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Instrumental variable analysis (IVA) is used to control unobserved 

confounders and estimate average causal effects in observational studies. Classical 

IVA involves a two-stage procedure with two ordinary linear models. The first stage 

relates the treatment or intervention to the instrument, and the second relates the 

outcome to the expected treatment predicted by the first stage. The average causal 

effect can be estimated using the difference in outcomes between the strata of the 

instrumental variable. D.B. Rubin in a series of papers (summarized in Angrist, 

Imbens, and Rubin, 1996) re-framed IVA in terms of a causal model which can be 

applied to binary outcome variables when the instrumental variable and treatment 

status are also binary. However, the average causal effect is typically expressed as a 

difference. When causal effects expressed as rate ratios or odds ratios are desired in 

nonlinear models, it is problematic to obtain the unbiased estimators for these 

parameters. We propose a two-stage likelihood-based IVA model. In both stages, the 

estimates of parameters of interest are obtained using maximum likelihood functions. 

In the first stage, patient compliance with the instrumental variable is estimated. 

Treatment effect is then imputed in the second stage with the adjustment of 

compliance. Essentially, the likelihood function is formulated using the joint 
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distribution of outcome and instrumental variables by integrating out the treatment 

and unknown confounder, assuming the distribution of the confounder is known, and 

the associations between the confounder and treatment, and confounder and outcome 

are also known or can be estimated. This likelihood function is maximized to obtain 

an estimator of the coefficient of the treatment variable. The variance of this 

maximum likelihood estimation (MLE) of treatment effect can be estimated using 

average Fisher’s information matrix.  

We illustrate this two-stage likelihood-based IVA model using data from a 

study of primary androgen deprivation therapy (PADT) in men with localized prostate 

cancer (Lu-Yao, Albertsen, Moore, et al. 2008). We also examine the optimal 

minimum sample size needed for each health service area in order to reduce the 

misclassifications, and obtain unbiased estimates of the average causal effect. 
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Chapter 1 

Introduction 

 

Evaluating the causal effect of a new treatment compared to a current 

treatment or placebo is the mainstay of pharmaceutical statisticians. Identifying the 

causality effect between disease and exposure is the ultimate goal for epidemiologists. 

Both tasks rely on well designed research studies and proper statistical analysis 

methods. Associations discovered between response and treatment or disease and 

exposure may not always be causal. Often the associations are caused by factors other 

than the true cause-effect relationship. Non-causal factors include chance, bias or 

confounding. Chance associations can be evaluated using p-values and confidence 

intervals. Bias is a systematic error introduced during the study conduct. General 

types of bias include recall bias, selection bias, and interviewer bias. Sicker subjects 

may recall more details of the exposure. Investigators may apply non-comparable 

criteria when enrolling study participants into different treatment groups. Interviewers 

may focus on particular questions for subjects treated with active drug, and collect 

biased information between different treatment groups. Confounding is another 

common phenomenon that interferes with the treatment-outcome relationship. A 

confounder is a factor that is correlated with treatment or exposure, and can 

independently affect the magnitude of response or development of disease. Failure to 

control confounders results in under- or over-estimates of the true treatment-outcome 

relationship.  

Observed confounders can be controlled in the study design or in the data 

analysis by statistical adjustment. This is particularly important in observational 
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studies. By contrast, intervention studies such as randomized clinical trials are 

designed to control both observed and unobserved confounders. With sufficient 

sample size, all potential confounders, whether observed or not, are supposed to be 

evenly distributed among the treatment groups by randomization. Therefore, results 

from randomized clinical trials are treated as a “gold standard” when they are 

compared to the results from other studies with different designs.   

One of the disadvantages of clinical trials is the cost. According to a report 

from a business intelligence firm (Cutting Edge Information, in 2006) running phase 3 

trials in pharmaceutical companies can cost more than $26,000 per patient on average, 

and in phase 3 clinical trials, companies typically recruit several hundreds to several 

thousands of patients. The cost is huge, but the randomized clinical trial is still the 

most favorable design in pharmaceutical companies because it controls for unknown 

confounders, something which cannot ordinarily be achieved by other designs.   

Another disadvantage of randomized clinical trials involves ethics. When the 

exposure is harmful, it will not be ethical to randomize any participants to that group. 

For example, in studies of smoking and lung cancer, investigators will never 

randomize non-smokers to the smoking group.   

Other limitations of clinical trials include difficulty in recruiting patients, 

particularly elderly or seriously sick patients. For example, hemophilia is a rare 

congenital bleeding disorder that affects about 18,000 people in the United States 

(National Heart Lung and Blood Institute, 2008). It is highly possible that a sponsor is 

not able to enroll enough patients in a phase 3 trial to test a new treatment. If the 

clinical trials take years to complete, maintaining compliance and preventing drop-

outs also become challenging tasks, as well. Compliance with the treatment in the 
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elderly is particularly difficult. In addition, trial participants are also hard to follow-up 

if they move to other areas, or withdraw consent. 

1.1 Methods for controlling observed confounders in an observational study 

When clinical trials are not feasible, statisticians will use observational studies 

to examine the associations between the health outcome and treatment or exposure. 

Although observational studies cost less, and are easier to conduct when compared to 

interventional studies, control of confounders becomes one of the outstanding issues. 

There are several statistical methods for controlling observed confounders, including 

stratification analysis, use of regression to adjust for confounders, and propensity 

score analysis. 

Stratification is done by evaluating associations between treatment and effect 

or exposure and disease separately among the levels of the confounders. Stratification 

is often used when the confounding variables are categorical, such as sex, race or 

cigarette smoking status. For example, when the association between alcohol 

consumption and cardiovascular disease is studied, cigarette smoking can be a strong 

confounder because alcohol consumers are more likely to be cigarette smokers, too. 

Therefore, the alcohol exposure status is correlated with smoking status. There are 

more cigarettes smokers in the exposure group than non-exposure group. 

Furthermore, cigarette smoking alone can affect the outcome of cardiovascular 

disease, so the outcome of cardiovascular disease could be a mixed effect from both 

alcohol intake and cigarette smoking. With separate analyses for smokers and non-

smokers, we assure that the outcome is independent of the confounder of cigarette 

smoking.  
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Regression analysis is the most frequently used statistical method to control 

observed confounders simultaneously. Potential confounders are named as covariates 

in the regression model. In an ordinary linear regression model, the outcome is placed 

on the left side of the equation and treated as a dependent variable. Treatment or 

exposure status is treated as a fixed effect and fitted on the right side of the equation 

along with a set of covariates such as age, sex, race, or body mass index. With the 

adjustment for these covariates, the estimated association between outcome and 

treatment is consistent with the true treatment effect. 

Propensity score analysis is another statistical method to control observed 

confounders in observational studies. A propensity score is defined as the probability 

of assignment to treatment, conditional on observed covariates which are potential 

confounders, 

( ) ( )1|e X pr T X= =
ɶ ɶ

 

where X
ɶ

 is a vector of covariates, and T  is the assignment to treatment, 1 or 0. 

For large size samples, Rosenbaum (1983) has presented a large-sample 

theory of propensity score analysis, and in particular presented this theorem:  

 

Theorem: Treatment assignment and the observed covariates are 
conditionally independent given the propensity score, that is 
 

( )|X T e X⊥
ɶ ɶ

 

 

This theorem states that, given the propensity score ( )e X
ɶ

, the treatment assignment 

is random and independent on any covariates of X
ɶ

. With the adjustment on 

propensity score, any association discovered between treatment and outcome is 

independent on those observed confounders. 
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A propensity score is usually expressed as a function of a vector of covariates. 

For example, it can be modelled as a logistic regression with a vector of covariates as 

independent predictors,  

( )
( )log

1
Te X

X
e X

β
 

= ⋅  − 
ɶ

ɶɶ
ɶ

 

The propensity score summarizes the multi-dimensional covariates with a uni-

dimensional score. With this single dimensional propensity score, statisticians are able 

to conduct matched sampling conveniently. Sub-groups of population with similar 

propensity score can be easily identified. The sample mean difference of matched 

treatment groups with the same propensity score provides an unbiased estimate for the 

true treatment effect. 

In practice, propensity scores are first calculated for every subject based on the 

observed confounders. Subjects with nearest propensity scores are then matched 

between treatment group and control group. Statistical analyses are applied on the 

selected groups. Dehejia and Wahba (2002) applied propensity score matching 

methods to the data from National Supported Work experiment. The National Support 

Work experiment (LaLonde, 1986) was a randomized trial to evaluate the effect of a 

nine months to one year’s training program on trainee earnings. The treated group 

received on-the-job training, and the control group did not. Dehejia and Wahba (2002) 

created matched control groups from databases of the Population Survey of Income 

Dynamics and the Current Population Survey based on individual’s propensity score. 

Propensity scores were estimated from a logistic regression with independent 

predictors of age, number of school years, race, marriage status, previous annual 

earnings, and employment history. When propensity scores were matched in both 

treated and control groups, these potential confounders were also comparable for both 
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groups. Any observed differences in the trainee earnings between the treated group 

and selected control groups were then independent of these confounders. Therefore, 

the estimated difference in earnings was an unbiased estimator for the average effect 

of the training program. The result from one of the propensity score matching 

methods showed an average raise of $1473 and $1616 per person year for the treated 

group when it is compared to the two control groups. These numbers were very close 

to the $1672 raise from the randomized experiment. 

1.2 Methods for controlling unobserved confounders in an observational 

study 

In reality, not all the confounders are observable or measurable. We examined 

the ordinary linear regression model: 

 0 1 2i i i iY T Uβ β β ε= + ⋅ + ⋅ +  (1.2.1) 

In equation (1.2.1), iY  is the response from subject i . iT  is the treatment received by 

subject i . iU  is an observed confounder. If the observed confounder is controlled, 1β  

is the true treatment effect.  

In the situation where the confounder is unobserved or unknown, the term 

2 iUβ ⋅  gets omitted from equation (1.2.1). 

 * * *
0 1i i iY Tβ β ε= + ⋅ +  (1.2.2) 

Equation 1.2.2 is not equivalent to the true model equation (1.2.1). 

 How can we control the unobserved confounders in observational studies? 

One of the ideal solutions will be to find something very similar to randomization. 

Instrumental variable analysis (IVA) has been used by economists and 

epidemiologists for decades, and it is close to the solution we are looking for. IVA 
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controls the unobserved confounders by introducing a third variable called the 

instrumental variable (IV). A valid instrumental variable is correlated with the 

treatment or exposure status only, and independent of all potential observed or 

unobserved covariates, that is, Z X⊥
ɶ

 and Z U⊥
ɶ

, where Z  represents an 

instrumental variable. It is important that the instrumental variable itself does not 

cause variation in outcome response. It affects the outcome indirectly through the 

unevenly distributed treatment or exposure status among the strata of instrumental 

variable. The diagram Z T Y→ →  illustrates a path of an instrumental variable Z  

causing a outcome Y . T  is a treatment or exposure variable which facilitates the 

effect of Y  from Z . There is no direct path from Z  to Y . 

Examples of IVA can be traced back to 1854. There was an epidemic of 

cholera in London. British physician John Snow observed that there were higher death 

rates from cholera among the residents who received their drinking water from the 

Lambeth Company or the Southwark and Vauxhall Company as opposed to from 

other households with different water supply companies. Further investigation 

discovered that the two companies drew water from the Thames River at a point 

polluted with main sewage discharge. The contaminated drinking water was the 

source of the outbreak of cholera. In this story, water companies served as an 

instrumental variable. Water companies themselves were not able to cause the 

disease, but they were highly correlated to the exposure, and indirectly affected the 

death rates. In addition, baseline characteristics such as occupation, health and 

monetary conditions were comparable between the two groups of people who 

received water from different water companies. 

Geographic location is another widely used instrumental variable because it is 

often likely to correlate with certain treatments or exposures. In 2008, investigators 
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from the Cancer Institute of New Jersey published their results on the primary 

androgen deprivation therapy (PADT) among men with localized prostate cancer (Lu-

Yao, et al., 2008). In this population-based cohort study, IVA was utilized. 

Investigators noticed that the PADT usage rates were highly differentiated among 

health service areas within the U.S (Shahinian, Vahakn B, Kuo, Yong-fang, Freeman, 

Jean L, et al., 2005). The variation was not from the medical consideration, but from 

the preference of local health service practice. This finding indicated that the health 

service areas could serve as a valid instrumental variable. In the statistical analysis, 

these health service areas were then categorized into two classes, high PADT usage 

areas and low PADT usage areas. Patients’ survivals were compared between these 

two types of areas to evaluate the effectiveness of PADT. The direct comparison 

between patients with PADT and conservative management (CM) was believed to be 

inappropriate because some unobserved confounders, particularly prostate specific 

antigen (PSA) level, could bias the results. 

Randomized treatment assignment in clinical trials is actually a perfect 

instrumental variable when the sample size is sufficient large. Patients are randomized 

to treatment group or control group with an equal probability. Confounders associated 

with patients’ characteristics are hence randomized into treatment group or control 

group with equal probability. If all patients fully comply with the randomized 

assignment, the sample difference in outcome between treatment group and control 

group is truly an unbiased estimator of treatment effect. In some cases, a few patients 

take a treatment other than the one they are assigned to mistakenly. Outcomes are still 

compared between the randomized treatment groups rather than as treated groups. 

This is so called the intention-to-treat method which is equivalent to the instrumental 

variable analysis. In clinical trials, because patients are closely monitored, the 
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inconsistency rate between assigned treatment and actual treatment is very low. 

Investigators should not adjust the results with this non-compliance rate. This 

intention-to-treat analysis provides conservative estimates, and additionally, penalizes 

careless monitoring of patient compliance during the trial. In observational studies, 

the compliance to the instrumental variable is much lower than the compliance to the 

randomization codes in clinical trials, so the inconsistency rate needs to be adjusted. 

 In Chapter 2, we review current IVA methodologies and make comparisons 

between them. In Chapter 3, we discuss drawbacks of these IVA methodologies, and 

propose a two-stage likelihood-based IVA model. We apply this two-stage likelihood-

based IVA to generalized linear models. In Chapter 4, the two-stage likelihood-based 

IVA model is extended to a survival data analysis. In Chapter 5, optimal minimum 

sample size is explored when the instrumental variable is not binary in nature. Some 

instruments are continuous variables. When the instrumental variable in categorical 

form is desired, the continuous data need to be converted to categorical data. During 

this procedure, sample size of the subunits can become one of technical detail. In 

Chapter 6, we discuss future research possibilities including IVA in cluster data 

analysis. 

 We use study of PADT on localized prostate cancer (Lu-Yao, et al., 2008) as 

an example to develop the two-stage likelihood-based IVA throughout this 

dissertation. All statistical analyses are performed using R, version 2.10.1.  

 



 

 

10

Chapter 2 

Review of IVA Methodologies 

 

We begin this chapter with the classical IVA method, two-stage least squares. 

This method was described as early as in 1954 by Durbin. We consider the rationale 

of the method, and from there, we present more IVA models currently used in linear 

and nonlinear statistical analyses. 

2.1 Two-stage Least Squares (2SLS) 

When a linear model includes all important predictors, the coefficients of the 

predictors consistently measure the causal-effect relationship between the outcome 

and predictors.   

 0 1 2 ,i i i iY T Uβ β β ε= + ⋅ + ⋅ +      for subject 1,2,...,i N=  (2.1.1) 

In model (2.1.1), assumingiε  is identical independently distributed with mean 0, 1β  

quantifies the causal effect from T  to Y , and similarly, 2β  quantifies the causal 

effect from U  to Y . If U  is a confounder of T , this is true only when both predictors 

are included in the model and no other important confounders are omitted from the 

model. Plots of residuals iε  versus all predictors can be helpful for diagnosing the 

appropriateness of the model. If the plots show the following, 

 ( )cov , 0i iT ε =     and     ( )cov , 0i iU ε =  (2.1.2) 
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we can interpret 1β  as the treatment effect on outcome Y , and 1̂β , the least square 

estimator of 1β , is an unbiased  estimator of treatment effect. If any of the important 

predictors, particularly confounders, are omitted from model (2.1.1),  

 * * *
0 1 ,i i iY Tβ β ε= + ⋅ +                for subject 1,2,...,i N=  (2.1.3) 

plots of estimated residuals *îε  from model (2.1.3) versus iT  will most likely show a 

deviation from independence, that is, 

 ( )*cov , 0i iT ε ≠  (2.1.4) 

It can be shown that *
1̂β , which is the estimator of *

1β  in model (2.1.3) is a 

biased estimator of 1β  in model (2.1.1). Let T
ɶ

 and U
ɶ

 be vectors of size N , and T  

be mean of  T
ɶ

. By least squares: 

( )
( ){ }

( )

( ) ( ){ }
( )

( ) ( ){ }
( )

( ){ }
( )

* 1 1
1

2 2

1 1

0 1 2
1 1

1 2
2 2

1 1

ˆ | ,

N N

i i i i
i i

N N

i i
i i

N N

i i i i i
i i

N N

i i
i i

Y T T T T E Y
E T U E

T T T T

T T E T U T T U

T T T T

β

β β β
β β

= =

= =

= =

= =

 ⋅ − − ⋅ 
 = =
 − −
  

− ⋅ + ⋅ + ⋅ − ⋅
= = + ⋅

− −

∑ ∑

∑ ∑

∑ ∑

∑ ∑

ɶ ɶ

 (2.1.5) 

The bias is 
( ){ }

( )
1

2
2

1

N

i i
i

N

i
i

T T U

T T
β =

=

− ⋅
⋅

−

∑

∑
. When U is not a confounder of T , that is,  

T  and U are independent, the bias is zero.  

In order to obtain an unbiased estimator of the treatment effect, economists, 

epidemiologists, and statisticians have paid most attention to a classical IVA of two-

stage least squares model. With the involvement of an instrumental variable (IV), the 

two-stage least squares model includes two ordinary linear regression models. In the 
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first stage, an instrumental variable is used to predict the treatment allocation. This 

predicted treatment assignment is then used in the second stage as one of the 

independent variables to forecast the outcome. The actual treatment status should not 

be fitted as one of the predictors in the second stage. Instead, it is used in the first 

stage as the dependent variable to estimate the probabilities of the treatment received 

based on the values of instrumental variable. 

 First stage:       0 1i i iT Zα α υ= + ⋅ +  (2.1.6) 

 Second stage:    0 1
ˆ

i i iY Tβ β ε= + ⋅ +  (2.1.7) 

In equation 2.1.6, Z  is the instrumental variable and is used to predict the 

treatment status T . In equation (2.1.7), outcome Y  is fitted with the predicted 

treatment status ̂T  from the first stage. The coefficient 1β  reflects the treatment 

effect, and therefore is the parameter of interest.   

 As in the ordinary regression model, assumptions made for the two-stage least 

squares model are: 

( )cov , 0i iZ ε =      and     ( )cov , 0i iZ υ =  

In addition, the instrumental variable Z  must be correlated to the treatment status T : 

( )cov , 0i iZ T ≠       that is   1 0α ≠  

The coefficient 1β  from the second stage of the least squares is estimated by 

the ratio of the estimated covariance between Z  and Y  to the estimated covariance 

between Z and T  (Durbin, 1954) and is called an IV estimand (Angrist, et al., 1996): 

� ( )
� ( )
cov ,ˆ
cov ,

IV

Z Y

Z T
β =  
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It can be proved that ̂ IVβ  is an unbiased estimator of treatment effect 1β . From 

regression (2.1.6), 1α  is estimated by: 

 
( ){ }

( )
1

1
2

1

ˆ  

N

i i
i

N

i
i

T Z Z

Z Z
α =

=

⋅ −
=

−

∑

∑
 (2.1.8) 

 

( )
( ){ }
( ){ }

( ) ( ){ }
( ){ }

( ) ( ){ }
( ){ }

( ){ }
( ){ }

1 1

1 1

0 1
1 1

1

1 1

1

ˆ | ,

ˆ

=

  

N N

i i i i
i i

IV N N

i i i i
i i

N N

i i i i
i i

N N

i i i i
i i

Y Z Z Z Z E Y
E Z T E

T Z Z T Z Z

Z Z E T T Z Z

T Z Z T Z Z

β

β β
β

β

= =

= =

= =

= =

 ⋅ − − ⋅ 
 = =
 ⋅ − ⋅ −
  

− ⋅ + ⋅ ⋅ −
= ⋅

⋅ − ⋅ −

=

∑ ∑

∑ ∑

∑ ∑

∑ ∑

ɶ ɶ

  

        ( ) ( ) 1
ˆ ˆ | ,   IV IVE E E Z Tβ β β = =

 ɶ ɶ
  (2.1.9) 

Imbens and Angrist proved thatˆ
IVβ  has an asymptotic normal distribution 

(Durbin, 1954; Imbens and Angrist, 1994). 

( ) ( )

( ) ( ){ }

2

1
1 2

1

var
ˆ ,

N

i i
i

IV
N

i i
i

Z Z
AN

Z Z T T

ε
β β =

=

 
 ⋅ −
 
   − ⋅ −  

  

∑

∑
∼ . (2.1.10) 

Comparing the variance of ̂IVβ  to the variance of1̂β , we see that an instrumental 

variable causes a certain loss of efficiency (Durbin, 1954) 

 

( )
( ){ }

( )

( ) ( ){ }
( )

( )
( )

2

1 1
1 2

2 2

1 1

2

1

var
ˆvar | , var

var

N N

i i i i
i i

N N

i i
i i

i
N

i
i

Y T T T T Y
T U

T T T T

T T

β

ε

= =

= =

=

 ⋅ − − ⋅ 
 = =
   − −     

=
−

∑ ∑

∑ ∑

∑

ɶ ɶ

 (2.1.11) 
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( )
( )

( )
( )

( ) ( ){ }
( ) ( )

( ) ( ){ }
( ) ( )

2

1 1

2 2

1 1

2

1

2 2

1 1

ˆvar var

ˆvar var

1            

N

i i
i i

N N

IV
i i i

i i

N

i i
i

N N

i i
i i

Z Z T T

T T Z Z

Z Z T T

Z Z T T

β ε
β ε

=

= =

=

= =

 − ⋅ − 
 = ⋅

− ⋅ −

 − ⋅ − 
 = ≤

− ⋅ −

∑

∑ ∑

∑

∑ ∑

 (2.1.12) 

A valid instrumental variable is one that causes variation in treatment status 

across the levels of the instrumental variable, and is uncorrelated with the unobserved 

confounders. An IV estimand measures the correlation between the instrumental 

variable and the outcome, which is then adjusted for the correlation between the 

instrumental variable and treatment status. In other words, the correlation between 

treatment and outcome is assessed indirectly by comparing both variables to a 

common reference variable. 

2.2 Pearl’s causal effect and IV core conditions 

 Pearl (2009) denoted the causal effect of T  on Y  as ( )( )|P Y do T . In Pearl’s 

notation, ( )( )|P Y do T  is different from the conditional distribution of ( )|P Y T . 

