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Likelihood-Based Selection and Sharp
Parameter Estimation

Xiaotong SHEN, Wei PAN, and Yunzhang ZHU

In high-dimensional data analysis, feature selection becomes one effective means for dimension reduction, which proceeds with parameter
estimation. Concerning accuracy of selection and estimation, we study nonconvex constrained and regularized likelihoods in the presence
of nuisance parameters. Theoretically, we show that constrained L0 likelihood and its computational surrogate are optimal in that they
achieve feature selection consistency and sharp parameter estimation, under one necessary condition required for any method to be selection
consistent and to achieve sharp parameter estimation. It permits up to exponentially many candidate features. Computationally, we develop
difference convex methods to implement the computational surrogate through prime and dual subproblems. These results establish a central
role of L0 constrained and regularized likelihoods in feature selection and parameter estimation involving selection. As applications of
the general method and theory, we perform feature selection in linear regression and logistic regression, and estimate a precision matrix
in Gaussian graphical models. In these situations, we gain a new theoretical insight and obtain favorable numerical results. Finally, we
discuss an application to predict the metastasis status of breast cancer patients with their gene expression profiles. This article has online
supplementary material.

KEY WORDS: Continuous but nonsmooth minimization; Coordinate descent; General likelihood; Graphical models; Nonconvex; (p,n)-
Asymptotics.

1. INTRODUCTION

Feature selection is essential to battle the inherited “curse of
dimensionality” in high-dimensional analysis. It removes non-
informative features to derive simpler models for interpretabil-
ity, prediction, and inference. In cancer studies, for instance,
a patient’s gene expression is linked to her metastasis status
of breast cancer, for identifying cancer genes. In a situation as
such, our ability of identifying cancer genes is as critical as a
model’s predictive accuracy, where selection accuracy becomes
extremely important to reproducible findings and generalizable
conclusions. Toward accuracy of selection and parameter es-
timation, we address several core issues in high-dimensional
likelihood-based selection.

Consider a selection problem with nuisance parameters,
based on a random sample Y = (Y1, . . . , Yn) with each Yi fol-
lowing probability density g(θ0, y), where θ0 = (β0, η0) is
a true parameter vector, β0 ≡ (β0

1 , . . . , β0
p) = (β0

A0
, 0Ac

0
) and

η0 ≡ (η0
1, . . . , η

0
q) are the parameters of interest and nuisance

parameters, respectively, A0 = {j : β0
j �= 0} is a set of nonzero

coefficients of β0 with size |A0| = p0, and 0Ac
0

is a vector of 0’s
with c denoting the set complement. Here, we estimate (β0, A0),
where p may greatly exceed n, and q = 0 is permitted.

For estimation and selection, a likelihood is regularized with
regard to β, particularly when p > n. This leads to an informa-
tion criterion,

− L(θ) + λ

p∑
j=1

I (βj �= 0), (1)

where L(θ ) = ∑n
i=1 log g(θ , Yi) is the log likelihood based on

Y, λ > 0 is a regularization parameter, and
∑p

j=1 I (βj �= 0) is
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the L0 function penalizing an increase in a model’s size. In (1),
when θ = β without nuisance parameters, λ = 1 is Akaike’s in-
formation criterion, λ = log n

2 is Bayesian information criterion
(Schwarz 1978), among others. In fact, essentially all selection
rules can be cast into the framework of (1).

Regularization (1) has been of considerable interest for its
interpretability and computational merits. Yet its constrained
counterpart (2) has not received much attention, which is

− L(θ), subject to
p∑

j=1

I (βj �= 0) ≤ K, (2)

where K ≥ 0 is a tuning parameter corresponding to λ in (1).
Minimizing (1) or (2) in θ gives a global minimizer leading to
an estimate β̂ = (β̂Â, 0Âc )T , with Â the estimated A0, where
η is unregularized and possibly profiled out. Note that (1) and
(2) may not be equivalent in their global minimizers, which is
unlike a convex problem.

This article systematically investigates constrained and regu-
larized likelihoods involving nuisance parameters, for estimat-
ing zero components of β0 as well as nonzero ones of θ0. This
includes, but is not limited to, estimating nonzero entries of a
precision matrix in graphical models.

There is a huge body of literature on parameter estimation
through L1 regularization in linear regression (see, e.g.,
Negahban et al. 2010 for a comprehensive review). For feature
selection, consistency of the Lasso (Tibshirani 1996) has
been extensively studied under the irrepresentable assump-
tion (cf., Meinshausen and Buhlmann 2006; Zhao and Yu
2006). Other methods, such as the smoothly clipped absolute
deviation (SCAD) (Fan and Li 2001), have been studied.
Yet L0 constrained or regularized likelihoods remain largely
unexplored. Despite progress, many open issues remain. First,
what is the maximum number of candidate features allowed
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for a likelihood method to reconstruct informative features?
Results, such as Kim, Choi, and Oh (2008), seem to suggest
that the capacity of handling exponentially many features may
be attributed primarily to the exponential tail of a Gaussian
distribution, which we show is not necessary. Second, can
parameter estimation be enhanced through removal of zero
components of β? Third, can a selection method continue to
perform well for parameters of interest in the presence of a
large number of nuisance parameters, as in covariance selection
for off-diagonal entries of a precision matrix?

This article intends to address the foregoing three issues.
First, we establish finite-sample misselection error bounds for
constrained L0 likelihood as well as its computational sur-
rogate, given (n, p0, p), where the surrogate—a likelihood
based on a truncated L1 function (TLP) approximating the
L0 function—permits efficient computation (see Section 2.1
for a definition). On this basis, we establish feature selection
consistency for them as n, p → ∞, under one key condition
that is necessary for any method to be selection consistent:

Cmin(θ0) ≥ d0
log p

n
, (3)

where Cmin(θ0) ≡ inf{θA=((βA,0Ac ),η):A �=A0,|A|≤p0}
− log(1−h2(θA,θ0))

max(|A0\A|,1) ,
d0 > 0 is a constant, | · | and \ denote the size of a set and
that of set difference, respectively, h(θ, θ0) = 1

2 (
∫

(g1/2(θ , y)
−g1/2(θ0, y))2dµ(y))1/2 is the Hellinger distance with respect
to a dominating measure µ, and g(θ , y) is a probability density
for Y1. As one consequence, exponentially many candidate fea-
tures p = exp(nCmin(θ0)

d0
) are permitted for selection consistency

with a broad class of constrained likelihoods. This challenges
the well-established result that the maximum number of candi-
date features permitted for selection consistency depends highly
on a likelihood’s tail behavior (c.f., Chen and Chen 2008). In
fact, selection consistency continues to hold even if the error dis-
tribution does not have an exponential tail (see Proportion 1 for
linear regression). Second, sharper parameter estimation results
from accurate selection by L0 likelihood and its surrogate as
compared to that without such selection. For feature selection in
linear regression and logistic regression, the optimal Hellinger
risk of the oracle estimator, the maximum likelihood estimate
(MLE) based on A0 as if the true A0 were known a priori, is

recovered by these methods, which is of order of
√

p0

n
and is

uniform over a certain L0 band of θ0 excluding the origin. This

is in contrast to the minimax rate
√

u log(p/u)
n

with u ≥ p0 for es-
timation without feature selection in linear regression (Raskutti,
Wainwright, and Yu 2009). In other words, accurate selection
by L0 likelihood and its surrogate over the L0 band improves ac-
curacy of estimation after noninformative features are removed,
without introducing additional bias to estimation. Moreover, in
estimating a precision matrix in Gaussian graphical models,
the foregoing conclusions extend but with a different rate at√

p0 log p

n
, where a log p factor is due to estimation of 2p nui-

sance parameters as compared to logistic regression. Third, two
difference of convex (DC) methods are employed for computa-
tion of (1) and (2), which relax nonconvex minimization through
a sequence of convex problems.

