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Abstract Increasingly complex generative models are being

used across disciplines as they allow for realistic charac-

terization of data, but a common difficulty with them is

the prohibitively large computational cost to evaluate the

likelihood function and thus to perform likelihood-based

statistical inference. A likelihood-free inference framework

has emerged where the parameters are identified by find-

ing values that yield simulated data resembling the observed

data. While widely applicable, a major difficulty in this

framework is how to measure the discrepancy between the

simulated and observed data. Transforming the original prob-

lem into a problem of classifying the data into simulated

versus observed, we find that classification accuracy can be
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used to assess the discrepancy. The complete arsenal of clas-

sification methods becomes thereby available for inference

of intractable generative models. We validate our approach

using theory and simulations for both point estimation and

Bayesian inference, and demonstrate its use on real data by

inferring an individual-based epidemiological model for bac-

terial infections in child care centers.

Keywords Approximate Bayesian computation · Genera-

tive models · Intractable likelihood · Latent variable models ·

Simulator-based models

1 Introduction

The likelihood function plays a central role in statistical infer-

ence by quantifying to which extent some values of the model

parameters are consistent with the observed data. For com-

plex models, however, evaluating the likelihood function can

be computationally very costly, which often prevents its use

in practice. This paper is about statistical inference for gener-

ative models whose likelihood function cannot be computed

in a reasonable time.1

A generative model is here defined as a parametrized

probabilistic mechanism which specifies how the data are

generated. It is usually implemented as a computer program

that takes a state of the random number generator and some

values of the model parameters θ as input and that returns

simulated data Yθ as output. The mapping from the param-

eters θ to simulated data Yθ is stochastic, and running the

computer program for different states of the random number

generator corresponds to sampling from the model. Genera-

tive models are also known as simulator- or simulation-based

1 Early versions were communicated as (Gutmann et al. 2014a, b).
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models (Hartig et al. 2011), or implicit models (Diggle and

Gratton 1984), and are closely related to probabilistic pro-

grams (Mansinghka et al. 2013). Their scope of applicability

is extremely wide ranging from genetics and ecology (Beau-

mont 2010) to economics (Gouriéroux et al. 1993), physics

(Cameron and Pettitt 2012), and computer vision (Zhu et al.

2009).

A disadvantage of complex generative models is the dif-

ficulty of performing inference with them: evaluating the

likelihood function involves computing the probability of

the observed data X as function of the model parameters

θ , which for complex models cannot be done analytically or

computationally within practical time limits.

As generative models are widely used, solutions have

emerged in multiple fields to perform “likelihood-free” infer-

ence, that is, inference which does not rely on the availability

of the likelihood function. Approximate Bayesian computa-

tion (ABC) stems from research in genetics (Beaumont et al.

2002; Marjoram et al. 2003; Pritchard et al. 1999; Tavaré

et al. 1997), while the method of simulated moments (McFad-

den 1989; Pakes and Pollard 1989) and indirect inference

(Gouriéroux et al. 1993; Smith 2008) come from economet-

rics. The latter methods are traditionally used in a classical

inference framework while ABC has its roots in Bayesian

inference, but the boundaries have started to blur (Drovandi

et al. 2011). Despite their differences, the methods all share

the basic idea to perform inference about θ by identifying

values which generate simulated data Yθ that resemble the

observed data X.

The discrepancy between the simulated and observed data

is typically measured by reducing each data set to a vector of

summary statistics and measuring the distance between them.

Both the distance function used and the summary statistics

are critical for the success of the inference procedure (see, for

example, the reviews by Lintusaari et al. (2017) and Marin

et al. (2012). Traditionally, researchers choose the two quan-

tities subjectively, relying on expert knowledge about the

observed data. The goal of this paper is to show that the

complete arsenal of classification methods can be brought to

our disposal to measure the discrepancy, and thus to perform

inference for intractable generative models.

The paper is based on the observation that distinguishing

two data sets that were generated with very different values of

θ is usually easier than distinguishing two data sets that were

generated with similar values. We propose to use the discrim-

inability (classifiability) of the observed and simulated data

as a discrepancy measure in likelihood-free inference.

We visualize the basic idea in Fig. 1 for the inference of

the mean θ of a bivariate Gaussian with identity covariance

matrix. The observed data X, shown with black circles, were

generated with mean θ
◦ equal to zero. Figure 1a shows that

data Yθ simulated with mean θ = (6, 0) can be easily dis-

tinguished from X. The indicated classification rule yields

an accuracy of 100%. In Fig. 1b, on the other hand, the data

were simulated with θ = (1/2, 0) and distinguishing such

data from X is much more difficult; the best classification

rule only yields 58% correct assignments. Moreover, if the

data were simulated with θ = θ
◦, the classification task could

not be solved significantly above chance level. This suggests

that we can perform likelihood-free inference by identifying

parameters which yield chance-level discriminability only.

The remaining parts of the paper are structured as fol-

lows: In Sect. 2, we flesh out the basic idea. We then show in

Sects. 3 and 4 how classification allows us to perform statis-

tical inference of generative models in both a classical and

Bayesian framework. The approach will be validated on con-

tinuous, binary, discrete, and time series data where ground

truth is known. In Sect. 5, we apply the methodology to real

data, and in Sect. 6, we discuss the proposed approach and

related work. Section 7 concludes the paper.

2 Measuring discrepancy via classification

Standard classification methods operate on feature vectors

that numerically represent the properties of the data that are

judged relevant for the discrimination task (Hastie et al. 2009;

Wasserman 2004). There is some freedom in how the feature

vectors are constructed. In the simplest case, the data are

statistically independent and identically distributed (iid) ran-

dom variables, and the features are equal to the data points, as

in Fig. 1. But the approach of using classification to measure

the discrepancy is not restricted to iid data. In the paper, we

will construct features and set up a classification problems

also for time series or matrix-valued data.