( )do T  stands for an intervention of T  to induce the outcome of Y . The intervention 

of T  is randomly performed, and theoretically is independent of any unobserved 

confounders. In the diagram 2.2.1, there is no arrow from U  to ( )do T . 

Diagram 2.2.1 

                                 ( )do T                                Y  

 

                                                              U 
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The average causal effect (ACE) can be expressed as the difference in expectations 

under different interventions of T  (Didelez, and Sheehan, 2007): 

 ( ) ( )( ) ( )( )1 2 1 2, | |ACE t t E Y do T t E Y do T t= = − =  (2.2.1) 

When the intervention is treatment with binary values, for example, 1t  is an active 

drug and 2t  is a placebo, the average causal effect of the active drug on the outcome 

is 

 ( )( ) ( )( )| 1 | 0E Y do T E Y do T= − =  (2.2.2) 

When the intervention T  is a continuous variable, an ordinary linear regression model 

( )( ) 0 1|E Y do T t tβ β= = + ⋅  is used to examine the causal effect of T on Y . The 

average causal effect is evaluated by1β . 

 The definition of ( )do T  is similar to Rosenbaum and Rubin’s “causal effect” 

(1983) in terms of counterfactuals. For subject i , the response would be 1ir  if he/she 

had received treatment 1, and 0ir  if he/she had received treatment 0. The causal effect 

would be ( )1 0i ir r− . The notation of ( )do T  has the advantage of capturing both the 

counterfactual concept and randomized intervention.  

 Estimates of ( )( )|P Y do T  are not always available. Instead, the conditional 

probability ( )|P Y T  from an observational study is often used to estimate the causal 

effect. Although ( )|P Y T  is also a function of T , T  is possibly correlated with 

unobserved confounders. With the assistance of an instrumental variable, unobserved 

confounders are adjustable and the average causal effect is identifiable. 
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 Motivated by Pearl’s causality, Didelez and Sheehan (2007) defined three core 

conditions for an instrumental variable in IVA. The notation and terminology were 

adapted from Greenland (2000) and Dawid (2003).   

Condition 1: Z U⊥ : Z  must be independent of  confounding between T  and 

Y . 

Condition 2: Z T⊥ : Z  must not be independent of T . 

Condition 3: ( )| ,Y Z T U⊥ : Conditionally on T and U , Z  must be 

independent of Y . 

The joint distribution of the 4 variables is: 

 ( ) ( ) ( ) ( ) ( ), , , | , , | , |P Y T U Z P Y T U Z P T U Z P U Z P Z= ⋅ ⋅ ⋅  (2.2.3) 

Because ( )| ,Y Z T U⊥  and U Z⊥ , this may be expressed more compactly as 

 ( ) ( ) ( ) ( ) ( ), , , | , | ,P Y T U Z P Y T U P T U Z P U P Z= ⋅ ⋅ ⋅  (2.2.4) 

Pearl (2009) used a directed acyclic graph (DAG) to illustrate the joint probability 

function. 

Diagram 2.2.2 

 

 

 

 

Diagram 2.2.2 presents the causal relationships among the four variables. Y is 

dependent on T  and U , while T  is conditional on Z  and U . Z  and U are 

completely independent. 

Using the probability functions, we derive the expectations given in the 2SLS: 

TZ Y

U

1α 1β

2α 2β
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( )

( ) ( )
0 1 2

0 1 2

( | , )

| ,

E T U Z E Z U

E Y U T E T U

α α α υ
β β β ε

= + ⋅ + ⋅ +

= + ⋅ + ⋅ +
 (2.2.5) 

Because ( )| ,Y Z T U⊥ , 

 
( ) ( )

( )0 1 2 0 1 2

| , , | ,E Y U T Z E Y U T

E T U T Uβ β β ε β β β
=

= + ⋅ + ⋅ + = + ⋅ + ⋅
 (2.2.6) 

 

( ) ( )
( )

( )
( ) ( )

| ,

| , 0 1 2

0 1 0 1 2 2

0 1 0 1 1 1 2 2

*
0 1 1

| | ,

               because   

U T Z U

U T Z U

U

E Y Z E E E Y U T

E E T U

E Z U U

Z E U

Z Z U

β β β

β β α α α β

β β α β α β α β

β β α

 =    

 = + ⋅ + ⋅ 

= + ⋅ + ⋅ + ⋅ + ⋅  

= + ⋅ + ⋅ ⋅ + ⋅ + ⋅

= + ⋅ ⋅ ⊥

 (2.2.7) 

Therefore 1 1 1 1/IVβ β α α β= ⋅ = . (2.2.8) 

2.3 Rubin’s causal model 

 In 1996, Angrist, Imbens, and Rubin brought up a special IVA named Rubin’s 

causal model. This model is well designed for the studies with a binary instrumental 

variable, binary treatment status, and binary outcome variable. The Rubin’s IV 

estimand is imputed as a ratio of the difference in probability of developing disease 

between the two strata of instrument to the difference of exposure rates between the 

two strata of instrument.  

 For a sample of size N , let the instrument Z  be coded with a dummy value of 

1 or 0. The sample probabilities of developing disease for each stratum of the 

instrument are: 

( )

( )
1 1

1 0

1 1

1
           and            

1

N N

i i i i
i i

Z ZN N

i i
i i

Y Z Y Z
Y Y

Z Z

= =
= =

= =

⋅ ⋅ −
= =

−

∑ ∑

∑ ∑
, 
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Their difference is: 

( )

( )

( )
1 1 1 11 1

1 0

1 1 1 1

1 1 1

1 1 1

11

1

1 1 1

=
1 1 1

N N N NN N

i i i i i ii i i i
i i i ii i

Z Z N N N N

i i i i
i i i i

N N N

i i i i
i i i

N N N

i i i
i i i

N Z Y Z Z Y ZY Z Y Z
Y Y

Z Z Z N Z

Y Z Y Z
N N N

Z Z Z
N N N

= = = == =
= =

= = = =

= = =

= = =

   − ⋅ ⋅ − ⋅ ⋅ −⋅ ⋅ −    
   − = − =

 − ⋅ − 
 

⋅ − ⋅

− ⋅

∑ ∑ ∑ ∑∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 

Let the treatment be exposed ( 1T = ) and not exposed ( 0T = ). The sample exposure 

rates from each stratum of the instrument are: 

( )

( )
1 1

1 0

1 1

1
           and            

1

N N

i i i i
i i

Z ZN N

i i
i i

T Z T Z
T T

Z Z

= =
= =

= =

⋅ ⋅ −
= =

−

∑ ∑

∑ ∑
 

Their difference is: 

( )

( )

( )
1 1 1 11 1

1 0

1 1 1 1

1 1 1

1 1 1

11

1

1 1 1

=
1 1 1

N N N NN N

i i i i i ii i i i
i i i ii i

Z Z N N N N

i i i i
i i i i

N N N

i i i i
i i i

N N N

i i i
i i i

N Z T Z Z T ZT Z T Z
T T

Z Z Z N Z

T Z T Z
N N N

Z Z Z
N N N

= = = == =
= =

= = = =

= = =

= = =

   − ⋅ ⋅ − ⋅ ⋅ −⋅ ⋅ −    
   − = − =

 − ⋅ − 
 

⋅ − ⋅

− ⋅

∑ ∑ ∑ ∑∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑
 

The ratio of the two differences is called Rubin’s IV estimand.  

�

�
1 0 1 1 1 1

,
1 0

1 1 1 1

1 1 1
( )( )

cov( , )ˆ = =
1 1 1 cov( , )( )( )

N N N N

i i i i i i
Z Z i i i i i i

IV R N N N N
Z Z i i

i i i i i i
i i i i

Y Z Y Z Y Y Z Z
Y Y Z YN N N
T T Z TT Z T Z T T Z Z

N N N

β = = = = = =

= =

= = = =

⋅ − ⋅ − −
−= =
− ⋅ − ⋅ − −

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 

,
ˆ

IV Rβ  is also named as Local Average Treatment Effect (LATE). It is a consistent 

estimator of the average causal effect of T  on Y  from marginal population if and 
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only if the following five assumptions are satisfied. A marginal population is defined 

as those patients who receive the same treatment as they are assigned to. 

Assumption 1: Stable Unit Treatment Value Assumption (SUTVA) 

a. If i iZ Z ′= , then ( ) ( )i iT Z T Z ′=  

b. If i iZ Z ′=  and i iT T ′= , then ( , ) ( , )i iY Z T Y Z T′ ′=  

SUTVA assumes that one unit’s outcome is not affected by another unit’s treatment 

assignment. It goes beyond the concept of independence (Wikipedia, 2010). A 

violation example is given in Wikipedia, The Free Encyclopedia. Joe and Mary live in 

the same house. They both receive anti-hypertension treatment. Mary cooks for both 

of them. Mary does not cook salty foods if she does not take the drug, but she does 

cook salty foods when she takes the drug. Mary’s treatment assignment affects both 

Mary and Joe’s diet, and a high salt diet is supposed to increase blood pressure. 

Therefore, not only is Joe’s blood pressure affected by his treatment assignment, but it 

is also affected by Mary’s treatment assignment. The unstable unit treatment value 

causes a difficulty in identifying the causal effect from the treatment.    

  Assumption 2: Random Assignment 

Pr( ) Pr( )Z c Z c′= = =      for any &c c′  

Random assignment assumes that the probability of being assigned to any value of the 

instrumental variable is equal for all patients. This assumption assures that the values 

of the instrumental variable are independent on all observed or unobserved 

confounders. 

Assumption 3: Exclusion Restriction 

  ( , ) ( , )Y Z T Y Z T′=  for all ,Z Z ′  and for all T  
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The exclusion restriction assumes that the effect of treatment on a patient’s outcome 

stays the same on any level of the instrumental variable.    

Assumption 4: Nonzero Average Causal Effect of Z on T  

Assumption 4 states that the probabilities of receiving treatment are determined by the 

value of the instrumental variable. On average, there is a nonzero linear correlation 

between the treatment values and instrument values.  

Assumption 5: Monotonicity  

Under the assumption of monotonicity, the causal effect of Z  on T  is one-way, not 

two-way. For example, 1Z =  can cause 1T = , or 1Z =  can cause 0T = , but 1Z =  is 

not allowed to cause 1T =  in one case, but 0T =  in another case. In other words, no 

patients are allowed to intentionally get the opposite treatment to the one they are 

assigned to. 

We may illustrate Rubin’s causal model using an example on evaluation of the 

effect of serving in the military on health outcomes. During the Vietnam War, in the 

United States, being drafted into military service was determined by randomly 

assigned lottery numbers. Those with low lottery numbers ( 1Z = ) would have served 

in the military ( 1T = ), and those with high lottery numbers ( 0Z = ) would not have 

served in the military ( 0T = ). In reality, there were non-compliers who always served 

in the military or who never served in the military regardless of which lottery numbers 

they were assigned. The marginal population include all the compliers, i.e., those who 

received low lottery numbers ( 1Z = ), and served in the military ( 1T = ), or those who 

received high lottery numbers ( 0Z = ), and did not serve in the military ( 0T = ). The 

lottery numbers are treated as an instrumental variable in this example. Health 

outcomes from the study population are compared between those who received low 

lottery numbers and those who received high lottery numbers. Elevated mortality is 
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found among men with low lottery numbers (Hearst, Newman, and Hulley 1986). 

After the five assumptions are carefully examined, it is concluded that the elevated 

mortality is from the marginal population due to their history of military service 

(Angrist, et al. 1996). Military service during the Vietnam War ( 1T = ) has a negative 

impact on the mortality.  

Assumption 1: SUTVA. One person’s health outcomes were not affected by 

another person’s military service status. 

Assumption 2: Random Assignment. The lottery numbers (1Z =  or 0Z = ) 

were randomly assigned to men who were born between 1950 and 1952 based 

on their birth dates. 

Assumption 3: Exclusion Restriction. The amount of impact of military 

service on health outcomes was the same for all men regardless of high or low 

number assignment.  

Assumption 4: Nonzero Average Causal Effect of Z on T . The majority of 

the participants were compliers, that is, men who received low lottery numbers 

( 1Z = ) were more likely to serve in the army ( 1T = ), and men who received 

high lottery numbers ( 0Z = ) were more likely not to serve in the army 

( 0T = ).  

Assumption 5: Monotonicity. Non-compliers include those who ignored the 

lottery numbers, and always voluntarily committed to military service ( 1T = ), 

or who never entered into military service ( 0T = ). Non-compliers who were 

induced to avoid military service ( 0T = ) by the low lottery numbers ( 1Z = ) 

are not allowed.  



 

 

22

2.4 Comparison of the assumptions in 2SLS, IV core conditions, and Rubin’s 

causal model 

Despite different notations and terminologies, assumptions required in the 

IVA are comparable. Comparisons are made in Table 2.4.1. 

Table 2.4.1 Comparison of the assumptions in 2SLS, IV core conditions, and 
Rubin’s causal model 

 
Two-stage Least Squares IV Core 

Conditions 
Rubin Causal Model 

iY s are independent observations.   SUTVA 

cov( , ) 0, and cov( , ) 0i i i iZ Zε υ= =  Z U⊥  Random Assignment 

cov( , ) 0i iZ Y ≠ if and only if 

cov( , ) 0i iY T ≠  
( )| ,Y Z T U⊥  Exclusion Restriction 

cov( , ) 0i iZ T ≠  or  1 0α ≠  Z T⊥  Nonzero Average Causal 
Effect of Z onT  

eithercov( , ) 0i iZ T <  or cov( , ) 0i iZ T > , 

but not both in the study  Monotonicity 

2.5 Generalized method of moments (GMM) 

Foster (1997) first applied IVA to nonlinear models such as logistic regression by 

using the Generalized Method of Moments (GMM). Johnston, Gustafson, Levy, et al. 

(2008) extended the GMM instrumental variable analysis (GMM IVA) to the other 

generalized linear models, such as Poisson regression. In their opinion, the 2SLS 

would not produce the consistent parameter estimates in nonlinear models by simply 

replacing the second stage of ordinary least square with a generalized linear model. 

IVA could be conducted using GMM. In GMM, a set of estimator-defining equations 

(Hansen, 1982 and 1985; Hansen and Singleton, 1982) are identified first. These 

equations include population moments, and are solved simultaneously for solutions of 

the population moments. The estimated population moments are believed to be a 
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consistent approach to the true values. A simple example of the estimator-defining 

equations is from the ordinary least square: 

 0 1 1 2 2           1,...,   i i i J iJ iY X X X i Nβ β β β ε= + ⋅ + ⋅ + ⋅⋅ ⋅ + ⋅ + =  (2.5.1) 

i  represents the i th observations, and there are a total of J  explanatory variables. 

One way to obtain the solutions of the parameters 1β  to Jβ is to minimize the sum of 

squares of the residuals. 

 ( ) ( )2 2

0 1 1 2 2
1 1

N N

i i i i J iJ
i i

Y X X Xε β β β β
= =

= − − ⋅ − ⋅ − ⋅⋅⋅− ⋅∑ ∑  (2.5.2) 

Take the derivative on the right side of equation (2.5.2) with respect to theβ s, and set 

them equal to zero:  
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( )

( )

1 0 1 1 2 2
1

2 0 1 1 2 2
1

0 1 1 2 2

0 

0 

                         

                         

                         

0

N

i i i i J iJ
i

N

i i i i J iJ
i

iJ i i i J iJ
i

X Y X X X

X Y X X X

X Y X X X

β β β β

β β β β

β β β β

=

=

=

⋅ − − ⋅ − ⋅ − ⋅⋅⋅ − ⋅ =

⋅ − − ⋅ − ⋅ − ⋅⋅⋅ − ⋅ =

⋅ − − ⋅ − ⋅ − ⋅⋅⋅− ⋅ =

∑

∑

i

i

i

1

            
N

∑

 (2.5.3) 

Equations (2.5.3) are actually the estimator-defining equations. By solving these 

equations simultaneously, we are able to obtain consistent estimators for all theβ s. 

 Another way to view these equations is that all the explanatory variables are 

assumed to be uncorrelated with residuals. 

 cov( , ) 0T
i i iX Y Xβ− ⋅ =
ɶ ɶɶ

 (2.5.4) 

where   
1i

i

iJ

X

X

X

 
 =  
 
 

⋮
ɶ

      and    
1

J

β
β

β

 
 =  
 
 

⋮
ɶ

 

Both equations (2.5.2) and (2.5.4) result in the same set of equations in (2.5.3). 
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 In generalized linear models, there are three components. The random 

component indicates the distribution of independent outcomes, iY s. The systematic 

components specifies a linear regression on a set of explanatory variables, ijX s. 

Finally, the link is a function links the mean of the random component to the 

systematic components as in equation (2.5.5).  

 ( )( ) 0 1 1 2 2i i i J iJg E Y X X Xβ β β β= + ⋅ + ⋅ + ⋅⋅⋅+ ⋅  (2.5.5) 

Equation (2.5.5) can be rewritten as (2.5.6): 

 ( ) ( );i iE Y f X β=
ɶ ɶ

 (2.5.6) 

where ( );f X β  is a linear or nonlinear function.  

 ( ) ( );i i i i iY E Y f Xε β ε= + = +
ɶ ɶ

 (2.5.7) 

The estimator-defining equations in GMM for the nonlinear regression are expressed 

as: 

 ( )
1 1

; 0        1,...,
N N

ij i ij i i
i i

X X Y f X j Jε β
= =

 ⋅ = ⋅ − = =
 ∑ ∑

ɶ ɶ
 (2.5.8) 

Again, equations in (2.5.8) assume that the explanatory variables and residuals do not 

co-vary. 

In the case that there are unobserved confounders, the equations in (2.5.8) do 

not hold. A set of instrumental variables are then introduced. They replace the 

corresponding explanatory variables to form the estimator-defining equations. This is 

called GMM IVA. As defined, the instrumental variables are independent of the 

residuals.  

 ( )
1 1

; 0           1,...,
N N

ik i ik i i
i i

Z Z Y f X k Kε β
= =

 ⋅ = ⋅ − = =
 ∑ ∑

ɶ ɶ
 (2.5.9) 
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k  represents the k th instrumental variable. Explanatory variablesX s that are 

independent to the residuals are counted as their own instruments (Foster, 1997).  

2.6 Nonlinear Wald type methods  

After Pearl’s causal effect using the ( ).do  operator (2009) was established, 

Didelez, Meng, and Sheehan (2010) further presented nonlinear Wald type methods in 

IVA based on the three IV core conditions (Didelez, and Sheehan, 2007) and an 

additional assumption of no interaction terms in the models. In the case of a binary 

instrumental variable Z , let 

 ( ) ( )1 | 1 | 0i i i iE T Z E T Zα = = − = . (2.6.1) 

1α  in equation (2.6.1) is essentially from the model (2.6.2), 

 ( ) ( )1 1| ,i i iE T Z z U u z h uα= = = ⋅ +  (2.6.2) 

where ( )1h u  in equation (2.6.2) is a function of the unobserved confounder U . 

For a log-linear model, 

 ( ) ( )( ) ( )1 2log | , log | ,i i i i i iE Y T t U u E Y do T t U u t h uβ= = = = = = ⋅ +  (2.6.3) 

Again, ( )2h u  in equation (2.6.3) is a function of the unobserved confounder U , but it 

is different from ( )1h u . Since T  is correlated with U , and function ( )2h u  is 

unknown, the instrumental variable Z  replaces U  and T .  

 ( ) ( )1 3log |i iE Y Z z z h uγ= = ⋅ +  (2.6.4) 

With the assumption of Z  independent of U , it is not necessary to collect the actual 

values of ( )3h u , which is another function of the unobserved confounder U . 

Omitting ( )3h u  from model (2.6.4) does not change the value of 1γ . It is called 
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collapsibility for 1γ  over U  (Greenland, Robins, and Pearl, 1999). In generalized 

linear models, collapsibility occurs for an identity link function or a log link function, 

but not for a logit link function (Gail, Wieand and Piantadosi, 1984; Gail, 1986). 

Equation (2.6.2) has a identity link function, so omitting ( )1h u  from model (2.6.2) 

does not change the value of 1α . 1β  can then be imputed as a ratio of the coefficient 

from the log-linear regression model of Y on Z  to the coefficient of the linear 

regression model of T  on Z . The Wald relative risk (WaldRR) is just an exponential 

of 1β . This method is called the two-stage quasi maximum likelihood (Mullahy, 

1997). 

 
( ) ( )
( ) ( )1

log | 1 log | 0

| 1 | 0

E Y Z E Y Z

E T Z E T Z
β

= − =
=

= − =
 (2.6.5) 

( ) ( ) ( )| exp log | 1 log | 0RR Y Z E Y Z E Y Z= = − =    

 ( ) ( )11/

1| expWaldRR RR Y Z
α β= =  (2.6.6) 

In a logistic regression model, 

 ( ){ } ( )( ){ } ( )1 2logit | , logit | ,i i i i i iE Y T t U u E Y do T t U u t h uβ= = = = = = ⋅ +  (2.6.7) 

Let Z  replacing T  and U ,  

 ( ){ } ( )1 3logit |i iE Y Z z z h uγ= = ⋅ + , (2.6.8) 

However, for logistic regression, 1γ  is not collapsible over U . Omitting ( )3h u  

changes the value 1γ . 1̂β  obtained as a ratio of estimated coefficient from the logistic 

regression model of Y on Z  to the estimated coefficient of the linear regression 

model of T  on Z  is a biased estimator of the true causal odds ratio (COR). The Wald 

type odds ratio is given in (2.6.9).  

( ) ( ){ } ( ){ }| exp logit | 1 logit | 0OR Y Z E Y Z E Y Z = = − =   
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 ( ) 11/
|WaldOR OR Y Z

α=  (2.6.9) 

 Wald’s estimator is originally brought up in the case of fitting straight lines 

with two variables, both of them having uncorrelated errors (Wald, 1940). When 

Wald’s estimators, such as WaldRR and WaldOR, are used in IVA as IV estimators, 

they are called Wald type estimators by the authors. In the logistic regression model, 

WaldOR is approximately equal to the COR when sample size is large. As another 

measurement of the causal effect, the true causal relative risk (CRR) can be calculated 

by integrating out U  in the logistic regression model (Didelez, et al., 2010). 

 
( ) ( )

( ) ( )

1

0 1 2

1

0 2

1 exp

1 exp

U f U dU
CRR

U f U dU

β β β

β β

−

−

+ − − − ⋅  =
+ − − ⋅  

∫
∫

 (2.6.10) 

where ( )f U  is a density function of U . 
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Chapter 3  

IVA in Generalized Linear Models (GLM) 

 

As stated in Chapter 2, in linear regression models, the IVA can be 

implemented using 2SLS, and Rubin’s causal model. Rubin’s causal model is a 

variation of the 2SLS when the instrumental variable and treatment variable are both 

binary. Both 2SLS and Rubin’s causal model estimate the difference in treatment 

effects. In nonlinear regression models, so far, there are GMM and Wald type 

methods which can be applied in IVA. They are designed to provide unbiased 

estimators of the multiplicative treatment effect such as rate ratio and odds ratio.   