Two disparate applications are considered, namely, feature
selection in generalized linear models (GLMs) and estimation

of a precision matrix in Gaussian graphical models. In GLMs,
feature selection in nonlinear regression appears more challeng-
ing than linear regression for a high-dimensional problem. In
statistical modeling of a precision matrix in Gaussian graphical
models, two major approaches have emerged to exploit matrix
sparsity by likelihood selection and neighborhood selection. Ar-
ticles based on these two approaches include Meinshausen and
Buhlmann (2006), Li and Gui (2006), Yuan and Lin (2007),
Benerjee, Ghmoui, and dAspremont (2008), Rothman, Bickel,
Levina, and Zhu (2008, 2009), Rocha, Zhao, and Yu (2008),
among others. As suggested by Rothman et al. (2008), existing
methods may not perform well when the dimension of a matrix
exceeds the sample size n, although they give estimates bet-
ter than the sample covariance matrix. In addition, theoretical
aspects for a likelihood approach remain to be under studied.
In these situations, the proposed method compares favorably
against its competitors in simulations, and novel theoretical re-
sults provide an insight into a selection process.

This article is organized as follows. Section 2 develops the
proposed method for L0 regularized and constrained likelihoods.
Section 3 presents main theoretical results for selection consis-
tency and parameter estimation involving selection, followed
by a necessary condition for selection consistency. Section 4
applies the general method and theory to feature selection in
GLMs. Section 5 is devoted to estimation of a precision matrix in
Gaussian graphical models. Section 6 presents an application to
predict the metastasis status of breast cancer patients with their
gene expression profiles. Section 7 contains technical proofs.

2. METHOD AND COMPUTATION

2.1 Method

In a high-dimensional situation, it is computationally
infeasible to minimize a discontinuous cost function involving
the L0 function in (1) and (2). As a surrogate, we seek a
good approximation of the L0 function by the TLP, defined as
J (|z|) = min( |z|

τ
, 1), with τ > 0 a tuning parameter controlling

the degree of approximation (see Figure 1). This τ decides which
individual coefficients to be shrunk toward zero. The advantages
of J (|z|) are fourfold, although J (z) has been considered in
other contexts (Gasso, Raotomamonjy, and Canu 2009):

(1) (Surrogate) It performs the model selection task of the
L0 function, while providing a computationally efficient
means. Note that the approximation error of the TLP
function to the L0 function becomes zero when τ is tuned
such that τ < min{|β0

k | : k ∈ A0}, seeking the sparsest
solution by minimizing the number of nonzero coeffi-
cients.

(2) (Adaptive model selection through adaptive shrinkage)
It performs adaptive model selection (Shen and Ye 2002)
through a computationally efficient means when λ is
tuned. Moreover, it corrects the Lasso bias through adap-
tive shrinkage combining shrinkage with thresholding.

(3) (Piecewise linearity) It is piecewise linear, gaining com-
putational advantages.

(4) (Low resolutions) It discriminates small from large coef-
ficients through thresholding. Consequently, it is capable
of handling many low-resolution coefficients, through
tuning τ .
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Figure 1. Truncated L1 function J (|βj |) with τ = 1 in (a), and its DC decomposition into a difference of two convex functions J1 and J2

in (b).

To treat nonconvex minimization, we replace the L0 function
by its surrogate J (·) to construct an approximation of (2) and
that of (1):

−L(θ), subject to
p∑

j=1

J (|βj |) ≤ K, (4)

S(θ ) = −L(θ) + λ

p∑
j=1

J (|βj |), (5)

where (5) is a dual problem of (4). To solve (5) and (4), we de-
velop difference convex methods for the primal and dual prob-
lems, for efficient computation.

2.2 Unconstrained Dual and Constrained Primal
Problems

Our DC method for the dual problem (5) begins with
a DC decomposition of S(θ ): S(θ ) = S1(θ) − S2(β), where
S1(θ ) = −L(θ) + λ

∑p

j=1 J1(|βj |), S2(β) = λ
∑p

j=1 J2(|βj |),
J1(|βj |) = |βj |

τ
, and J2(|βj |) = |βj |

τ
− max( |βj |

τ
− 1, 0). Without

loss of generality, assume that −L is convex in θ ; otherwise,
a DC decomposition of −L is required and can be treated
similarly. Given this DC decomposition, a sequence of up-
per approximations of S(θ ) is constructed iteratively, say, at
iteration m, with ∇S2 a subgradient of S2 in |β|: S(m)(θ) =
S1(θ ) − (S2(β̂

(m−1)
) + (|β| − |β̂ (m−1)|)T ∇S2(|β̂(m−1)|)), by suc-

cessively replacing S2(β) by its minorization, where | · | for a
vector takes the absolute value in each component. After ignor-

ing S2(β̂
(m−1)

) − λ
τ

∑p

j=1 |β̂(m−1)
j |I (|β̂(m−1)

j | > τ ) that is inde-
pendent of θ , the problem reduces to

S(m)(θ) = −L(θ) + λ

τ

p∑
j=1

|βj |I
(|β̂(m−1)

j | ≤ τ
)
. (6)

Minimizing (6) in θ yields its minimizer θ̂
(m)

. The process con-
tinues in m until termination occurs. Our unconstrained DC
method is summarized as follows.

Algorithm 1:

Step 1. (Initialization) Supply a good initial estimate θ̂
(0)

,
such as the minimizer of S1(θ).

Step 2. (Iteration) At iteration m, compute θ̂ (m) by solving
(6).

Step 3. (Termination) Terminate when S(θ̂
(m−1)

) − S(θ̂
(m)

)

≤ ε, and no components of β̂
(m)

is at ±τ . Otherwise,
add ε to that components whose absolute value is
τ , and go to Step 2, where ε is the square root of

the machine precision. Then the estimate θ̂ = θ̂
(m∗)

,
where m∗ is the smallest index at the termination
criterion.

