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Abstract

Many influential memory models are computational in the sense that their predictions are derived

through simulation. This means that it is difficult or impossible to write down a probability

distribution or likelihood that characterizes the random behavior of the data as a function of the

model's parameters. In turn, the lack of a likelihood means that these models cannot be directly

fitted to data using traditional techniques. In particular, standard Bayesian analyses of such models

are impossible.

In this article, we examine how a new procedure called approximate Bayesian computation

(ABC), a method for Bayesian analysis that circumvents the evaluation of the likelihood, can be

used to fit computational models to memory data. In particular, we investigate the Bind Cue

Decide Model of Episodic Memory (BCDMEM; Dennis & Humphreys, 2001), and the Retrieving

Effectively from Memory model (REM; Shiffrin & Steyvers, 1997). We fit hierarchical versions

of each model to the data of Dennis, Lee, and Kinnell (2008) and Kinnell and Dennis (2012).

The ABC analysis permits us to explore the relationships between the parameters in each model as

well as evaluate their relative fits to data – analyses that were not previously possible.
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Introduction

A great deal of effort in psychological research, especially in cognitive psychology, is

focused on the development of mathematical or statistical models that explain how people

behave. In cognitive psychology, these models are mainly concerned with how people's

performance of a task changes under different task demands. Performance is usually

assessed by measuring response accuracy or response time, and task demands are changed

when people respond under time pressure, with increased cognitive loads, varying levels of

stimulus discriminability and so forth.
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A mathematical or statistical model is a set of equations that describes the relationship

between a set of independent variables and the behavior of the subject. These equations,

derived from a particular psychological theory, represent the influence of the independent

variables on the system as changes in a set of parameters. For instance, consider a “high-

threshold” model of performance in a recognition memory task (Batchelder & Riefer, 1990,

1999). In such tasks, subjects are asked to discriminate items that have been previously

encountered in a study episode (targets) from those that have not (distractors). One possible

explanation for how people recognize targets is that, with probability R, a memory trace is

formed during study. At test, if a trace exists, the subject will respond that the target is “old.”

If there is no trace the subject will guess “old” with probability g. If the item is a distractor,

no trace will exist, and so the subject will have to guess. There are, therefore, two kinds of

“old” responses: “old” responses to targets, which are called hits, and “old” responses to

distractors, which are called false alarms. The probability of a hit is then R + g(1 − R), and

the probability of a false alarm is g.

The theory that drives the construction of the model states how the parameters of the model

must change as task demands change. For example, as memory researchers, we could use

the high-threshold model to test hypotheses about the structure and processes in recognition.

Suppose we ask subjects to study targets in two conditions. In the first condition, targets are

only presented for 500 ms, while in the second condition, targets are presented for 5 s. We

might expect the probability of forming a memory trace to be higher in the 5 s study

condition than in the 500 ms study condition, which the model would accommodate as a

change in the parameter R. The parameter g, however, should not necessarily change.1

Because we expect to see particular changes in a model's parameters over changes in

experimental conditions, we must worry about how to estimate those parameters.

Sometimes, as in the high-threshold model, the estimation problem is trivial. Let the

observed proportions of hits P(H) = OT/NT, where OT is the number of “old” responses

among the NT target test trials, and let the observed proportion of false alarms P(FA) =

OD/ND, where OD is the number of “old” responses among the ND distractor test trials. It is

easy to show that one estimate for g is ĝ= P(FA), while an estimate for R is R ̂ = [ p(H)−

P(FA)]/[1− P(FA)]. For more complex models, however, the estimation problem is not as

straightforward.

Parameter estimation for more complex models typically is performed by minimization of

least squares (which is the basis for regression and ANOVA) or maximization of likelihood.

For these methods we select a “discrepancy function” (e.g., sums of squares or the

likelihood) that gives some indication of the distance between the model's predictions and

the observed data. We proceed iteratively, proposing potential parameter values and

evaluating the discrepancy function until we arrive at parameter values that bring us model

predictions that are as close to the data as possible.

1In this illustrative and overly-simplistic treatment of the high threshold model, we are not considering the empirical evidence
demonstrating that not only does the hit rate increase with increased strength, but the false-alarm rate decreases as well. This “mirror
effect” is not explained by the high-threshold model we present here.
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However, to compute the model predictions for a set of parameter values, we usually need a

mathematical statement relating the parameters to the dependent variables (for least-squares

minimization) or the distribution function that describes the random behavior of the

dependent variables (for maximum likelihood). For example, for the high-threshold model,

the sum-of-squares discrepancy function for least-squares minimization could be

The estimates R ̂ and ĝ we proposed above are, in fact, least-squares estimates which make

SSE equal to zero.

Maximum likelihood is a slightly different approach in which we attempt to maximize the

probability of the observed data rather than minimize the distance between predicted and

observed dependent variables. For the high-threshold model, we start by using the

parameters R and g to compute the probabilities of hits and false alarms predicted by the

model. These probabilities can then be used to compute the probability of the observed data

given the parameters R and g. If we observe OD false alarms in ND distractor test trials and

OT hits in NT target test trials, then the probability of a subject's sequence of NT + ND

responses is

(1)

where C is a constant reflecting the proportions of target and distractor trials. The function

in Equation 1 is called the “likelihood” function. The estimates for R and g we proposed

above maximize this likelihood, and so we say that they are maximum likelihood estimators.

