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Instrumental variable analysis (IVA) is used to toh unobserved
confounders and estimate average causal effeatdservational studies. Classical
IVA involves a two-stage procedure with two ordypdinear models. The first stage
relates the treatment or intervention to the imsent, and the second relates the
outcome to the expected treatment predicted byfithestage. The average causal
effect can be estimated using the difference ic@ues between the strata of the
instrumental variable. D.B. Rubin in a series opgra (summarized in Angrist,
Imbens, and Rubin, 1996) re-framed IVA in termsaofausal model which can be
applied to binary outcome variables when the imsgmtal variable and treatment
status are also binary. However, the average cafifeait is typically expressed as a
difference. When causal effects expressed as a#itssror odds ratios are desired in
nonlinear models, it is problematic to obtain thebiased estimators for these
parameters. We propose a two-stage likelihood-bAsadnodel. In both stages, the
estimates of parameters of interest are obtainid) isaximum likelihood functions.
In the first stage, patient compliance with thetrmmsental variable is estimated.
Treatment effect is then imputed in the second estagth the adjustment of

compliance. Essentially, the likelihood function fermulated using the joint



distribution of outcome and instrumental variabllsintegrating out the treatment
and unknown confounder, assuming the distributibthe confounder is known, and
the associations between the confounder and treatesed confounder and outcome
are also known or can be estimated. This likelihbotttion is maximized to obtain
an estimator of the coefficient of the treatmentialde. The variance of this
maximum likelihood estimation (MLE) of treatmenftfezft can be estimated using

average Fisher’s information matrix.

We illustrate this two-stage likelihood-based IVAodel using data from a
study of primary androgen deprivation therapy (PADTmen with localized prostate
cancer (Lu-Yao, Albertsen, Moore, et al. 2008). \Also examine the optimal
minimum sample size needed for each health semaiea in order to reduce the

misclassifications, and obtain unbiased estimdtéseoaverage causal effect.
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Chapter 1

Introduction

Evaluating the causal effect of a new treatment pamed to a current
treatment or placebo is the mainstay of pharmacaustatisticians. Identifying the
causality effect between disease and exposure igltimate goal for epidemiologists.
Both tasks rely on well designed research studime$ @roper statistical analysis
methods. Associations discovered between respondetraatment or disease and
exposure may not always be causal. Often the adgmts are caused by factors other
than the true cause-effect relationship. Non-cateetors include chance, bias or
confounding. Chance associations can be evaluated p-values and confidence
intervals. Bias is a systematic error introducedirgduthe study conduct. General
types of bias include recall bias, selection b&ms] interviewer bias. Sicker subjects
may recall more details of the exposure. Investigatnay apply non-comparable
criteria when enrolling study participants intofdient treatment groups. Interviewers
may focus on particular questions for subjectstéetavith active drug, and collect
biased information between different treatment psouConfounding is another
common phenomenon that interferes with the treatroettome relationship. A
confounder is a factor that is correlated with timent or exposure, and can
independently affect the magnitude of responseesweldpment of disease. Failure to
control confounders results in under- or over-estesn of the true treatment-outcome
relationship.

Observed confounders can be controlled in the stelign or in the data

analysis by statistical adjustment. This is palédy important in observational



studies. By contrast, intervention studies suchrasdomized clinical trials are
designed to control both observed and unobservedoanders. With sufficient
sample size, all potential confounders, whetheenkesl or not, are supposed to be
evenly distributed among the treatment groups logloenization. Therefore, results
from randomized clinical trials are treated as aldgstandard” when they are
compared to the results from other studies witfed#ht designs.

One of the disadvantages of clinical trials is twst. According to a report
from a business intelligence firm (Cutting Edgeoknfiation, in 2006) running phase 3
trials in pharmaceutical companies can cost maa $26,000 per patient on average,
and in phase 3 clinical trials, companies typicadlgruit several hundreds to several
thousands of patients. The cost is huge, but thdoraized clinical trial is still the
most favorable design in pharmaceutical compangesulse it controls for unknown
confounders, something which cannot ordinarily tieieved by other designs.

Another disadvantage of randomized clinical trialgolves ethics. When the
exposure is harmful, it will not be ethical to rantize any participants to that group.
For example, in studies of smoking and lung canaevestigators will never
randomize non-smokers to the smoking group.

Other limitations of clinical trials include diffidty in recruiting patients,
particularly elderly or seriously sick patients.rFexample, hemophilia is a rare
congenital bleeding disorder that affects abouD0®,people in the United States
(National Heart Lung and Blood Institute, 2008)islhighly possible that a sponsor is
not able to enroll enough patients in a phasea to test a new treatment. If the
clinical trials take years to complete, maintaincwmpliance and preventing drop-

outs also become challenging tasks, as well. Campdé with the treatment in the



elderly is particularly difficult. In addition, @i participants are also hard to follow-up

if they move to other areas, or withdraw consent.

1.1 Methods for controlling observed confounders imn observational study

When clinical trials are not feasible, statisticamll use observational studies
to examine the associations between the healttom@a@nd treatment or exposure.
Although observational studies cost less, and aseeeto conduct when compared to
interventional studies, control of confounders mees one of the outstanding issues.
There are several statistical methods for conti@lbbserved confounders, including
stratification analysis, use of regression to adjos confounders, and propensity
score analysis.

Stratification is done by evaluating associatioasMeen treatment and effect
or exposure and disease separately among the [eivigle confounders. Stratification
is often used when the confounding variables ategeaical, such as sex, race or
cigarette smoking status. For example, when theoceés®on between alcohol
consumption and cardiovascular disease is studigdrette smoking can be a strong
confounder because alcohol consumers are mor¢ likebe cigarette smokers, too.
Therefore, the alcohol exposure status is correlatgh smoking status. There are
more cigarettes smokers in the exposure group than-exposure group.
Furthermore, cigarette smoking alone can affect décome of cardiovascular
disease, so the outcome of cardiovascular diseadd be a mixed effect from both
alcohol intake and cigarette smoking. With sepaeatalyses for smokers and non-
smokers, we assure that the outcome is indeperudethie confounder of cigarette

smoking.



Regression analysis is the most frequently usettbtstal method to control
observed confounders simultaneously. Potentialarorders are named as covariates
in the regression model. In an ordinary linear @sgion model, the outcome is placed
on the left side of the equation and treated ag@emdent variable. Treatment or
exposure status is treated as a fixed effect dtedtifon the right side of the equation
along with a set of covariates such as age, seg, @& body mass index. With the
adjustment for these covariates, the estimatedced®Em between outcome and
treatment is consistent with the true treatmeretctff

Propensity score analysis is another statisticathatk to control observed
confounders in observational studies. A propersityre is defined as the probability
of assignment to treatment, conditional on obsem@¢ariates which are potential
confounders,

e(X)=pr (T =1|X)
where X is a vector of covariates, afidis the assignment to treatment, 1 or O.
For large size samples, Rosenbaum (1983) has peelsen large-sample

theory of propensity score analysis, and in paldicpresented this theorem:

Theorem: Treatment assignment and the observed covarisges a
conditionally independent given the propensity sctiat is

X OTe(X)

This theorem states that, given the propensityese()z(), the treatment assignment

is random and independent on any covariatesXof With the adjustment on
propensity score, any association discovered betwesatment and outcome is

independent on those observed confounders.



A propensity score is usually expressed as a fomaif a vector of covariates.
For example, it can be modelled as a logistic gjom with a vector of covariates as

independent predictors,

The propensity score summarizes the multi-dimerdiczovariates with a uni-
dimensional score. With this single dimensionalpenusity score, statisticians are able
to conduct matched sampling conveniently. Sub-gsoof population with similar
propensity score can be easily identified. The dammean difference of matched
treatment groups with the same propensity scoréigese an unbiased estimate for the
true treatment effect.

In practice, propensity scores are first calculdteavery subject based on the
observed confounders. Subjects with nearest prdyessores are then matched
between treatment group and control group. Stedisanalyses are applied on the
selected groups. Dehejia and Wahba (2002) applieghepsity score matching
methods to the data from National Supported Wopeernent. The National Support
Work experiment (LaLonde, 1986) was a randomized to evaluate the effect of a
nine months to one year's training program on #@aiearnings. The treated group
received on-the-job training, and the control grdighnot. Dehejia and Wahba (2002)
created matched control groups from databaseseoPtpulation Survey of Income
Dynamics and the Current Population Survey baseddigidual’s propensity score.
Propensity scores were estimated from a logistigression with independent
predictors of age, number of school years, racariage status, previous annual
earnings, and employment history. When propengityes were matched in both

treated and control groups, these potential cordersiwere also comparable for both



groups. Any observed differences in the traine@iags between the treated group
and selected control groups were then independetiitese confounders. Therefore,
the estimated difference in earnings was an unthiasémator for the average effect
of the training program. The result from one of thepensity score matching
methods showed an average raise of $1473 and $i816erson year for the treated
group when it is compared to the two control grouiseese numbers were very close

to the $1672 raise from the randomized experiment.

1.2 Methods for controlling unobserved confounders an observational

study

In reality, not all the confounders are observaleneasurable. We examined
the ordinary linear regression model:
Y=8+L0+6,U +¢ (1.2.1)
In equation (1.2.1)Y; is the response from subjectT, is the treatment received by
subjecti . U, is an observed confounder. If the observed corfeurs controlled,S,
is the true treatment effect.
In the situation where the confounder is unobsemednknown, the term
B, W, gets omitted from equation (1.2.1).
Y =5 +B O +e (1.2.2)
Equation 1.2.2 is not equivalent to the true medglation (1.2.1).
How can we control the unobserved confoundershseovational studies?
One of the ideal solutions will be to find somethirery similar to randomization.

Instrumental variable analysis (IVA) has been udsd economists and

epidemiologists for decades, and it is close tosi@tion we are looking for. IVA



controls the unobserved confounders by introduanghird variable called the
instrumental variable (IV). A valid instrumental rigble is correlated with the
treatment or exposure status only, and independérdll potential observed or

unobserved covariates, that i OX and ZOU, where Z represents an

instrumental variable. It is important that thetinmental variable itself does not
cause variation in outcome response. It affectsatieome indirectly through the
unevenly distributed treatment or exposure statasrg the strata of instrumental
variable. The diagranZ — T - Y illustrates a path of an instrumental variale
causing a outcom& . T is a treatment or exposure variable which fatégathe
effect of Y from Z . There is no direct path frod to Y.

Examples of IVA can be traced back to 1854. Thees \&n epidemic of
cholera in London. British physician John Snow obsé that there were higher death
rates from cholera among the residents who recdiven drinking water from the
Lambeth Company or the Southwark and Vauxhall Cawmpas opposed to from
other households with different water supply conigen Further investigation
discovered that the two companies drew water fram Thames River at a point
polluted with main sewage discharge. The contaradhaltrinking water was the
source of the outbreak of cholera. In this storytew companies served as an
instrumental variable. Water companies themselvesewnot able to cause the
disease, but they were highly correlated to theosupe, and indirectly affected the
death rates. In addition, baseline characterissigsh as occupation, health and
monetary conditions were comparable between the dwaups of people who
received water from different water companies.

Geographic location is another widely used instmitalevariable because it is

often likely to correlate with certain treatmentsexposures. In 2008, investigators



from the Cancer Institute of New Jersey publishiedirt results on the primary
androgen deprivation therapy (PADT) among men Vatialized prostate cancer (Lu-
Yao, et al., 2008). In this population-based cohsttidy, IVA was utilized.
Investigators noticed that the PADT usage rateseweghly differentiated among
health service areas within the U.S (Shahinian,akalB, Kuo, Yong-fang, Freeman,
Jean L, et al., 2005). The variation was not frbm inedical consideration, but from
the preference of local health service practicas Tinding indicated that the health
service areas could serve as a valid instrumemtadhle. In the statistical analysis,
these health service areas were then categorizedwo classes, high PADT usage
areas and low PADT usage areas. Patients’ survivate compared between these
two types of areas to evaluate the effectivenesPAIDT. The direct comparison
between patients with PADT and conservative managetfCM) was believed to be
inappropriate because some unobserved confoungarscularly prostate specific
antigen (PSA) level, could bias the results.

Randomized treatment assignment in clinical trimsactually a perfect
instrumental variable when the sample size is ciefiit large. Patients are randomized
to treatment group or control group with an equabpbility. Confounders associated
with patients’ characteristics are hence randomim¢a treatment group or control
group with equal probability. If all patients fullgomply with the randomized
assignment, the sample difference in outcome betwemtment group and control
group is truly an unbiased estimator of treatmdigticeé In some cases, a few patients
take a treatment other than the one they are asbignmistakenly. Outcomes are still
compared between the randomized treatment groudpserréhan as treated groups.
This is so called the intention-to-treat methodakihis equivalent to the instrumental

variable analysis. In clinical trials, because ¢t are closely monitored, the



inconsistency rate between assigned treatment andhlatreatment is very low.
Investigators should not adjust the results witiis thon-compliance rate. This
intention-to-treat analysis provides conservatisengates, and additionally, penalizes
careless monitoring of patient compliance during thal. In observational studies,
the compliance to the instrumental variable is mhoeter than the compliance to the
randomization codes in clinical trials, so the imgigtency rate needs to be adjusted.

In Chapter 2, we review current IVA methodologasl make comparisons
between them. In Chapter 3, we discuss drawbackisesk IVA methodologies, and
propose a two-stage likelihood-based IVA model. &jgply this two-stage likelihood-
based IVA to generalized linear models. In Chagtehe two-stage likelihood-based
IVA model is extended to a survival data analysisChapter 5, optimal minimum
sample size is explored when the instrumental kgigs not binary in nature. Some
instruments are continuous variables. When theumsgntal variable in categorical
form is desired, the continuous data need to beearted to categorical data. During
this procedure, sample size of the subunits cawmrhecone of technical detail. In
Chapter 6, we discuss future research possibiliiekiding IVA in cluster data
analysis.

We use study of PADT on localized prostate caficefYao, et al., 2008) as
an example to develop the two-stage likelihood-das¥A throughout this

dissertation. All statistical analyses are perfatmasing R, version 2.10.1.
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Chapter 2

Review of IVA Methodologies

We begin this chapter with the classical IVA methtveb-stage least squares.
This method was described as early as in 1954 bpiDuWe consider the rationale
of the method, and from there, we present more iw@dels currently used in linear

and nonlinear statistical analyses.

2.1  Two-stage Least Squares (2SLS)

When a linear model includes all important predistahe coefficients of the
predictors consistently measure the causal-effgletionship between the outcome
and predictors.

Y,=4,+40+5,U, +¢, forsubjecti =1,2,...N (2.1.1)
In model (2.1.1), assumirgy is identical independently distributed with meang)
quantifies the causal effect from to Y, and similarly, 8, quantifies the causal
effect fromU to Y. If U is a confounder of , this is true only when both predictors
are included in the model and no other importamf@enders are omitted from the
model. Plots of residuals, versus all predictors can be helpful for diagngsine
appropriateness of the model. If the plots showfdiewing,

cov(T,.5)=0 and cov(U,,5)=0 (2.1.2)
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we can interpretS, as the treatment effect on outcorvie and [31 the least square
estimator of,, is an unbiased estimator of treatment effecanly of the important
predictors, particularly confounders, are omittenhf model (2.1.1),
Y =05+0[T+¢€, for subject=1,2,...N (2.1.3)
plots of estimated residua from model (2.1.3) versu§ will most likely show a
deviation from independence, that is,
(:ov(Ti gl) %0 (2.1.4)
It can be shown thaf,, which is the estimator off in model (2.1.3) is a

biased estimator of, in model (2.1.1). Lel andU be vectors of siz\ , and T

be mean of T . By least squares:

y . . (2.1.5)
ST -T)E(s+AT+AW,) (T -T)w)
==l N — :ﬁ1+ ZD':lN —
2(T-T) >(1-T)
Z{(T, —T_)[UJi
The bias isg, 3% . WhenU is not a confounder of , that is,

> (1-T)

i=1l
T andU are independent, the bias is zero.
In order to obtain an unbiased estimator of thatinent effect, economists,
epidemiologists, and statisticians have paid mtishtion to a classical IVA of two-
stage least squares model. With the involvemeuinhahstrumental variable (1V), the

two-stage least squares model includes two ordihiaear regression models. In the
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first stage, an instrumental variable is used &djut the treatment allocation. This
predicted treatment assignment is then used inst#eond stage as one of the
independent variables to forecast the outcome.athaal treatment status should not
be fitted as one of the predictors in the secoadestinstead, it is used in the first
stage as the dependent variable to estimate thalpitities of the treatment received
based on the values of instrumental variable.

Firststage: T =a,+a,Z +v, (2.1.6)

Second stage: Y, = 3, +,6’1EI:i +¢& (2.1.7)
In equation 2.1.6,Z is the instrumental variable and is used to ptettie

treatment statusl . In equation (2.1.7), outcom¥ is fitted with the predicted
treatment statug from the first stage. The coefficien, reflects the treatment

effect, and therefore is the parameter of interest.
As in the ordinary regression model, assumptioadarfor the two-stage least

squares model are:

cov(Z,,&)=0 and cov(Z y)=0

i i
In addition, the instrumental variab®e must be correlated to the treatment status
cov(Z, T)#0 thatis a,#0

The coefficientS, from the second stage of the least squares is&tstil by

the ratio of the estimated covariance betw&emndY to the estimated covariance

betweenZ and T (Durbin, 1954) and is called an IV estimand (Asgret al., 1996):

o~

~  COV

zyY
Y cov(z.T)

—
S~—r
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It can be proved tha]f?,v is an unbiased estimator of treatment effgt From

regression (2.1.6)z, is estimated by:

- Yfrdz-2)
&, =2 (2.1.8)
>(z-2)
Sviiz-2) | M(z-2)Ew)
(B 12.T)=E| & — =5
2z -z} | 3{vdz-z)
a-Aeaad)  Site-2)
Srgz-z)  Yfriz-z)
=4
E(4.)=€[E(A12T1)]=4 (2.1.9)

Imbens and Angrist proved th&;, has an asymptotic normal distribution

(Durbin, 1954; Imbens and Angrist, 1994).

N

var(e)[Z(Zi —2)2

B, ~ AN| 3, E . (2.1.10)

S(z-2)dr -7}

Comparing the variance o,t?,v to the variance cﬁl we see that an instrumental

variable causes a certain loss of efficiency (DurtB54)

ZN;(T ‘T_) _ {ZN:(T ‘T_)Z}Z (2.1.11)
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N

var(ﬁl) _ var(e,) ;{(Zi—z_)[(-ﬂ—f)}}
var(B, ) ZN:(Ti—T_)Z vaf(fi)DZN:(Zi'Z_)z

) = , = (2.1.12)
Sz -2)(n-T)]

= <1

> (2 -2) (1 -T)

i=1 i=1

A valid instrumental variable is one that causesati®an in treatment status
across the levels of the instrumental variable,iandhcorrelated with the unobserved
confounders. An IV estimand measures the correlabetween the instrumental
variable and the outcome, which is then adjustedtlie correlation between the
instrumental variable and treatment status. Inrotherds, the correlation between
treatment and outcome is assessed indirectly bypadng both variables to a

common reference variable.