In Algorithm 1, (6) reduces to a general weighted Lasso
problem: −L(θ ) + ∑p

j=1 λj |βj |, with λj = λ
τ
I (|β̂(m−1)

j | ≤ τ ).
Therefore, any efficient software is applicable.

For (4), we decompose the nonconvex constraint into a dif-
ference of two convex functions to construct a sequence of
approximating convex constraints. This amounts to solving the
mth subproblem in a parallel fashion as in (6):

min
β

−L(θ ), subject to
1

τ

p∑
j=1

|βj |I
(|β̂(m−1)

j | ≤ τ
)

≤ K −
p∑

j=1

I
(|β̂(m−1)

j | > τ
)
. (7)

This leads to a constrained DC algorithm—Algorithm 2—for
solving (4) by replacing (5) in Algorithm 1 by (4).

Algorithms 1 and 2 are a generalization of those in Shen
et al. (2010) for a general likelihood, where all the computa-
tional properties there extend to the present situation, including
equivalence of the DC solutions of the two algorithms and their
convergence. Next, we shall work with (5) due to its computa-
tional advantage. For instance, a coordinate descent method that
works well with (5) breaks down for (4) (cf., Shen et al. 2010).
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3. THEORY

This section presents a general theory for accuracy of recon-

struction of the oracle estimator θ̂
ml = (β̂

ml
, η̂ml) with β̂

ml =
(β̂

ml

A0
, 0A0 ) given A0, which is the MLE provided that the knowl-

edge about A0 were known a priori. As direct consequences,
feature selection consistency is studied as as well as optimal pa-
rameter estimation defined by the oracle estimator. In addition,
a necessary condition for feature selection will be established as
well. A parallel theory for regularized likelihood is similar and
thus is omitted.

3.1 Constrained L 0 Likelihood

In (2), assume that a global minimizer exists, denoted

by θ̂
L0 = (β̂

L0
, η̂L0 ) with β̂

L0 = (β̂
L0

ÂL0 , 0(ÂL0 )c ). Write β as
(βA, 0|Ac |), with βA being (β1, . . . , β|A|)T for any subset A ⊂
{1, . . . , p} of nonzero coefficients.

Before proceeding, we define a complexity measure for the
size of a spaceF . The bracketing Hellinger metric entropy ofF ,
denoted by the function H (·,F), is defined by logarithm of the
cardinality of the u-bracketing (of F) of the smallest size. That
is, for a bracket covering S(ε,m) = {f l

1 , f
u
1 , . . . , f l

m, f u
m} ⊂

L2 satisfying max1≤j≤m ‖f u
j − f l

j ‖2 ≤ ε and for any f ∈ F ,
there exists a j such that f l

j ≤ f ≤ f u
j , a.e. P, then H (u,F) is

log(min{m : S(u,m)}), where ‖f ‖2 = ∫
f 2(z)dµ. For more

discussions about metric entropy of this type, see Kolmogorov
and Tihomirov (1959).

Assumption A. (Size of parameter space) For some
constant c0 > 0 and any ε

24 < t < ε ≤ 1, H (t,BA) ≤
c0(log p)2|A| log(2ε/t), with |A| ≤ p0, where BA = FA ∩
{h(θ, θ0) ≤ 2ε} is a local parameter space, and FA =
{g1/2(θ, y) : θ = (β, η),β = (βA, 0)} be a collection of square
root densities.

Theorem 1. (Error bound and oracle properties) Under As-
sumption A, if K = p0, then, there exists a constant c2 > 0, say
c2 = 2

27
1

963 , such that for (n, p0, p),

P (θ̂
L0 �= θ̂ml) ≤ exp(−c2nCmin(θ0) + 2 log(p + 1) + 3)). (8)

Moreover, under (3) with d0 > max( 2
c2

, (2c0)1/2c−1
4

log(21/2/c3)), θ̂
L0 reconstructs the oracle estimator θ̂ml with

probability tending to one as n, p → ∞. Three oracle properties
hold as n, p → ∞:

(A) (Selection consistency) Estimator ÂL0 is selection con-
sistent, that is, P (ÂL0 �= A0) → 0.

(B) (Optimal parameter estimation) For θ0, Eh2(θ̂
L0

, θ0) =
(1 + o(1))Eh2(θ̂

ml
, θ0) = O(ε2

n,p) and h2(θ̂
L0

, θ0) =
Op(ε2

n,p0,p
), provided that Eh2(θ̂

ml
, θ0) does not tend to

zero too fast in that c2
2 nCmin(θ0) + log Eh2(θ̂

ml
, θ0) →

∞, where εn,p0,p is any solution for ε:∫ 21/2ε

2−8ε2
H 1/2(t/c3,BA0 )dt ≤ c4n

1/2ε2. (9)

(C) (Uniformity over a L0 band) The reconstruc-
tion holds uniformly over B0(u, l), namely,

supθ0∈B0(u,l) P (θ̂
L0 �= θ̂ml) → 0, where B0(u, l) is a

L0 band, defined as {(β, η0) : p0 = ∑p

j=1 I (βj �= 0) ≤
u,Cmin(θ ) ≥ l} with 0 < u ≤ min(n, p), l = d0σ

2 log p

n
,

and u < min(n, p). This implies feature selection con-
sistency supθ0∈B0(u,l) P (ÂL0 �= A0) → 0, and optimal

parameter estimation
supθ0∈B0(u,l) Eh2(θ̂

L0 ,θ0)

supθ0∈B0(u,l) Eh2(θ̂
ml

,θ0)
→ 1, with

supθ0∈B0(u,l) Eh2(θ̂
ml

, θ0) = O(ε2
n,u,p), provided that

Eh2(θ̂
ml

, θ0) does not tend to zero too fast in that
c2
2 nCmin(θ0) + log supθ0∈B0(u,l) Eh2(θ̂

ml
, θ0) → ∞.

The L0 method consistently reconstructs the oracle estimator
when the degree of separation exceeds the minimal level, pre-
cisely under (3). As a result, selection consistency is established
for the L0 method. This, combined with that in Theorem 3, sug-
gests that the L0 method is optimal in feature selection against
any method, matching up with the lower bound requirement
under the degree of separation with respect to (p, p0, n) except
a constant factor d0 > 0 in Theorem 3. Moreover, the opti-
mality extends further to parameter estimation, where sharper
parameter estimation is obtained from accurate L0 selection,
achieving the optimal Hellinger risk of the oracle estimator
asymptotically. By comparison, such a result is not expected
for L1 regularization. As suggested by Raskutti et al. (2009),
selection consistency of Lasso does not give sharper parameter
estimation, where the rate of convergence of a L1 method in

the L2 risk remains to be
√

p0 log(p/p0)
n

in linear regression. This
is because a L1 method is nonadaptive and overpenalizes large
coefficients as a result of shrinking small coefficients toward
zero. Similarly, in feature selection in logistic regression, the
L0 method is expected to give better estimation precision than
a L1 method, although a parallel result for a L1 method has
not been available. Finally, the uniform result in (C) is over a
L0 band B0(u, l), which is not expected over a L0 ball B0(u, 0) in
view of the result of Theorem 3.