We now have, especially in memory research, a number of models that have been

constructed to mimic (arguably) plausible brain mechanisms (e.g., Usher & McClelland,

2001; Shadlen & Newsome, 2001; R. C. O'Reilly, 2001; R. C. O'Reilly, 2006; R. O'Reilly &

Munakata, 2000). The structure of the models is constrained by our understanding of

relevant neuroscience, and hence they are more “bottom up” and frequently rely on

simulation to generate predictions. This means that they are sufficiently complex that we

can't always write down the mathematical statements relating dependent variables to

parameters, nor can we always write down the probability distributions that the dependent

variables follow.2 All we can do is simulate the models and analyze their data in exactly the

same way that we analyze the data from human subjects.

The lack of mathematical expressions for a simulation-based model's predictions makes

estimating that model's parameters very tricky. Presently, the most popular estimation

algorithms use what is called approximate least squares estimation (e.g., Criss &

McClelland, 2006; Malmberg, Zeelenberg, & Shiffrin, 2004). The discrepancy function that

2For more detailed, statistical explanations of the difficulties in deriving the likelihood function, see J. I. Myung, Montenegro, and Pitt
(2007) and Turner and Van Zandt (2012).
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guides the search for parameter values is a function of the difference between the data

simulated from the model and the observed data. For example, if we were to take this

approach with the high-threshold model, we would generate a simulated data set using some

candidate values for the parameters g and R and obtain a “predicted” hit rate P ̂(H) and false

alarm rate P ̂(FA). This simulation would proceed in the following way: First, using the

candidate value for R we would simulate a target test trial by first determining whether or

not a memory trace exists. This determination would occur by sampling a Bernoulli random

variable (0 or 1) with probability R. If this variable is equal to 1, indicating that a trace

exists, we obtain an “old” response from the model. If the variable is equal to 0, indicating

that no trace exists, we would then sample a second Bernoulli random variable with

probability g, and if this variable is equal to 1, we obtain an “old” guess from the model.

Otherwise, we obtain a “new” response. We proceed similarly for distractor test trials, only

without having to determine if a trace exists.

After simulating responses for each trial of an experiment, we would then have the observed

hit and false alarm rates P(H) and P(FA) from a subject, and the “predicted” hit and false

alarm rates P ̂(H) and P ̂ (FA) from the simulation using the proposed values of g and R. Our

approximate least-squares discrepancy function might be

We could embed this discrepancy function in an optimization routine to find the values of g

and R that minimize it.

The approximate least-squares approach is unsatisfactory for a number of reasons. First,

least-squares discrepancy functions that compare samples of random variables (the observed

statistics P(H) and P(FA)) to samples of other random variables (the simulated data P ̂(H)

and P ̂(FA)) can produce less accurate parameter estimates than other estimation methods

like maximum likelihood (e.g., Van Zandt, 2000; I. J. Myung, 2003; Rouder, Sun,

Speckman, Lu, & Zhou, 2003). Second, the evaluation of the discrepancy function is very

time-consuming and inefficient. Because there is sampling variability in each simulated data

set, to obtain accurate values of the discrepancy function for each set of parameters, we can't

just simulate data P ̂(H) and P̂(FA)) once. Instead, we must simulate the data many times for

each set of proposed parameter values. Third and finally, the kinds of inferences we can

make about the estimated parameters are very limited. We don't know how the estimates are

distributed, which makes null-hypothesis testing difficult, and (most importantly for our

purposes) we obtain, after the estimation is over, only point estimates of the parameters; we

can't perform Bayesian analyses.

Bayesian Model Fitting

The approximate least squares approach can be contrasted with the Bayesian approach,

which is steadily growing in popularity (e.g., Dennis et al., 2008; Lee, 2004, 2008, 2011;

Lee, Fuss, & Navarro, 2006; Rouder & Lu, 2005; Rouder, Lu, Speckman, Sun, & Jiang,

2005; Rouder et al., 2003; Shiffrin, Lee, Kim, & Wagenmakers, 2008; Steyvers, Lee, &
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Wagenmakers, 2009; Wagenmakers, 2007; Lee & Vanpaemel, 2008; Craigmile, Peruggia, &

Zandt, 2010; Lee & Wagenmakers, 2012; Oravecz, Tuerlinckx, & Vandekerckhove, 2009;

Vandekerckhove, Tuerlinckx, & Lee, 2011; Kruschke, 2011; Klugkist, Laudy, & Hoijtink,

2010). There are at least three reasons for the increased popularity of the Bayesian approach.

The first is that Bayesian modeling provides the distribution of the parameters given the data

that were observed at each point in the parameter space. This distribution is known as the

posterior distribution, and it can be used to answer questions about the model that ordinary

frequentist approaches cannot.

For example, the posterior distribution can reveal delicate trade-offs between subsets of

parameters that would not be visible under standard model-fitting techniques. Having a clear

understanding of how parameters interact with one another and how these parameters

change under experimental conditions is essential to fully understanding the model of

interest.

The second reason is that the Bayesian approach also provides a convenient framework to

perform hierarchical analyses (e.g., Shiffrin et al., 2008; Lee, 2011; Lee & Wagenmakers,

2012). Hierarchical analyses allow for individual differences in the parameters of each

subject and circumvent the incorrect inferences that are sometimes drawn when data is

averaged across subjects (Estes & Maddox, 2005). Because data are generally collected

from many subjects in several different experimental conditions, accounting for individual

differences is essential to assessing which model provides the best fit to experimental data.

Finally, and most importantly for this paper, Bayesian analysis provides a method to select

the best model from several competing models, taking into account both fits to the data and

the complexity of the models with respect to the data. In general, a more complex model

will fit better simply by virtue of its increased flexibility. Thus, to select the best model, one

must balance the fit of the data against the complexity of the model. However, model

complexity is somewhat of a misnomer. As we will demonstrate, the complexity of a model

can depend on the experimental design to which it is applied. The Bayesian approach

provides a principled way to balance the various facets that must be considered when

performing model selection.