In this chapter, we discuss issues in GMM IVA. We use principal stratification 

to illustrate the problem of estimating nonlinear causal effects in IVA. We propose a 

two-stage likelihood-based IVA model to estimate the nonlinear causal effect 

assuming the distribution of the unobserved confounder is known.  

3.1 GMM 

Let’s consider a simple example of GMM. If we only have one explanatory 

variable that is the treatment T , the generalized linear model is: 

 ( )( ) * *
0 1i ig E Y Tβ β= + ⋅  (3.1.1) 

 ( ) ( )* *
0 1i iE Y f Tβ β= + ⋅  

 ( )* * *
0 1i i iY f Tβ β ε= + ⋅ +  

By assuming that the treatment T does not co-vary with *ε , we obtain the estimator-

defining equation: 
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 ( )* * *
0 1

1 1

0
N N

i i i i i
i i

T T Y f Tε β β
= =

 ⋅ = ⋅ − + ⋅ = ∑ ∑  (3.1.2) 

Ordinary least squares is a special case of GMM when ( )0 1 0 1f T Tβ β β β+ ⋅ = + ⋅  

(Foster, 1997).   

If we have an unobserved confounder that is omitted from the model (3.1.1), the true 

model should be: 

 ( )( ) 0 1 2i i ig E Y T Uβ β β= + ⋅ + ⋅  (3.1.3) 

 ( ) ( )0 1 2i i iE Y f T Uβ β β= + ⋅ + ⋅  

 ( )0 1 2i i i iY f T Uβ β β ε− + ⋅ + ⋅ =  

The estimator defining equation becomes: 

 ( )0 1 2
1 1

0
N N

i i i i i i
i i

T T Y f T Uε β β β
= =

⋅ = ⋅ − + ⋅ + ⋅ =  ∑ ∑  (3.1.4) 

Since equation (3.1.4) holds true, equation (3.1.2) does not hold any more. In GMM 

IVE (Johnston, et al. 2008), it results in a new estimator defining equation that 

involves an instrumental variable Z . 

 ( )* * *
0 1

1 1

=0  
N N

i i i i i
i i

Z Z Y f Tε β β
= =

 ⋅ = ⋅ − + ⋅ ∑ ∑  (3.1.5) 

Equation (3.1.5) is not always true when ( ) ( )* *
0 1 0 1 2i i if T f T Uβ β β β β+ ⋅ ≠ + ⋅ + ⋅  

 
( ) ( ){ }

( ){ } ( )

* * *
0 1

0 1 2 = =0

i i i i i

i i i i i i

E Z E Z Y f T

E Z Y f T U E Z

ε β β

β β β ε

 ⋅ = ⋅ − + ⋅ 

≠ ⋅ − + ⋅ + ⋅ ⋅  

 (3.1.6) 

 When the unobserved confounder has a linear relationship with the expected 

outcome, equation (3.1.3) becomes: 

 ( )* * *
0 1 2i i i iY f T Uβ β β ε= + ⋅ + ⋅ +  (3.1.7) 
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The estimator-defining equation in GMM IVE does hold because cov( )i iZ ε⋅ =0 and 

cov( )i iZ U⋅ =0.  

 

( ) ( ){ }
( ){ }

{ }

* * *
0 1

* * * *
0 1 2 2

*
2

    

0  

i i i i i

i i i i i

i i i

E Z E Z Y f T

E Z Y f T U U

E Z U

ε β β

β β β β

ε β

 ⋅ = ⋅ − + ⋅ 

 = ⋅ − + ⋅ − ⋅ + ⋅ 

 = ⋅ + ⋅ = 

 (3.1.8) 

However, model (3.1.7) is not a standard generalized linear model. The association 

between the treatment T and confounder U  is not easy to define and interpret. 

3.2 Principal stratification 

The study of PADT among men with localized prostate cancer is used as an 

example in our presentation. Using the algorithm and notation from Zhang (2004), we 

partition study patients into four categories.  

• Compliers: patients who lived in PADT high usage areas and received PADT, 

or patients who lived in PADT low usage areas and received conservative 

management (CM). 

• Always-takers: patients who received PADT regardless of where they lived. 

• Never-takers: patients who received CM regardless of where they lived. 

• Defiers: patients who intentionally receive CM as residents of PADT high 

usage areas, or patients who intentionally receive PADT as residents of PADT 

low usage areas.   

A subtle distinction is that the patient alone is not a “complier”, “always taker”, or 

“never-taker”. Rather, it is really the patient and doctor together, a combinational unit, 

that is a “complier”, “always taker”, or “never-taker”. Let , , ,n a cφ φ φ and dφ denote the 

population proportions of never-takers, always-takers, compliers, and defiers 
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respectively. Let ( )CZg y  be the distribution of outcome iY  for patients of category 

 ( , , , )C C n a c d=  and 0,1Z = . Let ( )ZTf y  be the distribution of observed outcome iY  

for patients of 0,1Z =  and 0,1T = . Under the exclusion restriction assumption, the 

distribution of outcome iY  of never-takers or always-takers does not vary with the 

values of 0,1Z = . That is, 0 1( ) ( ) ( )n n ng y g y g y= =  and 0 1( ) ( ) ( )a a ag y g y g y= = . 

From observed outcome iY , they are identified as 10( ) ( )ng y f y=  and 01( ) ( )ag y f y= . 

Under the assumption of monotonicity, the population proportion of defiers is 0. Since 

Pr( 0 | 1), Pr( 1| 0)n i i a i iT Z T Zφ φ= = = = = = , so 1c n aφ φ φ= − − . 

For patients from low PADT usage areas who receive CM, the distribution of 

iY  is a mixture distribution from compliers and never-takers. Similarly, for patients 

from high PADT usage areas and receiving PADT, the distribution of iY  is a mixture 

distribution from compliers and always-takers. 

 00 0( ) ( ) ( )c n
c n

c n c n

f y g y g y
φ φ

φ φ φ φ
= +

+ +
 (3.2.1) 

 11 1( ) ( ) ( )c a
c a

c a c a

f y g y g y
φ φ

φ φ φ φ
= +

+ +
 (3.2.2) 

 10( ) ( )nf y g y=  (3.2.3) 

 01( ) ( )af y g y=  (3.2.4) 

Solve equations to get 0( )cg y  and 1( )cg y : 

 0 00 10( ) ( ) ( )n c n
c

c c

g y f y f y
φ φ φ

φ φ
+= −  (3.2.5) 

 1 11 01( ) ( ) ( )a c a
c

c c

g y f y f y
φ φ φ

φ φ
+= −  (3.2.6) 
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Diagram 3.2.1 shows always-takers in black, never-takers in white, and 

compliers in grey. If outcomes of patients from 1T =  and 0T =  are compared, it 

implies that always-takers plus compliers in the high usage areas and never-takers 

plus compliers in the low usage areas are compared. These two groups are not 

comparable. Instead, if outcomes of patients from 1Z =  and 0Z =  are compared, 

outcomes from always-takers and never-takers are cancelled out for the high usage 

areas and low usage areas. The comparison is actually conducted on the compliers in 

different treatment groups. Therefore, the results represent the unbiased treatment 

effect. 

Diagram 3.2.1  

 

 

 

 

 

 

 

 

 

The expected outcome means from the high usage areas and low usage areas are: 

( ) ( ) ( ) ( )
( ) ( ) ( )

1 , 1

0 1 2 0 1 2 0 1 2

Z a a c c Z n n

a a c c n n

E Y E Y E Y E Y

h T U h T U h U

φ φ φ

φ β β β φ β β β φ β β β
= == ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + + ⋅
 

(3.2.7) 

( ) ( ) ( ) ( )
( ) ( ) ( )

0 , 0

0 1 2 0 1 2 0 1 2

Z a a c c Z n n

a a c c n n

E Y E Y E Y E Y

h T U h U h U

φ φ φ

φ β β β φ β β β φ β β β
= == ⋅ + ⋅ + ⋅

= ⋅ + ⋅ + ⋅ + ⋅ + + ⋅ + ⋅ + + ⋅
 

(3.2.8) 

T=1 T=0 

aφ Always-takers 

aφ  

aφ Always-takers 

aφ  

Compliers 

cφ  

Compliers 

cφ  

Never-takers 

nφ  

Never-takers 

nφ  

Z=1 

Z=0 

T=1 T=0 
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The expected difference in outcome means from the two types of health service areas 

is: 

 
( ) ( ) ( )

( ) ( )
1 0 , 1 , 0

0 1 2 0 1 2

Z Z c c Z c Z

c c c

E Y Y E Y E Y

h T U h U

φ

φ β β β β β β
= = = = − = ⋅ − 

= ⋅ + ⋅ + ⋅ − + + ⋅  

 (3.2.9) 

Equation (3.2.9) shows that the sample mean difference between the two types of 

health service areas can be used to estimate the actual treatment effect in differences, 

especially, when ( )0 1 2h T Uβ β β+ ⋅ + ⋅  has an identity link, the sample mean 

difference is an unbiased estimator of 1β . If ( )0 1 2h T Uβ β β+ ⋅ + ⋅  is a nonlinear 

model, to calculate 1β  is not usually possible without knowing the distribution of U . 

3.3 Likelihood function in IVA with linear models  

As we have presented in section 2.2, in 2SLS, the expectation of the outcome 

variable given the value of instrumental variable is: 

 ( ) *
0 1 1|i i iE Y Z Zβ β α= + ⋅ ⋅  (3.3.1) 

We are able to show the same result as equation (3.3.1) using the likelihood function 

with the assumption of normality from all iY , T , and U . Let | ,iY T U  has a normal 

density function with mean of 0 1 2T Uβ β β+ ⋅ + ⋅  and variance of 2
Yσ , | ,i iT U Z  has a 

normal density function with mean of 0 1 2iZ Uα α α+ ⋅ + ⋅  and variance of 2
Tσ , and U  

has a normal density function with mean of Uµ  and variance of 2
Uσ . 
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( ) ( ) ( )

( ) ( ) ( )

( )

( )

0 1 0 1 2 2
1 1

1

2

22
1

2

0 1 2
22

, | , , , ; , | , , |                                    

| , | ,

1
exp

22

1
   exp

22

N N

i i i i
i i T U

N

i i
i T U

N
U

i UU U

i

YY

L Y Z f Y Z f Y T U Z dU dT

f Y T U f T U Z f U dU dT

U

Y T U

β β α α α β

µ
σπσ

β β β
σπσ

= =

=

=

= = ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

 −
= − ⋅ 

  

− − ⋅ − ⋅
−

∏ ∏∫∫

∏∫∫

∏∫

ɶ ɶ

( )

( )

( ) ( )

2

0 1 2
22

2

22
1

2 2

0 2 1 1 1 0 1 1 1 2
2 2 22 2

1

1
exp

22

1
exp

22

1 1
   exp exp

2 22 2

     

i

TT T

N
U

i UU U

i i

Y TT Y T

T Z U
dT dU

U

Y U T T Z U
dT dU

α α α
σπσ

µ
σπσ

β β β β β α β α β α
σ β σπσ πσ

=

   − − ⋅ − ⋅
⋅ − ⋅ ⋅   

      

 −
= − ⋅ 

  

   − − ⋅ − ⋅ ⋅ − ⋅ − ⋅ ⋅ − ⋅ ⋅
− ⋅ − ⋅ ⋅   

⋅      

∫

∏∫

∫

    

 

(3.3.2) 

Using the substitution rule, let 1X Tβ= ⋅ , then 1dX dTβ= ⋅ . 

( ) ( )

( )

2

0 1 0 1 2 2 22
1

2

0 2 1 0 1 1 1 2
22 2 2

1

1
, | , , , ; , exp                                                                

22

1 1
   exp exp

22 2

N
U

i UU U

i i

YX Y T

U
L Y Z

Y U X X Z

µ
β β α α α β

σπσ

β β β α β α β α
σπσ π β σ

=

 −
= − ⋅ 

  

 − − ⋅ − − ⋅ − ⋅ ⋅ − ⋅
− ⋅ − 

⋅  

∏∫

∫

ɶ ɶ

( )2

2 2
12

         

T

U
dX dU

β σ
 ⋅

⋅ ⋅ 
⋅  

 

(3.3.3) 

We apply convolution integrals to the normal distribution functions (Vinga, and 

Almeida, 2004), i.e., if ( )1G X  and ( )2G X  are normal distributions of ( ),N a A  and 

( ),N b B , the convolution 1 2G G⋅  is defined as: 

 ( ) ( ) ( ) ( )1 2 1 2 ; ,G G W G X G W X dX G W a b A B⋅ = ⋅ − ⋅ = + +∫  (3.3.4) 

where ( ); ,G W a b A B+ +  is a density function of normal distribution W  with mean 

of a b+  and variance of A B+  

Let 0 2i iW Y Uβ β= − − ⋅ ,  

       1 0 1 1 1 2i ia Z Uβ α β α β α= ⋅ − ⋅ ⋅ − ⋅ ⋅ ,      and      0ib = , 



 

 

35

         2 2
1 TA β σ= ⋅ ,  and   2

YB σ= . 

Using the convolution formula, we see that ( )iG W has a density function of normal 

distribution with mean of 1 0 1 1 1 2iZ Uβ α β α β α⋅ − ⋅ ⋅ − ⋅ ⋅  and variance of 2 2 2
1 T Yβ σ σ⋅ + . 

( ) ( )

( ) ( )

( )

2 2

0 2 1 0 1 1 1 2
2 2 22 2 2

11

2 2

1 0 1 1 1 2
2 2 22 2 2

11

2 2 2
1

1 1
exp exp

2 22 2

1 1
exp exp

2 22 2

1

2

i i

Y TX Y T

i i

Y TX Y T

Y T

Y U X X Z U
dX

W X X Z U
dX

β β β α β α β α
σ β σπσ π β σ

β α β α β α
σ β σπσ π β σ

π σ β σ

   − − ⋅ − − ⋅ − ⋅ ⋅ − ⋅ ⋅
− ⋅ − ⋅   

⋅⋅      

   − − ⋅ − ⋅ ⋅ − ⋅ ⋅
= − ⋅ − ⋅   

⋅⋅      

=
⋅ +

∫

∫

( )
( )

( )
( )

( )

( )
( )( )

( )

2

2 2 2
1

2

0 2 1 0 1 1 1 2

2 2 22 2 2
11

2

0 1 0 1 1 2 1 2

2 2 22 2 2
11

exp
2

1
exp

22

1
exp

22

         

i i i

Y T

i i

Y TY T

i i

Y TY T

W a b

Y U Z U

Y Z U

σ β σ

β β β α β α β α
σ β σπ σ β σ

β β α β α β β α
σ β σπ σ β σ

 − −
 −

+  

 − − ⋅ − ⋅ − ⋅ ⋅ − ⋅ ⋅
 = −

+ ⋅ +  

 − − ⋅ − ⋅ ⋅ − + ⋅ ⋅
 = −

+ ⋅ +  

 

(3.3.5) 

Returning to the likelihood function (3.3.2): 

( ) ( ) ( )

( ) ( ) ( )

( )
( )

0 1 0 1 2 2
1 1

1

2
0 1 0 1

22 2 2 2
1

1

, | , , , ; , | , , |                                    

| , | ,

1 1
exp exp

22 2

N N

i i i i
i i T U

N

i i
i U T

N
iU

i UU U Y T

L Y Z f Y Z f Y T U Z dU dT

f U f Y T U f T U Z dT dU

YU

β β α α α β

β β α βµ
σπσ π σ β σ

= =

=

=

= = ⋅ ⋅

= ⋅ ⋅ ⋅ ⋅

  − − ⋅ − ⋅−
= − ⋅ − 

  + ⋅ 

∏ ∏∫∫

∏∫ ∫

∏∫

ɶ ɶ

( )( )
( )

( ) ( )
( )

( )
( )( )

( )

2

1 2 1 2

2 2 2
1

2

2 1 2 2 1 2

222
1 2 1 2

2

0 1 0 1 1 2 1 2

2 2 22 2 2
11

2

1
exp

22

1
  exp

22

         

i

Y T

N
U

i U UU

i i

Y TY T

Z U
dU

U

Y Z U
dU

α β β α
σ β σ

β β α β β α µ
σ β β απσ

β β α β α β β α
σ β σπ σ β σ

=

 ⋅ − + ⋅ ⋅
 ⋅

+ ⋅ 
 

 + ⋅ − + ⋅   = − ⋅
 ⋅ + ⋅ 

 − − ⋅ − ⋅ ⋅ − + ⋅ ⋅
 − ⋅

+ ⋅ + ⋅  

∏∫

 

(3.3.6) 

Again, using the substitution rule, let ( )2 1 2X Uβ β α= + ⋅ ⋅ , then  

( )2 1 2dX dUβ β α= + ⋅ ⋅ . 



 

 

36

 

( ) ( )

( )
( )

( )

( )

0 1 0 1 2 2
1

2

2 1 2

22221 2 1 22 1 2

2 2 2
1

, | , , , ; , |                                                                             

1
exp

22

1
  exp

2

N

i i
i

N
U

i X UU

Y T

L Y Z f Y Z

X

β β α α α β

β β α µ
σ β β απσ β β α

π σ β σ

=

=

=

 − + ⋅   = − ⋅
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σ β σ

 − − ⋅ − ⋅ ⋅ −
 ⋅

+ ⋅  

 (3.3.7) 

Using the same technique of convolution integrals for normal distribution functions, 

let 0 1 0 1 1i i iW Y Zβ β α β α= − − ⋅ − ⋅ ⋅ ,  

      ( )2 1 2 Ua β β α µ= + ⋅ ⋅ ,      and      0b = , 

      ( )22
2 1 2UA σ β β α= ⋅ + ⋅ ,  and   2 2 2

1Y TB σ β σ= + ⋅  

By convolution, ( )iG W has a normal density function with mean of ( )2 1 2 Uβ β α µ+ ⋅ ⋅  

and variance of ( )22 2 2 2
2 1 2 1U T Yσ β β α β σ σ⋅ + ⋅ + ⋅ + . 
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T Y
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Y Z

β β α β σ σ

β β α

σ β β α β σ σπ σ β β α β σ σ=

 
 
  ⋅ + ⋅ + ⋅ +

  

  − − ⋅ ⋅  = −
  ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ +    

∏

 

(3.3.8) 

The likelihood function of (3.3.8) shows that Y  given Z  has a normal density 

function with mean of *
0 1 1 iZβ β α+ ⋅ ⋅ . This result matches equation (3.3.1). 

If the second stage in the 2SLS is a nonlinear equation, the conditional 

expectation of Y given Z  is: 

 ( ) ( ){ }| , 0 1 2| U T Z UE Y Z E E h T Uβ β β= + ⋅ + ⋅    (3.3.9) 
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Because the expectation of a function is not a function of expectation (Kelejian, 

1971), the confounder of U is unable to be absorbed as a constant of ( )E U . We need 

to find the distribution of the unobserved confounder and numerically integrate it over 

the probability measurement.  

3.4 Likelihood function in IVA with nonlinear models  

Inspired by the idea of true causal relative risk in equation (2.6.10) (Didelez, et 

al., 2010), we propose a two-stage likelihood-based IVA to estimate the multiplicative 

treatment effect. In general: 

Stage 1:       

( ) ( ) ( ) ( )0 1 2
1 1

, | ; , | | ,
N N

i i i i U
i i U

L T Z f T Z f T Z U dF Uα α α
= =

= = ⋅∏ ∏ ∫
ɶ ɶ

 (3.4.1) 

Stage 2: 

 

( ) ( )

( ) ( ) ( )

0 1 0 1 2 2
1

|
1 |

, | , , , ; , |

| , ,

N

i i
i

N

i T U i U
i U T U

L Y Z f Y Z

f Y U T dF T Z dF U

β β α α α β
=

=

=

= ⋅ ⋅

∏

∏ ∫ ∫

ɶ ɶ
 (3.4.2) 

Assumptions: 2α , 2β  and ( )UF U  are known. 

U  is distributed with a probability density function (pdf) of ( )Uf U  and a 

cumulative distribution function (cdf) of ( )UF U . Stage 2 is a conditional likelihood 

function given 0α  and 1α  obtained from stage 1. If T  and U  are continuous 

variables, the two-stage likelihood-based IVA is presented as (3.4.3) and (3.4.4). The 

example has been given in section 3.3 where both T  and U  are normally distributed. 

Stage 1: 
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( ) ( ) ( ) ( )0 1 2
1 1

, | ; , | | ,
N N

i i i i
i i U

L T Z f T Z f T Z U f U dUα α α
= =

= = ⋅ ⋅∏ ∏ ∫
ɶ ɶ

 (3.4.3) 

Stage 2:  

( ) ( )

( ) ( ) ( )

0 1 0 1 2 2
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1 | ,

, | , , , ; , |
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i i
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f Y U T f T U Z f U dT dU

β β α α α β
=

=

=

= ⋅ ⋅ ⋅ ⋅

∏

∏ ∫ ∫

ɶ ɶ
 (3.4.4) 

If T  and U  are discrete variables, the two-stage likelihood-based IVA model is 

expressed using probability mass functions. Our next example is based on the 

equations (3.4.5) and (3.4.6), where both T  and U  follow a Bernoulli distribution.  

Stage 1: 

( ) ( ) ( ) ( )0 1 2
1 1

, | ; , | | ,
N N

i i i i
Ui i

L T Z P T Z P T Z U P Uα α α
= =

= = ⋅∑∏ ∏
ɶ ɶ

 (3.4.5) 

Stage 2:  

( ) ( )

( ) ( ) ( )
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N

i i
i
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i i
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L Y Z P Y Z

P Y U T P T U Z P U

β β α α α β
=

=

=
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∏

∑ ∑∏
ɶ ɶ

 (3.4.6) 

We let ,Y  ,Z  and U  be all binary variables scored as 0 or 1. Logistic 

regression models are used in both stages.  

 
( )

( ) 0 1 2

| ,
log

1 | ,
i i i

i i
i i i

E T Z U
Z U

E T Z U
α α α= + ⋅ + ⋅

−
 (3.4.7) 

 
( )

( ) 0 1 2

| ,
log

1 | ,
i i i

i i
i i i

E Y T U
T U

E Y T U
β β β= + ⋅ + ⋅

−
 (3.4.8) 

Both equations (3.4.7) and (3.4.8) are non-collapsible for 1α  or 1β  over U  

(Greenland, Robins, and Pearl, 1999), that is, if the unobserved confounder U  is 

omitted in the models, *1 1α α≠ , and *
1 1β β≠ . 
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( )

( )
* *
0 1

| ,
log

1 | ,
i i i

i
i i i

E T Z U
Z

E T Z U
α α= + ⋅

−
 (3.4.9) 

 
( )
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* *
0 1

| ,
log

1 | ,
i i i

i
i i i

E Y T U
T

E Y T U
β β= + ⋅

−
 (3.4.10) 

We use likelihood functions in equations (3.4.5) and (3.4.6) to solve 1α  and 1β . 
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(3.4.11) 
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∑
 

(3.4.12) 

Estimators of 0α  and 1α  are obtained by maximizing the log-likelihood function in 

(3.4.12).  