3.2 Constrained Truncated L 1 Likelihood

For constrained truncated L1 likelihood, one additional regu-
larity condition—Assumption B—is assumed, which is gener-
ally met with a smooth likelihood (see Section 4 for an example).
It requires the Hellinger distance to be smooth so that the TLP
approximation to the L0 function becomes adequate through
tuning τ .

Assumption B. For some constants d1 − d3 > 0,

− log(1 − h2(θ, θ0)) ≥ −d1 log(1 − h2(θτ+, θ0)) − d3pτd2,

Aτ+ ≡ {j : |βj | ≥ τ } (10)

where θ τ+ = (β1I (|β1| ≥ τ ), . . . , βpI (|βp| ≥ τ ), η1, . . . , ηq).

Theorem 2. (Error bound and oracle properties) Un-
der Assumption A with FA replaced by {g1/2(θ, y) : θ =
(β, η) : β = (βA,βAc ), ‖βAc‖�∞ ≤ τ }, say 0 ≤ τ ≤ c′ε for
some constant c′, and Assumption B, if K = p0 and τ ≤
max(c′, (d1Cmin(θ0)/2pd3)1/d2 ), then there exists a constant
c2 > 0, such that for any (n, p0, p),

P (θ̂
T �= θ̂ml) ≤ exp(−c2nCmin(θ0) + 2 log(p + 1) + 3). (11)

Moreover, under (3) with sufficiently large constant d0 >

0, θ̂
T

has the three oracle properties (A)–(C) of θ̂
L0 ,
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provided that c2d1
4 nCmin(θ0) + log Eh2(θ̂

ml
, θ0) → ∞. For

(C), τ ≤ ( d1l
2pd3

)1/d2 is required as well as c2d1
4 nCmin(θ0) +

log supθ0∈B0(u,l) Eh2(θ̂
ml

, θ0) → ∞.

Remark. Constants in Theorem 1 can be made
precise. For instance, c2 = 4

27
1

1926 and d0 >

max( 4
c2d1

, (2c0)1/2c−1
4 log(21/2/c3)).

Theorem 2 says that the oracle properties of the L0 function
are attained by its computational surrogate when τ is sufficiently
small.

3.3 Necessary Condition for Selection Consistency

This section establishes the necessary condition (3) by esti-
mating the minimal value d0 in (3), required for feature selection
consistency.

Let K(θ1, θ2) = E log(g(θ1, Y )/g(θ2, Y )) be the
Kullback–Leibler loss for θ1 versus θ2, where E is taken with
regard to g(θ1, Y ). Let γmin(θ0) ≡ min{|β0

k | : k ∈ A0} > 0.

Assumption C. For a constant r > 0, K(θ j , θ k) ≤ rγ 2
min(β).

Here {θ j = (βj , η
0), j = 1, . . . , p} is a set of parame-

ters, where βj = ∑p0
k=1 γminek − γminej ; j = 1, . . . , p0, and

βj = ∑p0
k=1 γminek + γminej ; j = p0 + 1, . . . , p, and ej =

(0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
p−j

)T . Assume that s ≡ infθ0
Cmin(θ0)
γ 2

min(θ0) > 0.

Theorem 3. (Necessary condition for feature selection con-
sistency) Under Assumption C, for any constant c∗ ∈ (0, 1), any
(n, p0, p) with p0 ≤ p/2, and any η0, we have

inf
Â

sup
{β0:Cmin(θ0)=R∗}

P (Â �= A0) ≥ c∗, (12)

with R∗ = s(1−c∗) log p

4rn
. Moreover,

inf
Â

sup
θ0∈B0(u,l)

P (Â �= A0) ≥ c∗, as n, p → ∞, (13)

where u ≤ min(p/2, n), l = d0
log p

n
, and d0 = (1−c∗)s

4r
.

Theorem 3 says that feature selection inconsistency occurs
when d0 < s

4r
in (3). There the minimal value d0 = s

4r
yields a

requirement for feature selection consistency in (3).

4. GENERALIZED LINEAR MODELS

For GLMs, observations Yi = (Zi, X i) are paired, response
Zi is assumed to follow an exponential family with den-
sity function g(zi ; θi, φ) = exp{[ziθi − b(θi)]/a(φ) + c(zi, φ)},
where θi is the natural parameter that is related to the mean
µi = E(zi) = b′(θi), and φ is a dispersion parameter. With
a link function g, a regression model becomes ηi = g(µi) =
βT xi . The penalized likelihood for estimating regression co-
efficient vectors β is −L(β) + λ

∑p

j=1 J (|βj |), where L(β) =∑n
i=1[ziµi − b(µi)]/a(φ) + c(zi, φ) is the log-likelihood, and

J (|βj |) = λ
τ

min(|βj |, τ ) is the TLP penalty.
For parameter estimation and feature selection, we apply Al-

gorithm 1, where (6) becomes a series of weighted lasso for
GLMs, for which some existing routines are applicable, for sim-
plicity. In implementation, we use the function wtlassoglm()
in R package SIS.

Next, we examine effectiveness of the proposed method
through simulated examples in feature selection. In linear re-
gression and logistic regression, the Lasso, SCAD (Fan and Li
2001), SCAD-OS, TLP, and TLP-OS are compared in terms of
predictive accuracy and identification of the true model, where
SCAD-OS and TLP-OS are SCAD and TLP with only one itera-
tion step in the DC iterative process, and SCAD-OS is proposed
in Zou and Li (2008). The latter four methods use the Lasso as
an initial estimate.

4.1 Simulations

For simulations predictors X i’s are independent and iden-
tically distributed from N (0, V ), where V is a p × p ma-
trix whose ij th element is 0.5|i−j |. In linear regression, Zi =
βT X i + εi , εi ∼ N (0, σ 2); i = 1, . . . , n, and random error εi is
independent of X i ; in logistic regression, a binary response is
generated from logit Pr(Zi = 1) = βT X i . In both cases, β =
(β1, . . . , βp)T with β1 = 1, β2 = 0.5 and β5 = 0.75; βj = 0 for
j �= 1, 2, 5. This setup was similar to that considered by Zou and
Li (2008); here, we examine various situations with respect to
p, n. Each simulation is based on 1000 independent replications.

For any given tuning parameter λ, all other methods use
the Lasso estimate as an initial estimate. For each method,
we choose its tuning parameter values by maximizing the log-
likelihood based on a common tuning dataset with an equal
sample size of the training data and independent of the training
data. This is achieved through a grid search over 21 λ values
returned by glmnet() for all the methods, and additionally over
a grid of 10 τ values that are the 9th, 19th, 29th,. . ., 99th per-
centiles of the final Lasso estimate for the TLP.

