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Abstract

Posterior inference with an intractable likelihood

is becoming an increasingly common task in sci-

entific domains which rely on sophisticated com-

puter simulations. Typically, these forward mod-

els do not admit tractable densities forcing prac-

titioners to make use of approximations. This

work introduces a novel approach to address the

intractability of the likelihood and the marginal

model. We achieve this by learning a flexi-

ble amortized estimator which approximates the

likelihood-to-evidence ratio. We demonstrate that

the learned ratio estimator can be embedded in

MCMC samplers to approximate likelihood-ratios

between consecutive states in the Markov chain,

allowing us to draw samples from the intractable

posterior. Techniques are presented to improve

the numerical stability and to measure the qual-

ity of an approximation. The accuracy of our

approach is demonstrated on a variety of bench-

marks against well-established techniques. Scien-

tific applications in physics show its applicability.

1. Introduction

Domain scientists are generally interested in the posterior

p(θ |x) =
p(θ)p(x |θ)

p(x)
(1)

which relates the parameters θ of a model or theory to

observations x. Although Bayesian inference is an ideal

tool for such settings, the implied computation is generally

not. Often the marginal model p(x) =
∫

p(θ)p(x |θ)dθ is

intractable, making posterior inference using Bayes’ rule

impractical. Methods such as Markov chain Monte Carlo

(MCMC) (Metropolis et al., 1953; Hastings, 1970) bypass

the dependency on the marginal model by evaluating the

1University of Liège, Belgium 2University of Vi-
enna, Austria. Correspondence to: Joeri Hermans <jo-
eri.hermans@doct.uliege.be>.

Proceedings of the 37
th International Conference on Machine

Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

ratio of posterior densities between consecutive states in the

Markov chain. This allows the posterior to be approximated

numerically, provided that the likelihood p(x |θ) and the

prior p(θ) are tractable. We consider the equally common

and more challenging setting, the so-called likelihood-free

setup, in which the likelihood cannot be evaluated in a

reasonable amount of time or has no tractable closed-form

expression. However, drawing samples from the forward

model is possible.

Contributions We introduce a Bayesian inference algo-

rithm for scientific applications where (i) a forward model

is available, (ii) the likelihood is intractable, and (iii) accu-

rate approximations are important to do science. Central

to this work is a novel amortized likelihood-to-evidence

ratio estimator which allows for the direct estimation of the

posterior density function for arbitrary model parameters

θ ∼ p(θ) and observations x ∼ p(x |θ). We exploit this

ability to amortize the estimation of acceptance ratios in

MCMC, enabling us to draw posterior samples. Finally, we

develop a necessary diagnostic to probe the quality of the

approximations in intractable settings.

2. Background

2.1. Markov chain Monte Carlo

MCMC methods are generally applied to sample from a pos-

terior probability distribution with an intractable marginal

model, but for which point-wise evaluations of the likeli-

hood are possible (Metropolis et al., 1953; Hastings, 1970;

MacKay, 2003). Posterior samples are drawn from the target

distribution by collecting dependent states θ0:T of a Markov

chain. The mechanism for transitioning from θt to the next

state θ′ depends on the algorithm at hand. However, the

acceptance of a transition θt −→ θ′, for θ′ sampled from

a proposal mechanism q(θ′ |θt), is usually determined by

evaluating some form of the posterior ratio

p(θ′ |x)

p(θt |x)
=

p(θ′)p(x |θ′) / p(x)

p(θt)p(x |θt) / p(x)
=

p(θ′)p(x |θ′)

p(θt)p(x |θt)
. (2)

We observe that (i) the normalizing constant p(x) cancels

out within the ratio, thereby bypassing its intractable evalua-

tion, and (ii) how the likelihood ratio is central in assessing

the quality of a candidate state θ′ against state θt.
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Metropolis-Hastings Metropolis-Hastings

(MH) (Metropolis et al., 1953; Hastings, 1970) is a

straightforward implementation of Equation 2 in which

the proposal mechanism q(θ′ |θt) is typically a tractable

distribution. These components are combined to compute

the acceptance probability ρ of a transition θt → θ′:

ρ = min

(

1,
p(θ′)p(x |θ′)

p(θt)p(x |θt)

q(θ′ |θt)

q(θt |θ
′)

)

. (3)

The choice of an appropriate transition distribution is im-

portant to maximize the effective sample size (sampling

efficiency) and to reduce the autocorrelation.