Let: 
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T T

U Ui
i U U

U i i

Z U
M

Z U Z U

α α α
µ µ

α α α α α α

−
−   + ⋅ + ⋅   = ⋅ ⋅ ⋅ −   + + ⋅ + ⋅ + + ⋅ + ⋅      

∑  

 

( ) ( )( ) ( ) ( )
( ){ }

1 1 0 1 2
2

0 1 2

10

exp
1 ( 1)

1 exp
i

U U T i
U U

N U i

i i

Z U

Z Udl

d M

α α α
µ µ

α α α
α

− −

=

+ ⋅ + ⋅
⋅ − ⋅ − ⋅

+ + ⋅ + ⋅
=

∑
∑  (3.4.13) 
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∑  (3.4.14) 

0α̂  and 1α̂  can be numerically solved using equation (3.4.13) and (3.4.14). When the 

sample size is large, the variances of 0α̂  and 1α̂  can be ignored, and they are treated 

as constants. 
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(3.4.15) 
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 (3.4.18) 
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 (3.4.19) 

Set equations (3.4.18) and (3.4.19) to 0, and solve them for 0β̂  and 1̂β . The maximum 

likelihood estimator of 1β  is a consistent estimator of the treatment effect. The closed 

form for 1̂β  is difficult to obtain because the derivatives of equation (3.4.19) involve a 

natural logarithm of the summation. 1̂β  is obtained numerically. 

In summary, 2α  quantifies the association between unobserved confounder 

and treatment status. 2β  quantifies the association between unobserved confounder 

and outcome. The maximum likelihood estimators of 0α  and 1α  from model (3.4.1) 

are calculated with a pre-defined value of 2α . 0
ˆ

IVβ  and 1̂IVβ , which are the estimators 

of 0β  and 1β  in model (3.4.2) using two-stage likelihood-based IVA, are then 

calculated with the pre-defined value of 2β . 

The average Fisher’s information matrix is used to estimate the sample 

variance-covariance matrix for 0ˆ IVβ  and 1̂IVβ . 
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The expected Fisher’s information matrix can be obtained from following equations. 
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(3.4.21) 

If the values of confounder U  are observed, IVA is not needed. The expected 

Fisher’s information matrix of 0β̂  and 1̂β  can be obtained with the logistic regression 

model in (3.4.22). 
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3.5 Efficiency loss by using IVA  

The efficiency loss is estimated by the ratio of the variances of estimators. Let 

1β  represent the treatment effect from ordinary linear regression without IVA, and 

IVβ  represent the treatment effect from two-stage linear models of IVA. In section 

2.1, we showed the ratio of the two variances of corresponding treatment effect 

estimators.  

 
( )
( )

( ) ( ){ }
( ) ( )

2

1 1

2 2

1 1

ˆvar
1 

ˆvar

N

i i
i

N N

IV
i i

i i

Z Z T T

Z Z T T

β

β
=

= =

 − ⋅ − 
 = ≤

− ⋅ −

∑

∑ ∑
 (3.5.1) 

The ratio of the variances is determined by the correlation of instrumental variable 

and treatment status. When the correlation between instrumental variable and 

treatment status is 1, there is no efficiency loss. The example can be found in well 

monitored clinical trials without non-compliers. Patients are all treated with the 

assigned drugs following the randomization codes. In observational studies, patients’ 

compliance is usually much lower than 100%. Therefore, the correlation between T  

and Z  is lower than 1. The confidence interval of the treatment effect estimator from 

the 2SLS is wider than the one from the regular linear regression model without IVA. 

When the compliance is very poor, there will be no power to detect any treatment 

effect using IVA 2SLS. 

In IVA with two-stage likelihood-based model, the formula for the efficiency 

evaluation is much more complicated than the one in (3.5.1). In general, we use 

notation in (3.5.2) to stand for the expected Fisher’s information matrix of 0IVβ  and 

1IVβ  in the two-stage likelihood-based IVA. The expected Fisher’s information matrix 

in (3.4.21) is one of the examples. 
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 ( ) ( ) ( )
( ) ( )

11 0 1 12 0 1
0 1

21 0 1 22 0 1

, ,
,

, ,
IV IV IV IV

IV IV
IV IV IV IV

I I
I

I I

β β β β
β β

β β β β
 

=  
 

 (3.5.2) 

In the same way, we use notation in (3.5.3) to stand for the expected Fisher’s 

information matrix of 0β  and 1β  without IVA. The expected Fisher’s information 

matrix in (3.4.24) is one of the cases expanded in detail.  

 ( ) ( ) ( )
( ) ( )

11 0 1 12 0 1
0 1

21 0 1 22 0 1

, ,
,

, ,

I I
I

I I

β β β β
β β

β β β β
 

=  
 

 (3.5.3) 

The determinant of the ratio of the two matrixes (3.5.2) and (3.5.3) measures the cost 

of efficiency by using the two-stage likelihood-based IVA. 

 ( ) ( )1
0 1 0 1det , ,IV IVI Iβ β β β− ⋅   (3.5.4) 

Particularly, the ratio of the variances of treatment effect estimators from non-IVA 

and IVA is given by   

 
( )

( )

1
0 1 22

1
0 1 22

,

,IV IV

I

I

β β

β β

−

−

  

  
 (3.5.5) 

To sum up, for IVA with nonlinear regression models, we develop a two-stage 

likelihood-based model. As in the 2SLS, the first stage is used to adjust for non-

compliance. In the second stage, maximum likelihood estimator of the treatment 

effect is imputed. 

 ( ) ( )1 0 1 2i i iE T h Z Uα α α= + ⋅ + ⋅  (3.5.6) 

 ( ) ( )2 0 1 2i i iE Y h T Uβ β β= + ⋅ + ⋅  (3.5.7) 

We can express the two-stage likelihood-based IVA in a more general form in terms 

of the likelihood functions in (3.4.1) and (3.4.2). In the application of the two-stage 

likelihood-based model, the distribution of the unknown confounder U , the 
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association between T  and U  ( )2α , and the association between Y  and U  ( )2β  

must be assessed in advance. 

3.6 Simulation of two-stage likelihood-based IVA model  

It is well known that the prostate specific antigen (PSA) screening test affects 

the usage of PADT. Patients with high PSA values are more likely to receive PADT. 

In the meantime, high values on PSA test cause higher mortality comparing to normal 

PSA values. In the study of PADT among men with localized prostate cancer, 

information on PSA testing is missing. There is no doubt that we miss an important 

confounder when we try to evaluate the treatment effect of PADT on the mortality. In 

our simulation, we assume that the distribution of PSA is binary, high or normal, with 

a mean of 0.2. Y is the outcome variable, e.g., 10-year mortality of the patient being 

dead or alive. T is the treatment of PADT or CM. U  stands for the unobserved 

confounder of PSA. Finally, Z  is the instrumental variable recording of where 

patients lived in, high PADT usage areas or low usage areas. The true parameter 

values are given in Table 3.6.1. 

Whether a patient lived in a high PADT usage area or a low PADT usage is 

completely random before the disease is developed. It is reasonable to assume that a 

patient has an equal chance of living in either kind of health service area. The 

probability of being treated with PADT in low PADT usage areas and with normal 

PSA is assumed to be 0.1. The probability of being treated with PADT in low PADT 

usage areas but with high PSA is assumed to be 0.7. On the other hand, in high PADT 

usage areas, patients with normal PSA have a probability of 0.3 to be treated with 

PADT, and patients with high PSA have a probability of 0.9 to be treated with PADT. 

In addition, patients being treated with PADT with normal PSA levels are assumed to 



 

 

52

be suffering the lowest mortality, which is 0.2. Patients being treated with CM with 

normal PSA had slightly higher mortality, which is 0.3. For patients with high PSA, 

even though they received PADT, the 10-year mortality can be as high as 0.7. If they 

received CM, the mortality is even higher at 0.8.  

We use the two-stage likelihood-based IVA with two stages of logistic 

regression models to estimate the true PADT treatment effect. With all the 

assumptions listed on the left side of Table 3.6.1, It is not difficult to calculate the true 

values of 0 1 2, ,α α α , and 0 1 2, ,β β β . The true 1α  value is log(3.86)=1.35. This number 

provides the information on compliance of the treatment given the instrumental 

variable. The true 2α  value is log(21)=3.04. This number provides information on the 

association between the treatment status and PSA result. The true 1β  which reflects 

the treatment effect is found to be log(0.58)=-0.54. The odds ratio of ( )1exp β =0.58 

on the 10-year mortality of PADT versus CM implies that the PADT lowers mortality. 

The true 2β  which measures the association between mortality and PSA level is 

found to be log(9.3)=2.23.  

Table 3.6.1 Parameters used in simulation of two-stage logistic regression 
model 

 
( )1 0.2P U = =

( )
( )

1| 1,
3.86

1| 0,

odds T Z U

odds T Z U

= =
=

= =( )1| 0, 1 0.7P T Z U= = = =
( )1| 0, 0 0.1P T Z U= = = =

( )1| 0, 0 0.3P Y T U= = = =

( )1 0.5P Z = =

( )1| 1, 0 0.3P T Z U= = = =
( )1| 1, 1 0.9P T Z U= = = =

( )
( )

1| 1,
21

1| 0,

odds T U Z

odds T U Z

= =
=

= =

⇒

( )1| 0, 1 0.8P Y T U= = = =
( )1| 1, 0 0.2P Y T U= = = =

( )1| 1, 1 0.7P Y T U= = = =

⇒
( )
( )

1| 1,
0.58

1| 0,

odds Y T U

odds Y T U

= =
=

= =
( )
( )

1| 1,
9.3

1| 0,

odds Y U T

odds Y U T

= =
=

= =
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100 sets of data are generated with 30,000 subjects in each data set. Besides 

the two-stage likelihood-based model, we also fit data to several other models for the 

purpose of comparison. Means and their empirical standard deviations of the 100 sets 

of estimators are calculated, and results are presented in Table 3.6.2. The true values 

of the coefficients are listed in column a. For clarification, in this section, we use a 

subscript of “GMM” indicating the estimators are from the GMM method, subscript 

of “Wald” indicating the estimators are from Wald method, and a subscript of “IV” 

indicating the estimators are from the two-stage likelihood-based IVA method. 

In column b, the estimated coefficients are from the regular logistic 

regressions with the unobserved confounder omitted in the models. 0α̂  and 1α̂  are 

estimated from model (3.6.1). 0β̂  and 1̂β  are estimated from model (3.6.2). Because 

the unobserved confounder is not adjusted for, the estimated treatment effect goes to 

the opposite direction of the true value. 

 
( )

( ) 0 1

|
log

1 |
i i

i
i i

E T Z
Z

E T Z
α α= + ⋅

−
 (3.6.1) 

 
( )

( ) 0 1

|
log

1 |
i i

i
i i

E Y T
T

E Y T
β β= + ⋅

−
 (3.6.2) 

In column c, the regular logistic regression is also used, but the models include 

the unobserved confounder with values from simulated data. 0α̂  and 1α̂  are estimated 

from model (3.6.3). 0β̂  and 1̂β  are estimated from model (3.6.4). Since the 

unobserved confounder is adjusted in the models, the estimated coefficients are very 

close to the true values.  
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1 | ,
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 (3.6.3) 
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( )

( ) 0 1 2

| ,
log

1 | ,
i i i

i i
i i i

E Y T U
T U

E Y T U
β β β= + ⋅ + ⋅

−
 (3.6.4) 

In column d, the MLEs are obtained from the two-stage logistic regression 

model as presented in section 3.4. Instead of generating simulated values for the 

unobserved confounder, we numerically integrate out the unobserved confounder over 

its probability measurement. 

Column e gives the estimators from GMM IVA (Johnston, et al, 2008). The 

estimator-defining equation (3.6.5) is also called M-estimation.  

 ( ) ( )
( )

0 1

1 1 1 0 1

exp
0

1 exp

N N N
i

i i i i
i i i i

T
Z Z Y

T

β β
ϕ ε

β β= = =

  + ⋅ = ⋅ = ⋅ − =  + + ⋅    
∑ ∑ ∑  (3.6.5) 

1̂GMMβ  is obtained from the solution of (3.6.5) with the estimator of 0β  from model 

(3.6.2). The variance of 1̂GMMβ  is imputed from the sandwich matrix. The empirical 

estimator of the sandwich matrix is 

( ) ( ) ( ) ( )1 1
1 1 1 1
ˆ ˆ ˆ ˆ| , , | , , | , , | , ,N GMM N GMM N GMM N GMMV Z Y T A Z Y T B Z Y T A Z Y Tβ β β β− −= ⋅ ⋅

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ
 

(3.6.6) 
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ˆ ˆ1 exp
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N GMM i i
i GMM GMM i
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N T
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ɶ ɶ ɶ
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The variance of 1̂β  is estimated by 
( )1̂ | , ,NV Z Y T

N

β
ɶ ɶ ɶ . 
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In column f, Wald type estimators are derived by using equations (3.6.7) and 

(3.6.8).  

 0 1i i iT Zα α υ= + ⋅ +  (3.6.7) 

 
( )

( ) ( )0 1 0 1 0 1

| ˆlog
1 |

i i
i i

i i

E Y Z
T Z

E Y Z
β β β β α α= + ⋅ = + ⋅ + ⋅

−
 (3.6.8) 

Essentially, in Wald type methods, 
( )

( )
|

log
1 |

i i

i i

E Y T

E Y T−
 is treated as a linear function of 

iZ . Same as in 2SLS, we obtained
�

1 1
1

1

ˆ
ˆWald

β αβ
α

= , and ( )
�( )1 1

1
1

ˆ
ˆWald

SE
SE

β α
β

α
= . 

Table 3.6.2 Simulation results from the two-stage logistic regression model 
and its comparative models with a binary distributed confounder 

 
a b c d e f 

True value 

Estimator 
from 
Logistic 
Regression1 

Estimator 
from Logistic 
Regression2 

Estimator from 
two-stage 
Logistic 
Regression  

Estimator 
from GMM 

Estimator 
from Wald 
method 

0 2.20α = −  
0ˆ 1.27α = −  

SE=0.02 

0ˆ 2.20α = −  

SE=0.03 

0ˆ 2.15IVα = −  

SE=0.029 
 

 
 

1 1.35α =  1ˆ 0.94α =  

SE=0.02 

1ˆ 1.35α =  

SE=0.03 

1ˆ 1.32IVα =  

SE=0.036 
  

2 3.04α =   2ˆ 3.04α =  

SE=0.03 
   

0 0.85β = −  0
ˆ 0.71β = −  

SE=0.01 
0

ˆ 0.85β = −  

SE=0.01 

0
ˆ 0.84IVβ = −  

SE=0.04 
  

1 0.54β = −  1̂ 0.51β =  

SE=0.03 
1̂ 0.54β = −  

SE=0.03 

1̂ 0.56IVβ = −  

SE=0.14 

1̂ 0.29GMMβ =  

SE=0.03 

1̂ 0.45waldβ = −  

SE=0.11 

2 2.23β =   2
ˆ 2.23β =  

SE=0.04 
   

1. Models omit the unobserved confounder. 
2. Models include the unobserved confounder with simulated values as fixed effects. 

In Table 3.6.2, it is obvious that coefficient estimators from both regular 

logistic regression models omitting the unobserved confounder (column b), and 
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GMM IVA (column e) are biased. The coefficient estimators from the two-stage 

logistic regression model (column d) are close to the true values in column a. 

Estimator of 1β  from Wald method (column f) slightly deviates from the true value. 

This result confirms the non-collapsibility in the logistic regression which is discussed 

in section 2.6. The coefficient estimators from the regular logistic regression model 

with simulated values of the unobserved confounder (column c) are closest to the true 

parameters values. They also have small standard errors. Standard errors of 0ˆ IVα  and 

1ˆ IVα differ little from the standard errors of 0α̂  and 1α̂  in column c, but the standard 

error of 1̂IVβ  is much larger than the standard error of 1̂β  in column c. The standard 

error of 1̂Waldβ  is slightly smaller than that of 1̂IVβ . 95% confidence intervals of the 

estimated coefficients from the two-stage logistic regression model and Wald method 

both cover the true coefficients values. 95% confidence interval of 1̂IVβ  is given in 

(3.6.9): 

( ) ( )95% 0.56 1.96 0.14; 0.56 1.96 0.14 0.84; 0.28CI = − − ⋅ − + ⋅ = − −  (3.6.9) 

95% confidence interval of 1̂Waldβ  is given in (3.6.10): 

( ) ( )95% 0.45 1.96 0.11; 0.45 1.96 0.11 0.66; 0.23CI = − − ⋅ − + ⋅ = − −  (3.6.10) 

A histogram of the 100 1̂IVβ  is illustrated in Figure 3.6.1. A plot of 1̂IVβ  

versus 1̂Waldβ  (Figure 3.6.2) clearly displays the linear association between the two 

types of treatment effect estimators. 
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Figure 3.6.1 Histogram of 1̂IVβ  from two-stage likelihood-based IVA –  
binomial distribution 
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Figure 3.6.2 Treatment effect estimators 1̂IVβ  vs 1̂Waldβ  - binomial distribution 
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Note: Dotted lines indicate the true value. 
 

The efficiency of the two-stage likelihood-based IVA is further studied. The 

variances of 1̂IVβ  from column d are compared to the variances of 1̂β  from column c 

for three scenarios: PADT superior to CM, PADT equivalent to CM, and PADT 

inferior to CM. The true parameters values are given in Tables 3.6.3 and 3.6.4. 22I  

from expected Fisher’s information matrix, (3.4.21) and (3.4.24), is used to calculate 

the variances of 1̂IVβ  and 1̂β , respectively. 
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Table 3.6.3 Parameters in the first stage used in simulation to estimate 
efficiency loss in IVA 

 
 

 

( )1| 0P T U= =  and ( )1| 1P T U= =  in Table 3.6.3 were obtained by equations 

(3.6.11) and (3.6.12). 

( ) ( ) ( ) ( ) ( )1| 0 1| 0, 0 0 1| 0, 1 1

0.1 0.5 0.3 0.5 0.2

P T U P T U Z P Z P T U Z P Z= = = = = = ⋅ = + = = = ⋅ =
= ⋅ + ⋅ =

 

(3.6.11) 

( ) ( ) ( ) ( ) ( )1| 1 1| 1, 0 0 1| 1, 1 1

0.7 0.5 0.9 0.5 0.8

P T U P T U Z P Z P T U Z P Z= = = = = = ⋅ = + = = = ⋅ =
= ⋅ + ⋅ =

 

(3.6.12) 
 

 

 

 

 

( )1 0.2P U = =

( )
( )

1| 1,
3.86

1| 0,

odds T Z U

odds T Z U

= =
=

= =

( )1| 0, 1 0.7P T Z U= = = =
( )1| 0, 0 0.1P T Z U= = = =

( )1 0.5P Z = =

( )1| 1, 0 0.3P T Z U= = = =
( )1| 1, 1 0.9P T Z U= = = =

( )
( )

1| 1,
21

1| 0,

odds T U Z

odds T U Z

= =
=

= =

⇒

⇓

( )1| 0 0.2P T U= = =

( )1| 1 0.8P T U= = =

( )0 log 0.1/ 0.9 2.20α = = −
( )1 log 3.86 1.35α = =
( )2 log 21 3.04α = =

( )
( )

1| 1
16

1| 0

odds T U

odds T U

= =
=

= =

( )*
0 log 0.2 / 0.8 1.39α = = −

( )*
1 log 16 2.77α = =⇓

⇓

⇓
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Table 3.6.4 Parameters in the second stage used in simulation to estimate 
efficiency loss in IVA 

 
 
(1) PADT superior to conservative management:  
 
 
 
 
 
 
 
 
 
 
 
 
 
(2) PADT equivalent to conservative management: 
 
 
 
 
 
 
 
 
 
 
 
 
 
(3) PADT inferior to conservative management: 
 

 

( )1| 0, 0 0.3P Y T U= = = =
( )1| 0, 1 0.8P Y T U= = = =
( )1| 1, 0 0.3P Y T U= = = =
( )1| 1, 1 0.8P Y T U= = = =

( )
( )

1| 1,
1

1| 0,

odds Y T U

odds Y T U

= =
=

= =
( )
( )

1| 1,
9.3

1| 0,

odds Y U T

odds Y U T

= =
=

= =

( )1 log 1 0β = =
( )2 log 0.93 2.23β = =

( )0 log 0.3 / 0.7 0.85β = = −

( )1| 0, 0 0.2P Y T U= = = =
( )1| 0, 1 0.7P Y T U= = = =
( )1| 1, 0 0.3P Y T U= = = =
( )1| 1, 1 0.8P Y T U= = = =

( )
( )

1| 1,
1.71

1| 0,

odds Y T U

odds Y T U

= =
=

= =

( )
( )

1| 1,
9.3

1| 0,

odds Y U T

odds Y U T

= =
=

= =

( )1 log 1.71 0.54β = =
( )2 log 0.93 2.23β = =

( )0 log 0.2 / 0.8 1.39β = = −

⇓

⇒

( )1| 0, 0 0.3P Y T U= = = =
( )1| 0, 1 0.8P Y T U= = = =
( )1| 1, 0 0.2P Y T U= = = =
( )1| 1, 1 0.7P Y T U= = = =

( )
( )

1| 1,
0.58

1| 0,

odds Y T U

odds Y T U

= =
=

= =

( )
( )

1| 1,
9.3

1| 0,

odds Y U T

odds Y U T

= =
=

= =

( )0 log 0.3 / 0.7 0.85β = = −
( )1 log 0.58 0.54β = = −
( )2 log 0.93 2.23β = =

⇓

⇒

⇒

⇓
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The results in Table 3.6.5 show a loss of approximately 90% of the efficiency 

with 20% of the marginal population, where the 20% are from equations (3.6.13) and 

(3.6.14). Standard errors do not vary when the treatment effect changes.  

( ) ( ) ( ) ( ) ( )1| 1 1| 1, 1 1 1| 1, 0 0

0.9 0.2 0.3 0.8 0.42

P T Z P T Z U P U P T Z U P U= = = = = = ⋅ = + = = = ⋅ =
= ⋅ + ⋅ =

 

(3.6.13) 

( ) ( ) ( ) ( ) ( )1| 0 1| 0, 1 1 1| 0, 0 0

0.7 0.2 0.1 0.8 0.22

P T Z P T Z U P U P T Z U P U= = = = = = ⋅ = + = = = ⋅ =
= ⋅ + ⋅ =

 

(3.6.14) 

Table 3.6.5 Simulation results of efficiency loss in IVA 
 

True value of 1β  -0.54 0 0.54 

Expected SE of 1̂β  0.024 0.024 0.024 

Expected SE of 1̂IVβ  0.075 0.076 0.077 

Ratio of SE 
( )

( )
1

1

ˆ

ˆ
IV

SE

SE

β

β

 
 
 
 

 0.32 0.31 0.31 

 

Next, we replace the binary distribution with a normal distribution for the 

unobserved confounder in the two-stage likelihood-based IVA model. We assume that 

the mean of U  is 0.34 and the standard deviation is 0.63.  