The model error (ME) is used to evaluate predictive perfor-
mance of β̂, defined as ME(β̂) = (β̂ − β0)T V (β̂ − β0), which
is the prediction error minus σ 2 in linear regression, correspond-
ing to the test error over an independent test sample of size
T = ∞. In our context, the median MEs are reported over 1000
simulation replications, due to possible skewness of the distri-
bution of ME. In addition, the mean parameter estimates of the
nonzero elements of β will be reported, together with the mean
true positive (TP) and mean false positive (FP) numbers: #TP =∑p

j=1 I (βj �= 0, β̂j �= 0) and #FP = ∑p

j=1 I (βj = 0, β̂j �= 0).
For linear regression, simulation results are reported for the

cases of p = 12, 500, 1000, n = 50, 100, and σ 2 = 1 in Table 1.
As suggested by Table 1, the TLP performs best: it gives the
smallest estimation and prediction error as measured by the ME,
the smallest mean FP number while maintaining a comparable
mean number of TPs around 3. Most critically, as p increases,
the TLP’s performance remains much more stable than its com-
petitors. On a relative basis, the TLP outperforms its competitors
more in more difficult situations.

For logistic regression, simulation results are summarized for
the cases of p = 12, 200, 500 and n = 100, 200 in Table 2. As
expected, the TLP continues to outperform other methods with
the smallest median MEs. It gives less biased estimates than
the Lasso estimates. The TLP’s superior performance remains
strong over other methods, as p increases.

4.2 Theory for Feature Selection

This section establishes some theoretical results to gain an
insight into performance of the proposed method in feature
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Table 1. Median MEs, means (SD in parentheses) nonzero coefficients (β1, β2, β5), and TP and FP numbers of nonzero estimates, for linear
regression, based on 1000 simulation replications

n p Method ME β1 = 1 β2 = 0.5 β5 = 0.75 #TP #FP

50 12 Lasso 0.129 0.91(0.17) 0.41(.18) 0.60(0.16) 2.98(0.14) 3.82(2.39)
SCAD-OS 0.109 1.02(0.19) 0.40(0.22) 0.68(0.18) 2.92(0.27) 2.50(1.97)
SCAD 0.118 1.04(0.20) 0.39(0.24) 0.71(0.18) 2.88(0.32) 2.30(1.90)
TLP-OS 0.088 1.01(0.18) 0.41(0.20) 0.68(0.17) 2.94(0.25) 1.65(2.04)
TLP 0.090 1.01(0.19) 0.41(0.21) 0.69(0.17) 2.92(0.27) 1.57(1.98)

50 500 Lasso 0.431 0.76(0.19) 0.29(0.18) 0.41(0.17) 2.90(0.30) 14.7(10.48)
SCAD-OS 0.327 1.01(0.24) 0.25(0.25) 0.52(0.24) 2.70(0.47) 14.81(8.69)
SCAD 0.301 1.09(0.26) 0.21(0.27) 0.59(0.26) 2.53(0.53) 12.25(7.63)
TLP-OS 0.150 1.02(0.21) 0.39(0.26) 0.67(0.22) 2.75(0.45) 4.27(6.86)
TLP 0.143 1.02(0.21) 0.39(0.26) 0.68(0.22) 2.75(0.45) 4.10(6.89)

50 1000 Lasso 0.501 0.72(0.19) 0.28(0.18) 0.37(0.18) 2.88(0.33) 17.20(11.49)
SCAD-OS 0.370 0.99(0.25) 0.26(0.25) 0.51(0.26) 2.67(0.49) 18.76(9.60)
SCAD 0.327 1.08(0.26) 0.20(0.28) 0.57(0.29) 2.49(0.54) 15.19(8.41)
TLP-OS 0.182 1.01(0.20) 0.40(0.27) 0.66(0.25) 2.72(0.47) 5.43(8.69)
TLP 0.175 1.02(0.20) 0.40(0.27) 0.66(0.25) 2.72(0.47) 5.06(8.30)

100 12 Lasso 0.063 0.94(0.12) 0.44(0.13) 0.65(0.11) 3.00(0.00) 3.94(2.42)
SCAD-OS 0.042 1.01(0.12) 0.45(0.14) 0.72(0.11) 2.99(0.08) 2.17(2.04)
SCAD 0.042 1.02(0.13) 0.45(0.15) 0.74(0.11) 2.99(0.09) 2.06(2.01)
TLP-OS 0.037 1.01(0.12) 0.45(0.13) 0.71(0.11) 3.00(0.06) 1.51(1.99)
TLP 0.036 1.01(0.12) 0.45(0.13) 0.72(0.11) 3.00(0.07) 1.46(1.95)

100 500 Lasso 0.186 0.84(0.12) 0.36(0.12) 0.52(0.11) 3.00(0.04) 15.61(11.04)
SCAD-OS 0.118 1.06(0.14) 0.32(0.18) 0.66(0.14) 2.94(0.24) 14.92(10.45)
SCAD 0.121 1.10(0.15) 0.30(0.21) 0.71(0.12) 2.89(0.31) 14.20(10.00)
TLP-OS 0.036 1.01(0.12) 0.47(0.14) 0.72(0.11) 2.99(0.12) 3.64(6.57)
TLP 0.035 1.01(0.12) 0.46(0.14) 0.72(0.11) 2.99(0.12) 3.49(6.69)

100 1000 Lasso 0.211 0.83(0.13) 0.34(0.13) 0.51(0.12) 3.00(0.06) 18.10(12.50)
SCAD-OS 0.142 1.06(0.15) 0.30(0.19) 0.66(0.15) 2.91(0.29) 19.70(13.35)
SCAD 0.147 1.10(0.15) 0.27(0.22) 0.72(0.14) 2.83(0.38) 18.80(12.74)
TLP-OS 0.037 1.01(0.13) 0.46(0.15) 0.74(0.12) 2.97(0.18) 3.93(7.04)
TLP 0.037 1.01(0.13) 0.46(0.15) 0.74(0.12) 2.97(0.18) 3.80(6.94)

selection. Let Y = (Z, X), and g(β, Z) = 1
2
√

πσ
exp(− 1

2σ 2 (Z −
βT X)2) and g(β, Z) = pZ(1 − p)1−Z in linear and logistic re-
gression. Assume that βT x = βT

AxA belongs to a compact pa-
rameter space for any model size |A| ≤ p0. In this case, selection
does not involve nuisance parameters, where θ = β. Under (14),
we establish feature selection consistency as well as optimal pa-
rameter estimation for the TLP:

min
A:|A|≤p0,A �=A0

1

max(|A0 \ A|, 1)

(
β0

A0\A
)T

× (

A0\A − 
A0\A,A
−1

A 
A,A0\A
)
β0

A0\A

≥ d0
log p

n
, (14)

where d0 > 0 is a constant independent of (n, p, p0), and 
B is
a submatrix given a subset B of predictors, of covariance matrix

 with the jkth element cov(Xj,Xk), independent of β0. A
simpler but stronger condition can be used for verification of
(14):

γ 2
min min

A:|A|≤p0,A �=A0

cmin
(

A0\A − 
A0\A,A
−1

A 
A,A0\A
)

≥ d0
log p

n
, (15)

where γmin = γmin(β0) ≡ min{|β0
k | : β0

k �= 0} is the resolution
level of the true regression coefficients, minA:|A|≤p0,A �=A0 cmin

(
A0\A − 
A0\A,A
−1
A 
A,A0\A) ≥ minB⊃A0:|B|≤2p0 cmin(
B),

and cmin denotes the smallest eigenvalue. Note that (14) is nec-
essary for any method to be selection consistent except constant
d0 if minA:|A|≤p0,A �=A0 cmin(
A0\A − 
A0\A,A
−1

A 
A,A0\A) > 0.