In this paper, we show how a new approach to evaluating simulation-based models solves

these problems. Most importantly, it permits us to treat the model parameters in a Bayesian

fashion: We can explore the models' parameter spaces in more detail and investigate

meaningful alternative hypotheses concerning those parameters without abandoning the

theoretical structure that makes the models interesting in the first place.

We begin by first providing an overview of our likelihood-free Bayesian modeling

approach. We then present the results of a simulation study that compares the predictions of

the two models when list length is manipulated. By first examining where the two models

make different predictions, we can better identify experimental manipulations that will allow

for greater model discriminability. We then fit the two models to data that involve such a

manipulation. We show how our Bayesian modeling approach can be used to compare the
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two models on the basis of the interpretations they provide, as well as their relative fits to

the data.

In this article, we advocate for likelihood-free Bayesian techniques at a conceptual, rather

than technical, level. Readers are encouraged to consult the supplementary materials, which

are available on the authors's websites. The supplementary materials provide (1) more

details on the memory models we used here, (2) an overview of the fundamentals of

Bayesian inference, (3) technical details of a basic approximate Bayesian computation

algorithm, (4) a simulation study comparing likelihood-free and likelihood-informed

methods for parameter inference, and (5) the mathematical and methodological details of the

hierarchical models used in Studies 1 and 2.

Likelihood-free Model Evaluation

To demonstrate the utility of our likelihood-free approach, we chose two prominent

cognitive models that make different assumptions about how interference occurs in memory:

the Bind Cue Decide Model of Episodic Memory (BCDMEM; Dennis & Humphreys, 2001)

and the Retrieving Effectively from Memory (REM) model (Shiffrin & Steyvers, 1997).

These two models make different assumptions about the source of noise in recognition

decisions. BCDMEM posits that interference from different contexts in which a probe item

appeared makes recognition difficult, whereas REM posits that interference from the other

items in the study context makes recognition difficult.3 These two different ideas about

interference are built into the structure of the models, leading them to make different

predictions about performance under a range of experimental conditions. Both models are

very powerful and can fit a range of different experimental effects. However, their relative

goodness of fit to data has not been examined in a rigorous way because their analytic forms

are very difficult (and, until very recently, unknown; see J. I. Myung et al., 2007). For this

reason, the models' predictions and fits to data have been determined by simulation.

Fitting the Models to Data

Both models were originally proposed as simulation-based models, meaning that their

likelihood functions were not explicitly known at the time of their inception. For BCDMEM,

however, J. I. Myung et al. (2007) derived both exact and asymptotic equations for the

likelihood function. Despite this advance, the exact equations are computationally difficult

to evaluate, resulting in long computation times, and the asymptotic equations can lead to

inaccurate estimates of the posterior distribution.

By contrast, a closed-form, general expression for the REM model's likelihood has not yet

been published4 Estimates of REM's parameters have been obtained by “hand held” fits in

which parameter values have been adjusted manually over a restricted range (Shiffrin &

Steyvers, 1997), or by simulating the model and using approximate least squares procedures

3Although later instantiations of REM incorporate both item and context noise, in this article we only consider the pure item-noise
version for demonstration.
4An unpublished manuscript by Montenegro, Myung, and Pitt derives a numerical solution for the likelihood for a simple, special case
version of REM. However, this solution requires the numerical integration of difficult expressions which would need to be modified to
fit the models we use in this article. Thus, we will not discuss it here.
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that rely on the match between simulated and observed data (e.g., Malmberg et al., 2004;

Criss & McClelland, 2006). These procedures severely limit the extent to which inference

can be made about the parameters – in particular, how these parameters vary with changes in

experimental conditions.

Standard methods for applying Bayesian techniques to model fitting require models to be

sufficiently simple that a closed-form expression for the likelihood of the data given the

model parameters can be derived. For models like BCDMEM and REM, depending as they

do on simulations to obtain point estimates of parameters, Bayesian analyses have been

impossible to perform. This means that we have not, to this point, been able to objectively

evaluate the relative merits of the context versus item noise theories.

To fit the models to the data, we will use approximate Bayesian computation (ABC), an

approach that allows full Bayesian inference despite the lack of an expression for the REM

likelihood (Turner & Van Zandt, 2012). The ABC approach we will use combines two

recently-developed algorithms designed to make estimation of the posterior distribution as

efficient as possible. First, we use a method for proposal generation called differential

evolution (DE; see Braak, 2006; Turner, Sederberg, Brown, & Steyvers, 2012). The DE

proposal mechanism has proven useful in estimating high-dimensional, multi-modal

posterior distributions of highly-correlated parameters (Vrugt et al., 2009; Hu & Tsui, 2005;

Braak, 2006; Storn & Price, 1997). Turner and Sederberg (2012) used the DE approach to

develop the Approximate Bayesian Computation with Differential Evolution (ABCDE)

algorithm and showed that the ABCDE algorithm could outperform other proposal methods.

At its core, ABCDE uses a kernel-based weighing scheme (see Wilkinson, 2011) to evaluate

how likely a given proposal is to have generated the observed data. To do so, the kernel

provides a weight whose magnitude decreases as a function of a distance metric that

compares the simulated data to the observed data. Thus, proposal parameter values

producing data that are “close” to the observed data are given a higher weight and are more

likely to be retained as an estimate of the posterior distribution (see Turner & Van Zandt,

2012, for a tutorial).