2.2 Pearl's causal effect and IV core conditions

Pearl (2009) denoted the causal effecTobn Y as P(Y |do(T)). In Pearl’s
notation, P(Y |do(T)) is different from the conditional distribution d®(Y|T).

do(T) stands for an intervention df to induce the outcome &f. The intervention

of T is randomly performed, and theoretically is indegent of any unobserved

confounders. In the diagram 2.2.1, there is novafrom U to do(T).

Diagram 2.2.1

do(T)

v
<



18

The average causal effect (ACE) can be expresseldeadifference in expectations

under different interventions df (Didelez, and Sheehan, 2007):
ACE (t,,t,) = E(Y |do(T =t,)) - E(Y |do(T =t,)) (2.2.1)
When the intervention is treatment with binary esufor examplet, is an active
drug andt, is a placebo, the average causal effect of theeadtug on the outcome
is
E(Y |do(T =1))-E(Y |do(T = 0) (2.2.2)
When the interventiof is a continuous variable, an ordinary linear regi@ model
E(Y|do(T :t)):ﬂo+,81[ﬂ is used to examine the causal effectTodbn Y. The
average causal effect is evaluateqGhy
The definition ofdo(T) is similar to Rosenbaum and Rubin’s “causal effect
(1983) in terms of counterfactuals. For subjecthe response would bg if he/she
had received treatment 1, angd if he/she had received treatment 0. The causateff
would be(r, —r4). The notation ofdo(T) has the advantage of capturing both the
counterfactual concept and randomized intervention.
Estimates ofP(Y|do(T)) are not always available. Instead, the conditional

probability P(Y |T) from an observational study is often used to esdinthe causal

effect. Although P(Y|T) is also a function off , T is possibly correlated with

unobserved confounders. With the assistance ofistrumental variable, unobserved

confounders are adjustable and the average cdtesezt is identifiable.



16

Motivated by Pearl’s causality, Didelez and Shee(2907) defined three core
conditions for an instrumental variable in IVA. Thetation and terminology were
adapted from Greenland (2000) and Dawid (2003).

Condition 1:Z U : Z must be independent of confounding betw&eand

Y.

Condition 2:Z)ZTT : Z must not be independent of.

Condition 3:Y O Z|(T,U): Conditionally onT andU , Z must be

independent of .

The joint distribution of the 4 variables is:
P(Y,T,U,Z)=P(Y[TU Z)P(T U Z)P(U E)P(2Z) (2.2.3)
Becausey [1Z |(T,U) andU [0 Z, this may be expressed more compactly as
P(Y,T.U,Z)=P(Y|TU)P(T U Z)P(U)P(Z) (2.2.4)
Pearl (2009) used a directed acyclic graph (DAGilltstrate the joint probability

function.

Diagram 2.2.2

a yé
Z 1 =T 1 =Y
X%
U

Diagram 2.2.2 presents the causal relationshipsgrtiee four variablesy is
dependent onT and U, while T is conditional onZ andU. Z and U are
completely independent.

Using the probability functions, we derive the estpéions given in the 2SLS:



17

E(T|U,Z)=E(a,+a,Z +a, +v)

E(YIUT)=E(B+BT+5,U +¢) (2.2.5)

BecauseY 0Z|(T V),

E(YIUT,Z)=E(Y|UT)

(2.2.6)
=E(B,+B T +B,U +&) =+ BT + S,

E(Y12)=Ey[ Enzy [E(YIU.T)]]

=E, [Eﬂz,u (,5’0+/31Er+,82EUJ)]

=5, [B+Bda,+a,Z+a,W)+B,U | (2.2.7)
=B, + B+ B, [Z +(B,0r ,+ B,) (E(U)

=4 +pZ becauseZ U

ThereforeS,, = B, lér,/ a, = B, (2.2.8)

2.3 Rubin’s causal model

In 1996, Angrist, Imbens, and Rubin brought upecsal IVA named Rubin’s
causal model. This model is well designed for tluelies with a binary instrumental
variable, binary treatment status, and binary auiovariable. The Rubin's IV
estimand is imputed as a ratio of the differencerivbability of developing disease
between the two strata of instrument to the difieeesof exposure rates between the
two strata of instrument.

For a sample of siz&l , let the instrumenZ be coded with a dummy value of
1 or 0. The sample probabilities of developing dge for each stratum of the

instrument are:

iY [z, _ iY [ﬂl‘ Zi)

Y, =4t —— and Y, =% — |

Zzi ZN:(l_Zi)

i=1 i=1
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Their difference is:

ivm _iY.EGl Z) {N—izijtﬁivi[zij—izi Eivi[ql—zi)

Vz:;]_ _VZ 0_ |_1N - i=1 ,1‘:1 :\‘:1 i=1
Zzi (l_zi) Zzi N_Zzij
i=1 i=1 i=1 i=1

13 1Y 13
13 18 18

Let the treatment be exposedl £1) and not exposedl(=0). The sample exposure

rates from each stratum of the instrument are:

N

i-ﬂ [z ZT| [ﬂl‘zi)
T, =3 and T, =
2.7 2.(1-2)

i=1

Their difference is:

TZ:1 _-Fz:o — |:1N — |:1N — i=1 ,L=1 ;\1:1 i=1
Yz Y@-z) 3z N-zz,j
i=1 i=1 i=1 i=1

1 18 1
18 18 1y
NEETNEA A

The ratio of the two differences is called RubilVsestimand.

N

13 13 13
i Nt N ETNEYREE 20TETD Gy
VRTT ST ,},iT' ;i E’Nliz i(-r Tz -2) covz T)

,3,\,  Is also named as Local Average Treatment Effe&T@). It is a consistent

estimator of the average causal effectTofon Y from marginal population if and
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only if the following five assumptions are satisfied. A maagipopulation is defined
as those patients who receive the same treatmentyaarthassigned to.

Assumption 1: Stable Unit Treatment Value Assumption (SUTVA)
a. If z =2, thenT (2)=T.(2)

b. If Z =z’ andT, =T, thenY,(Z,T)=Y,(Z',T')
SUTVA assumes that one unit’'s outcome is not affeciedrtmther unit’s treatment
assignment. It goes beyond the concept of indeperdéWikipedia, 2010). A
violation example is given in Wikipedia, The Free Encyeltip. Joe and Mary live in
the same house. They both receive anti-hypertensioimeea Mary cooks for both
of them. Mary does not cook salty foods if she dodstale the drug, but she does
cook salty foods when she takes the drug. Mary'srreat assignment affects both
Mary and Joe’s diet, and a high salt diet is supposedcd®&arse blood pressure.
Therefore, not only is Joe’s blood pressure affecieldidtreatment assignment, but it
is also affected by Mary’s treatment assignment. The biestait treatment value
causes a difficulty in identifying the causal effect frthra treatment.

Assumption 2: Random Assignment

PrZ=c)=Prg=c") foranyc&c
Random assignment assumes that the probability of beilgmadgo any value of the
instrumental variable is equal for all patients. This assiom@ssures that the values
of the instrumental variable are independent on all obsergr unobserved
confounders.

Assumption 3: Exclusion Restriction

Y(Z,T)=Y(Z',T) forall Z,Z' and for allT



20

The exclusion restriction assumes that the effect of tey@tion a patient’s outcome
stays the same on any level of the instrumental variable.

Assumption 4:Nonzero Average Causal Effect @#fon T
Assumption 4 states that the probabilities of receivingrtreat are determined by the
value of the instrumental variable. On average, theee nenzero linear correlation
between the treatment values and instrument values.

Assumption 5: Monotonicity
Under the assumption of monotonicity, the causal effe adn T is one-way, not
two-way. For exampleZ =1 can causd =1, or Z=1 can causd =0, butZ=1is
not allowed to caus& =1 in one case, buf =0 in another case. In other words, no
patients are allowed to intentionally get the ofjgotreatment to the one they are
assigned to.

We may illustrate Rubin’s causal model using amgxa on evaluation of the
effect of serving in the military on health outcan®uring the Vietham War, in the
United States, being drafted into military servisas determined by randomly
assigned lottery numbers. Those with low lotterynbers ¢ =1) would have served
in the military (T =1), and those with high lottery numberg € 0) would not have
served in the militaryT =0). In reality, there were non-compliers who alwagsved
in the military or who never served in the militaggardless of which lottery numbers
they were assigned. The marginal population inclitithe compliers, i.e., those who
received low lottery numberZ(=1), and served in the militaryl(=1), or those who
received high lottery number&(=0), and did not serve in the militaryf =0). The
lottery numbers are treated as an instrumentalabbeiin this example. Health
outcomes from the study population are compareddei those who received low

lottery numbers and those who received high lottergnbers. Elevated mortality is
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found among men with low lottery numbers (Hearsgwihan, and Hulley 1986).
After the five assumptions are carefully examiniéds concluded that the elevated
mortality is from the marginal population due tceithhistory of military service
(Angrist, et al. 1996). Military service during tMeetnam War T =1) has a negative
impact on the mortality.
Assumption 1: SUTVA. One person’s health outcomes were not tdtbby
another person’s military service status.
Assumption 2: Random Assignment. The lottery numbe&=1 or Z=0)
were randomly assigned to men who were born betw880 and 1952 based
on their birth dates.
Assumption 3: Exclusion Restriction. The amount of impact of itaily
service on health outcomes was the same for allnegardless of high or low
number assignment.
Assumption 4: Nonzero Average Causal Effect @on T. The majority of
the participants were compliers, that is, men wdeeived low lottery numbers
(Z =1) were more likely to serve in the army €1), and men who received
high lottery numbers £ =0) were more likely not to serve in the army
(T =0).
Assumption 5: Monotonicity. Non-compliers include those who iged the
lottery numbers, and always voluntarily committedilitary service T =1),
or who never entered into military servicé € 0). Non-compliers who were
induced to avoid military servicel(=0) by the low lottery numbersZ(=1)

are not allowed.
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2.4  Comparison of the assumptions in 2SLS, IV coreonditions, and Rubin’s

causal model

Despite different notations and terminologies, agstions required in the
IVA are comparable. Comparisons are made in Taldld 2

Table 2.4.1 Comparison of the assumptions in 2SL8/ core conditions, and
Rubin’s causal model

Two-stage Least Squares IV Core Rubin Causal Model
Conditions

Y's are independent observations. SUTVA

cov(Z ,& )= 0, and co;, ¢4 F Z0u Random Assignment

cov(Z, Y, )# Oif and only if

YOZ|(T,U) | Exclusion Restriction
cov(Y, ,T.)# 0

cov(Z ,T.)20or a,#0 z y(T Nonzero Average Causa
Effect of ZonT

eithercov(Z, ,T, )< 0 or cov(Z, ,T, )> O,
but not both in the study Monotonicity

2.5 Generalized method of moments (GMM)

Foster (1997) first applied IVA to nonlinear modsigh as logistic regression by
using the Generalized Method of Moments (GMM). &tbn, Gustafson, Levy, et al.
(2008) extended the GMM instrumental variable asial{GMM IVA) to the other
generalized linear models, such as Poisson regresbi their opinion, the 2SLS
would not produce the consistent parameter estgriat@onlinear models by simply
replacing the second stage of ordinary least sqwétea generalized linear model.
IVA could be conducted using GMM. In GMM, a setesftimator-defining equations
(Hansen, 1982 and 1985; Hansen and Singleton, 18&2)dentified first. These
equations include population moments, and are daimultaneously for solutions of

the population moments. The estimated populatiomerds are believed to be a
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consistent approach to the true values. A simplmgple of the estimator-defining

equations is from the ordinary least square:

Y. =5, + B, X, + 6,0 ,+1IIF B, [X,, +& i=1,..N (2.5.1)
i represents théth observations, and there are a totalJofexplanatory variables.
One way to obtain the solutions of the paramefgrg S, is to minimize the sum of

squares of the residuals.

ZN:(‘gi)zZZN:(Yi_ﬁo_lng(il_ﬁzD(iz_Dm}ﬁJ D(iJ)2 (2.5.2)

i=1 i=1
Take the derivative on the right side of equati®/®.) with respect to th8s, and set

them equal to zero:

ZN:xil [GYu - B, — B, X, - B,X, ,—F B, D(U):()
ixiz [GYu - B, — B, X, - B,1X, ,—F B, D(U):()
) (2.5.3)

inJ [GY| -5, - B, X, - 5,X, ,— I+ B, D(U):O

Equations (2.5.3) are actually the estimator-definequations. By solving these
equations simultaneously, we are able to obtaisistent estimators for all thes.
Another way to view these equations is that adl ¢éixplanatory variables are

assumed to be uncorrelated with residuals.

cov(X; .Y, ‘é’T X )=10 (2.5.4)
xil ﬂl
where X, =| : and B=| :
xiJ ﬂ.]

Both equations (2.5.2) and (2.5.4) result in theeaet of equations in (2.5.3).
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In generalized linear models, there are three cwompts. The random

component indicates the distribution of independautcomes,Y;s. The systematic
components specifies a linear regression on a fsejlanatory variablesX; s.
Finally, the link is a function links the mean dfet random component to the
systematic components as in equation (2.5.5).
9(E(Y)) =B, + B, X, + B, X ,+[F B, [X, (2.5.5)
Equation (2.5.5) can be rewritten as (2.5.6):
E(Y)=f (&:é’) (2.5.6)
where f (X; ) is a linear or nonlinear function.
Y=E(Y)+g = (X:8)+¢ (25.7)

The estimator-defining equations in GMM for the lno@ar regression are expressed

as:

ZN:Xijg}z_ZN:Xij [EYi_f(Xi;~):|=0 j=1..9 (2.5.8)

i=1
Again, equations in (2.5.8) assume that the exptapaariables and residuals do not
co-vary.

In the case that there are unobserved confounthergquations in (2.5.8) do
not hold. A set of instrumental variables are thetroduced. They replace the
corresponding explanatory variables to form thé@regor-defining equations. This is
called GMM IVA. As defined, the instrumental varded are independent of the

residuals.

32, =Y 2, 0% - (x;8)]=0 k=1,.K (2.5.9)
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k represents thekth instrumental variable. Explanatory variab¥es that are

independent to the residuals are counted as theirimstruments (Foster, 1997).

2.6 Nonlinear Wald type methods

After Pearl’s causal effect using tlﬂD() operator (2009) was established,

Didelez, Meng, and Sheehan (2010) further presemtatinear Wald type methods in
IVA based on the three IV core conditions (Dideland Sheehan, 2007) and an
additional assumption of no interaction terms ia thodels. In the case of a binary

instrumental variable , let

a,=E(T1Z=1)-E(T, |2 =0. (2.6.1)
a, in equation (2.6.1) is essentially from the ma@e$.2),
E(T1Z =zU, =u)=a,z+h(u) (2.6.2)
Whereq(u) in equation (2.6.2) is a function of the unobsdrgenfoundetJ .
For a log-linear model,

log E(Y, |T, =t U, =u) = logE(Y, |do(T, =t) U, =u) = B {+h,(u) (2.6.3)
Again, m(u) in equation (2.6.3) is a function of the unobsdrgenfoundelJ , but it
is different from h (u). Since T is correlated withU, and functionh,(u) is
unknown, the instrumental variabke replacedJ andT .

logE(Y; |Z, = 2) =y, Z+h,(u) (2.6.4)

With the assumption oF independent otJ , it is not necessary to collect the actual

values of h,(u), which is another function of the unobserved canfier U .

Omitting hs(u) from model (2.6.4) does not change the valueyoflt is called
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collapsibility for y;, over U (Greenland, Robins, and Pearl, 1999). In gen&mdliz

linear models, collapsibility occurs for an ideptiink function or a log link function,

but not for a logit link function (Gail, Wieand arRiantadosi, 1984; Gail, 1986).
Equation (2.6.2) has a identity link function, smitting h (u) from model (2.6.2)
does not change the value @f. S, can then be imputed as a ratio of the coefficient

from the log-linear regression model &fon Z to the coefficient of the linear
regression model of on Z. The Wald relative risk (WaldRR) is just an expoine

of B,. This method is called the two-stage quasi maximikelihood (Mullahy,

1997).
_logE(Y|Z=1)-1logE(Y 2= 0Q
A= E(TIZ=1)-E(T|Z=0 (2.6.5)
RR(Y|Z)=exp logE(Y =1~ loE(Y Z= Y]
WaldRR=RR(Y |Z)"" = exp(,) (2.6.6)

In a logistic regression model,
logit{ E(Y, |T, =t,U, =u)} = logi{ E(Y, |do(T, =t) U, =u)} = g B+h,(u) (2.6.7)
Let Z replacingT andU ,
logit{ E(Y, 1Z, = 2)} = y; Z+h,(u), (2.6.8)
However, for logistic regressiony, is not collapsible ovetJ . Omitting hs(u)

changes the valug, . [3’1 obtained as a ratio of estimated coefficient frin logistic

regression model o¥on Z to the estimated coefficient of the linear regi@ss
model of T on Z is a biased estimator of the true causal odds (€®OR). The Wald

type odds ratio is given in (2.6.9).

OR(Y |Z) = exp| logi{ E(Y [z = 3} - logi{ E(Y £ = 0} ]
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WaldOR = OR(Y | Z)"" (2.6.9)

Wald's estimator is originally brought up in thase of fitting straight lines
with two variables, both of them having uncorretatrrors (Wald, 1940). When
Wald's estimators, such as WaldRR and WaldOR, aeel in IVA as IV estimators,
they are called Wald type estimators by the authHarshe logistic regression model,
WaldOR is approximately equal to the COR when sangite is large. As another
measurement of the causal effect, the true caeksive risk (CRR) can be calculated
by integrating out) in the logistic regression model (Didelez, et2010).

[[1+exo(-8,- B~ B, )] f(U)du

CRR= ~
[[1+exp(-B,-B,W)] f(U)du

(2.6.10)

where f (U) is a density function of .
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Chapter 3

IVA in Generalized Linear Models (GLM)

As stated in Chapter 2, in linear regression mod#ie IVA can be
implemented using 2SLS, and Rubin’s causal modebifRs causal model is a
variation of the 2SLS when the instrumental vaeadhd treatment variable are both
binary. Both 2SLS and Rubin’s causal model estimhee difference in treatment
effects. In nonlinear regression models, so fagrehare GMM and Wald type
methods which can be applied in IVA. They are desigto provide unbiased
estimators of the multiplicative treatment effeat!s as rate ratio and odds ratio.

In this chapter, we discuss issues in GMM IVA. Viée principal stratification
to illustrate the problem of estimating nonlineausal effects in IVA. We propose a
two-stage likelihood-based IVA model to estimatee thonlinear causal effect

assuming the distribution of the unobserved confeunins known.