Proposition 1. Under (14), the constrained MLE β̂T of (4)
consistently reconstructs the oracle estimate β̂ml . As n, p → ∞,
feature selection consistency is established for the TLP as well as

optimal parameter estimation Eh2(β̂
T
,β0) = Eh2(β̂

ml
,β0) =

O(p0

n
) under the Hellinger distance h(·, ·). Moreover, the results

hold uniformly over a L0-band B0(u, l) = {β0 :
∑p

j=1 I (β0
j �=

0) ≤ u, γ 2
min(β0) minB⊃A0:|B|≤2p0 cmin(
B) ≥ l}, with 0 < u ≤

min(n, p), l = d0σ
2 log p

n
, that is, as n, p → ∞,

sup
β0∈B0(u,l)

P
(
β̂

T �= β̂ml
)

→ 0,

× supβ0∈B0(u,l) Eh2(β̂
T
,β0)

supβ0∈B0(u,l) Eh2(β̂
ml

,β0)
→ 1,

with supβ0∈B0(u,l) Eh2(β̂
ml

,β0) = d∗ u
n

for some d∗.

Various conditions have been proposed for studying feature
selection consistency in linear regression. In particular, a con-
dition on γmin is usually imposed, in addition to assumptions on
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Table 2. Median MEs, means (SD in parentheses) nonzero coefficients (β1, β2, β5), and TP and FP numbers of nonzero estimates, for logistic
regression, based on 1000 simulation replications

n p Method ME β1 = 1 β2 = 0.5 β5 = 0.75 #TP #FP

100 12 Lasso 0.388 0.80(.27) 0.35(0.25) 0.49(0.27) 2.8(0.4) 3.8(2.2)
SCAD-OS 0.416 1.03(0.37) 0.39(0.36) 0.61(0.40) 2.5(0.7) 1.6(1.9)
SCAD 0.472 1.10(0.41) 0.38(0.39) 0.67(0.44) 2.4(0.7) 1.1(1.9)
TLP-OS 0.350 0.98(0.35) 0.36(0.32) 0.59(0.35) 2.7(0.5) 1.8(2.0)
TLP 0.355 0.98(0.35) 0.35(0.32) 0.58(0.35) 2.6(0.6) 1.8(2.0)

100 200 Lasso 0.947 0.57(0.25) 0.20(0.19) 0.26(0.21) 2.6(0.6) 11.7(7.1)
SCAD-OS 0.733 0.96(0.45) 0.23(0.36) 0.40(0.41) 2.0(0.7) 3.1(2.9)
SCAD 0.827 1.08(0.53) 0.23(0.42) 0.46(0.53) 1.7(0.6) 1.1(1.4)
TLP-OS 0.649 0.99(0.42) 0.31(0.36) 0.49(0.46) 2.2(0.7) 3.8(5.2)
TLP 0.664 0.99(0.43) 0.30(0.37) 0.48(0.47) 2.2(0.7) 3.6(5.2)

100 500 Lasso 1.166 0.48(0.24) 0.18(0.19) 0.19(0.19) 2.4(0.7) 13.6(9.1)
SCAD-OS 0.867 0.84(0.48) 0.23(0.35) 0.29(0.37) 1.8(0.7) 3.9(3.6)
SCAD 0.847 1.00(0.57) 0.25(0.46) 0.34(0.50) 1.6(0.6) 1.3(1.5)
TLP-OS 0.791 0.93(0.45) 0.30(0.39) 0.38(0.45) 2.0(0.7) 4.4(6.5)
TLP 0.811 0.94(0.46) 0.29(0.40) 0.38(0.45) 2.0(0.7) 4.1(6.4)

200 12 Lasso 0.203 0.87(0.20) 0.39(0.20) 0.57(0.20) 3.0(0.2) 4.3(2.4)
SCAD-OS 0.173 1.06(0.25) 0.44(0.28) 0.72(0.26) 2.8(0.4) 1.6(2.2)
SCAD 0.202 1.08(0.25) 0.45(0.30) 0.77(0.25) 2.8(0.5) 1.2(2.1)
TLP-OS 0.155 1.00(0.24) 0.40(0.24) 0.67(0.24) 2.9(0.3) 1.8(2.1)
TLP 0.157 1.00(0.24) 0.40(0.24) 0.67(0.24) 2.9(0.3) 1.8(2.1)

200 200 Lasso 0.540 0.68(0.18) 0.27(0.17) 0.38(0.17) 2.9(0.3) 14.1(8.9)
SCAD-OS 0.271 1.07(0.26) 0.34(0.32) 0.64(0.32) 2.6(0.6) 3.2(3.3)
SCAD 0.262 1.12(0.29) 0.30(0.37) 0.68(0.36) 2.3(0.6) 0.8(1.4)
TLP-OS 0.204 1.04(0.25) 0.40(0.29) 0.68(0.27) 2.7(0.5) 3.3(5.5)
TLP 0.204 1.04(0.26) 0.39(0.30) 0.68(0.28) 2.7(0.5) 3.2(5.8)

200 500 Lasso 0.651 0.64(0.17) 0.24(0.16) 0.33(0.15) 2.9(0.3) 18.0(10.5)
SCAD-OS 0.289 1.07(0.27) 0.31(0.32) 0.57(0.31) 2.5(0.5) 4.1(4.0)
SCAD 0.262 1.13(0.28) 0.29(0.37) 0.66(0.36) 2.3(0.6) 1.4(1.7)
TLP-OS 0.231 1.04(0.27) 0.39(0.30) 0.65(0.29) 2.7(0.5) 4.1(6.8)
TLP 0.231 1.04(0.27) 0.38(0.30) 0.65(0.30) 2.7(0.5) 3.8(6.8)

the design matrix X such as the sparse Riesz condition in Zhang
(2010). To compare (14) with existing assumptions for consis-
tent selection, note that these assumptions imply a fixed design
version of (14) by necessity of consistent feature selection. For
instance, as shown in Zhang (2010), the sparse Riesz condition
with dimension restriction and γ 2

min ≥ c′ log(p−u)
n

, required for the
minimum concavity penalty to be consistent, imply (15) with p
replaced by p − u thus (14) when p/u bounded away from 1,
where u ≥ p0. Moreover, the number of overselected variables
is proved to be bounded but may not tend to zero for thresholding
Lasso in Theorem 1.1 of Zhou (2010), under a restrictive eigen-
value condition (Bickel et al. 2008) and a requirement on γmin.
Finally, in linear regression, only finite variance σ 2 is required
for the proposed method, which is in contrast to a commonly
used assumption on sub-Gaussian distribution of εi .