The second algorithm allows us to efficiently fit hierarchical models. Turner and Van Zandt

(2011) noted that the conditional distribution of the group-level parameters does not depend

on the unknown likelihood function, because the group-level parameters depend on the data

only through the subject-level parameters. Thus, if the parameter space is partitioned

appropriately, we can obtain samples directly from the posterior distribution of the group-

level parameters using a technique called Gibbs sampling (see Gelman, Carlin, Stern, &

Rubin, 2004) and without any need for ABC. Turner and Van Zandt called their approach,

which alternated between Gibbs sampling for the group-level parameters and ABC sampling

for the subject-level parameters “Gibbs ABC.”

The discussion of our algorithm, which embeds the ABCDE algorithm within the Gibbs

ABC framework, is necessarily brief. Interested readers should consult Turner and

Sederberg (2012) and Turner and Van Zandt (2011) for more technical details about how the

algorithms are implemented. We will use our algorithm to fit REM and BCDMEM to data,

giving the first fully Bayesian analyses of the models. With estimates of the posterior
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distributions, we can contrast the different models with each other, particularly with regard

to their flexibility, interpretability, and quality of fit.

While our approach for fitting the models to data will provide accurate estimates of the

posterior, estimates of the posterior alone will not allow us to directly contrast BCDMEM

and REM. Instead, we will rely on conventional measures of model fit, such as the deviance

information criterion (DIC; Spiegelhalter, Best, Carlin, & Linde, 2002) and Bayesian

predictive information criterion (BPIC; Ando, 2007) to assess which model matches the data

most closely. While measuring model fit may sound straightforward, there are many factors

that must be considered such as model complexity, number of parameters, goodness of

model fit to the data, and experimental design.

Model Constraints from Experimental Design

A great deal of attention has been paid to the role that model complexity plays in selecting

between different models (e.g., Liu & Aitkin, 2008; Pitt, Myung, & Zhang, 2002; Pitt, Kim,

Navarro, & Myung, 2006; I. J. Myung & Pitt, 1997). Models that are more complex can fit a

wider range of data and therefore often exhibit larger goodness of fit values than less

complex models. However, more complex models may tend to overfit data, “explaining”

variations in the data that are due to error rather than systematic changes in behavior with

experimental conditions. A model's complexity is a function of its likelihood (e.g., Ando,

2007), and so any independent variable that enters into that likelihood will influence

complexity. This fact is not well-appreciated: it means that the range of predictions of a

model may be in part determined by experimental design.

For BCDMEM and REM, we can exploit the constraint provided by experimental design to

provide a stronger test of the models. In particular, we can fit the models to data that include

a list-length manipulation. Because neither model has parameters that by themselves can

explicitly capture the list-length effect5 the degree of model fit depends on the model's

architecture. It follows that if the data exhibit the list-length effect, then a model that is

designed to produce a list-length effect should be preferred over a model that does not make

such a prediction.

In this article, experimental design plays a vital role in testing the two competing list-length

theories. Thus, it is essential that we fully understand how the models REM and BCDMEM

interact with experimental design prior to fitting the models to data. In the next section, we

present the results of a simulation study meant to provide insight into the models' behavior

as a function of list length.

Model Predictions for List Length—Unlike BCDMEM, REM predicts that as the

number of items in the study list increases, recognition performance will decrease. This

prediction conflicts with findings from Dennis and Humphreys (2001) and Dennis et al.

(2008), who showed that with controls for retention interval, attention, displaced rehearsal

and variance in contextual reinstatement there is no list-length effect in recognition memory

5We arrived at this conclusion after a number of simulation studies, which are not reported here (also see J. I. Myung et al., 2007;
Montenegro et al., 2011).

Turner et al. Page 8

Psychol Rev. Author manuscript; available in PMC 2014 August 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



for words, although there may be a small effect for other stimuli such as fractals and faces

(Kinnell & Dennis, 2012).

Because REM has no simple likelihood, there have been few efforts devoted to determining

how each of the model's parameters contributes to its ability to produce the list-length effect.

However, knowing how changes in each parameter influence the model's predictions is

essential to understanding the complexity of the model and where the list-length effect

comes from. One way to explore the parameter space is to look at the distribution of all

possible data generated by parameters sampled from uninformative priors. The resulting

distribution is known as the prior predictive distribution (Gelman et al., 2004; Vanpaemel,

2010).

We simulated the model under different list lengths with parameters that were selected from

uninformative priors6 The distribution of the resulting simulated data, the prior predictive

distribution, gives an image of the model's predictions under the full possible range of

parameter values.

We considered four different list lengths: 10, 20, 80, and 2,000 items. The 2,000-item list

simulations represented the limiting behavior of the two models. The test list was composed

of 10 targets selected at random from the studied items and 10 distractors. To simulate the

data, we sampled a set of parameters from the prior, used those parameters to generate

simulated data for 20 study-test trials, and recorded the mean hit and false alarm rates over

these trials. We repeated this procedure 10,000 times under each model by list length

combination. Given our choice of priors, the only differences we might have observed

between the two models' predictions would be due entirely to differences in the models'

structures and how the parameters interact with list length.

Figure 1 shows the prior predictive distributions of hit and false alarm rates in the receiver

operating characteristic (ROC) space over the four list-length conditions. The top panels

show the data from REM whereas the bottom panels show the data from BCDMEM. In each

panel, the line drawn from the top left corner to the bottom right corner represents unbiased

responding, whereas the line drawn from the bottom left corner to the top right corner

represents chance performance. BCDMEM shows no systematic changes in its ROC

predictions over different list lengths, which we expected because BCDMEM does not

predict a list-length effect.

