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Likelihood based observability analysis and
confidence intervals for predictions of
dynamic models
Clemens Kreutz1,2*, Andreas Raue1,7 and Jens Timmer1,2,3,4,5,6

Abstract

Background: Predicting a system’s behavior based on a mathematical model is a primary task in Systems Biology. If
the model parameters are estimated from experimental data, the parameter uncertainty has to be translated into
confidence intervals for model predictions. For dynamic models of biochemical networks, the nonlinearity in
combination with the large number of parameters hampers the calculation of prediction confidence intervals and
renders classical approaches as hardly feasible.

Results: In this article reliable confidence intervals are calculated based on the prediction profile likelihood. Such
prediction confidence intervals of the dynamic states can be utilized for a data-based observability analysis. The
method is also applicable if there are non-identifiable parameters yielding to some insufficiently specified model
predictions that can be interpreted as non-observability. Moreover, a validation profile likelihood is introduced that
should be applied when noisy validation experiments are to be interpreted.

Conclusions: The presented methodology allows the propagation of uncertainty from experimental to model
predictions. Although presented in the context of ordinary differential equations, the concept is general and also
applicable to other types of models. Matlab code which can be used as a template to implement the method is
provided at http://www.fdmold.uni-freiburg.de/∼ckreutz/PPL.

Keywords: Confidence intervals, Identifiability, Likelihood, Parameter estimation, Prediction, Profile likelihood,
Optimal experimental design, Ordinary differential equations, Signal transduction, Statistical inference, Uncertainty

Background
A major goal of Systems Biology is the prediction of
cellular behavior over a broad range of environmental
conditions. To be able to generate realistic predictions,
the individual processes of a system of interest have to
be translated into a mathematical framework. The task
of establishing a realistic mathematical model which is
able to reliably predict a systems behavior is to com-
prehensively use the existing knowledge, e.g. in terms of
experimental data, to adjust the models’ structures and
parameters.

*Correspondence: ckreutz@fdm.uni-freiburg.de
1Physics Department, University of Freiburg, Hermann Herder Straße 3, 79104
Freiburg, Germany
2Freiburg Centre for Biosystems Analysis (ZBSA), University of Freiburg,
Habsburgerstraße 49, 79104 Freiburg, Germany
Full list of author information is available at the end of the article

The major steps of this mathematical modeling process
comprise model discrimination, i.e. identification of an
appropriate model structure, model calibration, i.e. esti-
mation of unknown model parameters, as well as pre-
diction and model validation. For all these topics it is
essential to have appropriate methods assessing the cer-
tainty or ambiguity of any result for given experimental
information.

For parameter estimation, there are several approaches
to derive confidence intervals, like standard errors which
are based on an estimate of the covariance matrix of the
parameter estimates [1], bootstrap based confidence inter-
vals [2-4], as well as likelihood based confidence intervals
[5,6]. For model discrimination, significance statements
can be obtained by statistical tests. However, for model
predictions, there are still demands for methodology that

© 2012 Kreutz et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.
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is applicable for mathematical models like ordinary dif-
ferential equations (ODEs) used to describe the dynamics
of a system in a variety of scientific fields e.g. in molecu-
lar biology [7,8], but also in medical research, chemistry,
engineering, and physics.

The mere estimation of parameters is often not the final
aim of an investigation. More frequently, it is desired to
utilize the parametrized model to generate model pre-
dictions such as the dynamic behavior of unobserved
components. Classically, the uncertainty in the model
parameters is attempted to be translated into correspond-
ing prediction confidence intervals, also called predictive
intervals or prediction intervals in the literature. For mod-
els that depend linearly on the model parameters, as it
occurs in classical regression models, this is well studied
and known as propagation of uncertainty based on stan-
dard errors. This approach is appropriate and sufficient
for many applications. However, e.g. for biochemical net-
works, the model responses depend nonlinearly on the
model parameters. Here, the boundaries of the parameter
confidence region can exhibit arbitrarily complex shape
and are usually difficult to translate into boundaries for
the prediction confidence intervals. Therefore, established
approaches aim to scan the entire parameter subspace
which is in a sufficient agreement with the experimental
data to propagate the parameters confidence regions into
confidence intervals for the model predictions. The major
challenge is the complex nonlinear interrelation between
parameters and model responses which requires that the
parameter space has to be sampled densely to capture all
scenarios of model predictions. For models with tens to
hundreds of parameters this is numerically demanding or
even infeasible because high dimensional spaces cannot
be sampled densely. This issue often referred to the curse
of dimensionality in literature [9,10].