3.1 GMM

Let’s consider a simple example of GMM. If we ohlgve one explanatory

variable that is the treatmet, the generalized linear model is:
g(E(Y))=4+Am (3.1.1)
E(Y)=f(5+5 )
Y=f(G+AT)+E

By assuming that the treatmehtloes not co-vary witle”, we obtain the estimator-

defining equation:
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ZN:Ti & =ZN:T| Y, - (8 +8,m)|=0 (3.1.2)

i=1 i=1
Ordinary least squares is a special case of GMMmwh¢s, + 3, [T) = B, + B, [T

(Foster, 1997).
If we have an unobserved confounder that is omfted the model (3.1.1), the true

model should be:
9(E(Y))=4+BO +B,U, (3.1.3)
E(Y)=f(5+A0+5U,)
-f(B+BO+BW,)=¢

The estimator defining equation becomes:

iTi L& =iT 0y -f(8+B.0+B,W,)]=0 (3.1.4)

i=1
Since equation (3.1.4) holds true, equation (3.dd®ds not hold any more. In GMM
IVE (Johnston, et al. 2008), it results in a neviinestor defining equation that

involves an instrumental variable.

N

ZZ,E‘—ZZEEY—f L+ 4, ) |20 (3.1.5)

Equation (3.1.5) is not always true whéf 3, + 5, [T, ) £ f (B, + AT, + 8,0,

E(z &)= { oY - (4+4 T )]}

(3.1.6)
#E{z, QY -1 (B+A0+8W,)]}=E(Z &)=0

When the unobserved confounder has a linear oakttip with the expected

outcome, equation (3.1.3) becomes:

=H(B+B, T )+ AU, +¢ (3.1.7)
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The estimator-defining equation in GMM IVE does dhblecause cc(\Zi Ei):o and

cov(Z W, )=0.

E(z)=e{z Qv -1(4+4T)]
=E{zdv -1 (5+4T)-4U+4,W, ]} (3.1.8)
= E{Zi I:Egi +5 mji:'} =0

However, model (3.1.7) is not a standard genemlizear model. The association

between the treatmeiitand confoundel is not easy to define and interpret.

3.2 Principal stratification

The study of PADT among men with localized prostdacer is used as an
example in our presentation. Using the algorithm motation from Zhang (2004), we
partition study patients into four categories.

» Compliers: patients who lived in PADT high usageaarand received PADT,
or patients who lived in PADT low usage areas aeckived conservative
management (CM).

* Always-takers: patients who received PADT regasllefswhere they lived.

* Never-takers: patients who received CM regardlésghere they lived.

» Defiers: patients who intentionally receive CM asidents of PADT high
usage areas, or patients who intentionally recBABT as residents of PADT
low usage areas.

A subtle distinction is that the patient alone & a “complier”, “always taker”, or
“never-taker”. Rather, it is really the patient afattor together, a combinational unit,

that is a “complier”, “always taker”, or “never-@K. Let ¢,@,% ,and ¢ denote the

population proportions of never-takers, always-takecompliers, and defiers
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respectively. Letg.,(y) be the distribution of outcom¥ for patients of category
C (C=n,a,c,d)andZ=0,1. Let f,, (y) be the distribution of observed outcove
for patients ofZ =0,1 and T =0,1. Under the exclusion restriction assumption, the
distribution of outcomeY, of never-takers or always-takers does not var e
values of Z=0,1. That is, g,,(Y) =9,(Y) =9,(y) and g,(y) =9,(Y) =9.(y) .
From observed outcom¥, they are identified ag, (y) = f,,(y) and g,(y) = f,.(y).
Under the assumption of monotonicity, the poputapeoportion of defiers is 0. Since
@=Prl. =01Z =)p=P((= 1% = 0,s0¢=1¢—-@.

For patients from low PADT usage areas who rec€iMe the distribution of

Y is a mixture distribution from compliers and netegkers. Similarly, for patients

from high PADT usage areas and receiving PADT dis&ibution of Y, is a mixture

distribution from compliers and always-takers.

- @
foo(y) = a+a Jeo(Y) + Py 9.(Y) (3.2.1)
- @
f.(y) = Py gcl(y)+¢c+¢a 9.(Y) (3.2.2)
fio(Y) = 0,(Y) (3.2.3)
for(Y) = 9. (Y) (3.2.4)
Solve equations to gag,,(y) and g, (y):
+
Jeo(Y) =%7C¢° foo(Y) -%C f1o(Y) (3.2.5)
+
0. () =5"% 1 (y) —% oY) (3.2.6)
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Diagram 3.2.1 shows always-takers in black, neakefts in white, and
compliers in grey. If outcomes of patients frof=1 and T =0 are compared, it
implies that always-takers plus compliers in thghhusage areas and never-takers
plus compliers in the low usage areas are comparbdse two groups are not
comparable. Instead, if outcomes of patients frdarsl and Z =0 are compared,
outcomes from always-takers and never-takers ameetlad out for the high usage
areas and low usage areas. The comparison is lgatoaducted on the compliers in

different treatment groups. Therefore, the restdfzresent the unbiased treatment

effect.
Diagram 3.2.1
T=1 T=0
Y N
Z=1 Always-takers Never-takers
2 @
Always-takers Never-takers
Z=0 @
/)
Y
T=1 T=0

The expected outcome means from the high usage aneblow usage areas are:

E(Yzzl) =@ [E(Ya) @ [E(Yc,z=1) té |:IE(Yn)

=g (B +A0+B,1,)+gM(B,+ B, +B,U, )+glh(B,+B,+B,U,)
(3.2.7)

E(Y,o) =R E(Y,) + @ [E(Y, 1) + @2 [E(Y,)

=g (B + AT +5,1,)+@h(B,+ B+ B,W,)+g h(B,+ S+ L,U,)
(3.2.8)
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The expected difference in outcome means fromwtleetypes of health service areas
is:

E(Yz=1 _Yz=o) =R [EE(YCZﬂ) -E (Y°Z=°)]

(3.2.9)
=g {h(B,+B,0+ B, )~h(B,+B,+B,U,)]

Equation (3.2.9) shows that the sample mean difterebetween the two types of

health service areas can be used to estimate thal acatment effect in differences,

especially, whenh(g,+B,0+B,U) has an identity link, the sample mean
difference is an unbiased estimator gf. If h(g,+B,0+B,U) is a nonlinear

model, to calculatgs, is not usually possible without knowing the distiion of U .

3.3 Likelihood function in IVA with linear models

As we have presented in section 2.2, in 2SLS, dpeaation of the outcome

variable given the value of instrumental varialste i

E(Y1Z)=4+6Z (3.3.1)

We are able to show the same result as equatiBriLj3ising the likelihood function

with the assumption of normality from &, T, andU . Let Y, |T,U has a normal
density function with mean of, + B, (T + 8,[U and variance ob?, T, |U,Z has a
normal density function with mean of, +a, [Z, + a,[U and variance ot?, andU

has a normal density function with meansgf and variance oty .
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LA Alaa,,8,y 2 =[] (Y R)=[]][ YTV B)auar

=1

=m¢;ﬁex{—(“;;“ D
1e Y,@/gtrﬁ;) . (T-ay-a,Z -a,)
ot i o X’{ 2 }m”
e —(U_'%)Z 0

(Y-8 ﬁztw -40) (BT -Bar,~Bla [Z,- B U)°
Lsz *{ 2% @ }m”

Y

(3.3.2)

Using the substitution rule, leX = g, [0, thendX = S, [dT .

L(4,Alaya,a,8,Y 2) =|%|IJ271D2 e»«{—(u_’”b)z}m

J- 1 ex (Y 4-BU- X X :qwo_ﬂlml[zi_ﬂlmzmj)z
205 \/21713@205 28 o

(X [dU

(3.3.3)

We apply convolution integrals to the normal dkation functions (Vinga, and

Almeida, 2004), i.e., ifG,(X) and G,(X) are normal distributions oN(a, A) and
N (b,B), the convolutiorG, [G, is defined as:

W) =[G, (X) B, (W - X)X =G(W;a+b, A+B) (3.3.4)
where G(W;a+b, A+B) is a density function of normal distributiah' with mean

of a+b and variance oA+ B
Let W =Y, - 3, - 3,

aizlglmo_ﬁlmlzi_lglmzmj’ and Q:O,
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A= o7, and B=07.
Using the convolution formula, we see tfafW ) has a density function of normal

distribution with mean of3, l&r, - B, @&, (Z, - B,[&r ,[U and variance of3’ (&7 + 0.

1 (Y B- ,leﬂJ X) 1 (X_:qwo_ﬁlml[zi _ﬁlwzmj)z
™ P e

! 1 (X~ [y~ B[, (Z, - B,[ar, W)’
_iszvie{ 202} = { 2 57 }W

.1 (W-3-h)’
= exp -
Jortet+ga?) | 2o ,61 o)
= 1 exp__ (Y| —4-BU-B -l Z - Bla U )2
Jerdoieaa) | Ao+ )
= ! exp__(Yi R AL LAY —(ﬁ2+ﬁlﬂl72)|ﬂJ)2
Jorloieaa) | Aot )

Y

(3.3.5)

Returning to the likelihood function (3.3.2):

A Alawaa sy 2 =[] (v ) =[x Ty p)ar

ﬁjf (V)G (YITU)E TV Z)dr i@
- exp_( —%)} 1 @({(Yi—x%—/%mo—/aw—(/%%mz)w)zw
L 2 A5 ) g &)
:NJ' 1 el [(,@t@@’) (152"':81@72),%]
oyt | 2718 +B 12,
1 eﬂ{ (Y-R-R@y-AB,Z - prB@)uf |
| ge) o +A @)
(3.3.6)

Again, using the substitution rule, 1&t = (3, + 8, [&r,) W , then

=(8, + B,r,) U
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A Aleaa,62 [ (Y B)

J‘ [X (B+B 1, ,L(J]
:qummﬂm) 2 (B +A@)

L @{ (Y~ -Be-AEZ ~X) }@(
|5 4 +£ 1)

N

(3.3.7)

Using the same technique of convolution integrafsibrmal distribution functions

letW =Y, -5, - B, lar,- 5, [, [Z;,
a:(ﬁz"'ﬂlmz)u[u’ and b=0,

A=c2UiB,+B.@,)", and B=0?+ [ b2

By convolution,G (W ) has a normal density function with mean(g, + 3,

(ar,) iy
and variance ob? [{ 8, + B, [@r,)" + B2 (& + 0.

L(,Bo,,81|a0, 2’162Y,Z =nf

ﬁ 1 exp_ I:Yi_ﬁo_ﬁlmo_lglml[zi —(,32+,31|]Y?)%]2
< |2 G U+ Aa) + A 4o

2 G W +B,) + B o7+ |

exg - [Yi A ‘ﬁlmﬂf
el i an) s pwre] | A A AT ]

(3.3.8)
The likelihood function of (3.3.8) shows that given Z has a normal density

function with mean ofg, + S, [&, [Z, . This result matches equation (3.3.1)

If the second stage in the 2SLS is a nonlinear t@uathe conditional
expectation ofY given Z is:

E(Y12) =B {Erpy [N(B+ BT +B,W) ]} (3.3.9)
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Because the expectation of a function is not a tfancof expectation (Kelejian,

1971), the confounder &f is unable to be absorbed as a constari & ). We need

to find the distribution of the unobserved confoaindnd numerically integrate it over

the probability measurement.

3.4 Likelihood function in IVA with nonlinear models

Inspired by the idea of true causal relative riskquation (2.6.10) (Didelez, et
al., 2010), we propose a two-stage likelihood-bd¥@dto estimate the multiplicative
treatment effect. In general:

Stage 1.

L(a, a,|a,T,2) =ﬁf (T 12)= !f (T, |z, V) @R, (U) (3.4.1)
Stage 2:

(BBl anaya, ¥ 2)=[] 1Y 12)

SRR EMEI AT

LuTy

(3.4.2)

Assumptionsa,, 3, andF, (U) are known.
U is distributed with a probability density functiqpdf) off, (U) and a
cumulative distribution function (cdf) oF, (U) Stage 2 is a conditional likelihood

function given a, and a, obtained from stage 1. T and U are continuous

variables, the two-stage likelihood-based IVA isganted as (3.4.3) and (3.4.4). The
example has been given in section 3.3 where Bo#mdU are normally distributed.

Stage 1.
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L(ao,al|a'2;1',;)=|ﬂj f(T 12)= - jf(Ti Iz, V) (U)@U (3.4.3)
Stage 2:

(Al b, 2) =] 1Y I
(3.4.4)
|‘J f(Y U, T)OF (T |U.Z)X (U)ET @U
1=luTU.Z

If T andU are discrete variables, the two-stage likelihoadda IVA model is
expressed using probability mass functions. Ourt resample is based on the

equations (3.4.5) and (3.4.6), where bétlandU follow a Bernoulli distribution.

Stage 1:
N
L(ao.a,10,:T.2) = |‘J P(T, 12) ZP(Ti |z U)P(U) (3.4.5)
=1 U

Stage 2:

L(:Bongllaoaalyazugz;Y ,Z) = ﬁ P(YI |Zi)
(3.4.6)
”;ﬂg“z P(Y,|U.T)P(T U Z)P(U)

We letY, Z, and U be all binary variables scored as 0 or 1. Logistic

regression models are used in both stages.

log E(T 1z, =a,+a,Z +a,l, (3.4.7)
1 E(T,|Z,1U|) 0 1 i 2 i -
log E(iITi’U') =6+4 0+ 6, (3.4.8)
1-E(Y T ;) ' i h

Both equations (3.4.7) and (3.4.8) are non-colladpsifor a, or [ over U
(Greenland, Robins, and Pearl, 1999), that ishéf tinobserved confoundér is

omitted in the modelsg, # a,, and 5, # ..
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log E(T12.V) =a,+a, Z (3.4.9)
1_E(Ti 1Z 1Ui) o
E(YIT.V) _ .
_— = T, 4.1
Ogl_E(YI |.I_I ,UI) 130+l[;J: i (3 O)

We use likelihood functions in equations (3.4.5) §8.4.6) to solvex, and 4,.

L(a, alaTZ:|i|PT|Z |‘|ZPT|ZU P(V)

1=1 U

i ﬁuzl{lzi(ga+f;ztz+famﬂﬂ)1)} E{ I ex'@%*‘l’lz mzw)}w e )(wi

(&)

:ﬁh fﬁ;ﬁ;ﬂﬂ )F E{1+exr(ao +1a1[z +a2)} )

() ]

rexqa, +a,(Z,) T expa,+a,[Z,)

(3.4.11)

(a,a10,7.2)= gt (a1, 0,7 2) =3 od SP(T £ U)PIV)|

(&)

& o[ edaraz ) | , o
_Zlog{g{“exdaﬁa&z +0'2EUJ)} [{B expa,+a,Z +0'2EUJ)} Q) -1

(3.4.12)

Estimators ofa, and a, are obtained by maximizing the log-likelihood ftioa in

(3.4.12).

Let:

" :uz{ ezt }TE{ ; )}(H) ) tfa-p, )

1+exda, +a,[Z, +a,V) | | ¥ exa,+a,Z +a,U

> () - ) a4 E D)
=ZN: Tai ’ a1+exp(a0+crlu7_i +a,)}’
M.

i=1 i

(3.4.13)
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S (i) - )= cery ) iz, g PG @ Z ra; V)
v T ’ {1+exp(a, +a,Z +a, )}

=> v (3.4.14)
=1

a, and @, can be numerically solved using equation (3.4aR) (3.4.14). When the
sample size is large, the variancesagfand @, can be ignored, and they are treated

as constants.

N

(,63,6’1|,820 a.a YZ =|_|

1=1

:‘|ZZ (¥ITU.Z)P(T U Z)B(U)

= U T]zU

=‘|ZZ (YITU)P(T U Z)B(U)

=1 U Tz U

2 exp B +BT+5,W) | 1 (H)D
—1|U TiZ U 1+eXp(,[% +:31U+132mj) B exi()lgo"',glu-"'ﬁzmj)

{ex"(“o*“lz*“zm’) }a{ L )}(H) 100 -4)"™

1+exda,+a,[Z +a,U) | | B expa,+a,Z +a,

N exp(B+B8+85) K 1 ) exp(a, +a,Z, +a,) .
_|:1| 1+eXF(,Bo+,31+,Bz) ]:l-eX[()ﬁo+,B1+,32) ¥ e><(no+0'1[Zi+az) #

{1?;?((50,5’:&)’2)}% %y ex;@l,5’0+ 3,) }(Hi) % £ ex(no+1alz +a2)}%

fotaen) ' 1| f oo |y,

) bl e

(3.4.15)
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(B, B Bort,0,,0,Y Z) = lod(Bo B, 18, o 1@ .Y Z)
-$1ea/3. 3 Pl T)e(r b 2)B(0)|

U T U
Y (1)
- exp( 4, +B,T +5,) 1
‘;'Og[UZT;J{1+exr(ﬁo+,81Er+ﬁ2m1)} B{& exnéﬁo+ﬁltr+ﬁzw)} .
T (=)
exp(a, +a,Z +a,) 1 O )
{“exp(%wll +0'sz)} [{:Hr exfa,+a,Z, +0'2DIU)} Qo) -0
(3.4.16)
Let:
L=y exp(B,+ AT +4,1) |’ 1 o) -
) U TIZ U 1+eX[(,[3’0 +ﬂlEF+,6’2|IU) T ex;ﬁﬂ0+lglg+lg2m))
T (=T)
exp(a, +a,Z, +a, ) 1 o)
{l+exdao+alzi +a2ml)} B{l-'- exléa'o"'almi +0'2DU)} [G'%) [01 MJ) }
(3.4.17)
— exp(ﬁ0+ﬁ1|:|-+ﬁ2mj)
_1+exp(ﬁo+ﬁln+ﬁ2mj)

J = exp(a0+a1EZi+asz)
i 1+exp(a, +a,Z +a,U)

g=exp(B,+ B0 +p,U)

W23 (6) ta-a) T ) ) -3
d_fzz U Tizu
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A _d g do
dg, dé dé dp,

L3 (@) o) ) e ) i (8418
N T Tz U +
% g
d_d dedo

> (@ o) ) s Uy 439
i U Tiz U - (1+9)

i=1 i

Set equations (3.4.18) and (3.4.19) to 0, and dblem for[?0 and[?l. The maximum
likelihood estimator ofg, is a consistent estimator of the treatment effEleé closed
form for ,@l is difficult to obtain because the derivativesqgtiation (3.4.19) involve a
natural logarithm of the summatioﬁ1 is obtained numerically.

In summary,a, quantifies the association between unobservedocowter
and treatment statug3, quantifies the association between unobservedoconter

and outcome. The maximum likelihood estimatorsxgfand a, from model (3.4.1)

are calculated with a pre-defined valueagf. [30“, and [31|V , which are the estimators
of B, and £, in model (3.4.2) using two-stage likelihood-bad&th, are then
calculated with the pre-defined value 6f.

The average Fisher’s information matrix is useddttmate the sample

variance-covariance matrix fg8,,, and g, .
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All(ﬂo B\ G,.a,0.a YZ) E(d(ljéj

S Y (@) t-2) 7 ) - 4, )“’t@n)”wz

U TIZU
2 ]

| poo (B Bil Bl 0,00 100 Y Z) = E[ d j

=\ dg
S Y (@) t-2) 7 ) e ) -9 a(%)n
_@ U Tz U
N 5 )

IAlZ(ﬁO!ﬁllﬁZ’aO’al’GZ;Y ’Z)=|A21(ﬁ07ﬁllﬁ MY Z)
_1 NOdo_d

N 95 Gd_ﬁlj

A1 X (@) =) Vi) - ) -0

1 U Tiz ( )
_NQ;I L = (3.4.20)

X3 €0 ) T o)y

L

The expected Fisher’s information matrix can bewtgtd from following equations.
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(3.4.21)

If the values of confounddy are observed, IVA is not needed. The expected
Fisher’s information matrix of?o and,@1 can be obtained with the logistic regression

model in (3.4.22).