Figure 2 shows the prior predictive distribution separated by hit (left panels) and false alarm

(right panels) rates for REM (top panels) and BCDMEM (bottom panels). In this figure, the

rates are plotted as a function of list length for a single parameter value (gray lines). The

black lines show the mean of the prior predictive density. Figure 2 shows that the

predictions of REM are a function of list length and not the individual parameter values that

were sampled.

The prior predictive distributions show that memory performance as measured by the hit and

false alarm rates drops with increasing list lengths in REM but it is unaffected in BCDMEM.

6Each of the models' parameters are bound by zero and one, so we specified a uniform prior with these bounds.
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This means that, even with no changes in the model parameters over conditions, there are

areas in the ROC space that will favor one model for short lists and the other model for long

lists.

An important fact demonstrated by Figures 1 and 2 is that, as list length increases, the range

of effects predicted by REM systematically changes – REM's complexity decreases. This

occurs because REM's intractable likelihood is a function of list length. Choosing which

model, REM or BCDMEM, fits a set of data best must therefore take into account a possibly

complicated interaction between the complexity of the model (I. J. Myung & Pitt, 1997) and

the experimental design. This is an important consideration that will influence how well

REM can compete with other models when explaining data from these designs. In the next

two sections, we exploit this implicit constraint by fitting both models to data from

experiments with list-length manipulations. We begin with the data presented in Dennis et

al. (2008) and then proceed to data from Kinnell and Dennis (2012).

Study 1: Data from Dennis, Lee, & Kinnell (2008)

Dennis et al. (2008) presented subjects with high- and low-frequency words in short and

long study lists, but only tested the first items in the study list. In this way they could equate

the retention intervals across conditions by delaying the test phase in the short list conditions

by an amount of time equal to the difference between the long and short study phases.

In another condition they added an additional filler task after both long and short list

retention intervals. Without such a filler task, the time between study and test for long lists is

negligible, whereas for short lists it is equal to the duration of the filler task that equates the

retention intervals for short and long lists. The additional filler task provides a strong cue

that the study context needs to be reinstated to begin the test phase. Without the filler task,

long lists do not provide such a reinstatement cue, and so subjects may not reinstate the

study context from the beginning of the study list.

Dennis et al. (2008) found that with no filler task (with no cue for long lists to reinstate the

study context from the beginning of the study list), recognition performance was poorer for

long than for short lists – a list length effect. However, with an additional filler task (where

both long and short lists were cued to reinstate the study context), there was no list-length

effect.

Models

A full description of the hierarchical models appears in the supplementary materials. We

made standard choices about how to extend the two models to hierarchical data. We defined

parameters at two levels – some parameters captured behavioral patterns at the group level,

whereas other parameters captured subject-specific effects. We will pay most attention to the

group-level parameters, which quantify the effects of the experimental manipulations across

all subjects.
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Results

We now present the group-level results of the model fitting in three sections. We first

discuss the interpretation provided by each model separately, and then we compare and

contrast the two models.

BCDMEM—The two parameters of greatest interest in BCDMEM describe the probability

of context reinstatement and the extent of context noise. The probability that context nodes

become inactive after longer lists with no filler activity should be greater than for all other

experimental conditions because context will be less likely to be reinstated after long lists

with no additional filler activity. We will denote the probability that nodes become inactive

as δ for the long list, no filler activity condition, and as d for the other conditions.

The extent of context noise is dictated by the probability with which nodes become active in

the retrieved context. This probability should be lower for low-frequency words than it is for

high-frequency words, because high-frequency words have been encountered in more

contexts than low-frequency words. We will denote the probability of nodes becoming

active as τ for the high-frequency words and p for the low-frequency words.

The context reinstatement and context noise parameters for each subject in each

experimental condition were drawn from group-level distributions with means ωδ, ωd, ωp

and ωτ. Figure 3 shows the estimated posterior distributions for the effect of filler activity

ωδ−ωd (left panel) and the effect of word frequency ωτ−ωp (right panel). In the frequentist

setting, we would want to reject the null hypotheses that ωδ−ωd ≤ 0 and ωτ−ωp ≤ 0. In the

Bayesian setting, we can evaluate explicitly the probability that the alternative hypotheses

are true, that is, the probability that ωδ−ωd > 0 and ωτ−ωp> 0.

The absence of an experimental effect, a difference of zero, is represented as dashed vertical

lines on each panel. The probabilities of the alternative hypotheses are given by the

proportion of the experimental effects that are greater than zero. For the filler activity effect,

the probability that ωδ−ωd is greater than zero is equal to 0.978. For the word frequency

effect, the probability that ωτ−ωp is greater than zero is equal to one. This is evidence that

the experimental effects are present and in the direction consistent with the mechanisms

proposed by BCDMEM.7

REM—As with BCDMEM, the most important parameters in REM are the parameters used

to capture the effects of word frequency and filler activity. REM explains the effects of word

frequency by a geometric distribution of feature values with a rate parameter g. For the

geometric distribution, increases of the rate parameter will reduce both the mean and

variability of the random variable that represents the feature values. This means that

increasing g in REM will result in memory traces that contain primarily a few small values

(1s and 2s, say). Memory traces will then have more features in common as g increases.