Methods for an approximate sampling of the parame-
ter space, e.g. the Markov Chain Monte Carlo (MCMC)
methods [11,12], and bootstrap based approaches [4,13]
are numerically demanding and provide only rough
approximations for ODE models. Therefore, it is diffi-
cult to control the coverage of the prediction confidence
intervals for such approaches. Moreover non-identifiable
parameters are not explicitly considered hampering the
convergence of such sampling techniques and yielding
results that are questionable and difficult to interpret [14].

The idea of the prediction profile likelihood presented
here is to determine prediction confidence without
an explicit sampling strategy for the parameter space.
Instead, a certain fixed value for a prediction is used as a
nonlinear constraint and the parameter values are chosen
via constraint optimization of the likelihood. This does
neither require a unique solution in terms of parameter
identifiability nor confidence intervals for the parameter
estimates. The constraint maximum likelihood approach

checks the agreement of a predicted value with the exper-
imental data. By repeating this procedure for continuous
variations of the predicted value, the prediction profile-
likelihood is obtained. Thresholding the prediction profile
likelihood yields statistically accurate confidence inter-
vals. The desired level of confidence which coincides with
the level of agreement with the experiments is controlled
by the threshold.

The theoretical background of the prediction pro-
file likelihood, also called predictive likelihood has been
already studied [15]. Moreover, related ideas are already
applied in the context of generalized linear mixed models
[16], unobserved data points [17]. The linear approxima-
tion has been applied in nonlinear regression analyses
[18]. A review of prediction profile likelihood approaches
and a modification to sufficiency-based predictive likeli-
hood is provided in [19].

In this paper, this concept is applied to ODE mod-
els occurring in dynamic models, e.g. in Molecular and
Systems Biology as well as chemical engineering. In this
context the approach a data-based observability analysis
is introduced. Moreover, the prediction profile likelihood
concept is extended to obtain confidence intervals for
validation experiments.

Methods
The methodology presented in the following is general,
i.e. not only applicable for ODEs. Therefore, we first intro-
duce the prediction profile likelihood as well as prediction
confidence intervals and next illustrating the applicability
for ODE models.

The prediction profile likelihood
For additive Gaussian noise ε ∼ N(0, σ 2) with known
variance σ 2, two times the negative log-likelihood

−2 LL(y|θ) =
∑

i

(
yi − F(ti, u, θ)

)2

σ 2 + const. (1)

of the data y for the parameters θ is, except a constant off-
set, identical to the residual sum of squares RSS(θ |y) =∑

i
(
yi − F(ti, u, θ)

)2
/σ 2. In this case, maximum likeli-

hood estimation is equivalent to standard least-squares
estimation

θ̂ = arg max
θ

LL(y|θ) ≡ arg min
θ

RSS(θ |y) , (2)

i.e. to minimizing the residual sum of squares. F =
g(x(t, u, θ), θ) denotes the model response which is in the
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case of a state space model given after integration of a
system of differential equations

ẋ(t) = f (x(t), u(t), θ) (3)

with an externally controlled input function u and a map-
ping to experimentally observable quantities

y(t) = g(x(t), θ) + ε(t). (4)

The parameter vector θ comprises the kinetic param-
eters as well as the initial values, and additional offset
or scaling parameters for the observations. Note, that
the presented methodology is general, i.e. also applicable
for other types of models like regression models or par-
tial differential equations, delay differential equations and
differential algebraic equations.