47

E(YIT.U)

m:ﬁo"'ﬁlgi + 3, U, (3.4.22)
log E(TIV) =a, +a, U, (3.4.23)
l—E(Ti |Ui) 0 1 i T

_ exp(B,* AT, +B,W,) _
et &= p D] Y G eA AT L)

N

(88X T W) =] PLY, T 1) ”{f qre))

(B, BB 1Y T ) = logL (B B, B, X T U) z{v Ologé ) +( £Y)Dlog £))

5oY & _de
dﬂo R E)Bj_é’mdﬂo

o & _da
dﬂl Zlfﬂql &) do dg,

Y-¢
o a a6 dﬁJ E{m f)%TJ

(8.5,

_ Y& 0 |
‘%%{fm—a W} i
o +a ) | 1 . "
(1+enc(%*+a; @)} [E}ex(n; +d1m1)} ) o)™
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3.5 Efficiency loss by using IVA

The efficiency loss is estimated by the ratio @& wariances of estimators. Let
B, represent the treatment effect from ordinary linegression without IVA, and
B, represent the treatment effect from two-stagealimaodels of IVA. In section

2.1, we showed the ratio of the two variances afesponding treatment effect

estimators.
var(,@l) _ [IZZ{(Z' _Z_)E(Ti _T_)}T <1 (3.5.1)
var(4,, ) ZN;(Z -Z) DZN:l(T -T) _ B

The ratio of the variances is determined by theaetation of instrumental variable
and treatment status. When the correlation betwesirumental variable and
treatment status is 1, there is no efficiency Id3s® example can be found in well
monitored clinical trials without non-compliers. tRRats are all treated with the
assigned drugs following the randomization codeslservational studies, patients’
compliance is usually much lower than 100%. Theeefthe correlation betweeh
and Z is lower than 1. The confidence interval of treatment effect estimator from
the 2SLS is wider than the one from the reguladimregression model without IVA.
When the compliance is very poor, there will bepwver to detect any treatment
effect using IVA 2SLS.
In IVA with two-stage likelihood-based model, therhula for the efficiency

evaluation is much more complicated than the ong3ib.1). In general, we use

notation in (3.5.2) to stand for the expected Rishformation matrix of 3,, and
B, In the two-stage likelihood-based IVA. The expédtsher’s information matrix

in (3.4.21) is one of the examples.
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Ill(ﬁOIVHB]JV) IlZ(ﬂOV’ﬁlV)

3.5.2
(B Bo) Vs BoveB) (352

| (Bow s Buv) {

In the same way, we use notation in (3.5.3) to dstbor the expected Fisher's

information matrix of 5, and £ without IVA. The expected Fisher’s information

matrix in (3.4.24) is one of the cases expandatktail.

_ Ill(ﬂmﬂl) |12(:Bo’,31)
(B 1){51(&,&) | o Bo ) (3:53)

The determinant of the ratio of the two matrixe$(3) and (3.5.3) measures the cost

of efficiency by using the two-stage likelihood-bddVA.

det 17(8,.8.) 0 (Bay Buv) ] (3.5.4)

Particularly, the ratio of the variances of treatineffect estimators from non-IVA

and IVA is given by

[I_l(ﬁo’ﬁl)]zz
[I _l(ﬂow!ﬁuv)}zz

(3.5.5)

To sum up, for IVA with nonlinear regression modgele develop a two-stage
likelihood-based model. As in the 2SLS, the firsige is used to adjust for non-
compliance. In the second stage, maximum likelihestimator of the treatment

effect is imputed.
E(T'):hl(ao"'alzi"'azmji) (3.5.6)
E(Y)=h(5+AT+5,U,) (35.7)
We can express the two-stage likelihood-based WA more general form in terms

of the likelihood functions in (3.4.1) and (3.4.2).the application of the two-stage

likelihood-based model, the distribution of the naolwn confounderU, the
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association betweefl andU (a,), and the association betwe¥nandU (2,)

must be assessed in advance.

3.6  Simulation of two-stage likelihood-based IVA mdel

It is well known that the prostate specific antid®®A) screening test affects
the usage of PADT. Patients with high PSA valuesraore likely to receive PADT.
In the meantime, high values on PSA test causeehigiortality comparing to normal
PSA values. In the study of PADT among men withalzed prostate cancer,
information on PSA testing is missing. There isdoabt that we miss an important
confounder when we try to evaluate the treatmefecebf PADT on the mortality. In
our simulation, we assume that the distributio8# is binary, high or normal, with
a mean of 0.2Y is the outcome variable, e.g., 10-year mortalityhaf patient being
dead or alive.Tis the treatment of PADT or CMJ stands for the unobserved
confounder of PSA. FinallyZ is the instrumental variable recording of where
patients lived in, high PADT usage areas or lowgasareas. The true parameter
values are given in Table 3.6.1.

Whether a patient lived in a high PADT usage area mw PADT usage is
completely random before the disease is develdpésireasonable to assume that a
patient has an equal chance of living in eitherdkof health service area. The
probability of being treated with PADT in low PADIOsage areas and with normal
PSA is assumed to be 0.1. The probability of bé&iagted with PADT in low PADT
usage areas but with high PSA is assumed to bé&®.The other hand, in high PADT
usage areas, patients with normal PSA have a pilapadf 0.3 to be treated with
PADT, and patients with high PSA have a probaboity).9 to be treated with PADT.

In addition, patients being treated with PADT withrmal PSA levels are assumed to
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be suffering the lowest mortality, which is 0.2tiPats being treated with CM with

normal PSA had slightly higher mortality, whichGs3. For patients with high PSA,

even though they received PADT, the 10-year maytakn be as high as 0.7. If they
received CM, the mortality is even higher at 0.8.

We use the two-stage likelihood-based IVA with tstages of logistic
regression models to estimate the true PADT treatneffect. With all the
assumptions listed on the left side of Table 3.B.i%, not difficult to calculate the true
values ofa,,a,,a,, and g, B,, 5,. The truea; value is 10g(3.86)=1.35. This number
provides the information on compliance of the et given the instrumental

variable. The truer, value is log(21)=3.04. This number provides infation on the
association between the treatment status and PSAt.r@he truef, which reflects

the treatment effect is found to be log(0.58)=-0BHe odds ratio oexp(/)=0.58

on the 10-year mortality of PADT versus CM implteat the PADT lowers mortality.

The true B, which measures the association between mortatity RSA level is

found to be log(9.3)=2.23.

Table 3.6.1 Parameters used in simulation of two-age logistic regression

model
P(U=1)=0.2
P(z=1)=05
P(T=1|Z=0U=0= 0. odds(T =1|Z=1V) _, o
P(T=1]Zz=0U=1= 0.7 — odds(T =1|Z=0U)
P(T=1|Z=1U=0= 0. odds(T =1|U =1,2) o
P(T=1|z=1U=19=0¢ odds(T=1|U =02Z)
P(Y=1T=0U=0= 0. odds(Y =1|T =1U) - 0.58
P(Y=1T=0U =1= 0. — odds(Y =1|T = 0U)
P(Y=1T=1U=0= 0z odds(Y =1|U =1T) _93
P(Y=1|T=1U=1= 0.7 odds(Y =1|U =0T)
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100 sets of data are generated with 30,000 subjeatach data set. Besides
the two-stage likelihood-based model, we alsoditado several other models for the
purpose of comparison. Means and their empiri@idard deviations of the 100 sets
of estimators are calculated, and results are pteden Table 3.6.2. The true values
of the coefficients are listed in colunan For clarification, in this section, we use a
subscript of “GMM” indicating the estimators arern the GMM method, subscript
of “Wald” indicating the estimators are from Waldethod, and a subscript of “I\V”
indicating the estimators are from the two-stagelihood-based IVA method.

In column b, the estimated coefficients are from the regulagistic

regressions with the unobserved confounder omitietthe models.a, and a, are

estimated from model (3.6.1ﬁ0 and [31 are estimated from model (3.6.2). Because

the unobserved confounder is not adjusted fore#ienated treatment effect goes to

the opposite direction of the true value.

E( ilzi) —

Iogl_E(_I_i |Zi) =a,+a,lZ (3.6.1)
E(YVIT) _

08 e iy yry At A (3.6.2)

In columnc, the regular logistic regression is also usedtfeiimodels include

the unobserved confounder with values from simdlai&ta.a, and a, are estimated

from model (3.6.3). ,5’0 and [31 are estimated from model (3.6.4). Since the
unobserved confounder is adjusted in the modedsesitimated coefficients are very
close to the true values.

E( 12 'Ui)
1-E(T 12 V)

log =a,+ta,Z +a,U, (3.6.3)
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E(YIT.U,)

|
TEN L) ArAEAU (3.6.4)

log

In columnd, the MLEs are obtained from the two-stage logistigression
model as presented in section 3.4. Instead of géngrsimulated values for the
unobserved confounder, we numerically integratetfieiunobserved confounder over

its probability measurement.

Columne gives the estimators from GMM IVA (Johnston, et 2008). The

estimator-defining equation (3.6.5) is also caNé@stimation.

=z

g¢=:zl(zi Dﬁ)=;{zi E{Yi - 1fZi(£ﬁ+fﬁUc)r)H =0 369

,élGMM is obtained from the solution of (3.6.5) with tastimator of 5, from model

(3.6.2). The variance o,f?lGMM is imputed from the sandwich matrix. The empirical

estimator of the sandwich matrix is

Vo (Bown 12Y.T) = A B 12X T) By (B Y T) A (Bown £ Y T)
(3.6.6)

where

N IBOGMM l[}lGMMl:ri

I
.—HD

and

2

_ 1 N Z Y B eXp(,BOGMM +IBlGMM U)
i=1 1+ eXF{,B()GMM +ﬂ1GMM U|)

Vi (B1zZY.T)

The variance ot81 is estimated byT
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In columnf, Wald type estimators are derived by using equoat{8.6.7) and

(3.6.8).
T=a,+a,Z +u, (3.6.7)
E(Y1Z) .
lo ——— =B +B 0 =6+ a,+a,[Z 3.6.8
gl_E(YIIZI) :80 ﬂl i :80 ﬁll:q 0 1 |) ( )
E(Y|T
Essentially, in Wald type methodkg ( | ') is treated as a linear function of
1-E(Y|T)
) aa . E(Ba,
Z,. Same as in 2SLS, we obtaingg, , :@, andSE(,BlWa,d) :M.
al al

Table 3.6.2 Simulation results from the two-stageobistic regression model
and its comparative models with a binary distributed confounder

a b c d e f
Estimator Estimator from
from Estimator two-stage Estimator
Logistic from Logistic | Logistic Estimator from Wald
True value | Regressiol | Regressiofi Regression from GMM method
g, = 2.2 a,=-1.27 | a,=-2.20 | a,, =-2.15
SE=0.02 SE=0.03 SE=0.029
a =1.35 é’l=0.94 é'l=1.35 a,, =1.32
! SE=0.02 | SE=0.03 SE=0.036
a,=3.04 a,=3.04
SE=0.03
3, =-0.85 B,=-0.71 B,=-0.85 | B, =—0.84
SE=0.01 SE=0.01 SE=0.04
B, =-0.54 B, =051 B, =-0.54 B, =-0.56 Bowm =0.28 | Baq =-0.45
SE=0.03 SE=0.03 SE=0.14 SE=0.03 SE=0.11
B,=2.23 P, =2.23
SE=0.04

1. Models omit the unobserved confounder.

2. Models include the unobserved confounder withusaited values as fixed effects.
In Table 3.6.2, it is obvious that coefficient estors from both regular

logistic regression models omitting the unobsereedifounder (columrb), and
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GMM IVA (column €) are biased. The coefficient estimators from te-stage
logistic regression model (columd) are close to the true values in coluran

Estimator of 8, from Wald method (columf) slightly deviates from the true value.

This result confirms the non-collapsibility in thagistic regression which is discussed
in section 2.6. The coefficient estimators from tkgular logistic regression model
with simulated values of the unobserved confourfdelumnc) are closest to the true

parameters values. They also have small standestseBStandard errors af,,, and
a,,, differ little from the standard errors @, and &, in columnc, but the standard
error of[}llv is much larger than the standard error,Zinn columnc. The standard
error of ,/S’lWam is slightly smaller than that o,f?llv. 95% confidence intervals of the
estimated coefficients from the two-stage logistigression model and Wald method
both cover the true coefficients values. 95% canfik interval of,@l,v is given in
(3.6.9):

95%Cl =(-0.56- 1.9610.14; 0.56 1.96 0)i4(- 0.84; Q. (3.6.9)
95% confidence interval Olf;lwam is given in (3.6.10):

95%Cl =(-0.45- 1.9610.1% 0.456 1.96 O)H(- 0.66; 0. (3.6.10)
A histogram of the 10(ﬁllv is illustrated in Figure 3.6.1. A plot q?v’llv

versus,@’1Wald (Figure 3.6.2) clearly displays the linear asstimiabetween the two

types of treatment effect estimators.



Figure 3.6.1 Histogram of[}llv from two-stage likelihood-based IVA —
binomial distribution
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Figure 3.6.2 Treatment effect estimators,éllv S ,/S’lWajd - binomial distribution
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The efficiency of the two-stage likelihood-basedAl\s further studied. The
variances of,@’l,v from columnd are compared to the variances/ﬁ}ffrom columnc

for three scenarios: PADT superior to CM, PADT eaqlent to CM, and PADT

inferior to CM. The true parameters values are mive Tables 3.6.3 and 3.6.4,,
from expected Fisher’s information matrix, (3.4.20d (3.4.24), is used to calculate

the variances oﬁl,v and ,5’1 respectively.
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Table 3.6.3 Parameters in the first stage used ifmnsulation to estimate
efficiency loss in IVA

P(U=1)=0
P(z=1)=0
P(T=1|Z=0U=0= 0. (T =10 = 0= 0.2
P(T=1|z=0U=1=0.7 —
P(T=1]Z=1U=0= 0. P(T=1lUu=1=0.
P(T=1|z=1U=1= 0. U
S TR
0dds(T:1|z=oU)_ odds( | )
odds(T =1|U =1,2) o U
odds(T =1|U = 0,Z)

U a, =log(0.2/0.9=— 1.3

=log(0.1/0.9 =~ 2.2( a; =log(16) = 2.77

a, = |0g(3.86) =1.3¢
a, =log(21) = 3.04

P(T=1|Uu=0) and P(T=1|U =1 in Table 3.6.3 were obtained by equations

(3.6.11) and (3.6.12).

P(T=1U=0=P(T=1U=0Z= QP(z= 0+P(T= W= @ = IP(Z= ).

=0.10.5+ 0.3J0.5 0.2
(3.6.11)

P(T=1u=1)=P(T=1U=1Z= QP(Z= 0+P(T= W= Z= JIP(Z= ).

=0.700.5+ 0.910.5 0.8
(3.6.12)



Table 3.6.4 Parameters in the second stage usedsimulation to estimate
efficiency loss in IVA
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(1) PADT superior to conservative management:

P(Y=1T=0U =0= 0. odds(Y=1|T=1,u)=058
P(Y=1]T=0U=9=0¢ — odds(Y=1[T=0U)
P(Y=1T=1U=0= 0. odds(Y =1|U =1T) _ 93
P(Y=1T=1U =1= 0.7 odds(Y=1|U =0T)

J

, =log( 0. 3/07) - 0.8

(2) PADT equivalent to conservative management:

P(Y=1T=0U=0= 0. odds(Y =1|T =1U) 1
P(v=1T=0U=9=0& —  odds(Y=1[T=0U)
P(Y=1T=1U=0= 0. odds(Y =1|U =1T) _93
P(Y=1T=1U =1= 0. odds(Y=1|U =0T)

J

B, =10g(0.3/0.7 =~ 0.8t
B, =log(1) =
B, =10g(0.93 = 2.2

(3) PADT inferior to conservative management:

P(Yy=1]T=0U=0= 0. odds(Y =1|T = 1U

( : ) 171
P(Y=1T=0U=9= 0.1 — odds(Y =1|T = 0V)
P(Y=1T=1U=0= 0. odds(Y =1|U =1T) _ 3
P(Y=1|T=1U =] = 0. odds(Y =1|U =0T)

U

B, =10g(0.2/0.§ =~ 1.3¢
B, =log(1.71) = 0.5
B, =1og(0.93 = 2.2t
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The results in Table 3.6.5 show a loss of approteige0% of the efficiency
with 20% of the marginal population, where the 288 from equations (3.6.13) and

(3.6.14). Standard errors do not vary when thdnreat effect changes.

P(T=112=)=P(T=1Z=W=)PU=)+P(T=1k= Y= pPU= X
=0.90D.2+ 0.310.8 0.42
(3.6.13)

P(T=112z=0=P(T=1Zz=0J = }JIP(U= )+P(T= 1= @ = OP(U= X
=0.7(D.2+ 0.1J0.& 0.22
(3.6.14)

Table 3.6.5 Simulation results of efficiency lossilVA

True value of g, -054 |0 0.54

Expected SE of,@1 0.024 | 0.024 0.024

Expected SE of,@l,v 0.075 | 0.076 0.077
=(4)

Ratio of SE 0.32 0.31 0.31
(:Bllv)

Next, we replace the binary distribution with a mat distribution for the
unobserved confounder in the two-stage likelihoadea IVA model. We assume that

the mean ofJ is 0.34 and the standard deviation is 0.63.

(4. 818.9,,Y 2) =|£|P(Yi YTZ U)o

||
"—‘-

UTIZ u

=”Iz{ geaTam [{ 1
20Tz U 1+eXF(ﬁ)"‘,3.LU+:32 )] | ¥ expB+BT+5,0)

ex(ay+a,Z +a, ) || 1 lTD 1 ~(U-u, ) -
tredaraz o) |¥efaraz b)) T &

(3.6.15)
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100 sample datasets of size 30000 are generatedsi@agsiadrature is used to
integrate out the normal distribution.

Table 3.6.6  Simulation results from the two-stageobistic regression model
and its comparative models with a normally distribued

confounder
a b c d e
Estimator from
Estimator from Estimator from two-stage Estimator
Logistic Logistic Logistic from Wald
True value Regression Regressiofi Regression method
a,=-2.20 a,=-2.16 Aoy =—2.19
SE=0.03 SE=0.03
a,=1.35 a,=1.30 a,, =1.33
SE=0.03 SE=0.04
a,=3.04 @,=3.00
SE=0.04
B,=-085 | g =-061 B, =-0.85 B,y =-0.86
SE=0.02 SE=0.02 SE=0.06
£=-054 | s-085 B,=-0.54 B,, =-0.51 By =043
SE=0.03 SE=0.03 SE=0.14 SE=0.12
B,=2.23 B,=2.23
SE=0.03

1. Models omit the unobserved confounder.
2. Models include the unobserved confounder with simmdlaglues as a covariate.

The results (Table 3.6.6) are consistent with the prsvifadings. The
treatment effect estimator from a regular logistic regressiodel including treatment
only but omitting the unobserved confounder indicates rib@rhent caused higher
mortality than placebo while the true treatment effect isoteelr the mortality. In
contrast, the two-stage likelihood-based IVA and Wsjoe method provide closer

estimators to the true values although the standard eamersquite large. 95%

confidence intervals of thél,v and /S’lWajd contain the true value gf,.
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A histogram of,l?llv is graphed in Figure 3.6.3{3’”\, and /}Mam are highly
linearly correlated as shown in Figure 3.6.4.