In conclusion, the computational surrogate—the
TLP—method indeed shares desirable oracle properties
of the L0 method, which is optimal against any selection
method, for feature selection and parameter estimation.

5. ESTIMATION OF A PRECISION MATRIX

Given n random samples from a p-dimensional normal distri-
bution Y1, . . . , Yn ∼ N (µ,�), we estimate the inverse covari-
ance matrix � = �−1 that is p × p positive definite, denoted

by � � 0. For estimation of (µ,�), the log-likelihood is pro-
portional to

n

2
log det(�) − 1

2

n∑
i=1

(Yi − µ)T �(Yi − µ). (16)

The profile log-likelihood for �, after µ is maximized
out, is proportional to n

2 log det(�) − 1
2 tr(S�), where Ȳ =

n−1 ∑n
i=1 Yi and S = n−1 ∑n

i=1(Yi − Ȳ)(Yi − Ȳ)T are the cor-
responding sample mean and covariance matrix, det and tr de-
note the determinant and trace. In (16), the number of unknown
parameters p2 in � can greatly exceed the sample size n in the
presence of 2p nuisance parameters (µ, {�jj : j = 1, . . . , p}),
where �jk denotes the jkth elements of �. To avoid noniden-
tifiability in estimation, we regularize off-diagonal elements of
� in (16) through a nonnegative penalty function J (·) for the
p(p−1)

2 parameters of interest:

S(�) = log det(�) − 1

2
tr(S�) − λ

p∑
j,k=1,j �=k

J ({�jk, j �= k}).

(17)

In estimation, the TLP function J ({�jk, j �= k}) =
1
τ

min(|�jk|, τ ) is employed for both parameter estimation and
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covariance selection in (17). Toward this end, we apply Al-
gorithm 1 to solve (6) sequentially, which reduces to a series
of weighted graphical lasso problems, and is solved by taking
advantage of existing software. In implementation, we use R
package glasso (Friedman, Hastie, and Tibshirani 2008) for (6).

5.1 Simulations

Simulations are performed, where a tridiagonal precision
matrix is used as in Fan, Feng, and Wu (2009). In partic-
ular, � is AR(1)-structured with its ij -element being σij =
exp(−a|si − sj |), and s1 < s2 < · · · < sp are randomly chosen:
si − si−1 ∼ Unif(0.5, 1), for some a > 0; i = 2, . . . , p. The fol-
lowing situations are considered: (n, p) = (120, 30) or (n, p) =
(120, 200), and a = 0.9 or a = 0.6, based on 100 replications.

Five competing methods are compared, including Lasso,
adaptive Lasso (ALasso), SCAD-OS and SCAD, and TLP-OS
and TLP. ALasso uses weight λ/|β̂(0)

j |γ , where β̂(0) is an initial
estimate and γ = 1/2 as in Fan et al. (2009).

To measure performance of estimator �̂, we use the
entropy loss and quadratic loss: loss1(�, �̂) = tr(�−1�̂) −
log |�−1�̂| − p, and loss2(�, �̂) = tr(�−1�̂ − I )2, as well
as the TP and FP numbers: #TP = ∑

i,j I (�ij �= 0, �̂ij �= 0);

#FP = ∑
i,j I (�ij = 0, �̂ij �= 0).

For small p = 30, TLP and TLP-OS are always among the
winners. It is also confirmed that the one-step approximation to
SCAD or TLP gives similar performance to that of the fully iter-
ated SCAD or TLP, respectively. For large p, to save computing
time, as advocated in Fan et al. (2009), we only run SCAD-OS
and TLP-OS. In such a situation, an improvement of TLP-OS
over other methods is more substantial for large p = 200 than
for small = 30. Overall, the proposed method delivers higher
performance in low-dimensional and high-dimensional situa-
tions, respectively.

5.2 Theory for Precision Matrix

To perform theoretical analysis, we specify a parameter
space � in which � � 0 with 0 < max1≤j≤p |�jj | ≤ M2,
cmin(�) ≥ M1 > 0, for some constants M1,M2 > 0, indepen-
dent of (n, p, p0). Let A = {(j, k) : j �= k,�jk �= 0} be the set
of nonzero off-diagonal elements of �, where |A| = p0 is an
even number by symmetry of �, and � depends on A. Results
in Theorem 1 imply that the constrained MLE yields covariance
selection consistency under one assumption:

Cmin(�0) ≥ d0
log p

n
, (18)

which is necessary for covariance selection consis-
tency indeed for any method, up to constant d0 when
cmin(H ) > 0, where d0 > 0 is a constant independent of
(n, p, p0), and H = ( ∂2(− log det(�))

∂2�
)|�=�0 is the p2 × p2 Hes-

sian matrix of − log det(�), whose (�jk,�j ′k′) element is
tr(
0�jk


0�j ′k′) (cf., Boyd and Vandenberghe 2004), �jk is a
p × p with the jk-element being 1 and 0 otherwise. Sufficiently,
(18) can be verified using

Cmin(�0) ≥ γ 2
mincmin(H ), (19)

with γmin(�0) ≡ γmin = min{|�0
jk| : �0

jk �= 0, j �= k}.

Proposition 2. Under (18), the constrained MLE �̂T of (4)
consistently reconstructs the oracle estimator �̂ml ,

c∗ = 1

8
min

�:�={ωjk �=0,j �=k}≤p0

cmin(H (�))

cmin(H0)
.

As n, p → ∞, covariance selection consistency is established
for the TLP as well as optimal parameter estimation

Eh2(�̂
T
,�0) = (1 + o(1))Eh2(�̂

ml
,�0) = O

(
p0 log p

n

)
,

where

h2(�,�0) = 1 −
√

(det(�)det(�0))1/2

det
(

�+�0

2

)
is the squared Hellinger distance for � versus �0. Moreover,
the above results hold uniformly over a L0 band B0(u, l) =
{�0 :

∑p

j,k=1,j �=k I (�0
jk �= 0) ≤ u, γ 2

min(�0)cmin(H ) ≥ l}, with

0 < u ≤ min(n, p) and l = d0σ
2 log p

n
, that is, as n, p → ∞,

sup
�0∈B0(u,l)

P (�̂
T �= �̂

ml
) → 0,

sup�0∈B0(u,l) Eh2(�̂
T
,�0)

sup�0∈B0(u,l) Eh2(�̂
ml

,�0)
→1,

with sup�0∈B0(u,l) Eh2(�̂
ml

,�0) = d∗ u log p

n
for some d∗ > 0.