Hamiltonian Monte Carlo Hamiltonian Monte Carlo

(HMC) (Neal, 2011; Duane et al., 1987; Betancourt, 2017)

improves upon the sampling efficiency of Metropolis-

Hastings by reducing the autocorrelation of the Markov

chain. This is achieved by modeling the density p(x |θ) as

a potential energy function

U(θ) , − log p(x |θ), (4)

and attributing some kinetic energy,

K(m) ,
1

2
m

2 (5)

with momentum m ∼ p(m) to the current state θt. A new

state θ′ can be proposed by simulating the Hamiltonian dy-

namics of θt. This is achieved by leapfrog integration of

∇θ U(θ) over a fixed number of steps with initial momen-

tum m. Afterwards, the acceptance ratio

min
(

1, exp
(

U(θ′)− U(θt) +K(m′)−K(m)
))

(6)

is computed to assess the quality of the candidate state θ′.

2.2. Approximate likelihood ratios

The most powerful test-statistic to compare two hypotheses

θ0 and θ1 for an observation x is the likelihood ratio (J. Ney-

man, 1933)

r(x |θ0,θ1) ,
p(x |θ0)

p(x |θ1)
. (7)

Cranmer et al. (2015) have shown that it is possible to

express the test-statistic through a change of variables

d(·) : R
d 7→ [0, 1]. This observation can be used in a su-

pervised learning setting to train a classifier d(x) to distin-

guish samples x ∼ p(x |θ0) with class label y = 1 from

x ∼ p(x |θ1) with class label y = 0. The decision function

modeled by the optimal classifier d*(x) is in this case

d
*(x) = p(y = 1|x) =

p(x |θ0)

p(x |θ0) + p(x |θ1)
, (8)

thereby obtaining the likelihood ratio as

r(x | θ0,θ1) =
d
*(x)

1− d*(x)
. (9)

In the literature, this is known as the likelihood ratio

trick (LRT) (Cranmer et al., 2015; Mohamed & Lakshmi-

narayanan, 2016; Gutmann et al., 2017; Dutta et al., 2016;

Tran et al., 2017; Brehmer et al., 2020) and is especially

prominent in the area of Generative Adversarial Networks

(GANs) (Goodfellow et al., 2014; Uehara et al., 2016; Turner

et al., 2018; Azadi et al., 2018).

Often we are interested in computing the likelihood ratio be-

tween many arbitrary hypotheses. Training d(x) for every

possible pair of hypotheses becomes impractical. A solution

proposed by (Cranmer et al., 2015; Baldi et al., 2016) is to

parameterize the classifier d with θ (typically by injecting

θ as a feature) and train d(x,θ) to distinguish between sam-

ples from p(x |θ) and samples from an arbitrary but fixed

reference hypothesis p(x |θref). In this setting, the decision

function modeled by the optimal classifier (Cranmer et al.,

2015) is

d
*(x,θ) =

p(x |θ)

p(x |θ) + p(x |θref)
, (10)

thereby defining the likelihood-to-reference ratio as

r(x |θ) , r(x |θ,θref) =
d
*(x,θ)

1− d*(x,θ)
. (11)

Subsequently, the likelihood ratio between arbitrary hy-

potheses θ0 and θ1 can then be expressed as

r(x | θ0,θ1) =
r(x | θ0)

r(x | θ1)
. (12)

3. Method

We propose a method to draw samples from a posterior with

an intractable likelihood and marginal model. As noted ear-

lier, MCMC samplers rely on the likelihood ratio to compute

the acceptance ratio. We propose to remove the dependency

on the intractable likelihoods p(x |θ′) and p(x |θt) by di-

rectly modeling their ratio using an amortized ratio estimator

r̂(x |θ′,θt). We call this method amortized approximate

likelihood ratio MCMC (AALR-MCMC). Figure 1 provides a

schematic overview of the proposed method.

Likelihood-free Metropolis-Hastings Adapting MH to

the likelihood-free setup is achieved by replacing the com-

putation of the intractable likelihood ratio in Equation 3 with

r̂(x |θ′,θt). The algorithm remains otherwise unchanged.

We summarize the likelihood-free Metropolis-Hastings sam-

pler in Appendix A.



Likelihood-free Markov chain Monte Carlo with Amortized Approximate Ratio Estimators

θ′

x

log r̂(x |θ′)

log r̂(x |θt)

log r̂(x |θ′,θt)−

ACCEPT θt → θ′ =⇒ θt+1 = θ′

REJECT θt → θ′ =⇒ θt+1 = θt

θt+1

θt

θ
′ ∼ q(θ

|θ t)

...