Figure 3.6.3 Histogram of,l?llv from the two-stage likelihood-based IVA —
binomial distribution with a normally distributed ¢ onfounder
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Note: Dotted line indicates the true value.



Figure 3.6.4 Treatment effect estimators[;’llv S [S’lWajd - binomial distribution
with a normally distributed confounder
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Chapter 4

IVA in Survival Regression Model

IVA in survival analysis was mentioned by Dunn, Maracyd &omenson
(2005). IVA has been used previously to analyze tlostpte cancer survival data
(Lu-Yao, et al., 2008), Other similar examples of IVAttwcensored survival data
include a comparison of prostate specific survival of lwrentherapy to radiotherapy
(Zeliadt, Potosky, Penson, et al., 2006), an evaluatioeffects of invasive Cardiac
Management on acute myocardial infarction survival (8tukisher, Wennberg, et
al.,, 2007), and an example comparing survival of luagcer patients treated with
chemotherapy as compared to no chemotherapy (Eade, Gelber, et al., 2001). All
of these papers made use of the SEER-Medicare linktbatse, and compared
survival in high-use to low-use health service areavelkheless, there has been very
littte methodological research on the use of IVA using isahanalysis methodology.
It could be very complicated when the estimation of hazatib in the Cox

Proportional Hazard model involves a partial likelihood figrct

4.1  Two-stage likelihood-based model in survival alysis

We extend the IVA two-stage likelihood-based model tovisal data
analysis. The general form is almost the same as in J&AdL(3.4.2). In stage two, a

survival function with censoring data is used.

Stage 1.

L(ao,alla'z;l',z):lj f(T 12)= N [f(T 1z, V)R, (V) (4.1.1)
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Stage 2:

L(Bo 810,000, B Z C) = |_J (Y C 1)
(4.1.2)
|‘J f(Y,,C |U.T)EF, (T.Z)EF, (U)
=luTy

Assumptions:a,, B, and F, (U) are known. In addition, the censoring status is

random.

In special cases, stage two can be formulated from #ulVealistribution
function, an exponential function, or a proportionatdrd function. The likelihood
function at stage two may be written in the standaroh ffmr right-censored survival

data, and summing ovér andT |U , as follows:

(1301131 |ay.a.,0,.8,Y Z ,Q)

” f(T1Z,U)CF (U)h(Y, [T V)" (B(Y, [T b) @ (@ (4.1.3)
=LuTu

where h(Y, | T,U)is the hazard function an8(Y, |T,U) is the survival functionC,

indicates the censoring status. When the survined ts a continuous variable, aid
andU are binary variables, the likelihood function igpeessed as in (4.1.4).

(BB 10,84 2 €)= [] (Y S )
(4.1.4)

|‘J > {P(T1U,Z)P(U)I(Y T V) (Y, [T W)}
=1 U T|U Z
If the survival data follow an exponential distrilmn, equation (4.1.4) becomes:

L(B,. B |as.a,.a,.8,X Z C)= |_Jf Y C k)

N

I_J S Tluz Y.GITU)P(T U .Z)P(U)} (4.1.5)

=M 3 {1° @xp(-A¥)(P(T U 2,)P(U)}

i=1 U Tz U
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where hazardl = exp(—,[i’0 -4 O0-46,U ) and it is a constant. If the survival data

follow a Weibull distribution, equation (4.1.4) lmeunes:

L(ﬁO’ﬁl |a0’a1’a2,ﬁ2;Y ,Z ,g)

:ﬁz 5 {{A D/[G/]Eyi)(y—l)}c. @xp{—(/lDG)V}DP(T U z)P(U )}

U Tz U

(4.1.6)

where Azl@xp(—ﬁo—ﬁlm'—ﬁzm) is a shape parameter, and is a scale
4

parameter.

4.2  Two-stage likelihood-based model in piecewisertstant hazard function

The Cox proportional hazard regression model i/ ypular in survival
analysis. We model the first stage as a logistigaession and the second stage as a

Cox proportional hazard regression:

log E(T 12, =a,+a,[Z +a,U, (4.2.1)
1_E(T| |ZI an) 0 1 i 2 i e
h(YIT.U;) =h exp( .0 + 5, (4.2.2)

h(Y) is a hazard function at timé, andh, is the baseline hazard function at tie

when covariates of andU equal 0. Outcom& stands for time to event or time to
censored event. However, because the Cox propaltioazard regression model
involves more complicated partial likelihood fumets to estimate the parameters, we
replace the Cox proportional hazard regression muadh a piecewise constant
hazard model. Piecewise constant hazard functioage hbeen used in the
Surveillance, Epidemiology, and End Results (SE&Ra to examine prostate cancer

mortality (Goodman, Li, and Tiwari, 2011). The hak&unction is:

h (Y 170, ) = hy (Y, ) exp( 8,0, + 8,0, (4.2.3)
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for 7,,<Y;<7,,j=12,...J, andO<7, <7, <[lx 7, <[l¥x7, andz,=0

In (4.2.3), time to deatlY, is divided intoJ intervals.Y, denotes the time
within jth interval for subjecti. h; is constant within the time interval of

r,, <Y, <1,. h, is the corresponding baseline hazard within tieesaterval.

h(Y) =4 =exp(By ), 7 <Yy <7 (=12, (4.2.4)

The baseline survival function is given by
:exp{—/ll[ﬂrl—ro)—/IZEQrz—rl)— LA [@Y—rjf_l)} , T, <Y, <1, (425)

is used in equation

where J; is the index for whictr . <Y, . Instead ofY;;, Y,

(4.2.5) because the survival function is derivamrfrthe cumulative hazard function

covering J; intervals. For individual with survival and censoring valu&s and C,
and receiving treatmert and having confound&y,, the hazard function is:

exp(fy + AT +B,L) 7 r

exp(ﬁ02+ﬁ1|:ri +,Bzmji) I[<Y;=T,

h(Y,)=1 (4.2.6)

exp(ﬂoJl* +ﬁ1Ui +52|1Ui) TJI*_1<Y”. ST‘]:
The survival function is:

o ALY 7 Eéwé/%mﬁz 'R n<Ysz,

AR r)i s I+6,u) |, ,<Y<r
| Pt o)

ex:ﬂ -A [(]rl—ro) —Ar,~1) - A, [@\i(—ri_l)} Cexp3 0 +4,U, )} . L, <Ysr,

(4.2.7)
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When the confoundeld is not observed, we have to use the two-stage

likelihood-based IVA model to estimate the treattredfect g,. First, we estimater,
and a, from the likelihood function at stage one with yspecified value ofr, and

pre-specified distribution of) . This function is the same as (3.4.11) becausesee
the same logistic regression at stage one as tiose®4. The likelihood function at

stage two with a piecewise constant hazard model is
L(ﬁOPﬁOZ""’ﬁQ] 1ﬁ1 |a0ala2ﬁ2¥ Z (:’) = H f (YI Q Z\)
- ZZ[P(HU,Z)DP(U)[{MJ; (3 T+AW) O

e{p{i/lj 0 ex® 0 +5,U) [(]rj —rj_l)}—/lJi. 0 ekp, T +3,) [@\( _735-1)}}

(4.2.8)
where 4, :exp(,ﬁ’oj) is the baseline hazard during the time interva(rof,, 7] .

The log likelihood function of (4.2.8) is:

(R BB B0, 8 ZC)
=logL( By, BB B, 00,0 ,8,Y ZC)

209{ f(Y.G 1)
N ex{a+a,Z +a,l) ! 1 o IR
_209[22{1+e)q%+aiz +a2[w)} [{3_ e)@o_,_alz +a2[UJ)} [(]HJ) [0]- /'{J) O

i=1 U TuZ

{/]I Ex{AO+4 @)}Q [M{{EAJ Dex3T+5,U) [(]rj —rj_])}/lI DefBT+A,U) [(N_Tj_l)}]

(4.2.9)

It is not easy to find the score functions explycfor the log likelihood functions as

the one in (4.2.9). Given pre-specified valugsand ,, solutions for the MLEs of
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the parameters and their variances at both stageaod stage two are handled
numerically.

After we obtain the MLEs@’Ol,/?OZ,...,,ém and ,5’1 we are able to estimate the

survival functions for giverm andU . The standard error of the survival probability
at any time pointY can be approximated using the delta method (Valemtd

Weissfeld, 2002).
S(Y) =exp{—{§/lj Cexd 8,0 +5,W0)r, —rj_l)}—/lJ. OexB,T + ,esz)[@Y—rJ,_l)}
= exp{—{i1 exp(,[%j +40+46,U ) [@rj —rj_l)}— exé,[%f +4,0+4,U ) [@Y—rJ._l)}

(4.2.10)

where J” is the index for whichr . <Y<r7.. .

o(Y15)=logs(¥) = ‘{24 g AT +4,0)(r, _Tj-l)}_/]f CexpT +£,U) Y -7,

:—{z‘iexd,@)j +BT+aU) i -rj_l)}- oxt, +AT+ B0, )
(4.2.11)
var(log$(Y)) = g'(¥ |,f3’)T ova(4) (Y ) (4.2.12)

In the approximate equation (4.2.12}f;’ is a vector of parameter estimators,

[301,,302,...,,30] ,[31. var( [}’) is the variance-covariance matrix gif.
Var(ﬁm) CO\(:@M »éoy ) CO‘(:&M ﬁl) |

cov([;’m,,[;’w,) var([:’oj,) CO‘(,@OJ* ﬁl)
cov(,f;’m,[;’l) CO\(,[;’OJ, ,5’1) va(,@’l)
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g’(Yl,B’)T is the transpose matrix o@’(Yl@), and g’(Y|,§’) is the first order

derivative ofg (Y | ,{;’) .

_ —( z'l—l'o) @XF(IB01+,31H +ﬂ2mj) _
9'(Y|,§’)= —(Y—TJ*_l)@xp(ﬁoj +,QD'+/32D]J)
T E{E(TJ _Ti—l) @Xp('[”oi +:31U+,32[UJ)}—TE@Y—TJ,_1) [éx;([;’w +BT+p, [UJ)

The 95% confidence interval for the survival probghis:

exp{ I0gS(Y) + 1.96]/ vaf |og§(Y))} (4.2.13)

4.3  Comparison in survivals between treatment group

The survival probabilities at tim& between two treatment groups can be
compared using rate ratio or rate difference. \renés of the estimated rate ratio or
rate difference may also be obtained using deltidnoake

Let r denote the log of rate ratio, aridlenote the vector of derivatives. We

have

log(rate ratio) :r(Y |,{>’;U) =logS(Y [T = 1)~ logs(Y T= @J) (4.3.1)
I‘(Y|,§) =_{§exd'801 +ﬁl+'82mj)[@z-i _Ti—l)}_ exr(ﬁof +'81+ﬁ2mJ)EQY_TJ*—1)
Ji ex'éﬁm‘ +,82mJ)[@rj _Tj—l)}"' exbﬁoa* +ﬁ2w)[@Y_Tf—1)

var| F(v |B)]=r' (Y 1BY covB)' ¥ BB (4.3.2)

The derivatives (Y | B) are given by



~(1,-1,) @xp(ﬁoat{lexpgﬁﬁﬁzw)— expB, W)}

r'(Y | é’) = —(Y—er_l) @xp(,ﬁ’oj ) { e>;p§,q +5,U) - expB, W)}
—{Ji( I —rj_l) @xp(ﬁoj +/31+,6’2mJ)}—(Y—rJ*_1) [éx;(ﬁoj +8+0, DIJ)

j=

The survival rate ratio at tim& is estimated byexp(f(Y |/:3 )). 95% confidence

interval of the estimated rate ratio is given bxp(f \4 |,§’ )E 1.96*/\/\arf 1 4 L@’ )).

If one is interested in the survival rate differenbetween two treatment
groups at timeY as presented by Lu-Yao et al. (Lu-Yao et al. 20€8) difference
denoted agl is given in equation (4.3.3).

rate difference=d(Y |B;U)=S(Y |[T=1U )-S{ [T = OU | (4.3.3)

d(v|B)= ex;{—{g exp} B, + 8.+ 5,10 r, —rj_l)}— ex()ﬁm, +B,+ B, ) [@Y—TJ._l)}

-ex%—{fz_l o, + ﬁsz)E@rj—Tj_l)}— B, +ﬂ2£w)[@v—rj_l)}

I
Similar, the variance can be obtained using thedeéthod.

var[a(v |/:3)] =d'( |3] covB ' ¥ B (4.3.4)
whered' (Y | é’) is the vector of derivatives af(Y |,§’).

Let

A= exp{—{fi exd 3, + B, + B, W ) fr, - rj_l)} - X, + B+ B, ) fy - rJ*_l)}

and

B= exp{—{z exd B, + 4,1 ), - rj_l)} - exif3,, + B, )iy - rJ*_l)}

j

The derivativesj’(Y|,§’) are given by
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~(1,—1,) @xpl B,,) fACEXH B,+ B,[U) —BUexpB,W )}

~(Y-7,,)exo( 8, ) [{]A[&a);pg B+, U)-BOexpf, )}
—AB{E(rj -1, ) exel B, + B+ ,BZEJ)}—A[GY—TI_J Cex} B, +4+50)

=

d(v15)

4.4 Estimated marginal survivals

The confounder variablg is unknown. We assume that it takes values 0 and
1 with pre-specified probabilities, and 7z =1-7z,. Marginal survival distribution
can be estimated using a mixture survival distidout Hazards from marginal

survival distributions off =0 andT =1 are not proportional.
S(YIBT)=3(Y|U=0T)+7S(Y U= 1)

=%@X;{—{J§‘ ex} 4, ) fr, -7,,)+ e@@J*)[@Y—Tf_l)}D e@g)} (4.4.1)
q@@HZ oxt, )r 1 )+ exbﬁm,)[@Y—rj_l)}De@H+ ﬁz)}

Let g(Y|4)=5Y|4), and

st | SSenta )+ o, ) v-r, ) ofar|

o |t ) )+ e, fror, ) o)

The corresponding derivatives are given as follows:



d(v14)=

Let:

A m) +BEe><p§,g T+8)} ({r,~1,) Dexfy3,)

{ nex( A1) +BE€X[1§[%E.|'+,32 )}, ,) Cety )
TE{JA@xdﬂiDT +B[EX|§,@D|—+,32 [{ ( ])Dexb(%) ( 1)De>((ﬁm*)}

a=r, @xp{_ J,Z: i By )7, ~7,0) + B, )Y -7, 1)} - exbﬂl)}

c =711, [éxp,

{
oo {3 el )11+ oxka, ) =7, )| Do)
-5

i
d=7 @Xp_ { > > exi{ By ), -7,.)+ exhB,, )y -7, 1)} O exb,b’z):l

exr(,[:’ol [@r -7, +ex;é,80J*)[@Y—rf_l)

|

The log of survival rate ratio is:

r(v1g)=

log(a+b) - log(c+d) (4.4.2)

The corresponding derivatives are:

i —{a@xp( B)+blexp3+ ,6’2)} [fir,—1) Cex)3,) +{C+d O e>([ﬂ)} [r 7 )0 efB ) 1

atb c+d

_| {aex{ B) +blexbg+A) V-7, ) De@w ) Jferd0egs) fy-7, )0 el )

atb c+d

et 4) oA+ ) E{E(T 1) Doy ) (Y7, | Dol )}

a+b
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The estimated survival rate ratio is then obtained f&xp(f(Y |,§’)) The 95% CI of
the estimated rate ratio is given byp(F(Y |,§’ )= 1.96*/\/3rf Y L@’ )) where

var| P (Y |3)] =1V 18] covB)' ¥ 1B

The survival difference is:

d(Y| /) =a+b-c-d (4.4.3)
The corresponding derivatives are:

" fatea) soren ) frr)eg) Hestiofs) rr)0 e

d’(Yl ,8) = {aex( ) +blexps +4) Y-, ) De;{g@ ) H{c+bDef) fv-7, )0 efes, )
~ateqd 4) +orexps+5) E{Zﬂr 1,4 Dot (Y-, | Def )}

45 Piecewise constant hazard function and the Pemn distribution

Holford (1980) and Laird and Oliver (1981) discoverédttthe maximum
likelihood estimators from an exponential distribution aent@tal to the ones from a
Poisson distribution. This finding extends directly to a piecewisastant hazard
function. The maximum likelihood estimators of the paramsefeom a piecewise

constant hazard function happen to be the same asftioosen equivalent Poisson

density function.

Let d, be the event number for subjectvithin the time interval of(z,_,,7;],

where the left boundary of the time interval is excluded the right boundary is

included. d; is equal to the censoring statGs for subjecti during the time interval

of (r,,,7,]. For instance, if a subject died at year 7, for the time intervéd, 6],



76

d; =C; =0, but for the time interva(6,12], d; =C; =1. Assume the distribution of
d; following a Poisson density function.

dj -
f(dij):Mj (exp(-4; )

i (4.5.1)

where 4 is the mean of the Poisson distribution for patiemtithin the time interval

of (r,,,7;]. In fact,y, = A, Y, , where 4, is the constant hazard for subjecturing

the time interval of(z,_,,7,]. In log-linear regression model,
log(44;) = By + AT, + 8,1, + log(¥;)
A =exp( By + AT, + 5,0, (4.5.2)

where the baseline hazard during the time interval(mf,7;] is A :exp(,Boj).

Equation (4.5.2) is the same as (4.2.6).

Y; in the equation is the total exposure time in person yearsubjecti

during time interval(z;_,,7,]. For the previous example, if subjecdied at year 7,
for the time interval(0, 6], Y; =6, but for the time interva(6,12], Y =1 is also
called an offset in log-linear regression model.

In the two-stage likelihood-based IVA model, if we usePoisson mass

function instead of the corresponding piecewise constardrd model at stage two,

will we obtain the same parameter estimators?
logE(C; IT U, Y, )= B, + BT, + 8,1, + log(Y, ) (4.5.3)

We examine the likelihood function with a Poisson mass fumetictage two.
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L

(o BB B bra 1 5:¥ 78 =[] TPLS, 7 )

==

1N

:ﬁzz P(T|U.Z)P [!jP(qJ TuY)

N 1 () B AT+ L))" Cexp-A DB T+4,0) )
=[12.2.| PTIV2) U] |
= U TUZ =1 qi'
(4.5.4)
In equation (4.5.4)4, :exp(,ﬁ’oj), ; =C;, andd;! is always 1 becausd, can be

only O or 1 for subject. d; =0 for j =1,2,.J - and d . =C. Equation (4.5.4) is

equivalent to:

LB BB B0 01, 8,Y Z€)
-[153[Prv 2) e, AT s ) fr-r, | 0

=L U TU.Z

exp{—{g/lj Cexd B0 +45,) [(]r]. —rj_l)}—)ljl, Dexps,T +53,U) [(]\( _TJ.'—l)ﬂ

(4.5.5)

<
for Ty <Y < Iy -

G
Equation (4.5.5) has an additional term(tﬁ,f— rJ*_l) compared to equation (4.2.8).