We denote the feature vectors from the observed data X

by xi , and the feature vectors from the simulated data Yθ by

yi , where the dependency on θ is suppressed for notational

simplicity. We assume that we obtained n feature vectors

from each of the two data sets. The xi are then associated

with class label 0 and the yi with class label 1, which yields

the augmented data set Dθ ,

Dθ = {(x1, 0), . . . , (xn, 0), (y1, 1), . . . , (yn, 1)}. (1)

Classification consists in predicting the class labels of the

features in Dθ . This is done by means of a classification rule

h that maps each feature vector u to its class label h(u) ∈

{0, 1}. The performance of h on Dθ can be assessed by the

classification accuracy CA,

CA(h,Dθ ) =
1

2n

(

n
∑

i=1

[1 − h(xi )] + h(yi )

)

, (2)

which is the proportion of correct assignments. The largest

classification accuracy on average is achieved by the Bayes
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Fig. 1 Discriminability as discrepancy measure. The observed data X

are shown as black circles and were generated with mean θ
◦ = (0, 0).

The hatched areas indicate the Bayes classification rules. a High dis-

criminability: Simulated data Yθ (green diamonds) were generated with

θ = (6, 0). b Low discriminability: Yθ (red crosses) were generated

with θ = (1/2, 0). As θ approaches θ
◦, the discriminability (best

classification accuracy) of X and Yθ drops. We propose to use the

discriminability as discrepancy measure for likelihood-free inference

classification rule h∗
θ
, which consists in assigning a feature

vector to X if it is more probable that the feature belongs to X

than to Yθ , and vice versa for Yθ (Hastie et al. 2009; Wasser-

man 2004). We denote this largest classification accuracy by

J ∗
n (θ),

J ∗
n (θ) = CA

(

h∗
θ
,Dθ ) (3)

It is an indicator of the discriminability (classifiability) of X

and Yθ .

In the motivating example in Fig. 1, the labels of the

data points are indicated by their markers, and the Bayes

classification rule by the hatched areas. The classification

accuracy J ∗
n (θ) decreases from 100% (perfect classification

performance) toward 50% (chance-level performance) as θ

approaches θ
◦, the parameter value which was used to gen-

erate the observed data X. While this provides an intuitive

justification for using J ∗
n (θ) as discrepancy measure, an ana-

lytical justification will be given in the next section where

we show that J ∗
n (θ) is related to the total variation distance

under mild conditions.

In practice, J ∗
n (θ) is not computable because the Bayes

classification rule h∗
θ

involves the probability distribution of

the data which is unknown in the first place. But the clas-

sification literature provides a wealth of methods to learn

an approximation ĥθ of the Bayes classification rule, and

J ∗
n (θ) can be estimated via cross-validation (Hastie et al.

2009; Wasserman 2004).

We will use several straightforward methods to obtain ĥθ :

linear discriminant analysis (LDA), quadratic discriminant

analysis (QDA), L1-regularized polynomial logistic regres-

sion, L1-regularized polynomial support vector machine

(SVM) classification, and an aggregation of the above and

other methods (max-rule, see Supplementary material 1.1).

These are by no means the only applicable methods. In fact,

any method yielding a good approximation of h∗
θ

may be

chosen; our approach makes the complete arsenal of classifi-

cation methods available for inference of generative models.

While other approaches are possible, for the approxima-

tion of J ∗
n (θ), we use K -fold cross-validation where the data

Dθ are divided into K folds of training and validation sets, the

different validation sets being disjoint. The training sets are

used to learn the classification rules ĥk
θ

by any of the meth-

ods above, and the validation sets D
k
θ

are used to measure

their performances CA(ĥk
θ
,Dk

θ
). The average classification

accuracy on the validation sets, Jn(θ),

Jn(θ) =
1

K

K
∑

k=1

CA
(

ĥk
θ
,Dk

θ

)

, (4)

approximates J ∗
n (θ) and is used as computable measure of

the discrepancy between X and Yθ .

We used K = 5 folds in the paper. In cross-validation,

large values of K generally lead to approximations with

smaller bias but larger variance than small values of K . Inter-

mediate values like K = 5 are thought to lead to a good

balance between the two desiderata (e.g., Hastie et al. 2009,

Section 7.10).
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We next show on a range of different kinds of data that

most of the different classification methods yield equally

good approximations of J ∗
n (θ) for large sample sizes. Con-

tinuous data (drawn from a univariate Gaussian distribution

of variance one), binary data (from a Bernoulli distribution),

count data (from a Poisson distribution), and time series data

(from a zero mean moving average model of order one)

are considered. For the first three data sets, the unknown

parameter is the mean, and for the moving average model,

the lag coefficient is the unknown quantity (see Supplemen-

tary material 1.2 for the model specifications). Unlike for

the other three data sets, the data points from the moving

average model are not statistically independent, as the lag

coefficient affects the correlation between two consecutive

time points xt and xt+1. For the classification, we treated

each pair (xt , xt+1) as a feature.

Figure 2 shows that for the Gaussian, Bernoulli, and Pois-

son data, all the considered classification methods perform as

well as the Bayes classification rule (BCR), yielding discrep-

ancy measures Jn(θ) that are practically identical to J ∗
n (θ).

The same holds for the moving average model, with the

exception of LDA. The reason is that LDA is not sensitive to

the correlation between xt and xt+1, which would be needed

to discover the value of the lag coefficient. In other words, the

Bayes classification rule h∗
θ

is outside the family of possible

classification rules learned by LDA.

The examples show that classification can be used to

identify the data-generating parameter value θ
◦ by minimiz-

ing Jn(θ). Further evidence is provided as Supplementary

material 2. The derivation of conditions which guarantee the

identification of θ
◦ via classification in general is the topic

of the next section.