( ) ( ) ( )

( ) ( ) ( )

( )
( ) ( )

0 1 2 0 1 2
| ,1 1

| ,1

0 1 2

0 1 2 0 1 2

, | , , , ; , | , , ,                                    

| , | ,

exp 1

1 exp 1 exp

i

i

i

N N

i i i i
T Z Ui i U

N

i i
T Z Ui U

Y

L Y Z P Y Z f Y T Z U dU

P Y T U P T U Z f U

T U

T U T U

β β β α α α

β β β
β β β β β β

= =

=

= = ⋅

= ⋅ ⋅

  + ⋅ + ⋅  = ⋅  + + ⋅ + ⋅ + + ⋅ + ⋅   

∑∏ ∏∫

∑∏∫

ɶ ɶ

( )

( )
( ) ( )

( ) ( )

1

| ,1

1 2

0 1 2
22

0 1 2 0 1 2

exp 1 1
      exp

1 exp 1 exp 22

i

i

Y
N

T Z Ui U

T T

i U

i i UU

Z U U
dU

Z U Z U

α α α µ
α α α α α α σπσ

−

=

−

 ⋅
 

    + ⋅ + ⋅ − −     ⋅ ⋅ ⋅     + + ⋅ + ⋅ + + ⋅ + ⋅          

∑∏∫

 
(3.6.15) 
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100 sample datasets of size 30000 are generated. Gaussian quadrature is used to 

integrate out the normal distribution.  

Table 3.6.6 Simulation results from the two-stage logistic regression model 
and its comparative models with a normally distributed 
confounder 

1. Models omit the unobserved confounder. 
2. Models include the unobserved confounder with simulated values as a covariate. 

The results (Table 3.6.6) are consistent with the previous findings. The 

treatment effect estimator from a regular logistic regression model including treatment 

only but omitting the unobserved confounder indicates the treatment caused higher 

mortality than placebo while the true treatment effect is to lower the mortality. In 

contrast, the two-stage likelihood-based IVA and Wald type method provide closer 

estimators to the true values although the standard errors are quite large. 95% 

confidence intervals of the 1̂IVβ  and 1̂Waldβ contain the true value of 1β . 

a b c d e 

True value 

Estimator from 
Logistic 
Regression1 

Estimator from 
Logistic 
Regression2 

Estimator from 
two-stage 
Logistic 
Regression  

Estimator 
from Wald 
method 

0 2.20α = −  
  

0ˆ 2.16α = −  

SE=0.03 

0ˆ 2.19IVα = −  

SE=0.03 

 
 

1 1.35α =  

  
1ˆ 1.30α =  

SE=0.03 

1ˆ 1.33IVα =  

SE=0.04  

2 3.04α =  

 

 
2ˆ 3.00α =  

SE=0.04   

0 0.85β = −  

 
0

ˆ 0.61β = −  

SE=0.02 
0

ˆ 0.85β = −  

SE=0.02 

0
ˆ 0.86IVβ = −  

SE=0.06  

1 0.54β = −  

 
1̂ 0.85β =  

SE=0.03 
1̂ 0.54β = −  

SE=0.03 

1̂ 0.51IVβ = −  

SE=0.14 

1̂ 0.43waldβ = −  

SE=0.12 

2 2.23β =  

  
2

ˆ 2.23β =  

SE=0.03   
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A histogram of 1̂IVβ  is graphed in Figure 3.6.3. 1̂IVβ  and 1̂Waldβ  are highly 

linearly correlated as shown in Figure 3.6.4. 

Figure 3.6.3 Histogram of 1̂IVβ  from the two-stage likelihood-based IVA – 
binomial distribution with a normally distributed c onfounder 
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Figure 3.6.4 Treatment effect estimators 1̂IVβ  vs 1̂Waldβ  - binomial distribution 
with a normally distributed confounder 
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Chapter 4 

IVA in Survival Regression Model 

 

IVA in survival analysis was mentioned by Dunn, Maracy, and Tomenson 

(2005). IVA has been used previously to analyze the prostate cancer survival data 

(Lu-Yao, et al., 2008), Other similar examples of IVA with censored survival data 

include a comparison of prostate specific survival of hormone therapy to radiotherapy 

(Zeliadt, Potosky, Penson, et al., 2006), an evaluation on effects of invasive Cardiac 

Management on acute myocardial infarction survival (Stukel, Fisher, Wennberg, et 

al., 2007), and an example comparing survival of lung cancer patients treated with 

chemotherapy as compared to no chemotherapy (Earle, Tsai, Gelber, et al., 2001). All 

of these papers made use of the SEER-Medicare linked database, and compared 

survival in high-use to low-use health service areas. Nevertheless, there has been very 

little methodological research on the use of IVA using survival analysis methodology. 

It could be very complicated when the estimation of hazard ratio in the Cox 

Proportional Hazard model involves a partial likelihood function.  

4.1 Two-stage likelihood-based model in survival analysis  

We extend the IVA two-stage likelihood-based model to survival data 

analysis. The general form is almost the same as in (3.4.1) and (3.4.2). In stage two, a 

survival function with censoring data is used. 

Stage 1: 

( ) ( ) ( ) ( )0 1 2
1 1

, | ; , | | ,
N N

i i i i U
i i U

L T Z f T Z f T Z U dF Uα α α
= =

= = ⋅∏ ∏ ∫
ɶ ɶ

 (4.1.1) 
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Stage 2:  

( ) ( )

( ) ( ) ( )

0 1 0 1 2 2
1

|
1 |

, | , , , ; , , , |

, | , ,

N

i i i
i

N

i i T U i U
i U T U

L Y Z C f Y C Z

f Y C U T dF T Z dF U

β β α α α β
=

=

=

= ⋅ ⋅

∏

∏ ∫ ∫

ɶ ɶ ɶ
 (4.1.2) 

Assumptions: 2α , 2β  and ( )UF U  are known. In addition, the censoring status is 

random.  

In special cases, stage two can be formulated from a Weibull distribution 

function, an exponential function, or a proportional hazard function. The likelihood 

function at stage two may be written in the standard form for right-censored survival 

data, and summing over U  and |T U , as follows: 

 

( )

( ) ( ) ( ) ( )
0 1 0 1 2 2

1 |

, | , , , ; , ,

| , | , | ,i

N
C

i i i
i U T U

L Y Z C

f T Z U f U h Y T U S Y T U dT dU

β β α α α β

=

= ⋅ ⋅ ⋅ ⋅ ⋅∏ ∫ ∫
ɶ ɶ ɶ

 (4.1.3) 

where ( )| ,ih Y T U is the hazard function and ( )| ,iS Y T U  is the survival function. iC  

indicates the censoring status. When the survival time is a continuous variable, and T  

and U  are binary variables, the likelihood function is expressed as in (4.1.4). 

 

( ) ( )

( ) ( ) ( ) ( ){ }
0 1 0 1 2 2

1

| ,1

, | , , , ; , , , |

| , | , | ,i

i

N

i i i
i

N
C

i i i
U T U Zi

L Y Z C f Y C Z

P T U Z P U h Y T U S Y T U

β β α α α β
=

=

=

= ⋅ ⋅ ⋅

∏

∑ ∑∏
ɶ ɶ ɶ

 (4.1.4) 

If the survival data follow an exponential distribution, equation (4.1.4) becomes: 

 

( ) ( )

( ) ( ) ( ){ }

( ) ( ) ( ){ }

0 1 0 1 2 2
1

| ,1

| ,1

, | , , , ; , , , |

, | , | ,

exp | ,

i

i

i

N

i i i
i

N

i i i
U T U Zi

N
C

i i
U T Z Ui

L Y Z C f Y C Z

f Y C T U P T U Z P U

Y P T U Z P U

β β α α α β

λ λ

=

=

=

=

= ⋅ ⋅

= ⋅ − ⋅ ⋅ ⋅

∏

∑ ∑∏

∑ ∑∏

ɶ ɶ ɶ

 (4.1.5) 
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where hazard ( )0 1 2exp T Uλ β β β= − − ⋅ − ⋅ , and it is a constant. If the survival data 

follow a Weibull distribution, equation (4.1.4) becomes: 

 

( )

( )( ){ } ( ){ } ( ) ( )
0 1 0 1 2 2

1

| ,1

, | , , , ; , ,

exp | ,
i

i

N C

i i i
U T Z Ui

L Y Z C

Y Y P T U Z P U
γ γ

β β α α α β

λ γ λ λ−

=

 = ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅  
∑ ∑∏

ɶ ɶ ɶ
 (4.1.6) 

where ( )0 1 2

1
exp T Uλ β β β

γ
= ⋅ − − ⋅ − ⋅  is a shape parameter, and γ  is a scale 

parameter. 

4.2 Two-stage likelihood-based model in piecewise constant hazard function  

The Cox proportional hazard regression model is very popular in survival 

analysis. We model the first stage as a logistic regression and the second stage as a 

Cox proportional hazard regression: 

 
( )

( ) 0 1 2

| ,
log

1 | ,
i i i

i i
i i i

E T Z U
Z U

E T Z U
α α α= + ⋅ + ⋅

−
 (4.2.1) 

 ( ) ( )0 1 2| , expi i i i i ih Y T U h T Uβ β= ⋅ ⋅ + ⋅  (4.2.2) 

( )h Y  is a hazard function at time Y , and 0h  is the baseline hazard function at time Y  

when covariates of T  and U  equal 0. Outcome Y  stands for time to event or time to 

censored event. However, because the Cox proportional hazard regression model 

involves more complicated partial likelihood functions to estimate the parameters, we 

replace the Cox proportional hazard regression model with a piecewise constant 

hazard model. Piecewise constant hazard functions have been used in the 

Surveillance, Epidemiology, and End Results (SEER) data to examine prostate cancer 

mortality (Goodman, Li, and Tiwari, 2011). The hazard function is: 

 ( ) ( ) ( )0 1 2| , expij ij i i j i ih Y T U h Y T Uβ β= ⋅ ⋅ + ⋅ , (4.2.3) 
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for  1 , 1,2,...,j ij jY j Jτ τ− < ≤ = ,  and 1 20 j Jτ τ τ τ< < < ⋅⋅⋅ < < ⋅⋅⋅ <    and 0 0τ =   

In (4.2.3), time to death iY  is divided into J  intervals. ijY  denotes the time 

within j th interval for subject i . ijh  is constant within the time interval of 

1j ij jYτ τ− < ≤ . 0h  is the corresponding baseline hazard within the same interval.  

 ( ) ( )0 0exp ,j j jh Y λ β= =     1 , 1,2,...,j j jY j Jτ τ− < ≤ =  (4.2.4) 

The baseline survival function is given by 

( ) ( ) ( ) ( ){ }* * * *0 1 1 0 2 2 1 1 1
exp ... ,     

i i i i
i iJ J J J

S Y Y Yλ τ τ λ τ τ λ τ τ τ
− −

= − ⋅ − − ⋅ − − − ⋅ − < ≤  (4.2.5) 

where *
iJ  is the index for which * *1i i

iJ J
Yτ τ

−
< ≤ . Instead of ijY , iY  is used in equation 

(4.2.5) because the survival function is derived from the cumulative hazard function 

covering *
iJ  intervals. For individual i  with survival and censoring values iY  and iC , 

and receiving treatment iT  and having confounder iU , the hazard function is: 

 ( )

( )
( )

( )* * *

01 1 2 0 1

02 1 2 1 2

1 20 1

exp        

exp        

                                                       

exp    
i i i

i i ij

i i ij

ij

i i ijJ J J

T U Y

T U Y
h Y

T U Y

β β β τ τ
β β β τ τ

β β β τ τ
−

 + ⋅ + ⋅ < ≤
 + ⋅ + ⋅ < ≤

= 

 + ⋅ + ⋅ < ≤


⋮
 (4.2.6) 

The survival function is: 

( )

( ) ( ){ }
( ) ( ){ } ( )

1 0 1 2 1 0

1 1 0 2 1 1 2 2 1

exp exp ,                                                                    

exp exp ,                                           

i i i i

i i i i

i

Y T U Y

Y T U Y
S Y

λ τ β β τ τ

λ τ τ λ τ β β τ τ

− ⋅ − ⋅ ⋅ + ⋅ < ≤

 − ⋅ − − ⋅ − ⋅ ⋅ + ⋅ < ≤ 
=

( ) ( ) ( ){ } ( )* * * *1 1 0 2 2 1 1 21 1

                                                                                              

 exp ... exp ,      
i i i i

i i i iJ J J J
Y T U Yλ τ τ λ τ τ λ τ β β τ τ

− −







  − ⋅ − − ⋅ − − − ⋅ − ⋅ ⋅ + ⋅ < ≤   

⋮

 (4.2.7) 
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When the confounder U  is not observed, we have to use the two-stage 

likelihood-based IVA model to estimate the treatment effect 1β . First, we estimate 0α  

and 1α  from the likelihood function at stage one with pre-specified value of 2α  and 

pre-specified distribution of U . This function is the same as (3.4.11) because we use 

the same logistic regression at stage one as in section 3.4. The likelihood function at 

stage two with a piecewise constant hazard model is: 

( ) ( )

( ) ( ) ( ){ }{
( ) ( ) ( ) ( )

*

*

* *

01 02 0 1 0 1 2 2
1

1 2
| ,1

1

1 2 1 1 2 1
1

, ,..., , | , , , ; , , , |

| , exp

                    exp exp exp

i

i
i

i

i i

N

J i i i
i

N C

i J
U T U Zi

J

j j j iJ J
j

L Y Z C f Y C Z

P T U Z P U T U

T U T U Y

β β β β α α α β

λ β β

λ β β τ τ λ β β τ

=

=

−

− −
=

=

= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅

   − ⋅ ⋅ + ⋅ ⋅ − − ⋅ ⋅ + ⋅ ⋅ −  
   

∏

∑∑∏

∑

ɶ ɶ ɶ





 

(4.2.8) 

where ( )0expj jλ β=  is the baseline hazard during the time interval of 1( , ]j jτ τ− . 

The log likelihood function of (4.2.8) is: 

( )
( )

( ){ }

( )
( ) ( )

( )

( ) ( )( )

01 02 0 1 0 1 2 2

01 02 0 1 0 1 2 2

1

1

10 1 2

| 0 1 2 0 1 2

, ,..., , | , , , ; , ,

log , ,..., , | , , , , , ,

log , |

exp 1
log 1

1 exp 1 exp

J

J

N

i i i
i

T T

U Ui
U U

TU i i

l Y Z C

L Y Z C

f Y C Z

Z U

Z U Z U

β β β β α α α β
β β β β α α α β

α α α
µ µ

α α α α α α

=

−
−

=

=

   + ⋅ + ⋅   = ⋅ ⋅ ⋅ − ⋅   + + ⋅ + ⋅ + + ⋅ + ⋅      

∑

ɶ ɶ ɶ

ɶ ɶ ɶ

( ){ } ( ) ( ) ( ) ( )
*

* * *

1 ,

1

1 2 1 2 1 1 2 1
1

exp exp exp exp

i

ii

i i i

N

i U Z

JC

j j j iJ J J
j

T U T U T U Yλ β β λ β β τ τ λ β β τ

=

−

− −
=






   
⋅ ⋅ + ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ − − ⋅ ⋅ + ⋅ ⋅ −  
    

∑ ∑∑

∑

 

(4.2.9) 

It is not easy to find the score functions explicitly for the log likelihood functions as 

the one in (4.2.9). Given pre-specified values 2α  and 2β ,  solutions for the MLEs of 
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the parameters and their variances at both stage one and stage two are handled 

numerically.  

After we obtain the MLEs 01 02 0
ˆ ˆ ˆ, ,..., Jβ β β  and 1̂β , we are able to estimate the 

survival functions for given T  and U . The standard error of the survival probability 

at any time point Y  can be approximated using the delta method (Valenta and 

Weissfeld, 2002). 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*

* *

*

* *

1

1 2 1 1 2 1
1

1

0 1 2 1 1 20 1
1

exp exp exp

exp exp exp

J

j j j J J
j

J

j j j J J
j

S Y T U T U Y

T U T U Y

λ β β τ τ λ β β τ

β β β τ τ β β β τ

−

− −
=

−

− −
=

   = − ⋅ ⋅ + ⋅ ⋅ − − ⋅ ⋅ + ⋅ ⋅ −  
    

   = − + ⋅ + ⋅ ⋅ − − + ⋅ + ⋅ ⋅ −  
    

∑

∑

 

  (4.2.10) 

where *J  is the index for which * *1J J
Yτ τ

−
< ≤ . 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*

* *

*

* *

1

1 2 1 1 2 1
1

1

0 1 2 1 1 20 1
1

| log exp exp

exp exp

J

j j j J J
j

J

j j j J J
j

g Y S Y T U T U Y

T U T U Y

β λ β β τ τ λ β β τ

β β β τ τ β β β τ

−

− −
=

−

− −
=

  = =− ⋅ ⋅ + ⋅ ⋅ − − ⋅ ⋅ + ⋅ ⋅ − 
  

  = − + ⋅ + ⋅ ⋅ − − + ⋅ + ⋅ ⋅ − 
  

∑

∑

ɶ
 

(4.2.11) 

 ( )( ) ( ) ( ) ( )ˆ ˆ ˆ ˆvar log | var |
T

S Y g Y g Yβ β β′≈ ⋅ ⋅
ɶ ɶ ɶ

 (4.2.12) 

In the approximate equation (4.2.12), β̂
ɶ

 is a vector of parameter estimators, 

01 02 0 1
ˆ ˆ ˆ ˆ, ,..., ,Jβ β β β . ( )ˆvar β

ɶ

 is the variance-covariance matrix of β̂
ɶ

: 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

*

* * *

*

01 01 01 10

01 10 0 0

01 1 1 10

ˆ ˆ ˆ ˆ ˆvar ... cov , cov ,

ˆ ˆ ˆ ˆ ˆcov , ... var cov ,

ˆ ˆ ˆ ˆ ˆcov , ... cov , var

J

J J J

J

β β β β β

β β β β β

β β β β β

 
 
 
 
 
 
 
 

⋮ ⋮ ⋮ ⋮
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( )|
T

g Y β′
ɶ

 is the transpose matrix of ( )|g Y β′
ɶ

, and ( )|g Y β′
ɶ

 is the first order 

derivative of ( )|g Y β
ɶ

. 

( )

( ) ( )

( ) ( )
( ) ( ) ( ) ( )

* *

*

* *

1 0 01 1 2

1 21 0

1

1 0 1 2 1 21 0
1

exp

exp|

exp exp

J J

J

j j j J J
j

T U

Y T Ug Y

T T U T Y T U

τ τ β β β

τ β β ββ

τ τ β β β τ β β β

−

−

− −
=

− − ⋅ + ⋅ + ⋅ 
 
 
 − − ⋅ + ⋅ + ⋅′ =  
    − ⋅ − ⋅ + ⋅ + ⋅ − ⋅ − ⋅ + ⋅ + ⋅ 
    

∑

⋮

ɶ

 

The 95% confidence interval for the survival probability is: 

 ( ) � ( )( ){ }ˆ ˆexp log 1.96 var logS Y S Y± ⋅  (4.2.13) 

4.3 Comparison in survivals between treatment groups  

The survival probabilities at time Y  between two treatment groups can be 

compared using rate ratio or rate difference. Variances of the estimated rate ratio or 

rate difference may also be obtained using delta method. 

Let r denote the log of rate ratio, andr′ denote the vector of derivatives. We 

have  

 ( ) ( ) ( ) ( )log  | ; log | 1, log | 0,rate ratio r Y U S Y T U S Y T Uβ= = = − =
ɶ

 (4.3.1) 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*

* *

*

* *

1

0 1 2 1 1 20 1
1

1

0 2 1 20 1
1

| exp exp

           + exp exp

J

j j j J J
j

J

j j j J J
j

r Y U U Y

U U Y

β β β β τ τ β β β τ

β β τ τ β β τ

−

− −
=

−

− −
=

  = − + + ⋅ ⋅ − − + + ⋅ ⋅ − 
  

  + ⋅ ⋅ − + + ⋅ ⋅ − 
  

∑

∑

ɶ
 

 ˆ ˆ ˆ ˆˆvar ( | ) ( | ) cov( ) ( | )Tr Y r Y r Yβ β β β  ′ ′≈ 
ɶ ɶ ɶ ɶ

 (4.3.2) 

The derivatives ( | )r Y β
ɶ

 are given by 
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( )

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )

* *

*

* *

1 0 01 1 2 2

1 2 21 0

1

1 0 1 2 1 21 0
1

exp exp exp

exp exp exp|

exp exp

J J

J

j j j J J
j

U U

Y U Ur Y

U Y U

τ τ β β β β

τ β β β ββ

τ τ β β β τ β β β

−

−

− −
=

 − − ⋅ ⋅ + ⋅ − ⋅
 
 
 ′ − − ⋅ ⋅ + ⋅ − ⋅=  
 
   − − ⋅ + + ⋅ − − ⋅ + + ⋅     
∑

⋮

ɶ
 

The survival rate ratio at time Y  is estimated by ( )ˆˆexp ( | )r Y β
ɶ

. 95% confidence 

interval of the estimated rate ratio is given by  �( )ˆ ˆˆ ˆexp ( | ) 1.96*var[ ( | )]r Y r Yβ β±
ɶ ɶ

. 

If one is interested in the survival rate difference between two treatment 

groups at time Y  as presented by Lu-Yao et al. (Lu-Yao et al. 2008), the difference 

denoted as d  is given in equation (4.3.3). 

 ( | ; ) ( | 1, ) ( | 0, )rate difference d Y U S Y T U S Y T Uβ= = = − =
ɶ

 (4.3.3) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

*

* *

*

* *

1

0 1 2 1 1 20 1
1

1

0 2 1 20 1
1

( | ) exp exp exp

           -exp exp exp

J

j j j J J
j

J

j j j J J
j

d Y U U Y

U U Y

β β β β τ τ β β β τ

β β τ τ β β τ

−

− −
=

−

− −
=

   = − + + ⋅ ⋅ − − + + ⋅ ⋅ −  
    

   − + ⋅ ⋅ − − + ⋅ ⋅ −  
    

∑

∑

ɶ
 

Similar, the variance can be obtained using the delta method. 

 ˆ ˆ ˆ ˆ ˆvar ( | ) ( | ) cov( ) ( | )Td Y d Y d Yβ β β β  ′ ′≈ 
ɶ ɶ ɶ ɶ

  (4.3.4) 

where ( )ˆ|d Y β′
ɶ

is the vector of derivatives of ˆ( | )d Y β
ɶ

. 