Since the likelihood function contains summations oveandU , the score function
from (4.5.5) is no longer the same as the scoreifumétom (4.2.8). Therefore, in our
two-stage likelihood-based model, the density functioa piecewise constant hazard

model cannot be replaced by a Poisson mass function.

In the following sections, we will use the Poisson distion approach to the
piecewise constant hazard function in the simulations winemwo-stage likelihood-

based model is not used.
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4.6 Simulation using piecewise constant hazard molie IVA

Simulation is conducted using a two-piecewise constant ¢thamadel in the
second stage. A procedure described by Walke (2014)apted to generate random
times from a two-piecewise constant hazard function. Alghowe can arbitrarily
select values for the baseline hazards in the simulatiedpoked up previous study
and observed survival probability at year 10 for moedyadlifferentiated prostate
cancer patients is 0.884. Assuming the survivals followexponential distribution
with a constant hazard, we obtain the value of the hamardog(0.884) /10= 0.12.
This value is used as the piece one hazard from patrtit T =1 andU =0. For
piece two, we increase the hazard by 1.5 times to b&460Consequently, with pre-
defined hazard ratios between levelsTofand U, we derive the baseline hazards

being 0.018 for the years ¢0,6], and 0.028 for the years ¢6,12]. 7,=0, 7, =6,

andr, =12. Other parameters are pre-defined in Table 4.6.1.

Table 4.6.1 Parameters used in simulation of piecése constant hazard model

in IVA

P(U=1)=0
P(z=1)=0

P(T=1]z=0U=0= 0. odds(T =1|Z=1U) _, o

P(T=11z=0U=1=0.7 p— odds(T =1|z=0U)
P}T =1|Z=1U = 0= 0. odds(T =1|U =1,) 1
PT:1|Z:l,U:]): 0.¢ OddS(T:1|U:0,Z)_
hazard (T =1,U = 0) = 0.0123 for &Y<
hazard (T =1,U = 0) = 0.01845 for &Y< 1
hazard (T =0U =0) _ . hazard(Tzl,Uzl)_2 hazard (T =0U =1) _
hezard(T=U=0 ~~ hazard(T=1U=0) ~  hazard(T=1U=0)
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As in section 3.6, 100 loops are simulated with a $anspge of 30,000
patients for each loop. Kaplan-Meier survival curves glotted in Figure 4.6.1 for
one of the 100 datasets. The hazard is higher afteréythan the hazard before year 6

as shown by the steeper slope from year 6 to yethralPfrom year O to year 6.

Figure 4.6.1 Kaplan-Meier survival curve — simulaté data from a two-
piecewise constant hazard model

Qo

—

Q|

o
>
S © b v
© ] Do T
g © Paa
o L T=0,U=1
©
= S
S o
2 — T=0,U=0

-------- =1, U=0
~] | =0, U=1
° -—= T=1,U=1

0.0
|

0o 1 2 3 4 5 6 7 8 9 10 11 12

The models from Table 4.6.2 are fitted to the randonelgegated data. In
modela, data are fitted to a two-piecewise constant hazadkmging treatment as a
fixed effect but omitting the unobserved confounder i tfodel. In modeb, data
are fitted to a two-piecewise constant hazard model \eitkh treatment and

confounder, which are randomly generated from binordiatributions, as fixed
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effects. Both modaet andmodeld give Wald type estimators for the treatment effect.
In model ¢, data arefitted to a two-piecewise constant hazard model with the
instrumental variable as the only fixed effect. In the samag, in modeld, the
instrumental variable is also included as the only fixedceféssuming the data
follow a Cox proportional hazard model. Coefficient estions of the instrumental
variable are then divided by the difference in treatmeopgrtions between the two
classes of instrumental variable. Finally, in modethe two-stage likelihood-based

model isexamined for its treatment effect estimation.

Table 4.6.2 Comparative models used in simulatiornf piecewise constant
hazard model in IVA

Modela | logE(C, IT,.Y, )= 4, + A, + log(Y,) where =12

Modelb | logE(C, IT U, Y, ) =4, +B.00, + B, U, + log(Y, ) where j=1,2

Modelc | T =a, +a,Z +v

log E(CIj |Z, ,Y”.):,BO]. + B, fa,+a,Z)+ Iog(Yij) where j =1,2

Modeld | T, =a, +a,Z, +v,
logh (Y| |Zi): Iogho+ﬁll:qa0+a1[zi)::80+:81[qa0+all:zi)
Model e E(T.1Z.V,)
log
-E(1Z,0)
log A, (Y, IT, U;) = logh, + BT, + B, [W, = B, + B,[T, + 3, U,

where j=1,2

=a,+a,[Z +a,lU,

Estimated coefficient means for model® and their empirical standard
deviations from the 100 samples are given in Table 4Ba3distinguish the
estimated parameters from different models, in sectioriodg®ction 4.8, we use
the subscript “Wald” to indicate the estimated parametezsfram the Wald
method, and subscript “IV” to indicate the estimatedameters are from two-

stage likelihood-based IVA method. The estimated basekzars and hazard
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ratios along with their 95% confidence intervals are obtafn@d the estimated
parameters in Table 4.6.3. They are given in Table 4RPadameter estimators
from modelsb to e are all very close to the true values. The treatmemricieff
estimator from mode is far away from the true value because the moded doe
take the unobserved confounder into account. Mbdehs the smallest variance
for the treatment effect estimator because it asstineesonfounder was observed.
Both Wald type estimators and two-stage likelihood-basedl égtimator have
much larger variances than the simple log-linear maderhe large variances

come from the third variable of instrument.

Table 4.6.3 Estimated coefficients from simulatiomf models in Table 4.6.2

True Model Model Model Model Model
value a b C d e
a,=-2.20 Gy, ==2.20
SE=0.03
a,=1.35 4,, =1.35
SE=0.04
a,=3.04
B,=-399 B,=-3.94 | B,=-3.99 By, = —4.00
SE=0.02 SE=0.02 SE=0.07
B, =-359 B,=-354 | f,=-3.59 By, =-3.60
SE=0.03 SE=0.03 SE=0.07
B.=-0.40| 3=-006 | B =-040 | Fua="035| 4 - 035| j, =-0.38
SE=0.04 SE=0.04 SE=0.18 | 5E=0.18 | SE=0.20
B, =0.69 B, =0.69
SE=0.04




82

Table 4.6.4 Estimated hazards and hazard ratios frm simulation of models in

Table 4.6.2
Unobserved
Baseline Hazard | Baseline Hazard Treatment Effect | Confounder Effect
for O<Years<6 for 6<Years<12 (Hazard Ratio) (Hazard Ratio)
True
value 0.018 0.028 0.667 2
Model a | 0.019 0.029 0.940
@5% cly | (0.019, 0.020) | (0.027, 0.031) | (0.875, 1.010)
Model b | 0.018 0.028 0.667 2.001
(95% cI) | (0.018, 0.019) | (0.026, 0.030) | (0.614, 0.725) | (1.844, 2.172)
Model ¢ 0.701
(95% ClI) (0.490, 1.002)
Model d 0.701
(95% CI) (0.490, 1.003)
Model e | 0.018 0.027 0.684
(95% cI) | (0.016, 0.021) | (0.024, 0.031) | (0.460, 1.016)
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Figure 4.6.2 Histogram of,[}llv from the two-stage likelihood-based IVA
- two-piecewise constant hazard model
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Note: Dotted line indicates the true value.
A histogram of the 100 treatment effect estimatq@v, is displayed in

Figure 4.6.2. The 95% confidence interval is (-0.782).Because of the large
variance, there is not enough power to detect treatnfifut,eparticularly when the
baseline hazard is as low as 0.018.

Treatment estimators from Wald type method are compartd that from

two-stage likelihood-based IVA. Plot (Figure 4.6.3),@3{,ajd from modelc versus@w

from modele shows linear correlation between them.
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Figure 4.6.3 Treatment effect estimators,@’l,v S ﬁ:l_\/\/ald - two-piecewise constant
hazard model
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Note: Dotted lines indicate the true value.

It was also noticed that in two-stage likelihood-based ehatie treatment
estimators are linearly correlated to the baseline haeatithators. Figure 4.6.4

illustrates this evidence.
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Figure 4.6.4 Estimated hazard ratio vs estimated Iseline hazards in two-stage
likelihood-based IVA
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Note: Dotted lines indicate the true value.

With the estimated means (ﬁv from the two-stage likelihood-based IVA

(modele), we estimate the marginal survival function usinggpecified probabilities

7,=0.8 and 77 =0.2 for U =0 and U =1 respectively. The 5-year and 10-year

survival probabilities are calculated and compared éetii =0 and T =1 with

regard to the estimated survival rate ratio and survivald#ference. Standard errors
of the 5-year and 10-year survival probabilities areutated using the delta method
as described in section 4.4. The delta method is alsd wseonstruct the 95%

confidence intervals for the estimated survival rateratid survival rate difference.
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In addition to the delta method, empirical standard devigstainthe estimators and
empirical 95% confidence intervals of the estimators fthen100 samples are also
given in Table 4.6.5 and Table 4.6.6.

In Table 4.6.5, the estimated 5-year survival probidslifor bothT =1 and
T =0 are very close to the true values, as does the estisatetval rate ratio
between the two groups. The differences between teevirluies and estimated values
are less than 1%. The estimated survival rate differérateeen the two groups
deviates from the true value by about 9%. In Tables4\8e observe almost the same
results as in Table 4.6.5 for 10-year survival prdiies. The differences between
the estimated values and true values are less than 1%lOkyear survival
probabilities in both groups and survival rate ratioTof1 vs T =0. The estimated
survival rate difference of =1 vs T =0 at year 10 is 9% larger than the true value.
We assume the estimated survival probabilities, the estimatedf survival rate
ratios, and the estimated survival rate differencesalirasymptotically normally
distributed with the means approximated from the functiohshe maximum
likelihood estimators. However, the approximation of the rmeanthe survival rate
difference is not as accurate as on the survival adite r

In both Table 4.6.5 and Table 4.6.6, the empiricahdard deviations and
empirical 95% confidence intervals of the estimatoes @ose to the ones from the
delta method. The empirical 95% confidence intervals areower compared to the

ones from the delta methods.
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Table 4.6.5 Estimated 5-year survivals using margai survival function from
two-stage likelihood-based IVA on simulated data

True | Log of 95% CI of the
value | estimator Estimator estimator
Survival 0.931
probability SE1=0.0081 | Cl1=(0.916, 0.947)
T=1 0.929 SE2=0.0080 | CI2=(0.916, 0.946)
Survival 0.895
probability SE1=0.0051 | Cl1=(0.885, 0.905)
T=0 0.896 SE2=0.0051 | CI2=(0.886, 0.904)
0.040
Survival rate SE1=0.0138 Cl1=(1.013, 1.069)
ratio 1.037 | SE2=0.0138 1.040 Cl2=(1.015, 1.065)
0.036
Survival rate SE1=0.0126 | CI1=(0.011, 0.061)
difference 0.033 SE2=0.0126 | CI2=(0.013, 0.058)

SE1 and CI1 = Standard error of the mean or 95%dd filelta method
SEZ2 and CI2 = Standard error of the mean or 95%ddt fEmpirical distribution

Table 4.6.6 Estimated 10-year survivals using margal survival function from
two-stage likelihood-based IVA on simulated data

True | Log of 95% CI of the
Value | estimator Estimator estimator
Survival 0.844
probability SE1=0.0171 | CI1=(0.810, 0.877)
T=1 0.838 SE2=0.0169 | CI2=(0.811, 0.876)
Survival 0.768
probability SE1=0.0104 | CI1=(0.748, 0.789)
T=0 0.770 SE2=0.0103 | CI2=(0.751, 0.787)
0.094
Survival rate SE1=0.0328 Cl1=(1.030, 1.171)
ratio 1.089 | SE2=0.0327 1.098 Cl2=(1.034, 1.162)
0.075
Survival rate SE1=0.0267 | CI1=(0.023, 0.128)
difference 0.069 SE2=0.0266 | CI2=(0.027, 0.122)

SE1 and CI1 = Standard error of the mean or 95%dd filelta method
SE2 and CI2 = Standard error of the mean or 95%dt fEmpirical distribution
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4.7  Simulation using Weibull distribution in IVA

Simulations are also performed for the survival datéoweng a Weibull
distribution in the second stage. Instead of pre-defiriiegbaseline hazards, we first

randomly generate a set of data as a control grougpdtents receiving PADT
(T =1) and having normal PSAU =0). The survival time in the control group

follows Weibull distribution with 5-year survival rate of7@9 and 10-year survival

rate of 0.668. Then, we specify hazard ratios of 2,%nd 3 to the control group to

generate survival times for patients who receive conservatiamgemen(T :0)
and have normal PSAU =0), who receive PADT(T =1) and have high PSA
(U =1), and who receive conservative managem@t0) and have high PSA

(U :1) respectively. The rest of the parameters remain the sane Table 4.6.1.

The Kaplan-Meier survival curves for the four groaps shown in Figure 4.7.1.
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Figure 4.7.1 Kaplan-Meier survival curve — simulatéd data from Weibull
distribution
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As in Table 4.6.2, the five models from Table 4.7.& examined using the
simulated data. In modela and b, a parametric survival model with Weibull
distribution is used. Mode# includes treatment as the only predictor. Modtel
includes both treatment and confounder from simulated atafaredictors. It is well
known that the parametric survival regression model withuaderlying Weibull
distribution can also be expressed as a proportional haggression model. Due to
this, we fit the data with a Cox proportional hazarddel in modelc with both
treatment and confounder from simulated data as pogdidn model, the Weibull
distributed survival times are regressed on the instruineatiable. Finally, modeé

is our two-stage likelihood-based IVA model which is cosgd of a log odds
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regression model in the first stage and a Weibull satviggression model in the
second stage.

Table 4.7.1 Comparative models used in simulationf ®eibull regression
model in IVA

Model a | log(Y) =24, + 5, D?+—J;

* " * E
Model b | log(Y)=4,+4 0 + B3, W, +7

Model ¢ |Ogh (Y| |T| 1Ui): IOgho"'ﬁﬂji +,82mji :ﬁ0+ﬁ1Eri +:82mji

T =a,+a,[Z +u,

Model d . . &
IOg(Yi):,Bo + 0 [Q%Jfaﬁzi)’“?
log E(T12.0) =a,+a,Z +a,lU,
1—E(T| |ZI 1Ui) 0 1 i 2 i
Model e

log(¥,) = B, + B, 0, + 8, U, +5yi

In our simulation, we parameterize the coefficients ofa@feations in Table

4.7.1 as in modet, i.e., the parameterization in the Cox regression model. The
relationships betweeg and 5 are:

G=-B W, B=-B Y, and B=-5F
In addition, with 5-year survival rate of 0.799 andyEa survival rate of 0.668 in the

control group of patients receiving PADT and havingmalrPSA, we obtain the two

parameters values of the Weibull distribution.
A=exp(B,+B,T)=0.057 (4.7.1)
and y=0.846.

For B, =1og(1/1.5), we solve equation (4.6.1), and obtgin=-2.45.
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With a sample size of 30,000 in each loop, parametens fnodels in Table
4.7.1 are estimated 100 times. Their means and sthedars are obtained and listed
in Table 4.7.2.

Table 4.7.2 Estimates from simulation of models imable 4.7.1

True Model Model Model Model Model
value a b c d e
a,=-2.20 Aoy =—2.20
SE=0.03
a, =1.35 G, =1.35
SE=0.03
a,=3.04
y=0.84 y=0.84 Vi =0.85
y=0.85 | SE=0.01 SE=0.01 SE=0.01
B, =-2.45| B,=-2.39 | 3,=-2.45 Lo =—2.45
SE=0.02 | SE=0.02 SE=0.04
B,=-0.41| =-007 | B=-041|A=041 | & - 037 | B, =-0.39
SE=0.02 |SE=0.03 |SE=0.03 | gsE=0.10 SE=0.11
3, =0.69 B,=0.70 | B,=0.70
SE=0.03 | SE=0.03

As expected, models andc estimate the parameters accurately because the
unobserved confounder is included in the model. Modetnd e also give point
estimators close to the parameters, but the standand @re much larger due to the

variation from the instrumental variable. Figure 4.7.2ldigs the histogram of the

100 ,@1,\, : ,[A:’llv is always linearly correlated Witﬁlwa]d as shown in Figure 4.7.3.
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Figure 4.7.2 Histogram of,[}llv from two-stage likelihood-based IVA — Weibull
distribution
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Figure 4.7.3 Treatment effect estimators,@’l,v S ,[A:’lWajd - Weibull distribution
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Using the estimated parameters from the two-stage Hixetl-based IVA
model, we plot the hazard functions in Figure 4.7.4thedsurvival curves in Figure

4.7.5. Figure 4.7.5 is almost the same as Figure.4.7.1



Figure 4.7.4 Hazard function based on estimated pameters from two-stage
likelihood-based IVA — Weibull distribution
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Figure 4.7.5 Survival curve based on estimated panaeters from two-stage
likelihood-based model — Weibull distribution
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4.8 Fit Weibull distributed data with a piecewise onstant hazard model

In this section, we fit Weibull distributed data which agenerated as
described in section 4.7 with a two-piecewise congtamatird function in the two-
stage likelihood-based IVA. The mean treatment effect asbimis compared to the
true value. The purpose of this simulation is to investifgie well the piecewise
constant hazard function is fitted in the proportional haraodel. We fit the data

with four models in Table 4.8.1. In modgla two-piecewise constant hazard function
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with a cut-off point at year 1 is used in the second sta@be.results are given in

Table 4.8.2.
Table 4.8.1 Comparative models used in simulatiorf piecewise constant
hazard model in IVA
Modela | logE(C, IT,.Y; )= 4, + A, + log(Y,) where =12
Modelb | logE(C, [T, U, Y;) =4, + B, + 8,1, + log(Y, ) where j=1,2
Modelc | T =a, +a,Z +v
logh (Y| |Z, ) = logh, +ﬁ1mao+a1[zi ) = ,30+,31[ﬂao+01[7—i)
Model d E(Ti |1Z ,Ui)
og =a,+a,Z +a,U,
1-E(T, 12 V)
logA; (Y; TV, ) = logh; + B, (T, + B, W, = B, + B,[T, + B,(U,
where j=1,2
Table 4.8.2 Estimated coefficients from simulatiomf models in Table 4.8.1 —
fit Weibull curve with two-piecewise constant hazad curve
True Model Model Model Model
value a b c d
a,=-2.20 Ay =—2.20
a,=-2.20 SE=0.03 SE=0.03
a,=1.35 a,, =135
a, =1.35 SE=0.03 SE=0.03
a,=3.04
a,=3.04 SE=0.04
B, =-2.39 B, =-2.45 By =—2.46
SE=0.02 SE=0.02 SE=0.09
B,,=-0.38 B, =-0.37 By =-2.82
SE=0.02 SE=0.02 SE=0.09
B =-0.07 B,=-0.41 Buesa =—0.37 By =-0.39
B,=-0.41 | sg=0.02 SE=0.03 SE=0.10 SE=0.30
B3,=0.71
B, =0.69 SE=0.03
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The results show that Wald method in modejives a good estimate of the
true value with reasonable large standard error. Thestage likelihood-based IVA
in modeld also provides a point estimator for the true value. Hewehe standard
error is very large, so that the treatment effect is stlsti insignificant. This is
because we use two-piecewise constant hazard cureppmximate the Weibull
curve in modeld. In modelc, a Cox proportional hazard model is used. If we fit
constant hazard curve with more than two pieces, thedatd error should be

smaller.