3 Classical inference via classification

In this section, we consider the task of finding the single best

parameter value. This can be the primary goal of the inference

or only the first step before computing the posterior distri-

bution, which will be considered in the following section. In

our context, the best parameter value is the value for which

the simulated data Yθ are the least distinguishable from the

observed data X, that is, the parameter θ̂n which minimizes

Jn ,

θ̂n = argminθ Jn(θ). (5)

We show that θ̂n is a consistent estimator: Assuming that the

observed data X equal some Yθ
◦ , generated with unknown

parameter θ
◦, conditions are given under which θ̂n converges

to θ
◦ in probability as the sample size n increases. Figure 3

provides motivating evidence for consistency of θ̂n .
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Fig. 2 Comparison of the classification accuracy of the Bayes and the

learned classification rules for large sample sizes (n = 100,000). The

symmetric curves depict Jn and J ∗
n as a function of the relative deviation

of the model parameter from the true data-generating parameter. As the

curves of the different methods are indistinguishable, quadratic discrim-

inant analysis (QDA), L1-regularized polynomial logistic regression

(L1 logistic), L1-regularized polynomial support vector machine clas-

sification (L1 SVM), and a max-combination of these and other methods

(max-rule) perform as well as the Bayes classification rule, which

assumes the true distributions to be known (BCR). For linear discrimi-

nant analysis (LDA), this holds with the exception of the moving average

model
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Fig. 3 Empirical evidence for consistency. The figure shows the mean

squared estimation error E[||θ̂n − θ
◦||2] for the examples in Fig. 2 as

a function of the sample size n (solid lines, circles). The mean was

computed as an average over 100 outcomes. The dashed lines depict

the mean ±2 standard errors. The linear trend on the log–log scale

suggests convergence in quadratic mean, and hence consistency of the

estimator θ̂n . The results are for L1-regularized logistic regression, see

Supplementary material 3 for the other classification methods

The proposition below lists two conditions. The first one

is related to convergence of frequencies to expectations

(law of large numbers), the second to the ability to learn
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the Bayes classification rule more accurately as the sam-

ple size increases. We prove the proposition in “Appendix.”

Some basic assumptions are made: The xi are assumed to

have the marginal probability measure Pθ
◦ and the yi the

marginal probability measure Pθ for all i , which amounts

to a weak stationarity assumption. Importantly, the station-

arity assumption does not rule out statistical dependencies

between the data points; time series data, for example, are

allowed. We also assume that the parametrization of Pθ is

not degenerate, that is, there is a compact set Θ containing

θ
◦ where θ �= θ

◦ implies that Pθ �= Pθ
◦ .

Proposition 1 Denote the set of features which the Bayes

classification rule h∗
θ

classifies as being from the simulated

data by H∗
θ

. The expected discriminability E(J ∗
n (θ)) equals

J (θ),

J (θ) =
1

2
+

1

2

(

Pθ

(

H∗
θ

)

− Pθ
◦
(

H∗
θ

))

, (6)

and θ̂n converges to θ
◦ in probability as the sample size n

increases, θ̂n
P
→ θ

◦, if

sup
θ∈Θ

∣

∣J ∗
n (θ) − J (θ)

∣

∣

P
→ 0 and (7)

sup
θ∈Θ

∣

∣Jn(θ) − J ∗
n (θ)

∣

∣

P
→ 0. (8)

The two conditions guarantee that Jn(θ) converges uniformly

to J (θ), so that J (θ) is minimized with the minimization of

Jn(θ) as n increases. Since J (θ) attains its minimum at θ
◦,

θ̂n converges to θ
◦. By definition of H∗

θ
, Pθ (H∗

θ
)− Pθ

◦(H∗
θ
)

is one half of the total variation distance between the two dis-

tributions (Pollard 2001, Chapter 3). The limiting objective

J (θ) corresponds thus to a well-defined statistical distance

between Pθ and Pθ
◦ .

The condition in Eq. (7) is about convergence of sample

averages to expectations. Standard convergence results apply

for statistically independent features. For features with sta-

tistical dependencies, e.g., time series data, corresponding

convergence results are investigated in empirical process the-

ory (van der Vaart and Wellner 1996), which forms a natural

limit of what is studied in this paper. We may only note that by

definition of J , convergence will depend on the complexity of

the sets H∗
θ

, θ ∈ Θ , and hence the complexity of the Bayes

classification rules h∗
θ
. The condition does not depend on

the classification method employed. In other words, this first

condition is about the difficulty of the classification problems

that need to be solved. The condition in Eq. (8), on the other

hand, is about the ability to solve them: The performance of

the learned rule needs to approach the performance of the

Bayes classification rule as the number of available samples

increases. How to best learn such rules and finding condi-

tions which guarantee successful learning is a research area

in itself (Zhang 2004).

In Fig. 2, LDA did not satisfy the condition in Eq. (8) for

the moving average data, which can be seen by the chance-

level performance for all parameters tested. This failure of

LDA suggests a practical means to test whether the second

condition holds: We generate data sets with two very differ-

ent parameter values so that it is unlikely that the data sets are

similar to each other, and learn to discriminate between them.

If the performance is persistently close to chance level, the

Bayes classification rule is likely outside the family of clas-

sification rules that the method is able to learn, so that the

condition would be violated. Regarding the first condition,

the results in Fig. 3 suggest that it is satisfied for all four

inference problems considered. Generally verifying whether

the sample average converges to the expectation, e.g., via a

general method that works reliably for any kind of time series

data, seems, however, difficult.

4 Bayesian inference via classification

We consider next inference of the posterior distribution of

θ in the framework of approximate Bayesian computation

(ABC).

ABC comprises several simulation-based methods to

obtain samples from the posterior distribution when the like-

lihood function is not known (for review papers, see, e.g.,

Lintusaari et al. 2017; Marin et al. 2012). ABC algorithms

are iterative: The basic steps at each iteration are as follows:

1. Proposing a parameter value θ
′,

2. Simulating pseudo-observed data Yθ
′ , and then

3. Accepting or rejecting the proposal based on a compari-

son of Yθ
′ with the real observed data X.

How to actually measure the discrepancy between the

observed and the simulated data is a major difficulty in these

methods (Lintusaari et al. 2017; Marin et al. 2012). We here

show that Jn can be used as a discrepancy measure in ABC;

in the following, we call this approach “classifier ABC.” In

step 3, we thus compare Yθ
′ and X through the lenses of a

classifier by computing the discriminability of the two data

sets.