(a) AALR-MCMC does not have to evaluate the likelihood, but
instead computes an approximation of the likelihood ratio.

θt

θ′ θ ′
∼ q(θ |θ

t )x

COMPUTE log p(x |θ′)

COMPUTE log p(x |θt)

−log r(x |θ′,θt)

ACCEPT θt → θ′ =⇒ θt+1 = θ′

REJECT θt → θ′ =⇒ θt+1 = θt

θt+1

(b) Vanilla MCMC computes the likelihood(s) whenever a transition
needs to be assessed.

Figure 1. Overview showing (a) the proposed method AALR-MCMC and (b) traditional MCMC when evaluating the transition from the

current state θt to a candidate state θ
′ ∼ q(θ |θt). Both methods rely on the acceptance ratio as a test-statistic to evaluate the quality of

the proposed transition θt → θ
′. AALR-MCMC does not depend on the evaluation of the (intractable) likelihood. Rather, it relies on an

amortized estimator (Section 3.1) to approximate the likelihood ratio r(x |θ′
,θt).

Likelihood-free Hamiltonian Monte Carlo The first

step in making HMC likelihood-free, is by showing that

U(θt)− U(θ′) reduces to the log-likelihood ratio,

U(θt)− U(θ′) = log p(x |θ ′)− log p(x |θ t)

= log r(x |θ ′,θt).
(13)

To simulate the Hamiltonian dynamics of θt, we require a

likelihood-free definition of ∇θ U(θ). Within our frame-

work, ∇θ U(θ) can be expressed as

∇θ U(θ) = −
∇θ r(x |θ)

r(x |θ)
. (14)

This form can be recovered by a differentiable d
*(x,θ), as

expanding r(x |θ) in Equation 14 yields

−
∇θ r(x |θ)

r(x |θ)
= −∇θ log p(x |θ). (15)

Having likelihood-free alternatives for U(θ)− U(θ′) and

∇θ U(θ), we can replace these components in HMC to

obtain a likelihood-free HMC sampler. This procedure is

summarized in Appendix A. While likelihood-free HMC

does not rely on the intractable likelihood, it still depends

on the computation of ∇θ r̂(x |θ) to recover ∇θ U(θ).
This can be a costly operation depending on the size of the

ratio estimator. Similar to HMC, the sampler requires careful

tuning to maximize the sampling efficiency.

3.1. Improving the ratio estimator r̂

Simply relying on the amortized likelihood-to-reference

ratio estimator r̂ does not yield satisfactory results, even

when considering simple toy problems. Experiments indi-

cate that the choice of the mathematically arbitrary refer-

ence hypothesis θref does have a significant effect on the

approximated likelihood ratios in practice. Other indepen-

dent studies (Dutta et al., 2016) observe similar issues and

also conclude that the reference hypothesis θref is a sensi-

tive hyper-parameter which requires careful tuning for the

Shared parameter θ and data x space.

x ∼ p(x |θ∗)p(x |θ) p(x |θref)

Figure 2. Consider having access to an optimal classifier d*(x,θ)
modeling r(x |θ) with x ∼ p(x |θ∗). This ratio is undefined for

x as neither p(x |θ) nor p(x |θref) puts numerically non-negligible

density on x. This implies that r̂(x |θ) and its decision function

d
*(x,θ) can take on arbitrary values in regions not covered by

p(x |θ) or p(x |θref) (striped areas) because no such training data

exists. The red, green and blue lines depict optimal decision

functions as they all minimize the criterion which captures the

ability to classify between samples from p(x |θ) and p(x |θref).
However, the functions have different approximations of r̂(x |θ).

problem at hand. We find that poor inference results occur

in the absence of support between p(x |θ) and p(x |θref),
as illustrated in Figure 2. In this example, the evaluation of

the approximate ratio r̂ for an observation x ∼ p(x |θ∗) is

undefined when the observation x does not have density in

p(x |θ) and p(x |θref), or either of the densities is numeri-

cally negligible. Therefore, the decision function modeled

by the optimal classifier d(x,θ) outside of the space cov-

ered by p(x |θ) and p(x |θref) is undefined. Practically, this

implies that the ratio r̂(x |θ) can take on an arbitrary value

which is detrimental to the inference procedure because

multiple solutions for d*(x,θ) exist.