7An alternative approach to evaluating whether an effect of word frequency is present would have been to contrast the fits of the
current model in which ωδ and ωd are free to vary against a null model in which ωδ= ωd. Then we could compute the Bayes factor,
the likelihood of the full model over the likelihood of the null model. If the Bayes factor were larger than one, that would be evidence
against the null model and for the presence of a filler effect. However, the filler effect has been demonstrated in a number of other
studies (see Dennis et al., 2008), so there is little reason to believe in the null model in the first place.

Turner et al. Page 11

Psychol Rev. Author manuscript; available in PMC 2014 August 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



To capture the differences in the distribution of feature values for high- and low-frequency

words, we defined a separate rate parameter for each word frequency condition. At the

group level, we used the parameter ωγ for high-frequency words and ωg for low-frequency

words. Memory traces of high-frequency words are assumed to have more features in

common, and so high-frequency words have a larger value of g. To compare these

parameters, we examined the posterior distribution of ωγ−ωg, similar to the comparisons we

made for BCDMEM.

We chose to model the effects of the filler task by adding a number η of “spurious” traces to

the episodic image for a given subject after the study phase was complete. Adding spurious

traces to the episodic image creates more interference in the recognition memory decision,

which is akin to the inference induced by the filler activity. We modeled the number of

spurious traces with two group-level parameters ωη and ξη and 48 subject-level parameters

η. Because η is a subject-level parameter, we can get an idea of what the effects of the filler

task would be for an arbitrary subject by simulating values of η from the posterior

distributions of the group-level parameters ωη and ξη. We will call the distribution of the

simulated values η̃ the posterior predictive distribution of η.

The left panel of Figure 4 shows the effects of word frequency through the distribution of

ωγ−ωg, whereas the right panel shows the effects of filler activity through the distribution of

η̃. The null value of zero is represented by the dashed vertical lines. There is a strong effect

for the word frequency manipulation, and the probability that ωγ > ωg is 1.0. This means that

the model accounts for word-frequency effects with memory traces for low-frequency words

that are more variable and hence contain more distinctive features than the memory traces

for high-frequency words (e.g., Glanzer, Adams, Iverson, & Kim, 1993). The difference in

the number of distinctive features results in greater discriminability of low-frequency over

high-frequency words.

The right panel of Figure 4 shows the distribution of η̃. Had there been no effects of the

filler activity, the distribution of η̃ would be highly concentrated on the null value of zero,

represented in the right panel of Figure 4 as the dashed vertical line. However, the mode of

the distribution is six, showing some evidence that subjects are sensitive to the effects of

filler conditions. Furthermore, this density has long tails, extending out to around 150,

indicating that some subjects may be very sensitive to the effects of filler tasks.

Comparing the Two Models—Fitting the two models to the same data told us two

things. First, the effects of the filler activity were strong. For BCDMEM, we came to this

conclusion by examining the differences in the parameters ωδ and ωd corresponding to the

presence and absence of filler activity. The distribution of the difference ωδ− ωd had most of

its area above zero, suggesting that it was more difficult for subjects to reinstate the study

list context at test in the presence of filler activity. For REM, we drew a similar conclusion

from the posterior predictive distribution for the number of spurious traces added to the

episodic matrix. Because this distribution also had a great deal of area far from zero, we can

conclude that the presence of filler activity created greater distortion in memory, resulting in

worse performance.
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Second, the effects of word frequency were strong, perhaps much stronger than the effects

of filler activity. For both models, the word frequency manipulation was captured by a

comparison between two word-frequency parameters. For both models, at the group level,

the posterior probability of a word frequency effect being greater than zero was 1.0.

While fitting the models to the data provides a clearer understanding of how experimental

effects are captured by REM and BCDMEM, the primary question we want to answer

centers on the list-length manipulation, and how well each model captures the effects of list

length. To assess model fit, we computed the DIC and the BPIC. For both of these statistics,

a better fit is indicated by a smaller value (i.e., more negative). Table 1 shows relevant

model fit statistics including the number of effective model parameters pD, the average log

likelihood value D, and the best log likelihood value obtained during sampling D ̂. The

statistics suggest that for these data, BCDMEM provided a better fit.

Summary

In this section, we showed that the models provided convenient interpretations of the effects

in the data in the form of posterior distributions of parameters. Furthermore, the distributions

of the estimated parameters were consistent with the theoretical interpretations of the

parameters provided by each model.

Through a relative comparison of DIC and BPIC values, we concluded that BCDMEM fit

the data of Dennis et al. (2008) better than REM. To generalize these findings, we will

further investigate the list-length effect by fitting the models to data from Kinnell and

Dennis (2012).

Study 2: Data from Kinnell & Dennis (2012)

Kinnell and Dennis (2012) examined the role of different stimulus types on the list length

effect, including pictures of faces, fractals, and photos of scenes. The experimental design

was very similar to the design used in Dennis et al. (2008), but included neither word

frequency nor filler task manipulations. Subjects were assigned one stimulus type and then

completed two study list conditions: one short (consisting of 20 items) and one long

(consisting of 80 items). Study list presentation order was counterbalanced across subjects,

and the retention intervals were equated across conditions as in Dennis et al.. Following the

study list, subjects completed a recognition task on 40 items, 20 of which were targets. Forty

subjects participated in each of the stimulus conditions.

Kinnell and Dennis (2012) performed conventional (i.e., frequentist) analyses on their data.