The results reported in this paper were obtained with a

sequential Monte Carlo implementation (see Supplementary

material 1.3). The use of Jn in ABC is, however, not restricted

to that particular algorithm.

We validated classifier ABC on binary (Bernoulli), count

(Poisson), continuous (Gaussian), and time series (ARCH)

data (see Supplementary material 1.2 for the model details).

The true posterior for the autoregressive conditional het-

eroskedasticity (ARCH) model is not available in closed
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Fig. 4 Posterior distributions inferred by classifier ABC for binary,

count, continuous, and time series data. The results are for 10,000

ABC samples and n = 50. For the univariate cases, the samples are

summarized as empirical pdfs. For the bivariate cases, scatter plots of

the obtained samples are shown (the results are for the max-rule). The

numbers on the contours are relative to the maximum of the reference

posterior. For the autoregressive conditional heteroskedasticity (ARCH)

model, the hatched area indicates the domain of the uniform prior.

Supplementary material 4 contains additional examples and results.

a Binary data (Bernoulli), b count data (Poisson), c continuous data

(Gauss), and d time series (ARCH)

form. We approximated it using deterministic numerical inte-

gration, as detailed in Supplementary material 1.2.

The inferred empirical posterior probability density func-

tions (pdfs) are shown in Fig. 4. There is a good match with

the true posterior pdfs or the approximation obtained with

deterministic numerical integration. Different classification

methods yield different results, but the overall performance

is rather similar. Regarding computation time, the simpler

LDA and QDA tend to be faster than the other classifica-

tion methods used, with the max-rule being the slowest one.

Additional examples as well as links to movies showing the

evolution of the posterior samples in the ABC algorithm can

be found in Supplementary material 4.

As a quantitative analysis, we computed the relative error

of the posterior means and standard deviations. The results,

reported as part of Supplementary material 4, show that the

errors in the posterior mean are within 5% after five iterations

of the ABC algorithm for the examples with independent

data points. For the time series, where the data points are not

independent, a larger error of 15% occurs. The histograms

and scatter plots show, however, that the corresponding ABC

samples are still very reasonable.
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Fig. 5 Sketch of the individual-based epidemic model. The evolution

of the colonization states in a single child care center is shown. Colo-

nization is indicated by the black squares

5 Application on real data

We next used our approach to infer an intractable model of

bacterial infections in child care centers.

5.1 Data and model

The observed data X were the presence or absence of different

strains of the bacterium Streptococcus pneumoniae among

attendees of M = 29 child care centers in the metropolitan

area of Oslo, Norway, at single points of time Tm (cross-

sectional data). On average, N = 53 children attended a

center. Only a subset of size Nm of all attendees of each center

was sampled. The data were collected and first described by

Vestrheim et al. (2008).

In the following, we represent the colonization state of

individual i in a child care center by the binary variable

I t
is, s = 1, . . . , S, where S the total number of strains in

circulation. If the attendee is infected with strain s of the

bacterium at time t , I t
is = 1, and otherwise, I t

is = 0.

The observed data X consisted thus of a set of M = 29

binary matrices of size Nm × S formed by the I
Tm

is , i =

1, . . . , Nm, s = 1, . . . , S.

The model for which we performed inference was devel-

oped by Numminen et al. (2013). It is individual-based and

consists of a continuous-time Markov chain for the trans-

mission dynamics inside a child care center paired with an

observation model. The child care centers were assumed

independent. The model is sketched in Fig. 5 for a single

center.

In each child care center, the transmission dynamics

started with zero infected individuals, I 0
is = 0 for all i and s,

after which the states evolved in a stochastic manner accord-

ing to the following transition probabilities:

P
(

I t+h
is = 0|I t

is = 1
)

= h + o(h), (9)

P
(

I t+h
is = 1|I t

is′ = 0 ∀s′
)

= Rt
sh + o(h), (10)

P
(

I t+h
is =1|I t

is =0, ∃s′ : I t
is′ = 1

)

=θ Rt
sh + o(h), (11)

where h is a small time interval and o(h) a remainder term

satisfying limh→0 o(h)/h = 0. Equation (9) describes the

probability to clear strain s, Eq. (10) the probability to be

infected by it when previously not infected with any strain,

and Eq. (11) the probability to be infected by it when pre-

viously infected with another strain s′. The rate of infection

with strain s at time t is denoted by Rt
s , and θ ∈ (0, 1) is an

unknown co-infection parameter. For θ = 0, the probability

for a co-infection is zero. The rate Rt
s was modeled as

Rt
s = βE t

s + ΛPs, (12)

E t
s =

N
∑

j=1

1

N − 1

I t
js

nt
j

, (13)

nt
j =

S
∑

s′=1

I t
js′ , (14)

where N is the average number of children attending the child

care center, and Λ and β are two unknown rate parameters

that scale the static probability Ps for an infection happening

outside the child care center and the dynamic probability E t
s

for an infection from within, respectively. The probability Ps

and the number of strains S were determined by an analysis

of the overall distribution of the strains in the cross-sectional

data (yielding S = 33; for Ps , see Numminen et al. 2013).

The expression for E t
s in Eq. (13) was derived by assuming

that contacts happen uniformly at random [the probability

for a contact is 1/(N − 1)], and that the strains attendee j is

carrying are all transmitted with equal probability (with nt
j

being the total number of strains carried by attendee j , the

probability for a transmission of strain s is I t
js/nt

j ).

The observation model was random sampling of Nm indi-

viduals without replacement from the average number N

of individuals attending a child care center. A stationarity

assumption was made so that the exact value of the sampling

time Tm was not of importance as long as it is sufficiently

large so that the system is in its stationary regime.

The model has three parameters for which uniform priors

were assumed: Parameter β ∈ (0, 11) which is related to the

probability to be infected by someone inside a child care cen-

ter, parameter Λ ∈ (0, 2) for the probability of an infection

from an outside source, and parameter θ ∈ (0, 1) which is

related to the probability to be infected with multiple strains.