Let  

( ) ( ) ( ) ( )
*

* *

1

0 1 2 1 1 20 1
1

exp exp exp
J

j j j J J
j

A U U Yβ β β τ τ β β β τ
−

− −
=

   = − + + ⋅ ⋅ − − + + ⋅ ⋅ −  
    
∑  

and  

( ) ( ) ( ) ( )
*

* *

1

0 2 1 20 1
1

exp exp exp
J

j j j J J
j

B U U Yβ β τ τ β β τ
−

− −
=

   = − + ⋅ ⋅ − − + ⋅ ⋅ −  
    
∑  

The derivatives ˆ( | )d Y β′
ɶ

 are given by 
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( )

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )
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*

* *

1 0 01 1 2 2
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exp exp
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τ β β β ββ

τ τ β β β τ β β β

−

−

− −
=

 − − ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅
 
 
 ′ − − ⋅ ⋅ ⋅ + ⋅ − ⋅ ⋅=  
 

   − ⋅ − ⋅ + + ⋅ − ⋅ − ⋅ + + ⋅     
∑

⋮

ɶ
 

4.4 Estimated marginal survivals  

The confounder variable U  is unknown. We assume that it takes values 0 and 

1 with pre-specified probabilities 0π  and 1 01π π= − . Marginal survival distribution 

can be estimated using a mixture survival distribution. Hazards from marginal 

survival distributions of 0T =  and 1T =  are not proportional. 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
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   = ⋅ − ⋅ − + ⋅ − ⋅ ⋅ +  
    

   ⋅ − ⋅ − + ⋅ − ⋅ ⋅ +  
    

∑

∑

ɶ

 (4.4.1) 

Let ( ) ( )| |g Y S Yβ β=
ɶ ɶ

, and  

( ) ( ) ( ) ( ) ( )
*

* *

1

0 0 1 10 1
1

exp exp exp exp
J

j j j J J
j

A Y Tπ β τ τ β τ β
−

− −
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   = ⋅ − ⋅ − + ⋅ − ⋅ ⋅  
    
∑ , 

( ) ( ) ( ) ( ) ( )
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1

1 0 1 1 20 1
1

exp exp exp exp
J

j j j J J
j

B Y Tπ β τ τ β τ β β
−

− −
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   = ⋅ − ⋅ − + ⋅ − ⋅ ⋅ +  
    
∑ . 

The corresponding derivatives are given as follows: 
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   − ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ − ⋅ + − ⋅     
∑

⋮

ɶ
 

Let: 
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∑  

The log of survival rate ratio is: 

( ) ( ) ( )| log logr Y a b c dβ = + − +
ɶ

  (4.4.2) 

The corresponding derivatives are: 
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The estimated survival rate ratio is then obtained from ( )( )ˆˆexp |r Y β
ɶ

. The 95% CI of 

the estimated rate ratio is given by �( )ˆ ˆˆ ˆexp ( | ) 1.96*var[ ( | )]r Y r Yβ β±
ɶ ɶ

 where 

ˆ ˆ ˆ ˆˆvar ( | ) ( | ) cov( ) ( | )Tr Y r Y r Yβ β β β  ′ ′≈ 
ɶ ɶ ɶ ɶ

 

The survival difference is: 

( | )d Y a b c dβ = + − −
ɶ

  (4.4.3) 

The corresponding derivatives are: 
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⋮
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






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

 

4.5 Piecewise constant hazard function and the Poisson distribution 

Holford (1980) and Laird and Oliver (1981) discovered that the maximum 

likelihood estimators from an exponential distribution are identical to the ones from a 

Poisson distribution. This finding extends directly to a piecewise constant hazard 

function. The maximum likelihood estimators of the parameters from a piecewise 

constant hazard function happen to be the same as those from an equivalent Poisson 

density function. 

Let ijd be the event number for subject i  within the time interval of 1( , ]j jτ τ− , 

where the left boundary of the time interval is excluded and the right boundary is 

included. ijd  is equal to the censoring status ijC  for subject i  during the time interval 

of 1( , ]j jτ τ− . For instance, if a subject i  died at year 7, for the time interval (0,6], 
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0ij ijd C= = , but for the time interval (6,12], 1ij ijd C= = . Assume the distribution of 

ijd  following a Poisson density function. 

 ( ) ( )exp

!

ijd

ij ij

ij
ij

f d
d

µ µ⋅ −
=  (4.5.1) 

where ijµ is the mean of the Poisson distribution for patient i  within the time interval 

of 1( , ]j jτ τ− . In fact, ij ij ijYµ λ= ⋅ , where ijλ is the constant hazard for subject i during 

the time interval of 1( , ]j jτ τ− . In log-linear regression model,  

( ) ( )0 1 2log logij j i i ijT U Yµ β β β= + ⋅ + ⋅ +  

 ( )0 1 2expij j i iT Uλ β β β= + ⋅ + ⋅  (4.5.2) 

where the baseline hazard during the time interval of 1( , ]j jτ τ−  is ( )0expj jλ β= . 

Equation (4.5.2) is the same as (4.2.6). 

ijY  in the equation is the total exposure time in person years for subject i  

during time interval 1( , ]j jτ τ− . For the previous example, if subject i  died at year 7, 

for the time interval (0,6], 6ijY = , but for the time interval (6,12], 1ijY = . ijY  is also 

called an offset in log-linear regression model. 

In the two-stage likelihood-based IVA model, if we use a Poisson mass 

function instead of the corresponding piecewise constant hazard model at stage two, 

will we obtain the same parameter estimators?  

 ( ) ( )0 1 2log | , , logij i i ij j i i ijE C T U Y T U Yβ β β= + ⋅ + ⋅ +  (4.5.3) 

We examine the likelihood function with a Poisson mass function at stage two. 



 

 

77

( ) ( )

( ) ( ) ( )

( ) ( ) ( ){ } ( ){ }

*

*

*

01 02 0 1 0 1 2 2
1 1

| ,1 1

1 2 1 2

| , 1

, ,..., , | , , , ; , , | ,

| , | , ,

exp exp exp
| ,

!

i

i

i

ij
i

i

JN

J ij i ij
i j

JN

i ij ij
U TU Zi j

d
J

j ij j ij

i
TU Z j ij

L Y Z d P d Z Y

P T U Z P U P d T U Y

T U Y T U Y
P T U Z P U

d

β β β β α α α β

λ β β λ β β

= =

= =

=

=

 
= ⋅ ⋅ 

  

 ⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅
 = ⋅ ⋅
 
 

∏∏

∑∑∏ ∏

∏
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∑∑∏

 

  (4.5.4) 

In equation (4.5.4), ( )0expj jλ β= , ij ijd C= , and !ijd  is always 1 because ijd  can be 

only 0 or 1 for subject i . 0ijd =  for *1,2,... 1ij J= − , and * iiJ
d C= . Equation (4.5.4) is 

equivalent to:  
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β β β β α α α β
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−
=

−

− −
=

= ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ − ⋅

   
− ⋅ ⋅ + ⋅ ⋅ − − ⋅ ⋅ + ⋅ ⋅ −  
    

∑∑∏

∑

ɶ ɶ ɶ

 

 (4.5.5) 

for * *1i i
iJ J

Yτ τ
−

< ≤ . 

Equation (4.5.5) has an additional term of ( )* 1

i

i

C

i J
Y τ

−
−  compared to equation (4.2.8). 

Since the likelihood function contains summations over T  and U , the score function 

from (4.5.5) is no longer the same as the score function from (4.2.8). Therefore, in our 

two-stage likelihood-based model, the density function of a piecewise constant hazard 

model cannot be replaced by a Poisson mass function.  

In the following sections, we will use the Poisson distribution approach to the 

piecewise constant hazard function in the simulations when the two-stage likelihood-

based model is not used. 
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4.6 Simulation using piecewise constant hazard model in IVA 

Simulation is conducted using a two-piecewise constant hazard model in the 

second stage. A procedure described by Walke (2010) is adapted to generate random 

times from a two-piecewise constant hazard function. Although we can arbitrarily 

select values for the baseline hazards in the simulation, we looked up previous study 

and observed survival probability at year 10 for moderately differentiated prostate 

cancer patients is 0.884. Assuming the survivals follow an exponential distribution 

with a constant hazard, we obtain the value of the hazard as log(0.884) /10 0.123− ≈ . 

This value is used as the piece one hazard from patients with 1T =  and 0U = . For 

piece two, we increase the hazard by 1.5 times to be 0.01845. Consequently, with pre-

defined hazard ratios between levels of T  and U , we derive the baseline hazards 

being 0.018 for the years of (0,6], and 0.028 for the years of (6,12]. 0 0τ = , 1 6τ = , 

and 2 12τ = . Other parameters are pre-defined in Table 4.6.1. 

Table 4.6.1 Parameters used in simulation of piecewise constant hazard model 
in IVA 

 
( )1 0.2P U = =

( )
( )

1| 1,
3.86

1| 0,

odds T Z U

odds T Z U

= =
=

= =( )1| 0, 1 0.7P T Z U= = = =
( )1| 0, 0 0.1P T Z U= = = =

( )1, 0 0.0123  for   0 6hazard T U Y= = = < ≤

( )1 0.5P Z = =

( )1| 1, 0 0.3P T Z U= = = =
( )1| 1, 1 0.9P T Z U= = = =

( )
( )

1| 1,
21

1| 0,

odds T U Z

odds T U Z

= =
=

= =

⇒

( )
( )

1, 1
2

1, 0

hazard T U

hazard T U

= =
=

= =
( )
( )

0, 1
3

1, 0

hazard T U

hazard T U

= =
=

= =
( )
( )

0, 0
1.5

1, 0

hazard T U

hazard T U

= =
=

= =

( )1, 0 0.01845  for  6 12hazard T U Y= = = < ≤
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As in section 3.6, 100 loops are simulated with a sample size of 30,000 

patients for each loop. Kaplan-Meier survival curves are plotted in Figure 4.6.1 for 

one of the 100 datasets. The hazard is higher after year 6 than the hazard before year 6 

as shown by the steeper slope from year 6 to year 12 than from year 0 to year 6.  

Figure 4.6.1 Kaplan-Meier survival curve – simulated data from a two-
piecewise constant hazard model 
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The models from Table 4.6.2 are fitted to the randomly generated data. In 

model a, data are fitted to a two-piecewise constant hazard model using treatment as a 

fixed effect but omitting the unobserved confounder in the model. In model b, data 

are fitted to a two-piecewise constant hazard model with both treatment and 

confounder, which are randomly generated from binomial distributions, as fixed 

T=1, U=0 

T=0, U=0 

T=1, U=1 

T=0, U=1 



 

 

80

effects. Both model c and model d give Wald type estimators for the treatment effect. 

In model c, data are fitted to a two-piecewise constant hazard model with the 

instrumental variable as the only fixed effect. In the same way, in model d, the 

instrumental variable is also included as the only fixed effect assuming the data 

follow a Cox proportional hazard model. Coefficient estimators of the instrumental 

variable are then divided by the difference in treatment proportions between the two 

classes of instrumental variable. Finally, in model e, the two-stage likelihood-based 

model is examined for its treatment effect estimation. 

Table 4.6.2 Comparative models used in simulation of piecewise constant 
hazard model in IVA 

 

 

Estimated coefficient means for models a-e and their empirical standard 

deviations from the 100 samples are given in Table 4.6.3. To distinguish the 

estimated parameters from different models, in section 4.6 to section 4.8, we use 

the subscript “Wald” to indicate the estimated parameters are from the Wald 

method, and subscript “IV” to indicate the estimated parameters are from two-

stage likelihood-based IVA method. The estimated baseline hazards and hazard 

Model a ( ) ( )0 1log | , logij i ij j i ijE C T Y T Yβ β= + ⋅ +     where 1,2j =  

Model b ( ) ( )0 1 2log | , , logij i i ij j i i ijE C T U Y T U Yβ β β= + ⋅ + ⋅ +   where 1,2j =  

Model c 0 1i i iT Zα α υ= + ⋅ +  

( ) ( ) ( )0 1 0 1log | , logij i ij j i ijE C Z Y Z Yβ β α α= + ⋅ + ⋅ +   where 1,2j =  

Model d 0 1i i iT Zα α υ= + ⋅ +  

( ) ( ) ( )0 1 0 1 0 1 0 1log | logi i i i ih Y Z h Z Zβ α α β β α α= + ⋅ + ⋅ = + ⋅ + ⋅  

Model e ( )
( ) 0 1 2

| ,
log

1 | ,
i i i

i i
i i i

E T Z U
Z U

E T Z U
α α α= + ⋅ + ⋅

−
 

( ) 1 2 0 1 2log | , logij ij i i j i i j i iY T U T U T Uλ λ β β β β β= + ⋅ + ⋅ = + ⋅ + ⋅   

                                                                                               where  1,2j =  
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ratios along with their 95% confidence intervals are obtained from the estimated 

parameters in Table 4.6.3. They are given in Table 4.6.4. Parameter estimators 

from models b to e are all very close to the true values. The treatment effect 

estimator from model a is far away from the true value because the model does not 

take the unobserved confounder into account. Model b has the smallest variance 

for the treatment effect estimator because it assumes the confounder was observed. 

Both Wald type estimators and two-stage likelihood-based IVA estimator have 

much larger variances than the simple log-linear model b. The large variances 

come from the third variable of instrument.  

Table 4.6.3 Estimated coefficients from simulation of models in Table 4.6.2  
 

True 
value 

Model  
a 

Model  
b 

Model  
c 

Model  
d 

Model  
e 

0 2.20α = −
  

 

 
 

 
0ˆ 2.20IVα = −  

SE=0.03 
 

1 1.35α =
  

 

 
 

 
1ˆ 1.35IVα =  

SE=0.04 

2 3.04α =
 

  

 
   

01 3.99β = −
 

01
ˆ 3.94β = −  

SE=0.02 

01
ˆ 3.99β = −  

SE=0.02 
 

 
01

ˆ 4.00IVβ = −  

SE=0.07 

02 3.59β = −
 

02
ˆ 3.54β = −  

SE=0.03 
02

ˆ 3.59β = −  

SE=0.03 
 

 
02

ˆ 3.60IVβ = −  

SE=0.07 

1 0.40β = −
 

1̂ 0.06β = −  

SE=0.04 

1̂ 0.40β = −  

SE=0.04 

1̂ 0.35Waldβ = −  

SE=0.18 
1̂ 0.35Waldβ = −  

SE=0.18 
1̂ 0.38IVβ = −  

SE=0.20 

2 0.69β =
  

2
ˆ 0.69β =  

SE=0.04 
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Table 4.6.4 Estimated hazards and hazard ratios from simulation of models in 
Table 4.6.2 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Baseline Hazard 
for 0<Years≤6  

Baseline Hazard 
for 6<Years≤12  

Treatment Effect 
(Hazard Ratio) 

Unobserved 
Confounder Effect 
(Hazard Ratio) 

True 
value 0.018 0.028 0.667 2 

Model a 
(95% CI)  

0.019 
(0.019, 0.020) 

0.029 
(0.027, 0.031) 

0.940 
(0.875, 1.010) 

 

Model b 
(95% CI)  

0.018 
(0.018, 0.019) 

0.028 
(0.026, 0.030) 

0.667 
(0.614, 0.725) 

2.001 
(1.844, 2.172) 

Model c 
(95% CI)    

0.701 
(0.490, 1.002) 

 

Model d 
(95% CI)    

0.701 
(0.490, 1.003) 

 

Model e 
(95% CI) 

0.018 
(0.016, 0.021) 

0.027 
(0.024, 0.031) 

0.684 
(0.460, 1.016) 
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Figure 4.6.2 Histogram of 1̂IVβ  from the two-stage likelihood-based IVA  
  - two-piecewise constant hazard model 
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Note: Dotted line indicates the true value. 

A histogram of the 100 treatment effect estimators, 1̂IVβ , is displayed in 

Figure 4.6.2. The 95% confidence interval is (-0.78; 0.02). Because of the large 

variance, there is not enough power to detect treatment effect, particularly when the 

baseline hazard is as low as 0.018. 

Treatment estimators from Wald type method are compared with that from 

two-stage likelihood-based IVA. Plot (Figure 4.6.3) of 1̂Waldβ from model c versus 1̂IVβ  

from model e shows linear correlation between them.  
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Figure 4.6.3 Treatment effect estimators 1̂IVβ  vs  1̂Waldβ  - two-piecewise constant 
hazard model 
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Note: Dotted lines indicate the true value. 
 

 It was also noticed that in two-stage likelihood-based model, the treatment 

estimators are linearly correlated to the baseline hazard estimators. Figure 4.6.4 

illustrates this evidence. 
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Figure 4.6.4 Estimated hazard ratio vs estimated baseline hazards in two-stage 
likelihood-based IVA 
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Note: Dotted lines indicate the true value. 

With the estimated means of ˆIVβ
ɶ

 from the two-stage likelihood-based IVA 

(model e), we estimate the marginal survival function using pre-specified probabilities 

0 0.8π =  and 1 0.2π =  for 0U =  and 1U =  respectively. The 5-year and 10-year 

survival probabilities are calculated and compared between 0T =  and 1T =  with 

regard to the estimated survival rate ratio and survival rate difference. Standard errors 

of the 5-year and 10-year survival probabilities are calculated using the delta method 

as described in section 4.4. The delta method is also used to construct the 95% 

confidence intervals for the estimated survival rate ratio and survival rate difference. 
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In addition to the delta method, empirical standard deviations of the estimators and 

empirical 95% confidence intervals of the estimators from the 100 samples are also 

given in Table 4.6.5 and Table 4.6.6. 

In Table 4.6.5, the estimated 5-year survival probabilities for both 1T =  and 

0T =  are very close to the true values, as does the estimated survival rate ratio 

between the two groups. The differences between the true values and estimated values 

are less than 1%. The estimated survival rate difference between the two groups 

deviates from the true value by about 9%. In Table 4.6.6, we observe almost the same 

results as in Table 4.6.5 for 10-year survival probabilities. The differences between 

the estimated values and true values are less than 1% for 10-year survival 

probabilities in both groups and survival rate ratio of 1T =  vs 0T = . The estimated 

survival rate difference of 1T =  vs 0T =  at year 10 is 9% larger than the true value. 

We assume the estimated survival probabilities, the estimated log of survival rate 

ratios, and the estimated survival rate differences are all asymptotically normally 

distributed with the means approximated from the functions of the maximum 

likelihood estimators. However, the approximation of the means on the survival rate 

difference is not as accurate as on the survival rate ratio. 

In both Table 4.6.5 and Table 4.6.6, the empirical standard deviations and 

empirical 95% confidence intervals of the estimators are close to the ones from the 

delta method. The empirical 95% confidence intervals are narrower compared to the 

ones from the delta methods. 
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Table 4.6.5 Estimated 5-year survivals using marginal survival function from 
two-stage likelihood-based IVA on simulated data 

 
 True 

value 
Log of 
estimator Estimator 

95% CI of the 
estimator 

Survival 
probability  

1T =  0.929  

0.931 
SE1=0.0081 
SE2=0.0080 

CI1=(0.916, 0.947) 
CI2=(0.916, 0.946) 

Survival 
probability  

0T =  0.896  

0.895 
SE1=0.0051 
SE2=0.0051 

CI1=(0.885, 0.905) 
CI2=(0.886, 0.904) 

Survival rate 
ratio  1.037 

0.040 
SE1=0.0138 
SE2=0.0138 1.040 

CI1=(1.013, 1.069) 
CI2=(1.015, 1.065) 

Survival rate 
difference 0.033  

0.036 
SE1=0.0126 
SE2=0.0126 

CI1=(0.011, 0.061) 
CI2=(0.013, 0.058) 

SE1 and CI1 = Standard error of the mean or 95% CI from delta method 
SE2 and CI2 = Standard error of the mean or 95% CI from empirical distribution 
 

Table 4.6.6 Estimated 10-year survivals using marginal survival function from 
two-stage likelihood-based IVA on simulated data  

 
 True 

Value 
Log of 
estimator  Estimator 

95% CI of the 
estimator 

Survival 
probability   

1T =  0.838  

0.844 
SE1=0.0171 
SE2=0.0169 

CI1=(0.810, 0.877) 
CI2=(0.811, 0.876) 

Survival 
probability  

0T =  0.770  

0.768 
SE1=0.0104 
SE2=0.0103 

CI1=(0.748, 0.789) 
CI2=(0.751, 0.787) 

Survival rate 
ratio  1.089 

0.094 
SE1=0.0328 
SE2=0.0327 1.098 

CI1=(1.030, 1.171) 
CI2=(1.034, 1.162) 

Survival rate 
difference 0.069  

0.075 
SE1=0.0267 
SE2=0.0266 

CI1=(0.023, 0.128) 
CI2=(0.027, 0.122) 

SE1 and CI1 = Standard error of the mean or 95% CI from delta method 
SE2 and CI2 = Standard error of the mean or 95% CI from empirical distribution 
 



 

 

88

4.7 Simulation using Weibull distribution in IVA 

Simulations are also performed for the survival data following a Weibull 

distribution in the second stage. Instead of pre-defining the baseline hazards, we first 

randomly generate a set of data as a control group for patients receiving PADT 

( )1T =  and having normal PSA ( )0U = . The survival time in the control group 

follows Weibull distribution with 5-year survival rate of 0.799 and 10-year survival 

rate of 0.668. Then, we specify hazard ratios of 1.5, 2, and 3 to the control group to 

generate survival times for patients who receive conservative management ( )0T =  

and have normal PSA ( )0U = , who receive PADT ( )1T =  and have high PSA 

( )1U = , and who receive conservative management ( )0T =  and have high PSA 

( )1U =  respectively. The rest of the parameters remain the same as in Table 4.6.1. 

The Kaplan-Meier survival curves for the four groups are shown in Figure 4.7.1. 
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Figure 4.7.1 Kaplan-Meier survival curve – simulated data from Weibull 
distribution 
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As in Table 4.6.2, the five models from Table 4.7.1 are examined using the 

simulated data. In models a and b, a parametric survival model with Weibull 

distribution is used. Model a includes treatment as the only predictor. Model b 

includes both treatment and confounder from simulated data as predictors. It is well 

known that the parametric survival regression model with an underlying Weibull 

distribution can also be expressed as a proportional hazard regression model. Due to 

this, we fit the data with a Cox proportional hazard model in model c with both 

treatment and confounder from simulated data as predictors. In model d, the Weibull 

distributed survival times are regressed on the instrumental variable. Finally, model e 

is our two-stage likelihood-based IVA model which is composed of a log odds 

T=1, U=0 

T=0, U=0 

T=1, U=1 

T=0, U=1 



 

 

90

regression model in the first stage and a Weibull survival regression model in the 

second stage. 

Table 4.7.1 Comparative models used in simulation of Weibull regression 
model in IVA 

 

 

In our simulation, we parameterize the coefficients of the equations in Table 

4.7.1 as in model c, i.e., the parameterization in the Cox regression model. The 

relationships between β  and *β  are: 

 *
0 0β β γ= − ⋅ ,    *

1 1β β γ= − ⋅ ,    and     *
2 2β β γ= − ⋅  

In addition, with 5-year survival rate of 0.799 and 10-year survival rate of 0.668 in the 

control group of patients receiving PADT and having normal PSA, we obtain the two 

parameters values of the Weibull distribution. 