They estimated d′ statistics from the hit and false alarm rates. For faces, they found that

there was a significant list-length effect on d′ and the false alarm rates in both the between-

and within-subjects analyses, but there were no significant differences in the hit rates in

either analyses. For fractals, the within-subjects analyses revealed a significant list-length

effect only on the false alarm rates, but the between-subjects analyses indicated significant

list-length effects on both the false alarm rates and the d′. For photos of scenes, no list length

effects were detected in any analysis, although they noted that both the mean d′ and mean hit

rate were higher in the long list condition.
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The Models

The models we fit to Kinnell and Dennis's (2012) data were very similar in structure to the

models we fit to Dennis et al.'s (2008) data. A full description of the models appears in the

supplementary materials.

Results

As in the previous section, we begin by examining the results of the individual model fits

and close by comparing and contrasting the fits obtained by both models. To account for the

differences in memory performance across the different stimulus materials, we needed to

focus on additional model parameters. For BCDMEM, this was the learning rate parameter

r, which determines the probability that input and context nodes are connected during study.

For REM, these were the probabilities associated with copying item features into the

memory trace. The probability that a feature is copied is u, and the probability that a feature

is copied correctly is c. For each individual, their parameter values were sampled from a

hyperdistribution of possible values with mean ωr, ωu and ωc.

BCDMEM—Figure 5 shows the estimated posterior distributions for each of the mean

group-level parameters of the BCDMEM model: contextual reinstatement (ωd; left panel),

contextual noise (ωp; middle panel), and the learning rate (ωr; right panel). Each panel

contains the estimate of the parameters for each stimulus type, where the solid black, gray

and dashed black lines represent the faces, fractals and photos of scenes, respectively.

The right panel of Figure 5 shows that the learning rate for fractals takes on smaller values

than the rates for both faces and photos of scenes. This learning rate difference suggests that

it is harder to learn the features for fractal-type stimuli compared to either faces or photos of

scenes. The left panel of Figure 5 shows that the decay parameter takes on larger values for

fractals than for either faces or photos of scenes, suggesting poorer contextual reinstatement

of fractals at test. The middle panel of Figure 5 shows that the contextual noise for photos of

scenes takes on lower values than for either faces or fractals, suggesting that there was more

contextual interference for the photos of scenes.

REM—Figure 6 shows the estimated posterior distributions for the group-level mean

parameters for the probability of correct feature copying (ωc; left panel), the feature rate

parameter (ωg; middle panel), and the probability of feature copying (ωu; right panel) for

each of the three stimulus types: faces (solid black lines), fractals (gray lines) and photos of

scenes (dashed black lines).

Comparing the left and right panels of Figure 6, we see that the probabilities for copying

correctly and feature copying have lower values for the fractals than for either faces or

photos of scenes. Taken together, these results suggest that it is more difficult to encode

fractals into memory, which leads to poorer performance at test.

The middle panel of Figure 6 shows that the values of the feature rate parameter for photos

of scenes are smaller than the values for faces and fractals. Recall that a higher feature rate

parameter produces less diagnostic feature values, producing smaller memory strength at

test, which ultimately leads to lower hit rates and worse recognition performance. Thus, the
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information perceived in the photos of scenes is more diagnostic of previous exposure than

the information in either faces or fractals.

Comparing the Models

BCDMEM and REM provide similar interpretations of recognition performance for photos

of scenes, faces and fractals (Figures 5 and 6), despite making different assumptions about

how information is stored and retrieved. In particular, the posterior distributions of

contextual noise in BCDMEM (ωp) for each stimulus type closely resemble the estimates for

“feature discriminability” in REM (ωg). The middle panels of Figures 5 and 6 suggest that

the quality of stored information for photos of scenes is appreciably greater than for the

other stimulus types. In addition, the left and right panels of Figures 5 and 6 show that the

feature copying process assumed by both models is more error-prone for fractals than it is

for either faces or photos of scenes.

We can also compare the models in terms of how well they fit the data, which is determined

by how well each model can accommodate the pattern of list-length effects across the

different stimulus conditions. Table 2 shows the DIC (third column) and BPIC (forth

column) statistics for each model by stimulus condition, along with the other relevant model

fit statistics. The table shows that the DIC and BPIC statistics for BCDMEM are lower than

those of REM for all stimulus types, indicating that BCDMEM fit these data best.

Summary

We used hierarchical versions of REM and BCDMEM to fit the data presented in Kinnell

and Dennis (2012). We again made use of ABC techniques to obtain estimates of the

posterior distributions for all parameters. We showed that the models provided convenient

and consistent interpretations of the experimental effects in the form of posterior

distributions. Quantitative measures of goodness of fit indicated that BCDMEM provided a

better fit to Kinnell and Dennis's data than did REM.

General Discussion

Most memory models like REM and BCDMEM, that fit memory data well across a range of

domains, are simulation-based and consequently have not been able to take advantage of

Bayesian techniques for model comparison and parameter interpretation. Often, such models

do not have a tractable closed-form expression that relates the parameters of the model to the

data that were observed (i.e., a likelihood function). In this note, we demonstrated how a

Bayesian approach to model fitting and testing can improve the interpretation of model

parameters. We employed a new technique, called approximate Bayesian computation

(ABC), to estimate the posterior distributions of the models' parameters. The ABC technique

is important because without it, or something like it, there is no principled way to estimate

the parameters of simulation-based models or explore the contributions that these parameters

make to different patterns of data.

To test the two models, we fit them to data from two experiments. We chose the list length

data from Dennis et al. (2008) and Kinnell and Dennis (2012) because they used

experimental variables that have been shown to be important determinants of the size of the

Turner et al. Page 15

Psychol Rev. Author manuscript; available in PMC 2014 August 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



list-length effect (see Dennis et al., 2008; Dennis & Humphreys, 2001). We fit hierarchical

versions of both models to the data and found that BCDMEM consistently outperformed

REM on both DIC and BPIC metrics. However, the particular paradigm used in these

studies has been the subject of some controversy. We make no attempt to resolve this issue

here; the model evaluations in this article are meant for illustrative purposes only.