With a slight abuse of notation, we will use θ = (β,Λ, θ) to

denote the compound parameter vector.

5.2 Reference inference method

Since the likelihood function is intractable, the model was

inferred with ABC in previous work (Numminen et al. 2013).

The summary statistics were chosen based on epidemiolog-
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ical considerations and the distance function was adapted to

the specific problem at hand.

To compare X and Yθ , Numminen et al. (2013) first sum-

marized each of the M = 29 child care centers of the

simulated and observed data using four statistics:

1. The strain diversity in the child care centers,

2. The number of different strains circulating,

3. The proportion of individuals who are infected, and

4. The proportion of individuals who are infected with more

than one strain.

For each of the four summary statistics, the empirical

cumulative distribution function (cdf) was computed from

the obtained M = 29 values. The L1 distances between

the empirical cdfs of the summary statistics for X and

Yθ were then used to assess the discrepancy (Numminen

et al. 2013). Inference was performed with a sequential

Monte Carlo ABC algorithm with four generations. The

corresponding posterior distribution will serve as refer-

ence against which we compare the solution by classifier

ABC.

5.3 Formulation as classification problem

For likelihood-free inference via standard classification, the

observed matrix-valued data were transformed to feature

vectors. We used simple features which reflect the matrix

structure and the binary nature of the data.

For the matrix nature of the data, the rank of each matrix

and the L2-norm of the singular values (scaled by the size of

the matrix) were used. For the binary nature of the data, we

counted the fraction of ones in certain subsets of each matrix

and used the average of the counts and their variability as

features. The set of rows and the set of columns were used,

as well as 100 randomly chosen subsets. Each random subset

contained 10% of the elements of a matrix. Since the average

of the counts is the same for the row and column subsets (it

equals the fraction of all ones in a matrix), only one average

was used.

The features xi or yi in the classification had thus size

seven (2 dimensions are for the matrix properties, 3 dimen-

sions for the column and row subsets, and 2 dimensions

for the random subsets). Multiple random subsets can be

extracted from each matrix. We made use of this to obtain

n = 1000 features xi and yi . We also ran classifier ABC

without random subsets; the classification problems con-

sisted then in discriminating between two data sets consisting

each of 29 five-dimensional feature vectors. As classification

method, we used LDA.

5.4 Inference results

In ABC, the applicability of a discrepancy measure can be

assessed by first performing inference on synthetic data of

the same size and structure as the observed data but simu-

lated from the model with known parameter values. Since

ABC algorithms are rather time-consuming, we first tested

the applicability of Jn in the framework of point estimation.

We computed Jn(θ) varying only two of the three parameters

at a time, keeping the third parameter fixed at the value which

was used to generate the data. To eliminate random effects,

we used for all θ the same random number generator seed

when simulating the Yθ . The seeds for X and the Yθ were

different.

Figure 6 shows the results for classification with randomly

chosen subsets (top row) and without (bottom row). The

diagrams on the top and bottom row are very similar, both

have well-defined regions in the parameter space for which

Jn is close to one half, which corresponds to chance-level

discriminability. But the features from the random subsets

were helpful to discriminate between X and Yθ and produced

more localized regions with small Jn . The results suggest that

LDA, the arguably simplest classification method, is suitable

to infer the epidemic model.

We next applied classifier ABC on the synthetic data, using

a sequential Monte Carlo ABC algorithm with four genera-

tions as previously done by Numminen et al. (2013).

The resulting posterior pdfs are shown in Fig. 7 in the

form of kernel density estimates (smoothed and scaled his-

tograms) based on 1000 ABC samples. It can be seen that

classifier ABC with or without random subsets both yielded

results which are qualitatively similar to the expert solution.

The strongest difference is that the tails of the posterior pdf

of β are heavier for classifier ABC than for the expert solu-

tion. In case of classifier ABC with random subsets, this

difference became less pronounced when the algorithm was

run for an additional fifth iteration (Supplementary mate-

rial 5). For classifier ABC without random subsets, on the

other hand, the difference persisted. This behavior is in

line with Fig. 6 where the random features led to tighter

Jn-diagrams. Overall, the results on synthetic data confirm

the applicability of classifier ABC to infer the epidemic

model.

The results on real data are shown in Fig. 8. It can be seen

that the posterior distributions obtained with classifier ABC

are generally similar to the expert solution. The posterior

mode of β for classifier ABC with random subsets is slightly

smaller than for the other methods. The shift could be due to

stochastic variation because we only worked with 1000 ABC

samples. It could, however, also be that the random features

picked up some properties of the real data which the other

methods are not sensitive to.
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Fig. 6 Testing the applicability of the discrepancy measure Jn to infer

the individual-based epidemic model. The figures show Jn(θ) when one

parameter is fixed at a time. The red crosses mark the data-generating

parameter value θ
◦ = (βo,Λo, θo) = (3.6, 0.6, 0.1). The presence of

random features produced more localized regions with small Jn
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Fig. 7 Inferring the individual-based epidemic model with classifier

ABC. The results are for simulated data with known data-generating

parameter θ
◦ (indicated by the green vertical lines). Classifier ABC with

random subsets (blue, circles) or without (red, squares) both yielded

posterior pdfs which are qualitatively similar to the expert solution

(black). a Posterior pdf for β, b posterior pdf for Λ and c posterior

pdf for θ

The computation time of classifier ABC with LDA was

about the same as for the method by Numminen et al.

(2013): On average, the total time for the data generation

and the discrepancy measurement was 28.49±3.45 s for

LDA while it was 28.41±3.45 s for the expert method; with

28.4±3.45 s, most of the time was spent on generating data

from the epidemic model. Altogether, classifier ABC thus

yielded inference results which are equivalent to the expert

solution, from both a statistical and computational point of

view.