It has been shown [6] that the profile likelihood

PL(θj) = max
θj �=i

LL(θ |y) (5)

for a parameter θj given a data set y yields reliable confi-
dence intervals

CIα(θj|y) = {
θj | − 2PL(θj) ≤ −2LL(y)∗ + icdf (χ2

1 , α)
}

(6)

for the estimation of a single parameter. Here, α is the con-
fidence level and icdf (χ2

1 , α) denotes the α quantile of the
chi-square distribution with one degree of freedom which
is given by the respective inverse cumulative density func-
tion. LL∗ is the maximum of the log-likelihood function
after all parameters are optimized. In (5), the optimiza-
tion is performed for all parameters except θj. The analogy
of likelihood-based parameter and prediction confidence
intervals is discussed in the Additional file 1.

The desired coverage

Prob
(
θj ∈ CIα(θj)

) = α , (7)

i.e. the probability that the true parameter value is inside
the confidence interval, holds for [6] if the magnitude of
the decrease of the residual sum of squares by fitting of
θj is χ2

1 distributed. This is given asymptotically as well as
for linear parameters and is a good approximation under
weak assumptions [20,21]. If the assumptions are violated,
the distribution of the magnitude of the decrease has to be
generated empirically, i.e. by Monte-Carlo simulations, as
discussed in the Additional file 1.

The experimental design D = {t, g, u} comprises all
environmental conditions which can be controlled by the
experimenter like the measurement times t, the observ-
ables g, and the input functions u. A prediction z =
F(Dpred, θ) is the response of the model F for a predic-
tion condition Dpred = {tpred, gpred, upred} specifying a
prediction observable gpred evaluated at time point tpred
given the externally controlled stimulation upred. In prin-
ciple, every quantity which can be computed based on the

model can serve as a model prediction z. Typical exam-
ples comprise concentrations of dynamic compounds, but
also concentration ratios or integrals, or characteristics of
a time course like the height or width of a peak.

In some cases the observable gpred corresponds to mea-
suring a dynamic variable x(t) directly, i.e. it corresponds
to a compound whose concentration dynamics is mod-
eled by the ODEs. In a more general setting the observ-
able is defined by an observational function gpred(x(t), θ)

depending on several dynamic variables x. Therefore, gpred
does neither have to coincide with a dynamic variable
nor with an observational function g of the measurements
performed to build the model.

In analogy to (7), the desired property of a prediction
confidence interval PCIα(D|y) derived from an experi-
mental data set y with a given significance level α is that
the probability

Prob(F(Dpred, θtrue) ∈ PCIα(D|y)) = α (8)

that the true value of F(Dpred, θtrue) is inside the predic-
tion confidence interval PCIα is equal to α. In other words,
the PCI covers the model response for the true parameters
with a proportion α of the noise realizations which would
yield different data sets y.

The prediction profile likelihood

PPL(z) = max
θ∈{θ |F(Dpred,θ)=z}

LL(y|θ) (9)

is obtained by maximization over the model parameters
satisfying the constraint that the model response F(D, θ∗)
after fitting is equals to the considered value z for the pre-
diction. The prediction confidence interval is in analogy
to (6) given by

PCIα(Dpred|y) = {
z | − 2PPL(z) ≤ −2LL∗(y)

+ icdf (χ2
1 , α)

}
,

(10)

i.e. the set of predictions z = F(Dpred, θ) for which −2 PPL
is below a threshold given by the χ2

1 -distribution. In anal-
ogy to likelihood based confidence intervals for param-
eters, such PCI yields the smallest unbiased confidence
intervals for predictions for given coverage α [22].

Instead of sampling a high-dimensional parameter
space, the prediction profile likelihood calculation com-
prises sampling of a one-dimensional prediction space
by evaluating several predictions z. Evaluating the max-
imum of the likelihood satisfying the prediction con-
straint does in general not require an unambiguous
point in the parameter space as in the case of struc-
tural non-identifiabilities. In analogy to profile likelihood
for parameter estimates, the significance level determines
the threshold for the PPL, which is given asymptotically
by the quantiles (6) of the χ2

1 -distribution [23]. In the
Additional file 1, a Monte-Carlo algorithm is presented
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which can be used to calculate the threshold in cases
where the asymptotic assumption is violated.