 ( )0 1exp 0.057Tλ β β= + ⋅ =  (4.7.1) 

and   0.846γ = . 

For 1 log(1/1.5)β = , we solve equation (4.6.1), and obtain 0 2.45β = − . 

Model a ( ) * *
0 1log i

i iY T
εβ β
γ

= + ⋅ +   

Model b ( ) * * *
0 1 2log i

i i iY T U
εβ β β
γ

= + ⋅ + ⋅ +  

Model c ( ) 0 1 2 0 1 2log | , logi i i i i i i ih Y T U h T U T Uβ β β β β= + ⋅ + ⋅ = + ⋅ + ⋅  

Model d 
0 1i i iT Zα α υ= + ⋅ +  

( ) ( )* *
0 1 0 1log i

i iY Z
εβ β α α
γ

= + ⋅ + ⋅ +  

Model e 

( )
( ) 0 1 2

| ,
log

1 | ,
i i i

i i
i i i

E T Z U
Z U

E T Z U
α α α= + ⋅ + ⋅

−
 

( ) * * *
0 1 2log i

i i iY T U
εβ β β
γ

= + ⋅ + ⋅ +   
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With a sample size of 30,000 in each loop, parameters from models in Table 

4.7.1 are estimated 100 times. Their means and standard errors are obtained and listed 

in Table 4.7.2.  

Table 4.7.2 Estimates from simulation of models in Table 4.7.1 

 

As expected, models b and c estimate the parameters accurately because the 

unobserved confounder is included in the model. Models d and e also give point 

estimators close to the parameters, but the standard errors are much larger due to the 

variation from the instrumental variable. Figure 4.7.2 displays the histogram of the 

100 1̂IVβ . 1̂IVβ  is always linearly correlated with 1̂waldβ  as shown in Figure 4.7.3. 

 

 

 

True 
value 

Model  
a 

Model  
b 

Model  
c 

Model  
d 

Model  
e 

0 2.20α = −
  

 

 
 

 
0ˆ 2.20IVα = −  

SE=0.03 
 

1 1.35α =
  

 

 
 

 
1

ˆ 1.35IVα =  

SE=0.03 

2 3.04α =
 

  

 
   

0.85γ =  
ˆ 0.84γ =  

SE=0.01 

ˆ 0.84γ =  

SE=0.01 
 

 

ˆ 0.85IVγ =  

SE=0.01 

0 2.45β = −
 

0
ˆ 2.39β = −  

SE=0.02 
0

ˆ 2.45β = −  

SE=0.02 
 

 
0

ˆ 2.45IVβ = −  

SE=0.04 

1 0.41β = −
 

1̂ 0.07β = −  

SE=0.02 

1̂ 0.41β = −  

SE=0.03 

1̂ 0.41β = −  

SE=0.03 
1̂ 0.37Waldβ = −  

SE=0.10 

1̂ 0.39IVβ = −  

SE=0.11 

2 0.69β =
  

2
ˆ 0.70β =  

SE=0.03 

2
ˆ 0.70β =  

SE=0.03   
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Figure 4.7.2 Histogram of 1̂IVβ  from two-stage likelihood-based IVA – Weibull 
distribution 

beta1 from IVA

F
re

qu
en

cy

-0.8 -0.6 -0.4 -0.2 0.0

0
5

10
15

20
25

30

 

Note: Dotted line indicates the true value. 
 

 

 

 

 

 

 

 



 

 

93

Figure 4.7.3 Treatment effect estimators 1̂IVβ  vs 1̂Waldβ  - Weibull distribution 
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Note: Dotted lines indicate the true value. 
 

Using the estimated parameters from the two-stage likelihood-based IVA 

model, we plot the hazard functions in Figure 4.7.4 and the survival curves in Figure 

4.7.5. Figure 4.7.5 is almost the same as Figure 4.7.1. 
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Figure 4.7.4 Hazard function based on estimated parameters from two-stage 
likelihood-based IVA – Weibull distribution 
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Figure 4.7.5 Survival curve based on estimated parameters from two-stage 
likelihood-based model – Weibull distribution 
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4.8 Fit Weibull distributed data with a piecewise constant hazard model 

 In this section, we fit Weibull distributed data which are generated as 

described in section 4.7 with a two-piecewise constant hazard function in the two-

stage likelihood-based IVA. The mean treatment effect estimator is compared to the 

true value. The purpose of this simulation is to investigate how well the piecewise 

constant hazard function is fitted in the proportional hazard model. We fit the data 

with four models in Table 4.8.1. In model d, a two-piecewise constant hazard function 
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with a cut-off point at year 1 is used in the second stage. The results are given in 

Table 4.8.2. 

Table 4.8.1 Comparative models used in simulation of piecewise constant 
hazard model in IVA 

 

 

Table 4.8.2 Estimated coefficients from simulation of models in Table 4.8.1 – 
fit Weibull curve with two-piecewise constant hazard curve 

 

True 
value 

Model  
a 

Model  
b 

Model  
c 

Model  
d 

0 2.20α = −   

0ˆ 2.20α = −  

SE=0.03  
0ˆ 2.20IVα = −  

SE=0.03 
 

1 1.35α =   
1ˆ 1.35α =  

SE=0.03 
 

 
1ˆ 1.35IVα =  

SE=0.03 

2 3.04α =  
 

2ˆ 3.04α =  

SE=0.04   

 
01

ˆ 2.39β = −  

SE=0.02 
01

ˆ 2.45β = −  

SE=0.02  
01

ˆ 2.46IVβ = −  

SE=0.09 

 
02

ˆ 0.38β = −  

SE=0.02 
02

ˆ 0.37β = −  

SE=0.02  
02

ˆ 2.82IVβ = −  

SE=0.09 

1 0.41β = −  
1̂ 0.07β = −  

SE=0.02 

1̂ 0.41β = −  

SE=0.03 
1̂ 0.37Waldβ = −  

SE=0.10 

1̂ 0.39IVβ = −  

SE=0.30 

2 0.69β =   
2

ˆ 0.71β =  

SE=0.03   

 

Model a ( ) ( )0 1log | , logij i ij j i ijE C T Y T Yβ β= + ⋅ +     where 1,2j =  

Model b ( ) ( )0 1 2log | , , logij i i ij j i i ijE C T U Y T U Yβ β β= + ⋅ + ⋅ +   where 1,2j =  

Model c 0 1i i iT Zα α υ= + ⋅ +  

( ) ( ) ( )0 1 0 1 0 1 0 1log | logi i i i ih Y Z h Z Zβ α α β β α α= + ⋅ + ⋅ = + ⋅ + ⋅  

Model d ( )
( ) 0 1 2

| ,
log

1 | ,
i i i

i i
i i i

E T Z U
Z U

E T Z U
α α α= + ⋅ + ⋅

−
 

( ) 1 2 0 1 2log | , logij ij i i j i i j i iY T U T U T Uλ λ β β β β β= + ⋅ + ⋅ = + ⋅ + ⋅   

                                                                                               where  1,2j =  



 

 

97

The results show that Wald method in model c gives a good estimate of the 

true value with reasonable large standard error. The two-stage likelihood-based IVA 

in model d also provides a point estimator for the true value. However, the standard 

error is very large, so that the treatment effect is statistically insignificant. This is 

because we use two-piecewise constant hazard curve to approximate the Weibull 

curve in model d. In model c, a Cox proportional hazard model is used. If we fit 

constant hazard curve with more than two pieces, the standard error should be 

smaller. 

Figure 4.8.1 Histogram of 1̂IVβ  from two-stage likelihood-based IVA – fit 
Weibull curve with two-piecewise constant hazard curve 
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Note: Dotted line indicates the true value. 
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Figure 4.8.2 Hazard function based on estimated parameters from two-stage 
likelihood-based IVA – two-piecewise constant hazard model vs 
Weibull distribution 
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 A histogram of the estimated treatment effects is given in Figure 4.8.1. In 

addition, estimated hazard functions from the Weibull distribution and the two-

piecewise constant hazard function are illustrated in Figure 4.8.2. 

 Since the two-piecewise constant hazard function is not sufficient to 

approximate the Weibull distributed data, we increase the number of pieces in the 

hazard function to four or five. Because the simulation takes a considerable amount of 

time, we generate an additional set of Weibull distributed data with size of 10,000. 
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We fit this dataset with four-piecewise and five-piecewise constant hazard functions 

separately. We obtain the MLEs of parameters and the standard errors of the MLEs 

are from the hessian matrix directly.  

Table 4.8.3 Fit Weibull curve with four-piecewise and five-piecewise constant 
hazard functions 

 

True value 
 
Wald method 

Four-piecewise 
constant hazard 

( )0,1,3,6,12τ =  

Five-piecewise 
constant hazard 

( )0,1,2,4,6,12τ =  

  

01
ˆ 2.36IVβ = −  

SE=0.07 
01

ˆ 2.36IVβ = −
 

SE=0.07 

  
02

ˆ 2.61IVβ = −  

SE=0.07 

02
ˆ 2.54IVβ = −

 
SE=0.07 

  
03

ˆ 2.77IVβ = −  

SE=0.07 

03
ˆ 2.73IVβ = −  

SE=0.07 

  
04

ˆ 2.94IVβ = −  

SE=0.08 
04

ˆ 2.77IVβ = −
 

SE=0.08 

   

05
ˆ 2.94IVβ = −

 
SE=0.08 

1 0.41β = −  
1̂ 0.51Waldβ = −

 
SE=0.17 

1̂ 0.59IVβ = −  

SE=0.22 

1̂ 0.58IVβ = −
 

SE=0.22 

2 0.69β =     

( )0,1,3,6,12τ = : 0 1 2 3 40, 1, 3, 6, 12.τ τ τ τ τ= = = = =  

( )0,1,2,4,6,12τ = : 0 1 2 3 4 50, 1, 2, 4, 6, 12.τ τ τ τ τ τ= = = = = =  

 Results in Table 4.8.3 shows the standard error is reduced with the four-

piecewise constant hazard function. 

 To further examine the standard error from the four-piecewise constant hazard 

function, we generate seven sets of Weibull distributed data with size of 10,000. The 
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estimated parameter means and their empirical standard errors are given in Table 

4.8.4. 

Table 4.8.4 Fit Weibull curve with four-piecewise constant hazard functions 

 

The standard error for the estimated treatment effect is 0.24. The four-piecewise 

constant hazard function improves the approximation of the Weibull distribution 

compared to the two-piecewise constant hazard function.  

4.9 Example of using two-stage likelihood-based IVA in survival analysis 

A subset of the SEER/Medicare database is used in our example. The database 

includes a cohort study of men with localized prostate cancer who received Medicare. 

Table 4.9.1 gives the number of patients within the combination of treatment and 

health service areas for moderately differentiated prostate cancer and poorly 

differentiated prostate cancer. The health service areas are classified as PADT high 

usage areas and PADT low usage areas. The classifications of the health service areas 

serve as an instrumental variable.  

 

 

 

 

 

 

01
ˆ 2.45IVβ = −  

SE=0.08 

02
ˆ 2.72IVβ = −  

SE=0.08 

03
ˆ 2.82IVβ = −  

SE=0.07 

04
ˆ 2.97IVβ = −  

SE=0.11 

1̂ 0.42IVβ = −  

SE=0.23 
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Table 4.9.1 Frequency counts of patients with prostate cancer 

 

Treatment Health Service 
Areas by PADT 
usage 

Death (%) Censored 
(%) 

Total 

Moderately differentiated localized prostate cancer 

PADT High 203 (10%) 1855 (90%) 2058 

PADT Low 156 (10%) 1346 (90%) 1502 

Conservative 
Management 

High 129 (6%) 2091 (94%) 2220 

Conservative 
Management 

Low 428 (10%) 3968 (90%) 4396 

Total  916 (9%) 9260 (91%) 10176 

Poorly differentiated localized prostate cancer 

PADT High 177 (17%) 881 (83%) 1058 

PADT Low 154 (20%) 603 (80%) 757 

Conservative 
Management 

High 61 (16%) 314 (84%) 375 

Conservative 
Management 

Low 145 (20%) 576 (80%) 721 

Total  537 (18%) 2374 (82%) 2911 

 

There are a total of 10,176 patients diagnosed with moderately differentiated 

localized prostate cancer, and 2911 patients diagnosed with poorly differentiated 

localized prostate cancer. Their survival status is followed up to about 13 years. By 

the end of 13 years, the prostate cancer-specific mortality is 9% among the patients 

with moderately differentiated localized prostate cancer, and 18% among the patients 

with poorly differentiated localized prostate cancer. Kaplan-Meier survival curves for 

high PADT usage areas and low PADT usage areas are plotted in Figures 4.9.1 and 

4.9.2. For moderately differentiated prostate cancer, 48% of the patients from high 

PADT usage areas received PADT, and 25% of the patients from low PADT usage 

areas received PADT. For poorly differentiated prostate cancer, 74% and 51% of the 
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patients received PADT among high PADT usage areas and low PADT usage areas, 

respectively. 

Figure 4.9.1 Kaplan-Meier survival curve – moderately differentiated prostate 
cancer 
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Figure 4.9.2 Kaplan-Meier survival curve – poorly differentiated prostate 
cancer  
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We make the same assumptions as in the simulation in section 4.6. We 

assumed that the overall high PSA rate is 0.2 among the population. The odds of 

obtaining PADT among patients with high PSA is assumed being 21 times the odds of 

obtaining PADT among patients with normal PSA. Now that 2 log 21 3.04α = = , we 

use patients information on whether they lived in PADT usage areas as one of the 

predictors, and apply the first stage likelihood function on the data. We obtain that the 

estimated odds ratio of receiving PADT is 3.08 for patients who lived in high PADT 

usage areas compared to the patients who lived in low PADT usage areas. A six-
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piecewise constant hazard model is fitted in the second stage, and the likelihood 

function (4.2.8) with 6J =  is applied to estimate the treatment effect. Again, as in 

section 4.6, the hazard ratio for patients with high PSA compared to the patients with 

normal PSA is assumed to be 2. The MLEs of parameters obtained from two-stage 

likelihood-based model are listed in Tables 4.9.2 to 4.9.5. Tables 4.9.2 and 4.9.3 give 

MLEs from the first stage, i.e., treatment status is regressed on PADT usage areas and 

PSA index. Tables 4.9.4 and 4.9.5 give MLEs from the second stage.  

Table 4.9.2 Estimated parameters in the first stage of the two-stage likelihood-
based IVA model, moderately differentiated localized prostate 
cancer 

 

 

Table 4.9.3 Estimated parameters in the first stage of the two-stage likelihood-
based IVA model, poorly differentiated localized prostate cancer 

 

 

Odds of PADT at Low PADT usage areas and Normal PSA (95% CI) 

0α̂  (log of odds) 0ˆeα  (odds) 

-1.909 (-1.997, -1.821) 0.148 (0.136, 0.162) 

Odds Ratio of High PADT usage areas vs Low PADT usage areas (95% CI) 

1α̂  (log of odds ratio) 1ˆeα  (odds ratio) 

1.377 (1.262, 1.492) 3.963 (3.532, 4.447) 

Odds of PADT at Low PADT usage areas and Normal PSA (95% CI) 

0α̂  (log of odds) 0ˆeα  (odds) 

-0.379 (-0.503, -0.254) 0.685 (0.605, 0.775) 

Odds Ratio of High PADT usage areas vs Low PADT usage areas (95% CI) 

1α̂  (log of odds ratio) 1ˆeα  (odds ratio) 

1.125 (0.947, 1.303) 3.08 (2.578, 3.680) 
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Table 4.9.4 Estimated hazards and hazard ratios in the second stage of the 
two-stage likelihood-based IVA model, moderately differentiated 
localized prostate cancer 

 
Baseline Hazards 
(95% CI) 

0
ˆ

jβ  (log of hazard) 0
ˆ

je
β

(hazard) 

0-2 years  -6.276 (-7.158, -5.394) 0.002 (0.001, 0.005) 

2-4 years -5.491 (-6.347, -4.634) 0.004 (0.002, 0.010) 

4-6 years  -5.481 (-6.310, -4.652) 0.004 (0.002, 0.010) 

6-8 years  -5.142 (-5.948, -4.337) 0.006 (0.003, 0.013) 

8-10 years -4.691 (-5.461, -3.920) 0.009 (0.004, 0.020) 

10-13 years  -5.101 (-6.010, -4.191) 0.006 (0.002, 0.015) 

Hazard Ratio  

(95% CI) 1̂β  (log of hazard ratio) 1̂eβ (hazard ratio) 

PADT vs CM 1.714 (0.639, 2.790) 5.553 (1.895, 16.275) 

 

Table 4.9.5 Estimated hazards and hazard ratios in the second stage of the 
two-stage likelihood-based IVA model, poorly differentiated 
localized prostate cancer 

 
Baseline Hazards 
(95% CI) 

0
ˆ

jβ  (log of hazard) 0
ˆ

jeβ
(hazard) 

0-2 years  -3.060 (-3.441, -2.679) 0.047 (0.032, 0.069) 

2-4 years -2.596 (-2.992, -2.201) 0.075 (0.050, 0.111) 

4-6 years  -2.670 (-3.107, -2.233) 0.069 (0.045, 0.107) 

6-8 years  -2.502 (-2.993, -2.012) 0.082 (0.050, 0.134) 

8-10 years -2.417 (-3.018, -1.815) 0.089 (0.049, 0.163) 

10-13 years  -3.384 (-4.834, -1.935) 0.034 (0.008, 0.144) 

Hazard Ratio  

(95% CI) 1̂β  (log of hazard ratio) 1̂eβ (hazard ratio) 

PADT vs CM -0.725 (-1.418, -0.032) 0.484 (0.242, 0.968) 

 

The results show that PADT plays significant roles in both moderately 

differentiated localized prostate cancer patients and poorly differentiated localized 
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prostate cancer patients, but in opposite directions. PADT is harmful to the patients 

with moderately differentiated localized prostate cancer compared to conservative 

management. The hazard ratio is 5.553 with 95% confidence interval of (1.895, 

16.275). On the other hand, PADT benefits the patients with poorly differentiated 

localized prostate cancer. Compared to conservative management, the hazard ratio is 

0.484 with 95% confidence interval of (0.242, 0.968). 

The hazard function for patients with moderately differentiated prostate cancer 

is drawn in Figure 4.9.3. Patients being treated with PADT and having high PSA 

experience the highest hazards among the four groups. Patients being treated with 

conservative management and having normal PSA experience the least hazards. 

Hazards reach the highest values for all four groups from year eight to ten. 

Figure 4.9.3 Hazard function – moderately differentiated prostate cancer 
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The hazard function for patients with poorly differentiated prostate cancer is 

drawn in Figure 4.9.4. By contrast, patients receiving conservative management and 

having high PSA experience the highest hazards among the four groups. Patients 

being treated with PADT and having normal PSA experience the least hazards. 

Hazards are relatively high for all four groups between year two and year ten 

compared to years before two or after ten. 

Figure 4.9.4 Hazard function – poorly differentiated prostate cancer 
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Estimated marginal survival functions are calculated using the maximum 

likelihood estimators ̂ IVβ
ɶ

 in Table 4.9.4 and Table 4.9.5 assuming 0 0.8π =  for the 

probability of 0U = and 1 0.2π =  for the probability of 1U = . They are plotted in 
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Figures 4.9.5 and 4.9.6. 95% confidence intervals for the 5-year and 10-year survival 

probabilities given in the plots are obtained from the delta method. 

Figure 4.9.5 Survival probability – moderately differentiated prostate cancer 
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In general, patients with moderately differentiated prostate cancer have 

significantly higher survival probabilities if they receive conservative management 

rather than PADT. The 5-year survival rate is 98% in CM group versus 90% in PADT 

group. The 10-year survival rate is 94% in CM group, but only 72% in PADT group. 

Both 5-year and 10-year survival rates are significantly different between the two 

treatment groups as indicated by estimated rate ratio or rate difference and their 
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confidence intervals in Table 4.9.7. PADT not only increases the cost, but also 

increases the mortality among patients with moderately differentiated prostate cancer. 

Figure 4.9.6 Survival probability – poorly differentiated prostate cancer 
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 By contrast, the estimated marginal survival functions from patients with 

poorly differentiated prostate cancer show a reversed result. PADT seems to increase 

the survival probability among the patients with poorly differentiated prostate cancer 

compared to CM. The 5-year survival rate is 84% in PADT group versus 69% in CM 

group. The 10-year survival rate is 66% in PADT group versus 44% in CM group. 

However, the 95% confidence intervals for estimated survival rate ratio or estimated 
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survival rate difference do not support the conclusion of significant differences 

between the two treatment groups in 5-year or 10-year survival rates. 

Table 4.9.6 Estimated survival probability with two-stage likelihood-based 
IVA model using marginal survival function 

 
 PADT CM 

Moderately differentiated localized prostate cancer 

5-year survival probability  

(95% CI) 

0.898 

(0.876, 0.920) 

0.981 

(0.965, 0.997) 

10-year survival probability  

(95% CI) 

0.719 

(0.669, 0.769) 

0.942 

(0.896, 0.987) 

Poorly differentiated localized prostate cancer 

5-year survival probability  

(95% CI) 

0.836 

(0.788, 0.883) 

0.693 

(0.585, 0.800) 

10-year survival probability  

(95% CI) 

0.663 

(0.589, 0.736) 

0.435 

(0.231, 0.639) 

 

Table 4.9.7 Estimated survival rate ratio and rate difference between PADT 
and CM using marginal survival function 

 
 Rate Ratio 

(PADT vs CM) 

Rate Difference 

(PADT vs CM) 

Moderately differentiated localized prostate cancer 

5-year survival probability  

(95% CI) 

0.916 

(0.893, 0.940) 

-0.082 

(-0.105, -0.060) 

10-year survival probability  

(95% CI) 

0.764 

(0.662, 0.881) 

-0.223 

(-0.310, -0.135) 

Poorly differentiated localized prostate cancer 

5-year survival probability  

(95% CI) 

1.206 

(0.985, 1.477) 

0.143 

(-0.012, 0.298) 

10-year survival probability  

(95% CI) 

1.523 

(0.980, 2.368) 

0.228 

(-0.029, 0.485) 
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Estimates of the hazard ratio from the two-stage likelihood-based IVA model 

are compared to those estimates from the Wald type method. That is, we fit data using 

a Cox proportional hazard regression model with the PADT usage areas as a 

predictor, and then, adjust the coefficient for the percentage of compliers. A Cox 

proportional hazard regression model including only the treatment is investigated as 

well. As expected, this model gives biased estimates of hazard ratio. Estimates of the 

hazard ratio from the two-stage likelihood-based IVA method using 6-piecewise 

constant hazard model in the second stage are consistent with the estimators from the 

Wald type method (Table 4.9.8). 