5.5 Compensating for missing expert statistics

So far we did not use expert knowledge about the inference

problem when solving it with classifier ABC. Using discrim-

inability in a classification task as a discrepancy measure

is a data-driven approach to assess the similarity between

simulated and observed data. But it is not necessarily a

black-box approach. Knowledge about the problem at hand

can be incorporated when specifying the classification prob-

lem. Furthermore, the approach is compatible with summary
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Fig. 8 Inference results on real data, visualized as in Fig. 7. a Posterior pdf for β, b posterior pdf for Λ and c posterior pdf for θ
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Fig. 9 Using classifier ABC to compensate for insufficient expert

statistics. The setup and visualization is as in Fig. 7. Its expert solu-

tion is reproduced for reference. Working with a reduced set of expert

statistics affects the posteriors of Λ and θ adversely, but classifier ABC

is able to compensate (blue curves with circles vs. black dashed curves).

a Internal infection parameter β, b external infection parameter Λ and

c co-infection parameter θ

statistics derived from expert knowledge: Classifier ABC,

and more generally the discrepancy measure Jn , is able to

incorporate the expert statistics by letting them be features

(covariates) in the classification. The combined use of expert

statistics and classifier ABC enables one to filter out proper-

ties of the model which are either not of interest or known

to be wrong. Moreover, it makes the inference more robust,

for example to possible misspecifications or insufficiencies

of the summary statistics, as we illustrate next.

We selected two simple expert statistics used by Num-

minen et al. (2013), namely the number of different strains

circulating and the proportion of infected individuals, and

inferred the posteriors with this reduced set of summary

statistics, using the method by Numminen et al. (2013) as

before. Figure 9 shows that consequently, the posterior dis-

tributions of Λ and θ deteriorated. The used expert statistics

alone were insufficient to perform ABC. Combining the

insufficient set of summary statistics with classifier ABC,

however, led to a recovery of the posteriors. The result are

for classifier ABC with random subsets, but the same holds

for classifier ABC without random subsets (Supplementary

material 5).

6 Discussion

Generative models are useful and widely applicable for deal-

ing with uncertainty and for making inferences from data.

The intractability of the likelihood function is, however, often

a serious problem in the inference for realistic models. While

likelihood-free methods provide a powerful framework for

performing inference, a limiting difficulty is the required

discrepancy measurement between simulated and observed

data.

We found that classification can be used to measure the dis-

crepancy. This finding has practical value because it reduces

the difficult problem of choosing an appropriate discrepancy

measure to a more standard problem where we can lever-

age a wealth of existing solutions; whenever we can classify,

we can do likelihood-free inference. It offers also theoretical

value because it reveals that classification can yield consistent

likelihood-free inference, and that the two fields of research,

which appear very much separated at first glance, are actually

tightly connected.
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6.1 Summary statistics versus features

In the proposed approach, instead of choosing summary

statistics and a distance function between them as in the stan-

dard approach, we need to choose a classification method

and the features. The reader may thus wonder whether we

replaced one possibly arbitrary choice with another. The

important point is that by choosing a classification method,

we only decide about a function space, and not the classifi-

cation rule itself. The classification rule that is finally used

to measure the discrepancy is learned from data and is not

specified by the user, which is in stark contrast to the tradi-

tional approach based on fixed summary statistics. Moreover,

the function space can be chosen using cross-validation, as

implemented with our max-rule, which reduces the arbi-

trariness even more. In Fig. 2, for example, the max-rule

successfully chose to use other classification methods than

LDA for the inference of the moving average model. The

influence of the choice of features is also rather mild, because

they only affect the discrepancy measurement via the learned

classification rule. This property of the proposed approach

allowed us to even use random features in the inference of

the epidemic model.

The possibility to use random features, however, does

not mean that we should not use reliable expert knowl-

edge when available. Indeed, summary statistics derived from

expert knowledge can be included by letting them be features

(covariates) in the classification.

6.2 Related work

In previous work, regression with the parameters θ as

response variables was used to generate summary statistics

from a larger pool of candidates (Aeschbacher et al. 2012;

Fearnhead and Prangle 2012; Wegmann et al. 2009). The

shared characteristic of these works and our approach is the

learning of transformations of the summary statistics and the

features, respectively. The criteria which drive the learning

are, however, rather different.

Since the candidate statistics are a function of the simu-

lated data Yθ , we may consider the regression to provide

an approximate inversion of the data generation process

θ 
→ Yθ . In this interpretation, the (Euclidean) distance of

the summary statistics is an approximation of the (Euclidean)

distance of the parameters. The optimal inversion of the

data-generating process in a mean squared error sense is

the conditional expectation E(θ |Yθ ). Fearnhead and Pran-

gle (2012) showed that this conditional expectation is also

the optimal summary statistic for Yθ if the goal is to infer

θ
◦ as accurately as possible under a quadratic loss. Trans-

formations based on regression are thus strongly linked to

the computation of the distance between the parameters. The

reason we learn transformations, on the other hand, is that

we would like to approximate J ∗
n (θ) well, which is linked to

the computation of the total variation distance between the

distributions indexed by the parameters.

Classification was recently used in other work on ABC,

but in a different manner. Intractable density ratios in Markov

chain Monte Carlo algorithms were estimated using tools

from classification (Pham et al. 2014), in particular random

forests, and Pudlo et al. (2016) used random forests for model

selection by learning to predict the model class from the sim-

ulated data instead of computing their posterior probabilities.

This is different from using classification to define a discrep-

ancy measure between simulated and observed data, as done

here.

A particular classification method, (nonlinear) logistic

regression, was used for the estimation of unnormalized

models (Gutmann and Hyvärinen 2012), which are mod-

els where the probability density functions are known up

to the normalizing partition function only (see Gutmann

and Hyvärinen (2013a) for a review paper, and Barthelmé

and Chopin (2015), Gutmann et al. (2011) and Pihlaja

et al. (2010) for generalizations). Likelihood-based infer-

ence is intractable for unnormalized models, but unlike in

the generative models considered here, the shape of the

model-pdf is known which can be exploited in the infer-

ence.