Figure 4.8.1 Histogram of Bl,v from two-stage likelihood-based IVA — fit
Weibull curve with two-piecewise constant hazard cwe
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Figure 4.8.2 Hazard function based on estimated pameters from two-stage
likelihood-based IVA — two-piecewise constant hazdr model vs
Weibull distribution
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A histogram of the estimated treatment effects is giveRigure 4.8.1. In
addition, estimated hazard functions from the Weibull distiim and the two-

piecewise constant hazard function are illustrated in Fig&.@.

Since the two-piecewise constant hazard function is noficismt to
approximate the Weibull distributed data, we increasentimaber of pieces in the
hazard function to four or five. Because the simulatioegakconsiderable amount of

time, we generate an additional set of Weibull distributed dath size of 10,000.
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We fit this dataset with four-piecewise and five-piecevasastant hazard functions
separately. We obtain the MLEs of parameters andttralard errors of the MLEs

are from the hessian matrix directly.

Table 4.8.3  Fit Weibull curve with four-piecewise ad five-piecewise constant
hazard functions
Four-piecewise Five-piecewise
constant hazard constant hazard
True value Wald method | 7=(0.1,3,6,13 r=(0,1,2,4,6,12
,éouv =-2.36 :éouv =-2.36
SE=0.07 SE=0.07
Iéozlv =-2.61 Boay =—2.54
SE=0.07 SE=0.07
Ié03lv =-2.77 Boay =—2.73
SE=0.07 SE=0.07
,[?04|v =-2.94 ﬁomv ==2.77
SE=0.08 SE=0.08
/BOSIV =-2.94
SE=0.08
:[%Wald =-0.51 Iéllv =-0.59 :81|v =-0.58
B =-0.41 SE=0.17 SE=0.22 SE=0.22
B, =0.69

r=(0,1,3,6,12: 1,=0,r,=17,= 37,= 67,= 12

r=(0,1,2,4,6,12: 1,=0,1,=17,= 27,= 47,= 67,= 12

Results in Table 4.8.3 shows the standard error iscesbwith the four-
piecewise constant hazard function.

To further examine the standard error from the foec@ivise constant hazard

function, we generate seven sets of Weibull distributgd dith size of 10,000. The
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estimated parameter means and their empirical standens ere given in Table

4.8.4.

Table 4.8.4  Fit Weibull curve with four-piecewise onstant hazard functions

Bowy =—2.45 | B,y =-2.72 Boay =-2.82 Loy =-2.97 B, =-0.42
SE=0.08 SE=0.08 SE=0.07 SE=0.11 SE=0.23

The standard error for the estimated treatment effe€.24. The four-piecewise
constant hazard function improves the approximatiorthef Weibull distribution

compared to the two-piecewise constant hazard function.

4.9 Example of using two-stage likelihood-based VA survival analysis

A subset of the SEER/Medicare database is used inxaune. The database
includes a cohort study of men with localized prostate cambe received Medicare.
Table 4.9.1 gives the number of patients within the coatiain of treatment and
health service areas for moderately differentiated pistancer and poorly
differentiated prostate cancer. The health servicesaaea classified as PADT high
usage areas and PADT low usage areas. The classifafitihne health service areas

serve as an instrumental variable.
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Table 4.9.1 Frequency counts of patients with proate cancer
Treatment Health Service Death (%) Censored Total
Areas by PADT (%)
usage
Moderately differentiated localized prostate cancer
PADT High 203 (10%) 1855 (90%)| 2058
PADT Low 156 (10%) 1346 (90%)| 1502
Conservative | High 129 (6%) 2091 (94%) | 2220
Management
Conservative | Low 428 (10%) 3968 (90%) | 4396
Management
Total 916 (9%) 9260 (91%) | 10176
Poorly differentiated localized prostate cancer
PADT High 177 (17%) 881 (83%) 1058
PADT Low 154 (20%) 603 (80%) 757
Conservative | High 61 (16%) 314 (84%) 375
Management
Conservative | Low 145 (20%) 576 (80%) 721
Management
Total 537 (18%) 2374 (82%) | 2911

There are a total of 10,176 patients diagnosed with mudgrdifferentiated
localized prostate cancer, and 2911 patients diagnosed potdhy differentiated
localized prostate cancer. Their survival status is foltbwp to about 13 years. By
the end of 13 years, the prostate cancer-specific hiprig 9% among the patients
with moderately differentiated localized prostate canced,18% among the patients
with poorly differentiated localized prostate cancer. I6agMeier survival curves for
high PADT usage areas and low PADT usage areas atedla Figures 4.9.1 and
4.9.2. For moderately differentiated prostate cancer, d8%e patients from high
PADT usage areas received PADT, and 25% of the patients [bw PADT usage

areas received PADT. For poorly differentiated prostatecer, 74% and 51% of the



patients received PADT among high PADT usage areddav PADT usage areas,

respectively.

Figure 4.9.1 Kaplan-Meier survival curve — moderatéy differentiated prostate
cancer
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Figure 4.9.2 Kaplan-Meier survival curve — poorly dfferentiated prostate
cancer
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We make the same assumptions as in the simulation torset.6. We
assumed that the overall high PSA rate is 0.2 among tpelgimn. The odds of
obtaining PADT among patients with high PSA is assumed [#irtgnes the odds of

obtaining PADT among patients with normal PSA. Now that log 21= 3.04, we

use patients information on whether they lived in PADT usagas as one of the
predictors, and apply the first stage likelihood functiontendata. We obtain that the
estimated odds ratio of receiving PADT is 3.08 for patierite lived in high PADT

usage areas compared to the patients who lived inPABT usage areas. A Six-
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piecewise constant hazard model is fitted in the seatade, and the likelihood
function (4.2.8) withJ =6 is applied to estimate the treatment effect. Again, as in
section 4.6, the hazard ratio for patients with high P&#&mared to the patients with
normal PSA is assumed to be 2. The MLEs of parametsteined from two-stage
likelihood-based model are listed in Tables 4.9.2 to54.Bables 4.9.2 and 4.9.3 give
MLEs from the first stage, i.e., treatment statuggessed on PADT usage areas and
PSA index. Tables 4.9.4 and 4.9.5 give MLEs from tlhesé stage.

Table 4.9.2 Estimated parameters in the first stagef the two-stage likelihood-

based IVA model, moderately differentiated localizd prostate
cancer

Odds of PADT at Low PADT usage areas and Normal PS£5% CI)

a, (log of odds) e (odds)

-1.909 (-1.997, -1.821) 0.148 (0.136, 0.162)

Odds Ratio of High PADT usage areas vs Low PADT uge areas (95% CI)
a, (log of odds ratio) e’ (odds ratio)

1.377 (1.262, 1.492) 3.963 (3.532, 4.447)

Table 4.9.3 Estimated parameters in the first stagef the two-stage likelihood-
based IVA model, poorly differentiated localized ppstate cancer

Odds of PADT at Low PADT usage areas and Normal PS5% CI)

a, (log of odds) e™ (odds)

-0.379 (-0.503, -0.254) 0.685 (0.605, 0.775)

Odds Ratio of High PADT usage areas vs Low PADT uge areas (95% CI)

a, (log of odds ratio) e’ (odds ratio)

1.125 (0.947, 1.303) 3.08 (2.578, 3.680)
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Table 4.9.4 Estimated hazards and hazard ratios ithe second stage of the
two-stage likelihood-based IVA model, moderately dierentiated
localized prostate cancer

Baseline Hazards
(95% CI)

,[AS’O ; (log of hazard)

e/} ° (hazard)

0-2 years -6.276 (-7.158, -5.394) 0.002 (0.001, 0.005)
2-4 years -5.491 (-6.347, -4.634) 0.004 (0.002, 0.010)
4-6 years -5.481 (-6.310, -4.652) 0.004 (0.002, 0.010)
6-8 years -5.142 (-5.948, -4.337) 0.006 (0.003, 0.013)
8-10 years -4.691 (-5.461, -3.920) 0.009 (0.004, 0.020)
10-13 years -5.101 (-6.010, -4.191) 0.006 (0.002, 0.015)

Hazard Ratio

,@l (log of hazard ratio)

(95% CI) ek (hazard ratio)
PADT vs CM 1.714 (0.639, 2.790) 5.553 (1.895, 16.275)
Table 4.9.5 Estimated hazards and hazard ratios ithe second stage of the

two-stage likelihood-based IVA model, poorly diffeentiated
localized prostate cancer

Baseline Hazards
(95% CI)

[;0 ; (log of hazard)

&® (hazard)

0-2 years -3.060 (-3.441, -2.679) 0.047 (0.032, 0.069)
2-4 years -2.596 (-2.992, -2.201) 0.075 (0.050, 0.111)
4-6 years -2.670 (-3.107, -2.233) 0.069 (0.045, 0.107)
6-8 years -2.502 (-2.993, -2.012) 0.082 (0.050, 0.134)
8-10 years -2.417 (-3.018, -1.815) 0.089 (0.049, 0.163)
10-13 years -3.384 (-4.834, -1.935) 0.034 (0.008, 0.144)

Hazard Ratio
(95% ClI)

,@l (log of hazard ratio)

e (hazard ratio)

PADT vs CM

-0.725 (-1.418, -0.032)

0.484 (0.242, 0.968)

The results show that PADT plays significant roles in botbdenately

differentiated localized prostate cancer patients and pabfigrentiated localized
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prostate cancer patients, but in opposite directions. P&DW®rmful to the patients
with moderately differentiated localized prostate cancer emetpto conservative
management. The hazard ratio is 5.553 with 95% comfiela@nterval of (1.895,

16.275). On the other hand, PADT benefits the patients poorly differentiated

localized prostate cancer. Compared to conservative raarad, the hazard ratio is
0.484 with 95% confidence interval of (0.242, 0.968).

The hazard function for patients with moderately diffisded prostate cancer
is drawn in Figure 4.9.3. Patients being treated with PADd laaving high PSA
experience the highest hazards among the four grdtgigents being treated with
conservative management and having normal PSA experigwcdeast hazards.
Hazards reach the highest values for all four groupms frear eight to ten.

Figure 4.9.3 Hazard function — moderately differeniated prostate cancer
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The hazard function for patients with poorly differer@thiprostate cancer is
drawn in Figure 4.9.4. By contrast, patients receivingseorative management and
having high PSA experience the highest hazards amongptimegroups. Patients
being treated with PADT and having normal PSA experienceldhst hazards.
Hazards are relatively high for all four groups betwgemar two and year ten
compared to years before two or after ten.

Figure 4.9.4 Hazard function — poorly differentiatel prostate cancer
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Estimated marginal survival functions are calculated ughey maximum

likelihood estimators;,@’IV in Table 4.9.4 and Table 4.9.5 assumimg=0.8 for the

probability of U =0and 7z, =0.2 for the probability ofu =1. They are plotted in
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Figures 4.9.5 and 4.9.6. 95% confidence intervals ®itlyear and 10-year survival
probabilities given in the plots are obtained from théadmlethod.

Figure 4.9.5 Survival probability — moderately differentiated prostate cancer
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In general, patients with moderately differentiated prostsacer have
significantly higher survival probabilities if they receivenservative management
rather than PADT. The 5-year survival rate is 98%M group versus 90% in PADT
group. The 10-year survival rate is 94% in CM groug, dnly 72% in PADT group.
Both 5-year and 10-year survival rates are signifigadifferent between the two

treatment groups as indicated by estimated rate ratioterdifference and their



confidence intervals in Table 4.9.7. PADT not only imses the cost, but also

increases the mortality among patients with moderately diffited prostate cancer.

Figure 4.9.6 Survival probability — poorly differentiated prostate cancer
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By contrast, the estimated marginal survival functiorsnf patients with

poorly differentiated prostate cancer show a reversedtr&ADT seems to increase

the survival probability among the patients with poorly défdiated prostate cancer

compared to CM. The 5-year survival rate is 84% in PAJPJup versus 69% in CM

group. The 10-year survival rate is 66% in PADT groupwe 44% in CM group.

However, the 95% confidence intervals for estimatesigailr rate ratio or estimated
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survival rate difference do not support the conclusidnsignificant differences
between the two treatment groups in 5-year or 10-ygaival rates.

Table 4.9.6 Estimated survival probability with two-stage likelihood-based

IVA model using marginal survival function

PADT

CM

Moderately differentiated locali

zed prostate cancer

5-year survival probability
(95% ClI)

0.898
(0.876, 0.920)

0.981
(0.965, 0.997)

10-year survival probability
(95% CI)

0.719
(0.669, 0.769)

0.942
(0.896, 0.987)

Poorly differentiated localized prostate cancer

5-year survival probability
(95% ClI)

0.836
(0.788, 0.883)

0.693
(0.585, 0.800)

10-year survival probability
(95% CI)

0.663
(0.589, 0.736)

0.435
(0.231, 0.639)

Table 4.9.7

and CM using marginal survival function

Rate Ratio
(PADT vs CM)

Rate Difference
(PADT vs CM)

Moderately differentiated locali

zed prostate cancer

5-year survival probability
(95% ClI)

0.916
(0.893, 0.940)

-0.082
(-0.105, -0.060)

10-year survival probability
(95% CI)

0.764
(0.662, 0.881)

-0.223
(-0.310, -0.135)

Poorly differentiated localized prostate cancer

5-year survival probability
(95% ClI)

1.206
(0.985, 1.477)

0.143
(-0.012, 0.298)

10-year survival probability
(95% ClI)

1.523
(0.980, 2.368)

0.228
(-0.029, 0.485)

Estimated survival rate ratio and ratedifference between PADT
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Estimates of the hazard ratio from the two-stage likelinoased IVA model
are compared to those estimates from the Wald type methadis, we fit data using
a Cox proportional hazard regression model with the PAB#Age areas as a
predictor, and then, adjust the coefficient for thecpetage of compliers. A Cox
proportional hazard regression model including only teattnent is investigated as
well. As expected, this model gives biased estimatdémpdrd ratio. Estimates of the
hazard ratio from the two-stage likelihood-based IVAtinod using 6-piecewise
constant hazard model in the second stage are consistierihe estimators from the
Wald type method (Table 4.9.8).

Table 4.9.8 Estimated hazard ratios from comparatie models

Moderately differentiated Poorly differentiated

localized prostate cancer localized prostate cancer
PADT vs CM Bl Hazard Ratio Bl Hazard Ratio

(SE) (95% ClI) (SE) (95% ClI)
Two-stage 1.71 5.553 -0.72 0.484
'I'\‘;i“ho"d'based (0.55) (1.895, 16.275)| (0.35) | (0.242, 0.968)
Wald method 1.68 5.345 -0.79 0.454

(0.38) (2.540, 11.248)| (0.38) (0.214, 0.964)
Cox regression | 0.90 2.467 0.10 1.103
model on (0.09) (2.088, 2.915) | (0.09) | (0.927, 1.313)
treatment only

4.10 Sensitivity analysis

So far, the results from the two-stage likelihood-bas&dl inodel are based
on the assumption that hazard ratio of high PSA versusal PSA is 2. We examine
the sensitivity of this assumption on the estimation of treatreffect. Using data

from patients with poorly differentiated prostate cancer,estmate PADT effect



when the hazard ratio of high PSA versus normal PSA1s51,2, or 2.5. The hazard
ratios of PADT versus CM as well as their 95% confideimtervals are given in
Table 4.10.1, and plotted in Figure 4.10.1. When thmthratio of high PSA versus
normal PSA is 1, it implies that the level of PSA has no ohma the survival
outcome. Under this assumption, the survival benefit fleADT is no longer
significant. For other values of 1.5, 2, or 2.5, thetinemt effect does not have large
fluctuations.

A sensitivity analysis on the values of,, which defines the relationship

between treatment received and PSA values, can be ddhe same way. We will
conduct this analysis in our future research.

Table 4.10.1 Treatment effect vs PSA effect

Poorly differentiated localized prostate cancer

Hazard ratio of high

i 0
PSA vs normal PSA Hazard ratio of PADT vs CM (95% CI)

1 0.529 (0.274, 1.020)
15 0.507 (0.258,0.997)
2 0.484 (0.242, 0.968)

2.5 0.463 (0.228, 0.939)
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Figure 4.10.1 Treatment effect vs PSA effect
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4.11 Discussion

It has been repeatedly demonstrated that the results fremwb-stage
likelihood-based IVA and the Wald method are highly fhesly correlated. The
Wald method provides unbiased causal effect estimator foml an identity link
function or a log link function in GLM. For a logit linkufiction in GLM or a Cox
proportional hazard model (Gail, 1986), Wald’s estimédriased. In the two-stage
likelihood-based IVA model, MLEs are obtained to esten#ite causal effect.
Therefore, both stages can be any forms of the nomleepaations. The likelihood-
based estimates allow for explicitly accounting for tlmeknown confounding
variable, and permit sensitivity analyses of key assiomg. The method can be
extended to accommodate interaction terms of the conéouwith the treatment,

outcome, or both. In principle, the method also will allimw more complex models
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of the effect of an instrument on outcome, suchcasmmodating continuous and/or
multiple instrumental variables.

There are a few disadvantages for the two-stageHikadi-based IVA model.
In order to obtain the MLEs of the treatment effect, weehto make assumptions on

the values ofr,, £,, and the distribution of the unobserved confoundeour future

research, we wish to find a better method to weakem thesumptions.
In our examples of the two-stage likelihood-based IVAlaiove didn't make
any adjustment for the covariates such as age, gemderce. Accommodating other

covariates in the model could be complicated and may ehifwegvalues ofr, or £,

in the assumptions. Further exploratory analyses will lededin our future research.
Another disadvantage of the two-stage likelihood-ba¥@drhodel is that the
convergence of the model takes considerable amoutimef We will explore more

efficient computational methods in our future research.
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Chapter 5

Optimal Sample Size for Subunit of an Instrument

One of the advantages of two-stage likelihood-based I[gAthat the
instrumental variables can be in any form, continuous, inar categorical.
However, in Rubin’s causal model, the instrumental dem are strictly binary.
Many instrumental variables are binary in nature, suchvatgr supply company in
the epidemic of cholera in London, treatment assignnmentinical trial, and draft
lottery status in the Vietham War. When the instrumentdbbbe is not binary, we
have to dichotomize it. This raises issues about howtbekefine the two subgroups,

which we address in this chapter.