The validation profile likelihood
Likelihood-based confidence interval like (6) or (10) cor-
respond to the set of predictions which are not rejected
by a likelihood ratio test. Having a prediction confidence
interval, the question arises whether a model has to be
rejected if a validation measurement is outside the pre-
dicted interval. This, in fact, would hold if a “perfect”
validation measurement would be available, i.e. a data
point without measurement noise. For validation experi-
ments, however, the outcome is always noisy and is there-
fore expected to be more frequently outside the PCI than
the true value. Hence, the prediction confidence interval
(10) has to be generalized for application to a validation
experiment.

For a validation experiment, we therefore introduce a
validation profile likelihood VPL and a corresponding val-
idation confidence interval VCISD

α in the following. In such
a setting, a confidence interval should have a coverage

Prob
(

z ∈ VCISD
α (Dvali|y)

)
= α (11)

for the validation data point z ∼ N(μ, SD2) with expec-
tation μ = F(Dvali, θtrue) and variance SD2. Here, Dvali
denotes the design for the validation experiment. A valida-
tion confidence interval satisfying (11) allows a rejection
of the model if a noisy validation measurement with error
SD is outside the interval.

VCISD
α for validation data can be calculated by relaxing

the constraint in (9) used to compute the prediction pro-
file likelihood. Because in this case, the model prediction
does not necessarily have to coincide with the data point
z. Instead, the deviation from the validation data point is
penalized equivalently to the data y. The agreement of the
model with the data y and the validation measurement z is
then given by

LL(z, y|θ) =
∑

i

(
yi − F(Di, θ)

σ

)2

︸ ︷︷ ︸
=RSS of existing data y

+
(

z − F(Dvali, θ)

SD

)2

︸ ︷︷ ︸
=RSS of a validation data point z

(12)

We now define the validation profile (log-)likelihood

VPLSD(z|y) = LL∗(z, y) = LL(z, y|θ∗) (13)

with θ∗ = θ∗(z, y) = arg maxθ LL(z, y|θ) as the maxi-
mized joint log-likelihood in (12) read as a function of z.

The corresponding validation confidence interval is given
by

VCISD
α (Dvali|y) =

{
z| − 2VPLSD(z|y) ≤ −2LL∗(z, y)

+ icdf (χ2
1 , α)

}
.

(14)

Optimization of the likelihood (12) minimizes both, the
mismatch of existing data RSS(θ |y), and the mismatch
with the fixed validation data point z. The model response
F(Dpred,θ∗) obtained after this parameter optimization can
be interpreted as a prediction z′ satisfying the constraint
optimization problem (9) considered for the prediction
profile likelihood. It holds

LL∗(z, y; SD > 0) − 1
2

(z − F(Dvali, θ∗))2

SD2

= LL∗(z′, y; SD = 0) ,
(15)

i.e. the validation profile likelihood LL∗ can be scaled to
the prediction likelihood via

PPL(z′|y) = VPLSD(z|y) − 1
2

(z′ − z)2

SD2 (16)

where z′ = F(Dvali, θ∗(z, y, SD > 0)) is the model response
for θ∗ estimated from z and y.

Optimization with nonlinear constraints is a numeri-
cally challenging issue. Therefore, (16) provides a helpful
way to omit constraint optimization. The VPL can be
calculated with SD > 0 like a common least-squares mini-
mization and is then afterwards rescaled to obtain the PCI
for the true value.

Results
Small illustration model
First, a small but illustrative model of two consecutive
reactions

A θ1→ B θ2→ C (17)

with rates θ1 = 0.05, θ2 = 0.1 and initial conditions
A(0) = θ3 = 1, B(0) = 0, C(0) = 0 is utilized to illustrate
our approach. For this purpose, it is assumed that C(t) is
measured at t = 0, 10, . . . , 100.