To overcome the issues associated with a fixed reference

hypothesis, we propose to train the parameterized classifier

to distinguish dependent sample-parameter pairs (x,θ) ∼
p(x,θ) with class label y = 1 from independent sample-

parameter pairs (x,θ) ∼ p(x)p(θ) with class label y = 0.

This modification results in the optimal classifier

d
*(x,θ) =

p(x,θ)

p(x,θ) + p(x)p(θ)
, (16)
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Algorithm 1 Optimization of dφ(x,θ).

Inputs: Criterion ℓ (e.g., BCE)

Implicit generative model p(x |θ)
Prior p(θ)

Outputs: Parameterized classifier dφ(x,θ)
Hyperparameters: Batch-size M

1: while not converged do

2: Sample θ ← {θm ∼ p(θ)}Mm=1

3: Sample θ
′

← {θ
′

m ∼ p(θ)}Mm=1

4: Simulate x← {xm ∼ p(x |θm)}Mm=1

5: L ← ℓ(dφ(x,θ), 1) + ℓ(dφ(x,θ
′), 0)

6: φ← OPTIMIZER(φ, ∇φL)
7: end while

8: return dφ

and thereby in the likelihood-to-evidence ratio

d
*(x,θ)

1− d*(x,θ)
=

p(x,θ)

p(x)p(θ)
=

p(x |θ)

p(x)
= r(x |θ). (17)

This formulation ensures that the likelihood-to-evidence

ratio will always be defined everywhere it needs to be eval-

uated, as the joint p(x,θ) is consistently supported by the

product of marginals p(x)p(θ).

We summarize the procedure for learning the classifier

d
*(x,θ) and the corresponding ratio estimator r̂(x |θ) in

Algorithm 1. The algorithm amounts to the minimization

of the binary cross-entropy (BCE) loss of a classifier dφ.

We provide a proof in Appendix B that demonstrates that it

results in the optimal discriminator d*.

Although the usage of the marginal model instead of an ar-

bitrary reference hypothesis vastly improves the accuracy of

r̂(x |θ), obtaining the likelihood-to-evidence ratio r̂(x |θ)
by transforming the output of d(x,θ) can still be suscepti-

ble to numerical errors. This may happen in the saturating

regime where the classifier d(x,θ) is able to (almost) per-

fectly discriminate samples from p(x |θ) and p(x). We

prevent this issue by extracting log r̂(x |θ) from the neural

network before applying the sigmoidal projection in the

output layer, since log r̂(x |θ) is the logit of d(x,θ). This

choice also mitigates a vanishing gradient when computing

∇θ log r̂(x |θ) or ∇x log r̂(x |θ).

Finally, approximating the likelihood-to-evidence ratio also

enables the direct estimation of the posterior density as

p̂(θ |x) = p(θ)r̂(x |θ). This is useful in low-dimensional

model parameter spaces, where scanning is a reasonable

strategy.

3.2. Receiver operating curve diagnostic

Likelihood-free computations are challenging to verify as

the likelihood is by definition intractable. A robust strategy

Figure 3. This figure demonstrates the diagnostic presented in Sec-

tion 3.2. We train two ratio estimators. The first approximates the

ratio r(x |θ) well, while the other does not. We denote these esti-

mators as r̂g(x |θ) and r̂b(x |θ) respectively. The test diagnostic

is applied to a single test hypothesis θ = 0. (Left): Marginal model

reweighted using r̂g(x |θ) and r̂b(x |θ). It is clear that r̂b(x |θ)
does not properly approximate r(x |θ), as the reweighted marginal

model is distinguishable from the test hypothesis p(x |θ = 0).
(Right): A classifier is trained to distinguish between samples from

the test hypothesis and the reweighted marginal models. The ROC

curve indicates that the classifier could not extract any predictive

features for samples x ∼ p(x) reweighted by r̂g(x |θ), indicating

a good approximation of r(x |θ) by r̂g(x |θ).

is necessary to verify the quality of the approximation before

making any scientific conclusion based on a likelihood-free

approach. Inspired by Cranmer et al. (2015), we identify is-

sues in our ratio-estimator r̂(x |θ) by evaluating the identity

p(x |θ) = p(x)r̂(x |θ). If r̂(x |θ) is exact, then a classi-

fier should not be able to distinguish between samples from

p(x |θ) and the reweighted marginal model p(x)r̂(x |θ).
The discriminative performance of the classifier can be as-

sessed by means of a ROC curve. A diagonal ROC (AUC

= 0.5) curve indicates that a classifier is insensitive and

r̂(x |θ) = r(x |θ). This result can also be obtained if the

classifier is not powerful enough to extract any predictive

features. Figure 3 provides an illustration of this diagnostic.