5.1 Defining binary instrument values

In the study of PADT among men with localized prostate eartbe PADT
high and low usage areas are arbitrarily defined basdtlie percentage use of PADT
among target patients within each health service amaeftage use of PADT is a
continuous variable. If these percentages accuragdlisct the local medical practice
convention, we are able to follow the steps below to dichz® the continuous
variable into a binary instrumental variable.

Step 1:Define the scope of a health service area. A statagleszip code

area, or a large hospital can all be treated as a singlthlservice area. A

well defined health service area should contain ensaghple size and have a

homogenous usage rate of PADT among doctors.
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Step 2: Calculate the percentage use of PADT among targetnpstie
for each health service area.

Step 3: Select reasonable cut-off points and define the raofjéise
percentage for high PADT usage areas and low PADT umags. For
example, in the diagram below, health service areas wsthtlean or
equal to 30% of the patients receiving PADT are defireelba usage
areas. Health service areas with greater than or equ#d%o of the
patients receiving PADT are defined as high usagesaf@h and C2

are the cut-off points.

Low usage are¢ High usage arei

A A
N ' ™\
| | | | | | | | | |

0O 01 02 084 05 06 07 08 09 1

)

Cl C2

5.2 Examine assumption of random assignment

When the sample size of a health service area islangé enough, the
percentage of PADT use in that health service areanoiseflect the actual medical
practice convention, since it can be affected by othetofs such as PSA. We have
mentioned in section 3.6 that the PSA screening test reqftbwcals PADT usage.
High PSA values cause high percentage use of PADT in lgth PADT usage
health service areas and low PADT usage health seneees.aWwe assume that the
results of PSA test are evenly distributed across gebigrapgions with a binomial
distribution. The mean of the distribution is 0.2. Whies $ample size is large enough

for any single health service area as mentioned at stgpskction 5.1, we are



expecting the same distribution of the PSA across healtfice areas. However,
when the health service areas are small and the nurhipatients is low, the sample
distribution of the PSA results can be positively correlatéd the observed PADT

usage rates from those small health service aredsrns out that the observed
differentiated probabilities of PADT usage across the heelttice areas are not only
caused by their geographic regions but also by the €iffeted proportions of

patients having high values on the PSA test, a violatiothefassumption of the
independence between instrumental variable and unoldseovéounder. In terms of
the Rubin causal model, the second assumption of randsignanent is violated.

Diagram 5.2.1 illustrates that the principal strata are ngelonomparable due to the

violation of random assignment. This results in biaseatrtrent effect estimates.

Diagram 5.2.1
T=1 T=0
A
Y )
Z=1 Always-takers Never-takers
@, B
Always-takers Never-takers
2=0 Po
_/
v
T=1 T=0

In order to estimate the bias caused by the positivelation between PSA
results and PADT usage rates, we make a few assumptionsin a simple

demonstration.
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Assumption 1: All health service areas have the same sample sizen Let
denote the total number of localized prostate cancempsiie a single health
service area.

Assumption 2: All patients with high PSA values receive PADT.

Assumption 3: For the simplicity of current calculation, the 10-year taldy

of patients with high PSA values is assumed to be 100%. #yeuse 90% of
the mortality for future work.

The outcome distribution of, is a mixture distribution from 3 types of

patients, patients with high PSA values, patients with abrRSA values and

receiving PADT, and patients with normal PSA values andeugiving non-PADT .
f20(Y) = Rorraazaafronc {Y) + Poorc o 2= Fosne 0= (V) + Pooae 0= = frone o= @) (5.2.1)

f2-0(Y) = Brsctr=1z=0fpon= {Y) + Posae 7= 2= dpon 0= (V) + Posae 0= 2= Bpon o= ) (5.2.2)
where P represents the percentage of patients in a health sangae For example,

Peor-12-1 fEPresents the percentage of patients in a high PASAQe area with

normal PSA values and receiving PADT. The constrainteef&fjuations (5.2.1) and
(5.2.2) are:

Psarazz1t Pocor-g=1t Bex g- - 71 and

PPSA=1,T=1,Z=0 + R or=iz=0 P a= @= i1
Equations 5.2.1 and 5.2.2 are analogous to equatichd)and (3.2.2) in section 3.2.
By using the mixture distribution, the sample averagged-mortalities could be

obtained from equations (5.2.3) and (5.2.4).

A~ A — ~

7z:1 = PSAzl,T:lZ:1wPSA: 1t PPSA=0T= z= PA S a= 1 Posa- 0= a= WPSA: 0= (5.2.3)



Yz:o = PPSA:l,T:lz:oD?PSA:1+ PPSA: orT=1Z= ogpyz a= 1"’ PPSA: 0= a= mSA: DE] (5_2.4)
Therefore,

A ~

Proa-17-=12- o) w_PSAz 1+( bsa= (= = i MPsa= 0 1- )waSA: = (5.2.5)

( PSA=1T=17=1
+(PPS/-\:O,T:OZ:l_ PPSA: or=0z= 0] “psa= ar= o}
R PPSA20,T=1,Z=O’

PSA=0,T=1Z2=1" PPSA:O,T:O,ZZI’ and

where P Prsac1r=12=01

PSA=1T=1Z7=1"

A~

Posa-or-02-0 are estimators of the true percentages .

For a single health service area of size nUlebe the total number of patients
with high PSA values and who therefore receive PARMd letV be the total
number of patients with low PSA values and thugirec PADT by chance. The sum
of the two, S, is the total number of patients who receive PABRiThin the health
service area.

S=U+V
Assumption 4: The total number of patients who receive PADT with

health service are&, follows a binomial distribution with a mean ofp,_,

and a variance oh[p,_, [{1- p;_,). Furthermore,p,_, is assumed to follow a

beta distribution with a mean of f,@’ and a variance of
a
alpB
(a+p+)Ha+B)"

f.(S)~binomial(S;n, p,,) where f._(p,.,) ~beta(p,_,;a,B)

fr2 (S, Proy) = (ST Pro) oy (Pr )

=binomial (S;n, p,.,) beta(p,_,;a,B) (5.2.6)
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Assuming the overall usage rate of PADT for a hRADT usage health

service areaP._, ,,, is greater than or equal to C2, the total nundbgratients who

receive PADT in that high PADT usage area is disted as:

1
_ J fra(Spra) o,
> [ (S proy) Epr,

S=C2mn

J.;{ binomial (S; n, p;_,) eta(p,_;a, B)} [p; _,

n

> [ {pinomial (S, p;.,) beta(p;_;a. B} @,

S=C2D

fT =1,Z=1 ( S)

(5.2.7)

Assuming the overall usage rate of PADT for lowgesaealth service areaB,_, ,.,

is less than or equal to C1, the total number Gépts who receive PADT in that low

usage area is distributed as:

[ fra (S proy) 0
fT:l,Z:O(S): o Tl v Pr=g ) LOPr=y _

Cln c1
D[ fra(S pry) Wpy
S=0

c1 (5.2.8)
[ “{binomial (S;n, p,_,) theta(pr_,; @, B)} pr _,

Czl:mj.;:l{ binomial (S;n, p;_,) eta(p,.,;@, B)} dp;_,

Assumption 5: The number of patients with high PSA values withihealth

service area follows a binomial distribution withmeean ofnlp.,., and a
variance of n[ppg,, [l Ppgsy), given the total number of patients,
receiving PADT in that area.

binomial (U;n, _
fPSA:l,Zzl(U |S) =5 ( Pess 1) (5.2.9)

> binomial (U;n, Ppgy-y )
u=0

From assumptions 4 and 5, the joint distributiotJofand S from a high

PADT usage health service area is:
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fT:l,z:l(U | S) = fT=lZ:1(S) Hosa 17= 1(U |S)

Lo
_ | {pinomia(Sin, p..,) beta(p._,;a. 5)} tdp binomial (U: 1, Ppocs)
S
.[1 {binomial (S;n, p;.,) heta( p;.,;a, B)} [Wp | > binomial U;n, Ppg;)
S=cailing(C2m) " C2 U=0
(5.2.10)

The joint distribution olJ and S from a low PADT usage health service area is:

fT=1,z:o (U ' S) = fT=1Z=O(S) [fPSA=12= o(U |S)

C1

_ [ {pinomial(s;n, p; ) Meta( pr_;a, B)} [p binomial (U; N, Ppess)
floor (C1M) S
> [, {pinomial(Sin, pr_,)eta( pr.;ar, A)} p | Y binomial (U;n, Py
S=0 v=o
(5.2.11)

Using a Jacobian transformation, the joint distidouof V and S from a high PADT

usage health service area is:

fT:1,z:1 (V, S) = fTzlz: 1( S) i 1z= 1(V ‘ S)

1 . .
[ {pinomial(sin, pr.,) beta( pr.y; ., B)} ip binomial (S-V; 1, Pog.,)
S
[ ' {binomial (S;n, pr.,) beta( p_;a, B)} [p | > binomial (S-V;n, Pegy,)
S=ceiling (C2Mm) c2 V=0
(5.2.12)

The joint distribution oV and S from a low PADT usage health service area is:

fraza (V1 S) = fT:lZ=1( S) Fosn12- 1(V |S)

C1l

__J, {pinomial(Sin, p;..) beta(p..;a, B)} [elp binomial (S=V;n, Pee.,)
floor (C1m) S
[ {binomial (Sin, pr..) teta( p_y;r, )} lip | Y. binomial (S-V;n, Pesy.,)
S=0 V=0

(5.2.13)

The expected difference is:
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:[E( APSA:l,T=IZ:1) _E( I5PSL\:1T: 7= (H[E(YPSM) + E( IE)PSA:O,T:lz:l) _E( IE)PSA: or=12= fﬂDE( 7PSA: a= )
+[(1_E(ISPSA:1T 17 1) E(PPSL\:OT 1z 1)) (l E(ISPSL\:JI z ) E(PPSL\:GJ é )J)}[E(YPSL\:D:)O
1{ 5 S 09 F Bt oS )
S=cailing(C2m) U=0 S0 U=0
” ZS:VHHH(V ’S)_ﬂwfm)zslv (roiz- O(V ’S)j [E( PA= 0T=J)+
S=odling(C2m)V=0 $0 U=0
+ i iU IjrT:1,Z:1(U 'S)_ i i\/EfT:l,Zﬂ(V S)J [E(YPSA:O,T:O) -
S=dling(C2m)U=0 S=odling(C2m)V=0
ﬂmfm)zu (rayz- o U 'S ﬂwfm)z\/ (roiz- o(V S)] ( PSA= 0= 0)}

S=0 S=0 U=0

(5.2.14)

The PADT usage rates among the target populatemssumed to be independent of
the expected outcomes. The variance of the twqienident variables is:

var(aib) =E(a? 0°) - E(a) [E(b) |

=E() (o) [ ()] FE()]
[E (&®)-[E(a) 2] [{JE b?)-[E(b)] 2]+E(a?)[@E b) ]’ +E(b?) IE(a) ] -2 E(a) E(b)]°
=var(a) var(b) + vafa) (JE( ] + vath) (IE( ]

(5.2.15)

Applying equation (5.2.15), the variance of theeotption in difference is:
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var(%, Y.

o) B Y000 ) P e o [0
TECR | A

) {30 o) o o
o)l ] o )

[N R TS VA I | T

R G PR R va(nsm o felte o

(1B E{Boveroz ) - - 2)E{Parad | DYoo)
(5.2.16)

where

var( Prsactt=12= 1) ];E{ i iU 2 EfT:lvzﬂ(U , S) —( i iU DT:l,Z:l(U ,S)] }

N | s=ceiling(c2m)U=0 S=cailing(C2m) U=0
R 1 |roxcms floor (C1m) S 2
T COREEE Dyl o crm,z:o(u,s)—[ DT crm,z:o(u.s)}

var(|5p3A=o,T=12=1) =n712E Zn: ZS:VZEI‘T:LZZI(V,S)—( Zn: ZS:V ErT:l,Z=1(V’S)] }

S=ceiling(C2m) V=0 S=ceiling(C2m)V=0

1 floor (C1B) S ) floor (C10) S 2
var(PPSA 0T=17= o) - Z ZV EfT:l,Zzo(V,S)—( Z ZV [fT:LZ:O(V'S)J

n S=0 U=0 S=0 U=0
(5.2.17)

B = Y, Y,
|:(PPSA21,T:1Z 1 PSA oT= ]) ( PSA= IT= = 0 PSA 0= Z= ):|

(5.2.18)
When the sample size gets large enough, the expedteestimand can be

approximated by:

~ E(?z:1 _?Z:O)
ElBy]|= - - ~ -
( IV) E[( PPSA:1,T:12:l+ PPSA:OTzlz: J) _(PPSA: 1= g= ¢t Prsa- 0= I= H

(5.2.19)
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However, there is no closed form solution for theriance of the IV estimand.
Simulation will be used in the future to estimdte variance of the IV estimand.

In Figure 5.2.1, the bias of the mean differenc&Oryear mortality between
PADT and CM is examined when there is truly noatiéince between the two groups.
Our estimation is based on a total of 10,000 pttieFhe number of patients within
each health service area receiving PADT is assuméxhve a binomial distribution
with a mean which follows a beta distribution, §2{8). The 10-year mortality for
patients with normal PSA values is assumed to baeghoring their treatment status.
Patients with high PSA values receive PADT, andrth@-year mortality is assumed
to be 100%. The expected differences between PARI GM patients in 10-year
mortality and their respective 95% confidence weés are plotted against the single
health service area size in Figure 5.2.1. The PAB&ge rates from each health
service area are sorted from the lowest to thedsigiThe plot in blue is from the top
one tenth high usage areas and the bottom oneltmthsage areas. The rest of the
four fifths health service areas with the PADT wsagtes between the highest and
lowest usage areas are discarded. The plot insr&dm the top one third high usage
areas and the bottom one third low usage areasteeh®f the one third middle areas
are discarded. The plot in green is from the top balf high usage areas and the
bottom one half low usage areas, i.e., all headtivise areas are included in our
analysis. The two black dashed lines outline th# @®nfidence interval for the true

difference of 0 without using instrumental variabtelysis, i.e.,

var(Y_, —Y,_,) = var(¥,_, ) + va(¥,_,), and 95%CI = 0+ 1.965E(Y,_, - Y, _,).

In Figure 5.2.1, it is obvious that when all seeviareas are used in the
analysis, a small size of the single health serai@a can cause the largest bias in

treatment effect estimation. On the other hand, nwkervice areas falling in the
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middle quantiles are discarded, the variance of éb@mator becomes very large
because of the reduction in overall sample sizeeRample is as the one that only
health service areas from one tenth of the topbatidm quantiles are used. When we
use the top and bottom one third of the data, stienator of the difference becomes
consistent after single health service area reaat®se of 30, and the variance isn'’t
enlarged much compared to the one without discgraiy of health services areas. If
information of PSA is available for all patientsrettt comparison between groups of
PADT and CM would be feasible, and the 95% configeinterval would the

narrowest as shown in black dashed lines. It isepy that the IVA method is less

precise.



Figure 5.2.1 Estimated mean difference when no effeof PADT in mortality

Expected Difference in Mortality

0.00 0.05 0.10 0.15

-0.05

compared to CM

_____ e 2 0
I I I I I I I
0 10 20 30 40 50 60

Health Service Area Size

Note: 1. Data used in quantiles: blue 2/10; reqd @/8en 1.

2. Solid lines: expected mean differerzashed lines: 95% CI
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Chapter 6

Future Research

6.1 Exploration in the two-stage likelihood-basedVA model

In order to apply our two-stage likelihood-based IModel, we need to make
assumptions about the distribution of the unobskreenfounder, the association
between the treatment status and the unobservdduwuter at stage one, and the
association between the outcome and the unobseorddunder at stage two. In this
thesis, we used information from external souroesstablish these assumptions, and

we conducted a sensitivity analysis ¢ to assess the impact of changes in the
assumptions on the final results. We wish to imprthis model by weakening these
assumptions.

Besides the sensitivity analysis ¢, we plan to conduct more sensitivity
analyses on the values of,, and the mean of confoundgy, . We wish to test the
validity of these assumptions and examine the tffetcthese assumptions cause.

We also plan to develop ways to add covariates sschge, cancer stage,
race, marital status, and economic indicators enttho-stage likelihood-based IVA
model in addition to the PSA. Since the model takeday to converge for a six-

piecewise constant hazard model at stage two, Wéhaxie to explore more efficient

computational methods.
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6.2 Instrumental variable analysis with clustered dta

In the prostate cancer example, health servicesaragy widely in size. For
example, Detroit and Los Angeles are very large@sapared to others. Therefore,
they could have a dominant effect on the IVA if legeatient is treated as an
independent observation. How can we reduce thehveifythese large areas? One
way could be to use a linear mixed model or a gdizexd linear mixed model with
“area” as the clustering factor, that is to tresgaaas a random effect. For survival
outcomes, those are known as frailty models. P@tigfnm the same health service
area are assumed to be correlated with respeceabntent and outcome. Patients
from different health service areas are indepenadéreach other with respect to
treatment and outcome. In linear models, the twgesinstrumental variable analysis
can be expressed as:

T, =a,+a,Z +a,U; +C, +y, (6.2.1)

Yij =6+ Uij +182|1Uij +Cj * & (6.2.2)
where | represents thg th health area, and represents théth subject within the
j th health areaC; represents the random effect from the health aeddollows a

normal distribution with a mean 0 and a variande y; is distributed as normal

(O,wz), andg; is distributed as norme(D,az). The cluster data structure is found in

Table 6.2.1.



Table 6.2.1 Cluster data structure

Instrumental
Cluster Subject Variable Confounder Treatment Response
1 1 Z, U, T, Y
1 2 Z,, U, Ty Yo,
l nl anl Unll Tnll Ynll
2 1 Z, U, T, Y
2 n, an 2 U n,2 Tn2 2 Ynzz
j-1 1 i, Uy L Vi
J -1 nj—l Znj,lj—l nqj-1 njqj-1 ni4j-1
j 1 Z; Uy LY i
i n; Z"i ] U n;j T”J i Y"i ]
The correlation matrix for outcome is:
F 1 2 _
: : 0
yo¥ 1
1
corr (Y) = 0 : 0
Py
1 Py
0 : :
L Py 1]

Let \7J be the sample mean of outcome from health grea
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\7]. = p, ==—, wheren is the total number of patients in health ajea

D. 1- p.
var( p .)_—ngEb f1-p;)+ M (6.2.3)

After the random effect from health areas are takém account, the overall mean

from all health areas is calculated as a weightedmof each health area. The weight

isvar(ﬁ ) We have
V] J f)l _J 1 : 1 )
HlA) R ) Toon) e a) b 0

(6.2.4)
where J is the total number of health areas. Wheris small, var( bj) tends to be
large, and whem is large, var( bj) tends to be small. Therefore, larger health

service areas put more weight on the overall mdasuttome. However, when the
size of a health service area becomes extremege lahe weight approaches a

constant, so that even very large clusters do owtihte the estimate of the mean.
lim, var( ) P, D, [ﬁl pJ) (6.2.5)

The correlation matrix for treatment status is:

corr (T) = 0 R 0
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The potential effect of clustering at stage oné¢hef two-stage likelihood-based IVA

model needs further study.
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