In short, the TLP method is optimal against any method in
covariance selection, permitting p up to exponentially large in

the sample size, or p2 ≤ p0 exp(nγ 2
mincmin(H )

d0
). Moreover, as a

result of accurate selection of this method, parameter estima-

tion can be sharply enhanced at an order of
√

p0 log p

n
, as mea-

sured by the Hellinger distance, after zero off-diagonal elements
are removed. Note that the log p factor is due to estimation of

2p nuisance parameters as compared to the rate of
√

p0

n
in lo-

gistic regression. In view of the result in Lemma 1, this result

seems to be consistent with the minimax rate
√

log p

n
under the

L∞ matrix norm (Rothman et al. 2009).

6. METASTASIS STATUS OF BREAST CANCER
PATIENTS

We apply the penalized logistic regression methods to ana-
lyze a microarray gene expression dataset of Wang et al. (2005),
where our objectives are (1) to develop a model predicting the
metastasis status, and (2) to identify cancer genes, for breast
cancer patients. Among the 286 patients, metastasis was de-
tected in 106 patients during follow-ups within five years after
surgery. Their expression profiles were obtained from primary
breast tumors with Affymetrix HG-133a GeneChips.

In Wang et al. (2005), a 76-gene signature was developed
based on a training set of 115 patients, which yielded a misclas-
sification error rate of 64/171 = 37.4% when applied to the re-
maining samples. Wei and Li (2007) compared the performance
of a variety of classifiers using a subset of 245 genes drawn from
33 cancer-related pathways based on a 10-fold cross-validation
(CV). Their nonparametric pathway-based regression method
yielded the smallest error rate at 29%, while random forest,
bagging, and support vector machine (SVM) had error rates of
33%, 35%, and 42%, respectively.
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Table 3. Averaged (with SD in parentheses) entropy loss (loss1), quadratic loss (loss2), TP and FP numbers of nonzero parameters based on 100
simulations, for estimating a precision matrix in Gaussian graphical models in Section 4

Setup Method loss1 loss2 #TP #FP

p = 30, a = 0.9 Lasso 1.55(0.15) 2.96(0.42) 88.0(0.0) 314.0(41.6)
ALasso 1.02(0.15) 1.99(0.37) 88.0(0.0) 95.5(30.2)
SCAD-OS 0.93(0.16) 1.99(0.44) 88.0(0.0) 126.0(39.4)
SCAD 0.74(0.16) 1.60(0.42) 87.9(0.5) 85.5(18.0)
TLP-OS 0.66(0.18) 1.47(0.47) 87.9(0.5) 28.1(21.4)
TLP 0.63(0.18) 1.39(0.48) 87.8(0.7) 22.4(17.0)

p = 30, a = 0.6 Lasso 1.69(0.16) 3.28(0.46) 88.0(0.0) 342.5(35.5)
ALasso 1.01(0.15) 1.97(0.37) 88.0(0.0) 103.9(17.4)
SCAD-OS 0.75(0.14) 1.61(0.36) 88.0(0.0) 83.8(29.0)
SCAD 0.56(0.12) 1.20(0.30) 88.0(0.2) 26.1(15.0)
TLP-OS 0.57(0.14) 1.26(0.37) 88.0(0.0) 14.7(13.0)
TLP 0.54(0.14) 1.18(0.36) 88.0(0.0) 7.3(10.6)

p = 200, a = 0.9 Lasso 20.16(0.50) 34.50(1.85) 597.9(0.4) 4847.8(614.7)
ALasso 10.62(0.53) 19.64(1.20) 597.3(1.2) 936.8(37.9)
SCAD-OS 11.46(0.60) 24.03(1.67) 597.7(0.8) 2453.6(251.2)
TLP-OS 6.16(0.77) 13.99(2.10) 593.6(3.0) 284.8(158.0)

p = 200, a = 0.6 Lasso 24.86(0.54) 46.18(3.72) 598.0(0.0) 6161.7(863.0)
ALasso 11.06(0.48) 21.53(1.18) 598.0(0.0) 1526.1(118.6)
SCAD-OS 9.43(0.49) 20.87(1.77) 598.0(0.0) 2754.8(523.6)
TLP-OS 4.45(0.48) 9.89(1.29) 597.7(0.7) 185.5(76.3)

In our analysis, we first performed a preliminary screening
of the genes using a marginal t test to select the top p genes
with most significant p-values, based on the training data for
each fold of a 10-fold CV. Then the training data were split
into two parts to fit penalized logistic models and to select
tuning parameters, respectively. The results were summarized in
Table 4, including the total misclassification errors and average
model sizes (i.e., nonzero estimates) based on 10-fold CV. A
final model is obtained by fitting the best model selected from a
10-fold CV to the entire dataset.

With regard to prediction, no large difference is seen among
various methods, with the error rates ranging from 102/286 =

Table 4. Analysis results with various numbers (p) of predictors for
the breast cancer data. The numbers of total classification errors

(#Err), including FPs (#FP), and mean numbers of nonzero estimates
(#Nonzero) from 10-fold CV, and the total numbers of nonzero

estimates and cancer genes in the final models are shown

10-fold CV Final model

p Method #Err #FP #Nonzero #Nonzero #Cancer genes

200 Lasso 107 17 40.1 62 13
ALasso 118 27 18.8 39 9
SCAD-OS 107 4 9.5 15 2
SCAD 107 1 4.7 2 0
TLP-OS 102 8 33.5 62 13
TLP 102 8 33.2 62 13

400 Lasso 107 19 46.9 95 26
ALasso 112 19 14.4 32 10
SCAD-OS 108 8 11.1 15 2
SCAD 106 0 4.1 2 0
TLP-OS 106 15 40.1 95 26
TLP 106 14 38.2 95 26

35.7% (of TLP and TLP-OS with p = 200) to 118/286 =
41.3% (of ALasso with p = 200). The TLP performed simi-
lar to the TLP-OS, both were among the winners. In addition,
the Lasso gave the least sparse models while the SCAD gave
the most sparse models.

With regard to identifying cancer genes, the Lasso, TLP-OS,
and TLP yield the same model, identifying the largest number of
cancer genes, whereas the SCAD and SCAD-OS give the most
sparse models with only at most two cancer genes, and ALasso
only yields 10 cancer genes. Here cancer genes are defined
according to the Cancer Gene Database (Higgins, Claremont,
Major, Sander, and Lash 2007).

In summary, the TLP and TLP-OS identify a good proportion
of cancer genes and lead to a model giving a reasonably good
predictive accuracy of the metastasis status. In this sense, they
perform well with regard to the foregoing two objectives.

7. SUPPLEMENTARY MATERIAL

Appendix

[Received February 2011. Revised August 2011.]
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