standard errors of the models
seemed to produce more accurate maximum likelihood estimates. The inferences
for the variance components are different for the three fitted models, but the es-
timates are not comparable since they are in different scales. As found by other
authors (Arellano-Valle et al. (2005a)), efficiency of estimation of β2, associated
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with the individual-level covariate ωi, was degraded when normality is assumed
relative to allowing a more flexible representation via the SN distribution. Ad-
ditionally, this estimate was also degraded when the skew-normal distribution
was assumed. Since the main focus of such analysis may be the evaluation of
treatment effects, this suggests that adopting normality (or skew-normality) as-
sumptions routinely may lead to inefficient inferences on fixed effects of primary
interest when the actual distribution is not normal.

To investigate the performance of the empirical Bayes estimates of the
subject-specific effects, in Figure 4.1(b), we depicted the conditional mean pre-
dictor obtained under N-LMM, SN-LMM and ST-LMM. Accuracy is evaluated
by the absolute difference between the simulated and estimated random effects
for each individual. The mean values plotted in this figure, clearly indicate that
the ST-LMM outperformed the N-LMM and SN-LMM regarding the prediction
of random effects. A similar simulation study has also been considered to eval-
uate the performance of the SSL-LMM and SCN-LMM, with results given in
Appendix D.

5. An Illustrative Example

The Framingham heart study examined the role of serum cholesterol as a risk
factor for the evolution of cardiovascular disease. Arellano-Valle et al. (2005a)
and Lachos et al. (2007), analyzed the same data set by fitting a SN-LMM. In this
section, we revisit the Framingham cholesterol data with the aim of providing
additional inferences by using SNI distributions. Assuming a linear growth-curve
model with subject-specific random intercepts and slopes, we fit a LMM model
to the data, as specified by Zhang and Davidian (2001),

Yij = βo + β1sexi + β2agei + β3tij + b0i + b1itij + εij , (5.1)

where Yij is the cholesterol level, divided by 100, at the jth time for subject i,
tij is (time − 5)/10, with time measured in years from the start of the study,
and agei is age at the start of the study; and sexi is the gender indicator (0 =
female, 1 = male). Thus, xij = (1, sexi, agei, tij)>, bi = (b0i, b1i)>, and Zij =
(1, tij)>, i = 1, . . . , 200. The histogram of the cholesterol levels (not shown here)
clearly indicates an underlying asymmetric distribution, and thus it would seem
appropriate to fit a SNI-LMM to the data. To verify the existence of skewness in
the random effects, we started by fitting an ordinary N-LMM. Figure 5.2 depicts
histograms and corresponding envelopes of the empirical Bayes estimates of bi,
b̂i = µ̂bi

and shows that there are no apparent non-normal patterns for subject-
specific slopes. However, the subject-specific intercept are positively skewed, and
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Figure 5.2. Histogram and normal Q-Q plots of empirical bayes estimates
of: subject-specific intercepts (first row) and subject-specific slopes (second
row).

therefore the suggested Gaussian model did not fit well. Moreover, the QQ - plots
clearly support the use of thick-tailed distributions.

Based on the above observations, we now consider a SNI distribution for bi

and NI distribution for ei with heavy tails. In our analysis we assume SN, ST,
SCN and SSL distributions from the SNI class for comparative purposes.

Table 5.2 contains the ML estimates for the parameters of the four models,
viz, SN-LMM, ST-LMM, SCN-LMM and SSL-LMM, together with their corre-
sponding standard errors calculated via the approximate observed information
matrix given in Appendix C. The AIC criterion indicates that the SNI distri-
butions with heavy tails presents a better fit than the SN-LMM model, due to
the departure of the data from normality. We also note from Table 5.2 that the
intercept and slope estimates are similar among the four fitted models, however
the standard errors of the ST-LMM , SCN-LMM and SSL-LMM are smaller than
those in the SN model, indicating that the three models with longer tails than
SN produce more accurate maximum likelihood estimates. The estimates for the
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Table 5.2. Results from fitting the three models to the Framingham choles-
terol data set. (d11, d12, d22) are the distinct elements of the matrix D1/2.
The SE values are estimated asymptotic standard errors based on the ob-
served information matrix given in Appendix C. Here AIC denotes the
Akaike Information criterion.