At about the same time, we first presented our work (Gut-

mann et al. 2014a, b), Goodfellow et al. (2014) proposed to

use nonlinear logistic regression to train a neural network

such that it transforms “noise” samples into samples approx-

imately following the same distribution as some given data

set. The main difference to our work is that the method of

Goodfellow et al. (2014) is a method for producing random

samples while ours is a method for statistical inference.

6.3 Sequential inference and prediction

We did not make any specific assumptions about the model or

the structure of the observed data X. An interesting special

case occurs when X are an element X(t0) of a sequence of

data sets X(t) which are observed one after the other, and

the generative model is specified accordingly to generate a

sequence of simulated data sets.

For inference at t0, we can distinguish between sim-

ulated data which were generated either before or after

X(t0) are observed: In the former case, the simulated data

are predictions about X(t0), and after observation of X(t0),

likelihood-free inference about θ corresponds to assessing

the accuracy of the predictions. That is, the discrepancy mea-

surement converts the predictions of X(t0) into inferences of

the causes of X(t0). In the latter case, each simulated data set

can immediately be compared to X(t0) which enables efficient

iterative identification of parameter values with low discrep-

ancy (Gutmann and Corander 2016). That is, the possible
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causes of X(t0) can be explained more accurately with the

benefit of hindsight.

6.4 Relation to perception and artificial intelligence

Probabilistic modeling and inference play key roles in image

understanding (Gutmann and Hyvärinen 2013b), robotics

(Thrun et al. 2006), and artificial intelligence (Ghahramani

2015). Perception has been modeled as (Bayesian) inference

based on a “mental” generative model of the world (e.g., Vin-

cent 2015). In most of the literature, variational approximate

inference has been used for intractable generative models,

giving rise to the Helmholtz machine (Dayan et al. 1995)

and to the free-energy in neuroscience (Friston 2010). But

other approximate inference methods can be considered as

well.

The discussion about sequential inference and prediction

points to similarities between perception and likelihood-free

inference or approximate Bayesian computation. It is intu-

itively sensible that perception would involve prediction of

new sensory input given the past, as well as an assessment of

the predictions and a refinement of their explanations after

arrival of the data. The quality of the inference depends

on the quality of the generative model and the quality of

the discrepancy assessment. That is, the inference results

may only be useful if the generative model of the world

is rich enough to produce data resembling the observed

data, and if the discrepancy measure can reliably distinguish

between the “mentally” generated and the actually observed

data.

We proposed to measure the discrepancy via classifica-

tion, being agnostic about the particular classifier used. It is

an open question how to generally best measure the clas-

sification accuracy when the data are arriving sequentially.

Classifiers are, however, rather naturally part of percep-

tual systems. Rapid object recognition, for instance, can be

achieved via feedforward multilayer classifiers (Serre et al.

2007), and there are several techniques to learn representa-

tions which facilitate classification (Bengio et al. 2013). It

is thus conceivable that a given classification machinery is

used for several purposes, for example to quickly recognize

certain objects but also to assess the discrepancy between

simulated and observed data.

7 Conclusions and future work

In the paper, we proposed to measure the discrepancy in

likelihood-free inference via classification. We focused on

the principle and not on a particular classification method.

Some methods may be particularly suited for certain mod-

els, where it may be possible to measure the discrepancy via

the loss function that is used to learn the classification rule

instead of the classification accuracy.

When working with the classification accuracy, we only

use a single bit of information per data point. While this

is little information, we showed that the approach yielded

accurate posterior inferences and that it defines a consistent

estimator. The Bayesian inference results were empirical, and

it is likely that a more rigorous theoretical analysis will reveal

that the single bit of information puts a limit on the possible

closeness to the true posterior. While our empirical results

suggest that other error sources may be more dominant in

practice, the bottleneck can be avoided by using the current

setup to identify the relevant summary statistics, or some

transformation of them, and by computing the discrepancy

by their Euclidean distance as in classical ABC. While this is

a possible approach, in recent work, we chose another path

by training the classifier on two simulated data sets whose

size can be made as large as computationally possible (Dutta

et al. 2016).

We here worked with a single simulated data set per

parameter value. If multiple simulated data sets are avail-

able, they may be used to define an approximate likelihood

function by, for example, averaging their corresponding dis-

crepancies (see, e.g., Gutmann and Corander 2016, Section

3.3). The approximate likelihood function can then be max-

imized with respect to the parameters or used in place of the

actual likelihood function in standard methods for posterior

sampling.

Further exploration of the connection between classifica-

tion and likelihood-free inference is likely to lead to practical

improvements in general: Each parameter θ , for instance,

induces a classification problem. We here treated the clas-

sification problems separately, but they are actually related.

First, the observed data X occur in all the classification prob-

lems. Second, the simulated data sets Yθ are likely to share

some properties if the parameters are not too different. Taking

advantage of the relation between the different classifica-

tion problems may lead to both computational and statistical

gains. In the classification literature, leveraging the solution

of one problem to solve another one is generally known as

transfer learning (Pan and Yang 2010). In the same spirit,

leveraging transfer learning, or other methods from classi-

fication, seems promising to further advance likelihood-free

inference.
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Appendix: Proof of proposition 1

Proposition 1 is proved using an approach based on uniform

convergence in probability of Jn to a function J whose min-

imizer is θ
◦ (van der Vaart 1998). The proof has three steps:

First, we identify J . Second, we find conditions under which

J is minimized by θ
◦. Third, we derive conditions which

imply that Jn converges to J .