For the simulated measurements, Gaussian noise ε ∼
N(0, σ 2) with σ = 0.1 has been assumed which corre-
sponds to a typical signal-to-noise ratio for applications
in cell biology of around 10%. If an experimental setup
would not allow for negative measurements, a log-normal
distribution of the observational noise could be more
appropriate. Then, the Gaussian setting is obtained after
a log-transformation of the data [24]. Such transforma-
tions and preprocessing procedures would have to be
performed before the analysis starts.

Panel (a) in Figure 1 shows the dynamics of A(t),
B(t), and C(t) as well as a typical data realization. This
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Figure 1 Illustration model. The three figures in panel (a) show the dynamics and measurement realization for the small model used for
illustration purpose. C(t) is measured and the dynamics of all states, i.e. A(t), B(t), and C(t), is intended to be predicted. Panel (b) shows as an example
the prediction profile likelihood (gray dashed curve) and validation profile likelihood (black dashed curve) of A(t=10). Thresholding yields confidence
intervals for prediction (gray vertical lines) and validation (black vertical lines). The threshold and the respective projections correspond to the α=
90% confidence interval. The VCIs are larger than the PCIs, because they account for the measurement error of a validation data point. Panels (c)-(e)
show prediction confidence intervals (gray) for the unobserved states A(t), B(t), as well as for the measured state C(t). The prediction profile
likelihood functions are plotted as black curves in vertical direction. Non-observability is illustrated in panels (f)-(h). Panel (f) shows a realization of
the measurements for a design which does not provide sufficient information about the steady state of C. This leads to a flat prediction profile
likelihood for large values for A(t) as shown in panel (g), as well as for B(t) for t>0 as plotted in panel (h). A flat prediction profile likelihood in turn
yields unbounded prediction and validation confidence intervals and non-observability of A(t) and B(t) as indicated by the gray shaded regions.

simulated data realization is utilized to calculate the
prediction- and validation profile likelihood, e.g. for
the dynamic states. Panel (b) shows, as an example, the
prediction profile likelihood and the validation profile
likelihood for this data realization for predicting A(t) at
time point t = 10. The validation profile likelihood has
been calculated for validation data with 10% measure-
ment noise, as it was assumed for the measurements.
The vertical axis is minus two times the log-likelihood
which corresponds to the residual sum of squares
RSS. For illustration purposes, the minimum of the
log-likelihood LL∗ is shifted to zero in all figures. The

threshold corresponding to the 90% confidence level is
plotted as horizontal line. As explained in the Methods
section, the projections to the horizontal axis yields the
respective confidence intervals for a prediction or for a
validation experiment. The constraint optimization pro-
cedure is infeasible for A(t) ≤ 0 and therefore the PCIs
automatically account for strictly positive values of A.

The calculation of the prediction and validation confi-
dence intervals has been repeated for t = 0, 10, . . . , 100
and all three dynamic states A(t), B(t), C(t). In panels (c)-
(e), the respective prediction confidence intervals (PCIs)
are plotted as well as the prediction profile likelihood. The
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corresponding validation profile likelihood functions and
the respective validation confidence intervals are shown
in Additional file 1. Prediction- as well as validation
confidence intervals always cover the prediction for the
maximum likelihood parameter estimates.

For plotting the confidence intervals along the time
axis, the PCIs evaluated the eleven time points have been
interconnected by cubic piecewise interpolation. The
displayed confidence intervals constitute the propagation
of information from the measurements of C(t) to predic-
tions of the dynamics of the compound concentrations.
Because C is the measured compound in our example, the
prediction confidence intervals for C are much smaller
than for A and B. However, also A and B yield bounded
prediction confidence intervals which can be interpreted
as observability of these dynamic states.

In the Additional file 1, the reliability of our confi-
dence intervals is investigated by calculating the coverage,
i.e. by comparing the confidence level with the frequency
that the true value is inside the prediction confidence
interval. For our example, it is demonstrated that confi-
dence intervals using the asymptotic threshold sometimes
yield slightly conservative intervals. Also an algorithm to
improve the threshold is provided which yields slightly
smaller confidence intervals with the correct coverage.