SN-LMM ST-LMM SCN-LMM SSL-LMM

Parameter Estimate SE Estimate SE Estimate SE Estimate SE

βo 1.3520 0.1502 1.3888 0.1311 1.4045 0.1396 1.4089 0.1433

β1 -0.0488 0.0509 -0.0548 0.0447 -0.0461 0.0468 -0.0430 0.0482

β2 0.0152 0.0033 0.0149 0.0029 0.0144 0.0030 0.0140 0.0031

β3 0.3562 0.0667 0.3641 0.0611 0.4006 0.0630 0.3998 0.0638

σ2
e 0.0430 0.0017 0.0325 0.0025 0.0264 0.0028 0.0228 0.0025

d11 0.5261 0.0474 0.4417 0.0477 0.4079 0.0541 0.3918 0.0472

d12 0.0018 0.0302 -0.0030 0.0305 -0.0246 0.0290 -0.0232 0.0277

d22 0.2166 0.0330 0.2035 0.0370 0.2099 0.0386 0.1953 0.0353

λ1 13.8050 4.2423 13.7822 4.4242 13.4875 4.6855 14.1171 4.7110

λ2 -6.3654 4.3984 -8.0691 3.9867 -8.7607 4.0621 -8.4215 4.2099

ν - - 8.1799 2.1980 0.2981 0.0865 2.0898 0.4669

γ - - - - 0.3345 0.0425 - -

`(bθ) -152.0090 -127.4155 -125.9182 -130.3672

AIC 0.1552 0.1326 0.1321 0.1354

variance components are not comparable since they are on a different scale.
To asses the predictive performance of the SN-LMM and SNI-LMM with

heavy tails we drop out the last three measurement yi4, yi5, yi6 from individual
133, then compute the ML estimates using the remaining data. The prediction of
yi = (yi4, yi5, yi6)>, denoted by ŷi = (ŷi4, ŷi5, ŷi6)>, is made using formula (3.9).
As a measure of precision we use the MARD, the mean of absolute relative devi-
ation |(yip − ŷip)/yip|, where p is the time point being forecast. The comparison
of the predictors based on the different models is given in Table 5.3. As expected,
the result indicated that the SNI distribution yields better predictions than the
SN and the Normal (see Lin and Lee (2008)) predictors. Thus, the SNI-LMM
with heavy tails not only provide better model fitting, they also yield smaller
prediction errors for the cholesterol data.

6. Concluding Remarks

In this paper, we have proposed the application of a new class of asymmetric
distributions, called the SNI distribution, to LMMs. This facilitates the fit of
a linear mixed model even when the data deviates from the usual normal dis-
tribution assumption. A closed-form expression is obtained for the likelihood
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Table 5.3. Comparison of forecast accuracy in term of MARD.

points being forecast N-LMM SN-LMM ST-LMM SCN-LMM SSL-LMM

y4 0.0801 0.0791 0.0780 0.0781 0.0780

y5 0.0941 0.0916 0.0879 0.0879 0.0881

y6 0.0959 0.0909 0.0877 0.0870 0.0870

Average (%) 9.00 8.72 8.45 8.43 8.44

function of the observed data that can be maximized by using existing statis-
tical software. An EM-type algorithm is developed by exploring the statistical
properties of the SNI class. The observed information matrix is derived analyt-
ically and allows direct implementation of inference on this class of models. A
small simulation study is presented, showing the potential to gain efficiency in
parameter estimation when the normality assumption is violated. We believe
that the approaches proposed here can also be used to study other asymmetric
multivariate models. For the Cholesterol Framingham data, the SNI distribu-
tions with heavy tails give a better fit. We found some difficulties in the EM
implementation of the slash distribution, since it involves an integral in the
marginal likelihood (M-step) and in the computation of the conditional quan-
tities τr and ur (E-step), though numerical integration can be used. Matlab and
R programs are available from the first author‘s homepage at website address
http://www.ime.unicamp.br/~hlachos/ListaPub.html.

7. Supplementary Materials

The web Appendices referenced in the paper are available under the Paper
Information link at the Statistica Sinica website http://www.stat.sinica.edu.
tw/statistica.

Acknowledgement

The authors thank two referees and an associate editor for constructive com-
ments. We also thank PhD. Student C. Zeller from Campinas State University
for her help on the preprint version of the paper. The first author acknowledges
partial financial support from Fundação de Amparo à Pesquisa do Estado de São
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