Table 4.9.8 Estimated hazard ratios from comparative models 
 

 Moderately differentiated 
localized prostate cancer 

Poorly differentiated 
localized prostate cancer 

PADT vs CM 
1̂β  

(SE) 

Hazard Ratio 

(95% CI) 
1̂β  

(SE) 

Hazard Ratio 

(95% CI) 

Two-stage 
likelihood-based 
IVA 

1.71 

(0.55) 

5.553 

(1.895, 16.275) 

-0.72 

(0.35) 

0.484 

(0.242, 0.968) 

Wald method 1.68 

(0.38) 

5.345 

(2.540, 11.248) 

-0.79 

(0.38) 

0.454 

(0.214, 0.964) 

Cox regression 
model on 
treatment only 

0.90 

(0.09) 

2.467 

(2.088, 2.915) 

0.10 

(0.09) 

1.103 

(0.927, 1.313) 

 

4.10 Sensitivity analysis 

So far, the results from the two-stage likelihood-based IVA model are based 

on the assumption that hazard ratio of high PSA versus normal PSA is 2. We examine 

the sensitivity of this assumption on the estimation of treatment effect. Using data 

from patients with poorly differentiated prostate cancer, we estimate PADT effect 
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when the hazard ratio of high PSA versus normal PSA is 1, 1.5, 2, or 2.5. The hazard 

ratios of PADT versus CM as well as their 95% confidence intervals are given in 

Table 4.10.1, and plotted in Figure 4.10.1. When the hazard ratio of high PSA versus 

normal PSA is 1, it implies that the level of PSA has no impact on the survival 

outcome. Under this assumption, the survival benefit from PADT is no longer 

significant. For other values of 1.5, 2, or 2.5, the treatment effect does not have large 

fluctuations.  

 A sensitivity analysis on the values of 2α , which defines the relationship 

between treatment received and PSA values, can be done in the same way. We will 

conduct this analysis in our future research. 

Table 4.10.1 Treatment effect vs PSA effect 
 

Poorly differentiated localized prostate cancer 

Hazard ratio of high 
PSA vs normal PSA 

Hazard ratio of PADT vs CM (95% CI) 

1 0.529 (0.274, 1.020) 

1.5 0.507 (0.258,0.997) 

2 0.484 (0.242, 0.968) 

2.5 0.463 (0.228, 0.939) 
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Figure 4.10.1 Treatment effect vs PSA effect 
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4.11 Discussion 

 It has been repeatedly demonstrated that the results from the two-stage 

likelihood-based IVA and the Wald method are highly positively correlated. The 

Wald method provides unbiased causal effect estimator only for an identity link 

function or a log link function in GLM. For a logit link function in GLM or a Cox 

proportional hazard model (Gail, 1986), Wald’s estimator is biased. In the two-stage 

likelihood-based IVA model, MLEs are obtained to estimate the causal effect. 

Therefore, both stages can be any forms of the nonlinear equations. The likelihood-

based estimates allow for explicitly accounting for the unknown confounding 

variable, and permit sensitivity analyses of key assumptions. The method can be 

extended to accommodate interaction terms of the confounder with the treatment, 

outcome, or both. In principle, the method also will allow for more complex models 
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of the effect of an instrument on outcome, such as accommodating continuous and/or 

multiple instrumental variables. 

 There are a few disadvantages for the two-stage likelihood-based IVA model. 

In order to obtain the MLEs of the treatment effect, we have to make assumptions on 

the values of 2α , 2β , and the distribution of the unobserved confounder. In our future 

research, we wish to find a better method to weaken these assumptions.  

 In our examples of the two-stage likelihood-based IVA model, we didn’t make 

any adjustment for the covariates such as age, gender, or race. Accommodating other 

covariates in the model could be complicated and may change the values of 2α  or 2β  

in the assumptions. Further exploratory analyses will be needed in our future research. 

 Another disadvantage of the two-stage likelihood-based IVA model is that the 

convergence of the model takes considerable amount of time. We will explore more 

efficient computational methods in our future research. 
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Chapter 5 

Optimal Sample Size for Subunit of an Instrument 

 

One of the advantages of two-stage likelihood-based IVA is that the 

instrumental variables can be in any form, continuous, binary, or categorical. 

However, in Rubin’s causal model, the instrumental variables are strictly binary. 

Many instrumental variables are binary in nature, such as, water supply company in 

the epidemic of cholera in London, treatment assignment in clinical trial, and draft 

lottery status in the Vietnam War. When the instrumental variable is not binary, we 

have to dichotomize it. This raises issues about how best to define the two subgroups, 

which we address in this chapter. 

5.1 Defining binary instrument values 

In the study of PADT among men with localized prostate cancer, the PADT 

high and low usage areas are arbitrarily defined based on the percentage use of PADT 

among target patients within each health service area. Percentage use of PADT is a 

continuous variable. If these percentages accurately reflect the local medical practice 

convention, we are able to follow the steps below to dichotomize the continuous 

variable into a binary instrumental variable. 

Step 1: Define the scope of a health service area. A state, a single zip code 

area, or a large hospital can all be treated as a single health service area. A 

well defined health service area should contain enough sample size and have a 

homogenous usage rate of PADT among doctors.    
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Step 2: Calculate the percentage use of PADT among target patients 

for each health service area. 

Step 3: Select reasonable cut-off points and define the ranges of the 

percentage for high PADT usage areas and low PADT usage areas. For 

example, in the diagram below, health service areas with less than or 

equal to 30% of the patients receiving PADT are defined as low usage 

areas. Health service areas with greater than or equal to 40% of the 

patients receiving PADT are defined as high usage areas. C1 and C2 

are the cut-off points. 

 

                     Low usage areas                     High usage areas  
 

                          0     0.1     0.2    0.3    0.4    0.5    0.6    0.7     0.8     0.9      1 

                                                     C1    C2  

5.2 Examine assumption of random assignment 

When the sample size of a health service area is not large enough, the 

percentage of PADT use in that health service area may not reflect the actual medical 

practice convention, since it can be affected by other factors such as PSA. We have 

mentioned in section 3.6 that the PSA screening test result confounds PADT usage. 

High PSA values cause high percentage use of PADT in both high PADT usage 

health service areas and low PADT usage health service areas. We assume that the 

results of PSA test are evenly distributed across geographic regions with a binomial 

distribution. The mean of the distribution is 0.2. When the sample size is large enough 

for any single health service area as mentioned at step 1 in section 5.1, we are 
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expecting the same distribution of the PSA across health service areas. However, 

when the health service areas are small and the number of patients is low, the sample 

distribution of the PSA results can be positively correlated with the observed PADT 

usage rates from those small health service areas. It turns out that the observed 

differentiated probabilities of PADT usage across the health service areas are not only 

caused by their geographic regions but also by the differentiated proportions of 

patients having high values on the PSA test, a violation of the assumption of the 

independence between instrumental variable and unobserved confounder. In terms of 

the Rubin causal model, the second assumption of random assignment is violated. 

Diagram 5.2.1 illustrates that the principal strata are no longer comparable due to the 

violation of random assignment. This results in biased treatment effect estimates. 

Diagram 5.2.1 

 

 

 

 

 

 

 

 

 

In order to estimate the bias caused by the positive correlation between PSA 

results and PADT usage rates, we make a few assumptions to run a simple 

demonstration.  

T=1 T=0 

aφ Always-takers 

1aφ  

aφ Always-takers 

0aφ  

Compliers 
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Compliers 

0cφ  

Never-takers 

1nφ  
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0nφ  
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Assumption 1: All health service areas have the same sample size. Let n 

denote the total number of localized prostate cancer patients in a single health 

service area.  

Assumption 2: All patients with high PSA values receive PADT. 

Assumption 3: For the simplicity of current calculation, the 10-year mortality 

of patients with high PSA values is assumed to be 100%. We may use 90% of 

the mortality for future work. 

The outcome distribution of iY  is a mixture distribution from 3 types of 

patients, patients with high PSA values, patients with normal PSA values and 

receiving PADT, and patients with normal PSA values and not receiving non-PADT . 

1 1, 1, 1 1 0, 1, 1 0, 1 0, 0, 1 0, 0( ) ( ) ( ) ( )Z PSA T Z PSA PSA T Z PSA T PSA T Z PSA Tf y P f y P f y P f y= = = = = = = = = = = = = = == + +         (5.2.1) 

0 1, 1, 0 1 0, 1, 0 0, 1 0, 0, 0 0, 0( ) ( ) ( ) ( )Z PSA T Z PSA PSA T Z PSA T PSA T Z PSA Tf y P f y P f y P f y= = = = = = = = = = = = = = == + +       (5.2.2) 

where P  represents the percentage of patients in a health service area. For example, 

0, 1, 1PSA T ZP = = =  represents the percentage of patients in a high PADT usage area with 

normal PSA values and receiving PADT. The constraints of the equations (5.2.1) and 

(5.2.2) are: 

1, 1, 1 0, 1, 1 0, 0, 1 1PSA T Z PSA T Z PSA T ZP P P= = = = = = = = =+ + =     and     

1, 1, 0 0, 1, 0 0, 0, 0 1PSA T Z PSA T Z PSA T ZP P P= = = = = = = = =+ + =  

Equations 5.2.1 and 5.2.2 are analogous to equations (3.2.1) and (3.2.2) in section 3.2. 

By using the mixture distribution, the sample average 10-year mortalities could be 

obtained from equations (5.2.3) and (5.2.4). 

1 1, 1, 1 1 0, 1, 1 0, 1 0, 0, 1 0, 0
ˆ ˆ ˆ

 
Z PSA T Z PSA PSA T Z PSA T PSA T Z PSA TY P Y P Y P Y= = = = = = = = = = = = = = == ⋅ + ⋅ + ⋅

 (5.2.3) 
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0 1, 1, 0 1 0, 1, 0 0, 1 0, 0, 0 0, 0
ˆ ˆ ˆ

 
Z PSA T Z PSA PSA T Z PSA T PSA T Z PSA TY P Y P Y P Y= = = = = = = = = = = = = = == ⋅ + ⋅ + ⋅  (5.2.4) 

Therefore, 

( ) ( )
( )

1 0

1, 1, 1 1, 1, 0 1 0, 1, 1 0, 1, 0 0, 1

0, 0, 1 0, 0, 0 0, 0

ˆ ˆ ˆ ˆ

ˆ ˆ  

Z Z

PSA T Z PSA T Z PSA PSA T Z PSA T Z PSA T

PSA T Z PSA T Z PSA T

Y Y

P P Y P P Y

P P Y

= =

= = = = = = = = = = = = = = =

= = = = = = = =

−

= − ⋅ + − ⋅


+ − ⋅


 (5.2.5) 

where 1, 1, 1P̂SA T ZP = = = , 1, 1, 0P̂SA T ZP = = = , 0, 1, 1P̂SA T ZP = = = , 0, 1, 0P̂SA T ZP = = = , 0, 0, 1P̂SA T ZP = = = , and 

0, 0, 0P̂SA T ZP = = =  are estimators of the true percentages . 

For a single health service area of size n, let U  be the total number of patients 

with high PSA values and who therefore receive PADT, and let V  be the total 

number of patients with low PSA values and thus receive PADT by chance. The sum 

of the two, S , is the total number of patients who receive PADT within the health 

service area. 

 S U V= +  

Assumption 4: The total number of patients who receive PADT within a 

health service area, S , follows a binomial distribution with a mean of 1Tn p =⋅ , 

and a variance of 1 1(1 )T Tn p p= =⋅ ⋅ − . Furthermore, 1Tp =  is assumed to follow a 

beta distribution with a mean of 
α

α β+
, and a variance of 

( ) ( )2
1

α β
α β α β

⋅
+ + ⋅ +

. 

( )1 1( ; , )T Tf S binomial S n p= =∼     where   1 1 1( ) ( ; , )T T Tf p beta p α β= = =∼  

 
1 1 1 1 1 1

1 1

( , ) ( | ) ( )

( ; , ) ( ; , )
T T T T T T

T T

f S p f S p f p

binomial S n p beta p α β
= = = = = =

= =

= ⋅
= ⋅  (5.2.6) 
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Assuming the overall usage rate of PADT for a high PADT usage health 

service area, 1, 1T ZP = = , is greater than or equal to C2, the total number of patients who 

receive PADT in that high PADT usage area is distributed as:  

 

( )
( )

{ }

{ }

1

1 1 12
1, 1 1

1 1 12
2

1

1 1 12

1

1 1 12
2

,

( , )

( ; , ) ( ; , )
                  

( ; , ) ( ; , )

T T TC
T Z n

T T TC
S C n

T T TC
n

T T TC
S C n

f S p dp
f S

f S p dp

binomial S n p beta p dp

binomial S n p beta p dp

α β

α β

= = =
= =

= = =
= ⋅

= = =

= = =
= ⋅

⋅
= =

⋅

⋅ ⋅

⋅ ⋅

∫

∑ ∫

∫

∑ ∫

 (5.2.7) 

Assuming the overall usage rate of PADT for low usage health service areas, 1, 0T ZP = = , 

is less than or equal to C1, the total number of patients who receive PADT in that low 

usage area is distributed as:  

 

( )
( )

{ }

{ }

1

1 1 10
1, 0 1 1

1 1 10
0

1

1 1 10
1 1

1 1 10
0

,

( , )
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T T T

T Z C n C

T T T
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C

T T T
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T T T
S

f S p dp
f S

f S p dp

binomial S n p beta p dp
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⋅
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⋅
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⋅

⋅ ⋅
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∫
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 (5.2.8) 

Assumption 5: The number of patients with high PSA values within a health 

service area follows a binomial distribution with a mean of 1PSAn p =⋅  and a 

variance of 1 1(1 )PSA PSAn p p= =⋅ ⋅ − , given the total number of patients, S , 

receiving PADT in that area. 

 ( ) ( )
( )

1
1, 1

1
0

; ,

; ,

PSA
PSA Z S

PSA
U

binomial U n p
f U S

binomial U n p

=
= =

=
=

=
∑

 (5.2.9) 

From assumptions 4 and 5, the joint distribution of U  and S  from a high 

PADT usage health service area is: 
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( ) ( ) ( )
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(5.2.10) 

The joint distribution of U  and S  from a low PADT usage health service area is: 
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(5.2.11) 

Using a Jacobian transformation, the joint distribution of V  and S  from a high PADT 

usage health service area is: 

( ) ( ) ( )
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(5.2.12) 

The joint distribution of V  and S  from a low PADT usage health service area is: 
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(5.2.13) 

The expected difference is: 
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(5.2.14) 

The PADT usage rates among the target population are assumed to be independent of 

the expected outcomes. The variance of the two independent variables is: 
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(5.2.15) 

Applying equation (5.2.15), the variance of the expectation in difference is: 
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(5.2.18) 

When the sample size gets large enough, the expected IV estimand can be 

approximated by: 
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(5.2.19) 
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However, there is no closed form solution for the variance of the IV estimand. 

Simulation will be used in the future to estimate the variance of the IV estimand. 

In Figure 5.2.1, the bias of the mean difference in 10-year mortality between 

PADT and CM is examined when there is truly no difference between the two groups. 

Our estimation is based on a total of 10,000 patients. The number of patients within 

each health service area receiving PADT is assumed to have a binomial distribution 

with a mean which follows a beta distribution, beta(2,3). The 10-year mortality for 

patients with normal PSA values is assumed to be 0.1 ignoring their treatment status. 

Patients with high PSA values receive PADT, and their 10-year mortality is assumed 

to be 100%. The expected differences between PADT and CM patients in 10-year 

mortality and their respective 95% confidence intervals are plotted against the single 

health service area size in Figure 5.2.1. The PADT usage rates from each health 

service area are sorted from the lowest to the highest. The plot in blue is from the top 

one tenth high usage areas and the bottom one tenth low usage areas. The rest of the 

four fifths health service areas with the PADT usage rates between the highest and 

lowest usage areas are discarded. The plot in red is from the top one third high usage 

areas and the bottom one third low usage areas. The rest of the one third middle areas 

are discarded. The plot in green is from the top one half high usage areas and the 

bottom one half low usage areas, i.e., all health service areas are included in our 

analysis. The two black dashed lines outline the 95% confidence interval for the true 

difference of 0 without using instrumental variable analysis, i.e., 

( ) ( ) ( )1 0 1 0var var varT T T TY Y Y Y= = = =− = + ,  and   ( )1 095% 0 1.96 T TCI SE Y Y= == ± ⋅ − . 

In Figure 5.2.1, it is obvious that when all service areas are used in the 

analysis, a small size of the single health service area can cause the largest bias in 

treatment effect estimation. On the other hand, when service areas falling in the 
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middle quantiles are discarded, the variance of the estimator becomes very large 

because of the reduction in overall sample size. An example is as the one that only 

health service areas from one tenth of the top and bottom quantiles are used. When we 

use the top and bottom one third of the data, the estimator of the difference becomes 

consistent after single health service area reaches a size of 30, and the variance isn’t 

enlarged much compared to the one without discarding any of health services areas. If 

information of PSA is available for all patients, direct comparison between groups of 

PADT and CM would be feasible, and the 95% confidence interval would the 

narrowest as shown in black dashed lines. It is apparent that the IVA method is less 

precise. 
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Figure 5.2.1 Estimated mean difference when no effect of PADT in mortality 
compared to CM 
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Note: 1. Data used in quantiles: blue 2/10; red 2/3; green 1. 
          2. Solid lines: expected mean difference; Dashed lines: 95% CI 
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Chapter 6 

Future Research 

6.1 Exploration in the two-stage likelihood-based IVA model 

In order to apply our two-stage likelihood-based IVA model, we need to make 

assumptions about the distribution of the unobserved confounder, the association 

between the treatment status and the unobserved confounder at stage one, and the 

association between the outcome and the unobserved confounder at stage two. In this 

thesis, we used information from external sources to establish these assumptions, and 

we conducted a sensitivity analysis on 2β  to assess the impact of changes in the 

assumptions on the final results. We wish to improve this model by weakening these 

assumptions. 

Besides the sensitivity analysis on 2β , we plan to conduct more sensitivity 

analyses on the values of 2α , and the mean of confounder Uµ . We wish to test the 

validity of these assumptions and examine the effects of these assumptions cause. 

We also plan to develop ways to add covariates such as age, cancer stage, 

race, marital status, and economic indicators in the two-stage likelihood-based IVA 

model in addition to the PSA. Since the model takes a day to converge for a six-

piecewise constant hazard model at stage two, we will have to explore more efficient 

computational methods. 
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6.2 Instrumental variable analysis with clustered data 

In the prostate cancer example, health service areas vary widely in size. For 

example, Detroit and Los Angeles are very large as compared to others. Therefore, 

they could have a dominant effect on the IVA if each patient is treated as an 

independent observation. How can we reduce the weight of these large areas? One 

way could be to use a linear mixed model or a generalized linear mixed model with 

“area” as the clustering factor, that is to treat area as a random effect. For survival 

outcomes, those are known as frailty models. Patients from the same health service 

area are assumed to be correlated with respect to treatment and outcome. Patients 

from different health service areas are independent of each other with respect to 

treatment and outcome. In linear models, the two-stage instrumental variable analysis 

can be expressed as: 

 0 1 2ij i ij j ijT Z U Cα α α υ= + ⋅ + ⋅ + +  (6.2.1) 

 0 1 2ij ij ij j ijY T U Cβ β β ε= + ⋅ + ⋅ + +  (6.2.2) 

where j  represents the j th health area, and i  represents the i th subject within the 

j th health area. jC  represents the random effect from the health areas and follows a 

normal distribution with a mean 0 and a variance 2τ . ijυ  is distributed as normal 

( )20,ω , and ijε  is distributed as normal ( )20,σ . The cluster data structure is found in 

Table 6.2.1. 
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Table 6.2.1 Cluster data structure 
 

Cluster  Subject 
Instrumental 
Variable Confounder Treatment Response 

1 1 11Z  11U  11T  11Y  

1 2 21Z  21U  21T  21Y  

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

1 1n  
11nZ  

11nU  
11nT  

11nY  

2 1 12Z  12U  12T  12Y  

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

2 2n  
2 2nZ  

2 2nU  
2 2nT  

22nY  

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

1j −  1 1 1jZ −  1 1jU −  1 1jT −  1 1jY −  

⋮ ⋮  ⋮  ⋮  ⋮  ⋮  

1j −  1jn −  
1 1jn jZ

− −  
1 1jn jU

− −  
1 1jn jT

− −  
1 1jn jY

− −  

j  1 1 jZ  1 jU  1 jT  1 jY  

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

j  jn  
jn jZ  

jn jU  
jn jT  

jn jY  

 

The correlation matrix for outcome is: 

( )

1

0 0

1

1

0 0

1

1

0 0

1

Y

Y

Y

Y

Y

Y

corr Y

ρ

ρ
ρ

ρ
ρ

ρ

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

⋯

⋮ ⋱ ⋮

⋯

⋯

⋮ ⋱ ⋮

⋯

⋯

⋮ ⋱ ⋮

⋯

 

Let jY  be the sample mean of outcome from health area j .  
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1ˆ

n

ij
i

j j

Y
Y p

n
== =
∑

, where n  is the total number of patients in health area j . 

( ) ( ) ( )ˆ ˆ11
ˆ ˆ ˆvar 1

j j

j Y j j

p pn
p p p

n n
ρ

⋅ −−= ⋅ ⋅ ⋅ − +  (6.2.3) 

After the random effect from health areas are taken into account, the overall mean 

from all health areas is calculated as a weighted mean of each health area. The weight 

is ( )
1

ˆvar jp
. We have 

( ) ( ) ( ) ( ) ( ) ( )1 1 1

ˆ 1 1
1 1 1ˆvar ˆ ˆ ˆ ˆ1 1 1 1 1

J J J
j

ij
j j jj

Y j j Y j j Y

p
Y

np p p p p
n n n

ρ ρ ρ= = =

= = =− ⋅ ⋅ − + ⋅ − ⋅ − + ⋅ − ⋅ −
∑ ∑ ∑ , 

(6.2.4) 

where J  is the total number of health areas. When n  is small, ( )ˆvar jp  tends to be 

large, and when n  is large, ( )ˆvar jp  tends to be small. Therefore, larger health 

service areas put more weight on the overall mean of outcome. However, when the 

size of a health service area becomes extremely large, the weight approaches a 

constant, so that even very large clusters do not dominate the estimate of the mean. 

 ( ) ( )ˆ ˆ ˆlim var 1n j Y j jp p pρ→∞ = ⋅ ⋅ −  (6.2.5) 

The correlation matrix for treatment status is: 

( )

1

0 0

1

1

0 0

1

1

0 0

1

T

T

T

T

T

T

corr T

ρ

ρ
ρ

ρ
ρ

ρ

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

⋯

⋮ ⋱ ⋮

⋯

⋯

⋮ ⋱ ⋮

⋯

⋯

⋮ ⋱ ⋮

⋯
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The potential effect of clustering at stage one of the two-stage likelihood-based IVA 

model needs further study.  
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