To illustrate the effect of non-observability, the assump-
tion about the available experimental information is
slightly changed. The measurements are simulated for
earlier and closer time steps, i.e. for t = 0, 2, . . . , 20.
Panel (f ) in Figure 1 shows that these time points sample
only the transient increase of C(t). Hence, such a design
does not provide sufficient information about the steady

state level of C. In other words, the modification lim-
its the available information about the total amounts of
the compounds, i.e. the concentration dimension of the
parameters is practically non-identifiable. This, in turn,
manifests in non-observability of the predictions of A(t)
and B(t).

Panel (g) shows the prediction confidence intervals for
A(t). In the chosen setting, the predictions are unbounded
towards infinity and therefore A(t) is non-observable. In
panel (h), it is also shown that B(t) is non-observable.
According to the model definition, B(0) is known to be
zero, but for t > 0, unbounded prediction confidence
intervals are obtained which indicate non-observability
of B(t).

MAP kinase signaling model
Next, an ODE model of cellular signal transduction has
been used to illustrate our method in a realistic setting.
For this purpose, a model of the mitogen-activated pro-
tein (MAP) kinases which is one of the most extensively
studied signal transduction pathway, is utilized. The cho-
sen model [25] consists of eight dynamic states describing
the time dependency of the MAP kinases Raf, Raf∗, Mek,
Mek∗, Mek∗∗, Erk, Erk∗, and Erk∗∗ which play a very
prominent role in many cellular processes, e.g. in cell pro-
liferation. A star ‘*’ denotes phosphorylation of the protein
which biologically acts as activation.

Panel (a) in Figure 2 provides a summary of the MAP
kinase signaling pathway. The enzymatic reactions in
the ODE model are described as Michaelis-Menten rate
equations, i.e. each reaction is parametrized with a max-
imal enzymatic rate and a Michaelis constant. As in the

Figure 2 MAP kinase model. Panel (a) shows the MAP kinase model according to [25]. It is assumed that the phosphorylated compounds are
measured. The dynamics of all compounds is intended to be predicted to illustrate the prediction profile likelihood approach. In panel (b) the
dynamics of the MAP kinase model as well as simulated data set are plotted. The 90% confidence intervals of the dynamic variables for predictions
(dark gray) and for validation experiments (light gray) for this noise realization are plotted in panel (c). The size of the prediction confidence interval
(PCI) is plotted as a dashed-dotted line. In absolute concentrations, the dynamics of Erk∗∗ has the largest PCI at t=181 seconds, i.e. when the
negative feedback is activated. Also, the dynamics of Mek∗ is only badly observable in our example. Measurements of both would be very
informative for better calibrating the model.
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original publication, the parameters of the two consecu-
tive phosphorylation and dephosphorylation steps of Mek
and Erk are assumed to be identical and the initial con-
centrations are assumed to be known. In this setting, 14
parameters are estimated out of three times eleven data
points. Details about the model are provided in Additional
file 1.

It is assumed that the total amount of the phospho-
rylated forms for each protein, i.e. Raf∗, the sum of
Mek∗ and Mek∗∗ as well as the sum of Erk∗ and Erk∗∗,
are measured. This observational assumption holds for
example for phospho-specific antibodies such as uti-
lized for western blotting. The measurement times are
set to 0, 100, . . . , 1000 seconds. Again, additive Gaussian
noise is assumed. The standard deviation has been set to
σ =10 nM.

In panel (b) of Figure 2 a typical noise realization is dis-
played. Panel (c) shows the prediction confidence intervals
(dark gray) and the validation confidence intervals (light
gray) for this noise realization calculated for all dynamic
states. The size of the confidence intervals is plotted as a
dashed-dotted line.