There are three critical lessons to be gained from the exercises in this article. First, ABC

allows Bayesian methods to be efficiently extended to simulation-based models. This is a

major step forward in modeling technology with important ramifications for cognitive

modeling. Second, BCDMEM provides a better explanation for the list length data of Dennis

et al. (2008) and Kinnell and Dennis (2012) than does REM. Given that REM predicts a list-

length effect and not all of the data that we fit shows such an effect, this might seem to be a

foregone conclusion. However, under some parameter settings, the amount of item

interference in REM is small, which can produce a negligible list-length effect. If the models

are fit to the data using an approximate least squares method, the advantage for BCDMEM

may be similarly small: both models will seem to fit the data well. However, using a full

Bayesian analysis, REM is penalized for its ability to capture both weak and strong list-

length effects. The analysis thus exposed a critical distinction between the models to which

currently employed modeling technologies are completely insensitive.

One could argue that the versions of BCDMEM and REM that we employed were limited

because they did not include parameters for individual item effects (e.g., DeCarlo, 2011;

Pratte & Rouder, 2011). Adding such effects could provide a better account of the data, and

perhaps allow for a more accurate analysis of the particular type of interference present in

recognition memory. However, there is no straightforward way to incorporate such effects

into either REM or BCDMEM without considerable additional theoretical overhead and

increased computational complexity.

The third lesson concerns the role of experimental design on model complexity. Although

they are not reported here, some of our preliminary studies showed an interesting interaction

between the flexibility of the two models and the experimental design (list length). As the

length of the study list increases, the predictions of REM change whereas the predictions of

BCDMEM remain fixed (see Figures 1 and 2). REM's predicted hit rates either stay the

same or decrease while its predicted false alarm rates tend to stay the same or (mostly)

increase as list length increases. Therefore, although REM is better able to predict the list-

length effect, it is also capable of producing the null list-length effect. By contrast,

BCDMEM makes the same predictions across all study list lengths and is only capable of

producing the null list-length effect.

The range of data that REM explains decreases as list length increases while, for BCDMEM,

it remains the same. In other words, the complexity of REM depends on list length while

BCDMEM's does not. Model complexity is often viewed as an intrinsic property of a model

independent from any experimental considerations (but see, e.g., Pitt et al., 2002, for a

discussion). Although this may seem obvious in hindsight, our Bayesian analysis

demonstrated that complexity is a property of the interaction between a model and the

experimental design that produced the data to which it is applied. This interactive

Turner et al. Page 16

Psychol Rev. Author manuscript; available in PMC 2014 August 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



component of model complexity is naturally incorporated in our hierarchical Bayesian

approach.

Conclusion

Both REM and BCDMEM are mechanistic in the sense that they can be programmed and

simulated to perform recognition memory tasks. Watkins (1990) argued against the use of

such models on the grounds that they are not falsifiable using experimental methods.

Instead, he suggested that memory theorists should propose general principles that describe

the operation of human memory, and, as an example, he promoted the cue overload

principle.

It is unclear to us how a general verbal theory like the cue overload principle could be more

falsifiable than the constraints provided by a mathematical framework such as those

embodied in REM and BCDMEM. General principles must be tested, as are mathematical

models, empirically, by collecting data and subjecting those data to statistical tests, which

may be Bayesian or may be something else. By quantifying the cue overload principle using

the mechanisms in REM and BCDMEM, ABC gives us the machinery by which the

boundary conditions of the cue overload principle can be better appreciated.

The present article has demonstrated the usefulness of the ABC approach. For the first time,

we have investigated two models of episodic memory – BCDMEM and REM – in a

Bayesian framework. We have presented the first hierarchical fits for both of these models

to empirical data, fits that provided posterior estimates of the parameters on every level of

the hierarchy. In addition, using our ABC approach we were able to quantitatively compare

the fits of hierarchical versions of both models and we concluded that, for the data of Dennis

et al. (2008) andKinnell and Dennis (2012), BCDMEM provided a better fit.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The prior predictive density under four different list lengths for REM (top panel) and

BCDMEM (bottom panel): 10 (left column), 20 (middle left column), 80 (middle right

column), and 2,000 (right column) items. Darker regions indicate higher density.
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Figure 2.
The prior predictive distributions for the hit (left panels) and false alarm rates (right panels)

as a function of list length for REM (top panels) and BCDMEM (bottom panels). The mean

of the prior predictive distribution is represented as the black lines.
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Figure 3.
Estimated experimental effects for filler activity (left panel) and the word frequency

manipulation (right panel) at the group level.
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Figure 4.
Estimated experimental effects for the word frequency manipulation (left panel) and at the

filler manipulation (right panel). The null value of zero is represented by the dashed vertical

line in both panels.
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Figure 5.
Estimated posterior distributions for each of the three stimuli types for the group-level mean

parameters corresponding to contextual reinstatement (left panel), contextual noise (middle

panel), and learning rate (right panel). Stimulus types are faces, fractals, and photos of

scenes and are represented as solid black, gray, and dashed black lines, respectively.
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Figure 6.
Estimated posterior distributions for each of the three stimulus types for the group-level

mean parameters corresponding to the probability of correct feature copying (left panel), the

feature rate parameter (middle panel), and the probability of feature copying (right panel).

Stimulus types are faces, fractals, and photos of scenes and are represented as solid black,

gray, and dashed black lines, respectively.
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