4. Related work

Algorithms such as ABC (Tavaré et al., 1997; Pritchard et al.,

1999; Beaumont et al., 2002; Marin et al., 2011) tackle

the problem of Bayesian inference by collecting proposal

states θ ∼ p(θ) whenever an observation x produced by

the forward model x ∼ p(x |θ) resembles an observation

xo. Formally, a proposal state θ is accepted whenever a

compressed observation σ(x) (low-dimensional summary

statistic) satisfies d(σ(x), σ(xo)) < ǫ for some distance

function d and acceptance threshold ǫ. The resulting ap-

proximation of the posterior will only be exact whenever the

summary statistic is sufficient and ǫ→ 0 (Beaumont et al.,

2002). Several procedures have been proposed to improve
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the acceptance rate by guiding simulations based on pre-

viously accepted states (Toni et al., 2008; Marjoram et al.,

2003; Wegmann et al., 2009). Other works investigated

learning summary statistics (Fearnhead & Prangle, 2012;

Dinev & Gutmann, 2018; Wong et al., 2018). Contrary to

these methods, AALR-MCMC does not actively use the simu-

lator during inference and learns a direct mapping from data

and parameter space to likelihood-to-evidence ratios.

Other approaches take the perspective to cast inference as

an optimization problem (Neal & Hinton, 1998; Hoffman

et al., 2013). In variational inference, a parameterized pos-

terior over parameters of interest is optimized (Salimans

et al., 2015). Amortized variational inference (Gershman

& Goodman, 2014; Ritchie et al., 2016) expands on this

idea by using generative models to capture inference map-

pings. Recent work in (Louppe et al., 2017) proposes a

novel form of variational inference by introducing an adver-

sary in combination with REINFORCE-estimates (Williams,

1992; Sutton et al., 2000) to optimize a parameterized prior.

Others have investigated meta-learning to learn parameter

updates (Pesah et al., 2018). However, these works only

provide point-estimates.

Sequential approaches such as SNPE-A (Papamakarios &

Murray, 2016), SNPE-B (Boelts et al., 2019) and APT/SNPE-

C (Greenberg et al., 2019) iteratively adjust an approximate

posterior parameterized as a mixture density network or

a normalizing flow. Instead of learning the posterior di-

rectly, SNL (Papamakarios & Murray, 2018) makes use of

autoregressive flows to model an approximate likelihood.

AALR-MCMC mirrors SNL as the trained conditional density

estimator is plugged into MCMC samplers to bypass the in-

tractable marginal model. This allows SNL to approximate

the posterior numerically. Contrary to our approach, SNL

cannot directly provide estimates of the posterior posterior

density function.

The usage of ratios is explored in several studies.

CARL (Cranmer et al., 2015) models likelihood ratios for

frequentist tests. As shown in Section 3.1, CARL does not

produce accurate results in some cases. LFIRE (Dutta et al.,

2016) models a likelihood-to-evidence ratio by logistic re-

gression and relies on the usage of summary statistics. Un-

like us, they require samples from the marginal model and a

specific (reference) likelihood, while we only require sam-

ples from the joint p(x,θ). Therefore, LFIRE requires re-

training for every evaluation of different θ.

Finally, an important concern of likelihood-free inference

is minimizing the number of simulation calls. Active sim-

ulation strategies such as BOLFI (Gutmann & Corander,

2016) and others (Ong et al., 2017; Meeds & Welling,

2014) achieve this through Bayesian optimization. Em-

ulator networks (Lueckmann et al., 2018) exploit the un-

certainty within an ensemble to guide simulations. Recent

works (Brehmer et al., 2020; 2018) significantly reduce the

amount of required simulations, provided joint likelihood

ratios and scores can be extracted from the simulator.