The prediction confidence intervals show how precisely
the dynamics is inferred by the available data. The tempo-
ral behavior of Raf, Raf∗ is quite well determined, i.e. the
size of the PCI is below 40 nM. Similarly, the unphos-
phorylated states of Mek and Erk have narrow prediction
confidence intervals. For Mek∗ the concentration dynam-
ics is only predicted within rather large intervals which for
most time points nearly span a range between zero and
100 nM.

The largest absolute size of the prediction confidence
interval of 176 nM is obtained for Erk∗∗ after 181 sec-
onds. This is the point in time where the negative feed-
back is activated. Additional experimental investigation
of this condition is very informative to further spec-
ify the dynamic behavior of the MAP kinase cascade in
our example. Further considerations concerning experi-
mental planning are provided in detail in the Additional
file 1.

Discussion
Existing approaches for prediction confidence intervals
like MCMC [26] or bootstrap procedures are based on for-
ward evaluations of the model for many parameter values.
This works reasonably well for a low dimensional parame-
ter space and if the target density function, i.e. the param-
eter space to be sampled, is well-behaved [14]. However,
sampling nonlinear high-dimensional spaces densely is
impractical and it is almost impossible to ensure that sam-
pling the parameter space covers all prediction scenarios.
Especially in biological applications the target distribu-
tions frequently inherit strong and nonlinear functional
relations. In the case of non-identifiability, the parameter

space to be sampled is not restricted rendering conver-
gence near to impossible.

In this paper, we present a contrary procedure. The
model prediction space is sampled directly and the corre-
sponding model parameters are determined by constraint
maximum likelihood to check the agreement of the pre-
dictions with the data. This concept yields the prediction
profile likelihood which constitutes the propagation of
uncertainty from experimental data to predictions.

If a comprehensive prior, i.e. for all parameters, would
be available, a Bayesian procedure like MCMC where
marginalization, i.e. integration over the nuisance dimen-
sions is feasible could have superior performance. How-
ever, in cell biology applications, prior knowledge is very
restricted because kinetic rates and concentrations are
highly dependent on the cell type and biological con-
text, e.g. on the cellular environment and biochemical
state of a cell. Therefore, there is usually at most some
prior information for few parameters available. Such prior
information can be incorporated in our procedure with-
out restricting its applicability by generalizing maximum
likelihood estimation to maximum a-posterior estimation
as discussed in the Additional file 1.

In general, generating prediction confidence intervals
given the uncertainty in a high-dimensional nonlin-
ear parameter space requires large numerical efforts.
However, this complication primarily originates from
the complexity of the issue itself rather than from the
methodological choice. In fact, the aim is approached
by the prediction profile likelihood in a very efficient
manner because scanning the parameter space by the
constrained optimization procedure to explore the data-
consistent predictions is more efficient than sampling
parameter space without considering the predictions like
it is performed for MCMC. Instead of sampling a high-
dimensional parameters space, only the prediction space
has to be explored for calculating a prediction profile
likelihood, i.e. the optimization of the parameters reduces
the high-dimensional sampling problem to exploring a
single dimension.

The prediction confidence regions introduced above has
to be interpreted point-wise. This means that a confidence
level α controls errors of type 1 which is the probability
that the model response for the true parameters is inside
the prediction confidence interval for a single prediction
condition if many realizations of the experimental data
and the corresponding prediction confidence intervals are
considered.

In contrast, if a single data set is utilized to gener-
ate many prediction intervals, e.g. predictions for several
points in time as performed above, the results are sta-
tistically dependent, i.e. the realization of the PCI of a
neighboring time point is very similar and therefore cor-
related. Therefore, the prediction confidence intervals
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for a compound for two adjacent points in time very
likely both contain the true value, or neither. In such
an example, a common prediction confidence region for
two statistically dependent predictions would require a
two-dimensional prediction profile likelihood. This topic,
however, is beyond the scope of this article.