Definition of J

For validation sets D
k
θ

consisting of 2m labeled features

(xk
i , 0) and (yk

i , 1), i = 1, . . . , m, we have by definition of

CA(h,Dθ ) in Eq. (2)

CA
(

ĥk
θ
,Dk

θ

)

=
1

2m

(

m
∑

i=1

[

1 − ĥk
θ

(

xk
i

)]

+ ĥk
θ

(

yk
i

)

)

(15)

=
1

2
+

1

2m

m
∑

i=1

ĥk
θ

(

yk
i

)

− ĥk
θ

(

xk
i

)

, (16)

so that Jn(θ) in Eq. (4) can be written as

Jn(θ) =
1

K

K
∑

k=1

(

1

2
+

1

2m

m
∑

i=1

ĥk
θ

(

yk
i

)

− ĥk
θ

(

xk
i

)

)

(17)

=
1

2
+

1

2K m

m
∑

i=1

K
∑

k=1

ĥk
θ

(

yk
i

)

− ĥk
θ

(

xk
i

)

. (18)

Each feature is used exactly once for validation since the

D
k
θ

are disjoint. We make the simplifying assumption that

splitting the original n features into K folds of m features

was possible without remainders. We can then order the yk
i

as

y1
1, . . . , y1

m, y2
1, . . . , y2

m, y3
1, . . . , yK

m ,

and relabel them from 1 to n. Doing the same for the xk
i , we

obtain

Jn(θ) =
1

2
+

1

2n

n
∑

i=1

ĥ
k(i)
θ

(yi ) −
1

2n

n
∑

i=1

ĥ
k(i)
θ

(xi ). (19)

The function k(i) in the equation indicates to which valida-

tion set feature i belonged. If the Bayes classification rule is

used instead of the learned ĥ
k(i)
θ

, we obtain J ∗
n (θ) in Equa-

tion (3),

J ∗
n (θ) =

1

2
+

1

2n

n
∑

i=1

h∗
θ
(yi ) −

1

2n

n
∑

i=1

h∗
θ
(xi ). (20)

The function k(i) disappeared because of the weak station-

arity assumption that the marginal distributions of the xi and

yi do not depend on i .

In what follows, it is helpful to introduce the set H∗
θ

=

{u : h∗
θ
(u) = 1}. The normalized sums in (20) are then

the fractions of features which belong to H∗
θ

. Taking the

expectation over X and Yθ , using that the expectation over

the binary function h∗
θ

equals the probability of the set H∗
θ

,

E
(

h∗
θ
(yi )

)

= Pθ

(

H∗
θ

)

, E
(

h∗
θ
(xi )

)

= Pθ
◦
(

H∗
θ

)

, (21)

we obtain the average discriminability E(J ∗
n (θ)) = J (θ),

J (θ) =
1

2
+

1

2

(

Pθ

(

H∗
θ

)

− Pθ
◦
(

H∗
θ

))

. (22)

The difference between Jn and J is twofold: First, rela-

tive frequencies instead of probabilities (expectations) occur.

Second, learned classification rules instead of the Bayes clas-

sification rule are used.

Remark There is an interesting analogy between the objec-

tive J ∗
n and the log-likelihood: The sum over the yi does not

depend on the observed data but on θ and may be considered

an analogue to the log-partition function (or an estimate of

it). In the same analogy, the sum over the xi corresponds to

the logarithm of the unnormalized model of the data. The

two terms have opposite signs and balance each other as in

the methods for unnormalized models reviewed by Gutmann

and Hyvärinen (2013a).

Minimization of J

We note that J (θ◦) = 1/2. Since H∗
θ

contains only the points

which are more probable under Pθ than under Pθ
◦ , we have

further that J (θ) ≥ 1/2. Hence, θ
◦ is a minimizer of J .

However, θ
◦ might not be the only one: Depending on the

parametrization, it could be that Pθ
◦ = Pθ for some θ̃ other

than θ
◦. We therefore made the identifiability assumption that

the θ̃ are well separated from θ
◦ so that there is a compact

subset Θ of the parameter space which contains θ
◦ but none

of the θ̃ . The above can then be summarized as Proposition 2.

Proposition 2 J (θ◦) = 1/2 and J (θ) > 1/2 for all other

θ ∈ Θ .

Restricting the parameter space to Θ , consistency of θ̂n fol-

lows from uniform convergence of Jn to J on Θ (van der

Vaart 1998, Theorem 5.7).
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Uniform convergence of Jn to J

We show that Jn converges uniformly to J if J ∗
n converges to

J and if Jn stays close to J ∗
n for large n. This splits the con-

vergence problem into two subproblems with clear meanings

which are discussed in the main text.

Proposition 3

If sup
θ∈Θ

∣

∣J (θ)− J ∗
n (θ)

∣

∣

P
→ 0 and sup

θ∈Θ

∣

∣J ∗
n (θ)− Jn(θ)

∣

∣

P
→ 0

then sup
θ∈Θ

|J (θ) − Jn(θ)|
P
→ 0. (23)

Proof By the triangle inequality, we have

|J (θ) − Jn(θ)| ≤
∣

∣J (θ) − J ∗
n (θ)

∣

∣ +
∣

∣J ∗
n (θ) − Jn(θ)

∣

∣ , (24)

so that

sup
θ∈Θ

|J (θ) − Jn(θ)|

≤ sup
θ∈Θ

∣

∣J (θ) − J ∗
n (θ)

∣

∣ + sup
θ∈Θ

∣

∣J ∗
n (θ) − Jn(θ)

∣

∣ ,

and hence

P

(

sup
θ∈Θ

|J (θ) − Jn(θ)| > ǫ

)

≤ P

(

sup
θ∈Θ

∣

∣J (θ) − J ∗
n (θ)

∣

∣ + sup
θ∈Θ

∣

∣J ∗
n (θ) − Jn(θ)

∣

∣ > ǫ

)

(25)

It further holds that

P

(

sup
θ∈Θ

∣

∣J (θ) − J ∗
n (θ)

∣

∣ + sup
θ∈Θ

∣

∣J ∗
n (θ) − Jn(θ)

∣

∣ > ǫ

)

≤ P

(

sup
θ∈Θ

∣

∣J (θ) − J ∗
n (θ)

∣

∣ >
ǫ

2

)

+ P

(

sup
θ∈Θ

∣

∣J ∗
n (θ) − Jn(θ)

∣

∣ >
ǫ

2

)

(26)

which concludes the proof. ⊓⊔
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