The prediction profile likelihood also provides a con-
cept for experimental planning. Experimental conditions
with a very narrow prediction confidence interval are very
accurately specified by the available data. New measure-
ments for such a condition on the one hand does not pro-
vide very much additional information to better calibrate
the model parameters, and hence is from this point of view
a bad choice for additional measurements. On the other
hand, it very precisely predicts the model behavior under
these certain conditions and is therefore a very power-
ful candidate setting for validating the model structure.
Contrarily, large prediction confidence intervals indicate
conditions which are weakly specified by the existing data
and therefore constitute informative experimental designs
for better calibrating the model. Because a design opti-
mization on the basis of the prediction profile likelihood
does not require any linearity approximation like common
experimental design techniques, e.g. based on the Fisher
information [27], the presented procedure is very valuable
for ODE models which are typically highly nonlinear.

Another potential of the prediction profile likelihood
shown in this article is its interpretation in terms of
observability. This term is very commonly used in con-
trol theory to characterize whether the dynamics of some
unobserved variables can be inferred by the set of fea-
sible experiments. The theory in this field is based on
analytical calculations, i.e. the limited amount and inaccu-
racy of the data is usually not considered. In this article,
it has been shown that the prediction profile likelihood
allows for a general data-based approach to check whether
there is enough information about unobserved dynamic
states in the given experimental design and realization
of measurements. Therefore, in analogy to the terminol-
ogy of practical identifiability [6], we would suggest to
term observability for a given data set, i.e. a restricted
prediction confidence interval, as practical observability.

Finally, it should be noted, that a prediction could be any
function of the compounds and the parameters. In appli-
cations, e.g. a ratio of two compound concentrations is a
characteristics of interest. In principle also integrals, peak
positions and other functions of the dynamic states can
be considered as predictions which could be targets for
observability considerations as well as for the calculation
of prediction and validation confidence intervals. This
flexibility renders the prediction profile likelihood as a
concept promising to resolve one bottleneck in computer-
aided simulations of complex systems, the generation of
reliable confidence intervals for predictions.

Conclusions
Computer-aided simulations are a well-established tool to
study a system’s behavior. The applications range from
forecasting climate changes [28] via predicting events in
a detector in high-energy physics [29] to modeling bio-
logical systems [30]. Generating model predictions is a
major task in mathematical modeling. For the dynamic
mechanistic models as they are applied e.g. in Molec-
ular and Systems Biology, the confidence regions from
parameter estimation can have arbitrarily complex shapes.
Therefore, it is very difficult or even impossible to sam-
ple the parameter space appropriately to generate confi-
dence intervals for predictions. This in turn impedes a
data-based observability analysis for the dynamic states.

In this article, the prediction profile likelihood method-
ology is presented as a method for calculating the set
of model predictions which are consistent with existing
measurements without explicitly calculating the uncer-
tainty of the parameters. This is performed numerically
by constrained optimization and constitutes a powerful
tool for assessing model predictions, performing observ-
ability analyses, and experimental design. The method is
feasible for arbitrary dimensions of the parameter space. It
only requires a proper calculation of the maximum likeli-
hood value, i.e. a numerically reliable parameter optimiza-
tion procedure. The task of sampling a high-dimensional
parameter space reduces to scanning a one-dimensional
prediction space. It therefore allows the calculation of
confidence intervals for model predictions as well as confi-
dence intervals for the outcome of validation experiments.

The applicability of the approach has been shown by a
small but instructive system of two consecutive reactions
and a published model for MAP kinase signaling. For the
small system, it has been shown that the prediction profile
likelihood yields desired coverage properties. Moreover, a
setting inducing non-observability has been investigated
which is characterized by unbounded prediction confi-
dence intervals. For the MAP kinase model, prediction
confidence intervals and validation confidence intervals
for all dynamic states have been determined on the basis
of measurements of the phosphorylated proteins. In addi-
tion, the applicability of the approach for experimental
planning has been demonstrated.

Additional file

Additional file 1: [Kreutz12 SupplementalMaterial]. In the
Supplemental Material, theoretical issues like re-parametrization of the
model, coverage, or the accuracy of the asymptotically derived threshold
are discussed in detail. Moreover, the computational implementation is
described and additional analyses of the two models are provided.
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