5. Experiments

5.1. Setup

We compare AALR-MCMC against rejection ABC and es-

tablished modern posterior approximation techniques such

as SNL, SNPE-A SNPE-B and APT. We allocate a simu-

lation budget of one million forward passes. Sequential

approaches such as SNPE-A, SNPE-B, and APT spread this

budget equally across 100 rounds. These rounds focus the

simulation budget to iteratively improve the approximation

of a single posterior. For SNL, due to the computational con-

straints of its inner MCMC sampling step, we limit the simu-

lation budget to 100000 forward passes spread equally over

100 rounds. Unless stated otherwise, our evaluations assess

the posterior estimate obtained in the final round. Although

the ratio estimator in AALR-MCMC is trained once to model

all posteriors (amortization), we only examine the poste-

rior of interest p(θ |x = xo). This choice puts our method

at a disadvantage since the task of amortized inference is

more complex compared to fitting of a single posterior. We

stress that from a scientific point of view, accuracy of the

approximation is preferred over simulation cost. All experi-

ments are repeated 25 times. AALR-MCMC makes use of the

likelihood-free Metropolis-Hastings sampler. Implementa-

tion guidelines are discussed in Appendix C. Experimental

details, additional results and plots demonstrating several

other aspects are discussed in Appendix D. Code is available

at https://github.com/montefiore-ai/hypothesis.

5.1.1. BENCHMARK PROBLEMS

Tractable problem Given a model parameter sample θ ∈
R
5, the forward generative process is defined as:

µθ = (θ0,θ1),

s1 = θ2
2, s2 = θ2

3, ρ = tanh(θ4),

Σθ =

[

s21 ρs1s2
ρs1s2 s22

]

,

with x = (x1, . . . ,x4) where xi ∼ N (µθ,Σθ)

The likelihood is p(x |θ) =
∏4

i=1N (xi | µθ, Σθ), with a

uniform prior p(θ) between [−3, 3] for every θi. The result-

ing posterior is non-trivial due to squaring operations, which

are responsible for the presence of multiple modes. An ob-

servation xo is generated by conditioning the forward model

on θ∗ = (0.7,−2.9,−1.0,−0.9, 0.6) as in Papamakarios

& Murray (2018) and Greenberg et al. (2019).

Detector calibration We like to determine the offset

θ ∈ R of a particle detector from the collision point given
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Algorithm Tractable problem Detector calibration Population model M/G/1

ABC −6.668± 0.000 −2.180± 0.000 N/A N/A

SNPE-A −6.141± 1.227 −1.775± 1.775 7.024± 0.515 1.177± 0.937
SNPE-B −5.693± 0.809 −1.075± 0.226 −0.632± 0.843 1.105± 0.384
APT −4.441± 0.487 −2.004± 0.753 6.366± 0.432 −2.741± 3.356
SNL −4.060± 0.308 N/A N/A N/A

AALR-MCMC (ours) −4.126± 0.004 −1.005± 0.074 6.482± 0.214 2.302± 0.189

Table 1. Posterior log probabilities log p(θ = θ
∗ |x = xo) for generating parameters θ∗ and observation xo. For SNPE-A, SNPE-B and

APT we directly extracted the posterior log probability from the mixture of Gaussians. Since the proposed ratio estimator models the log

likelihood-to-evidence ratio, we compute log p(θ = θ
∗ |x = xo) as log r(x = xo |θ = θ

∗) + log p(θ = θ
∗). Assessing the quality of

a method exclusively based on the observed log posterior probabilities is potentially misleading, as the metric does not take the structure

of the posterior into account. As such, we provide this table for historic reasons to comply with previous studies such as Papamakarios &

Murray (2016), Boelts et al. (2019) and Greenberg et al. (2019).

a detector response xo. Our particle detector emulates a

32 × 32 spherical uniform grid such that x ∈ R
1024. Ev-

ery detector pixel measures the momentum of particles

passing through the detector material. The pythia sim-

ulator (Sjöstrand et al., 2008) generates electron-positron

(e−e+) collisions and is configured according to the pa-

rameters derived by the Monash tune (Skands et al., 2014).

The collision products and their momenta are processed by

pythiamill (Crosby, 2020) to compute the response of

the detector by simulating the interaction of the collision

products with the detector material. We consider a prior

p(θ) , U(−30, 30) with xo generated at θ∗ = 0.

Population model The Lotka-Volterra model (Lotka,

1920) describes the evolution of predator-prey populations.

The population dynamics are driven by a set of differen-

tial equations with parameters θ ∈ R
4. An observation

describes the population counts of both groups over time.

Simulations are typically compressed into a summary statis-

tic x̄ ∈ R
9 (Papamakarios & Murray, 2018; Greenberg et al.,

2019). We also follow this approach to remain consistent.

The prior p(θ) , U(−10, 2) (log-scale) for every θi. We

generate an observation from the narrow oscillating regime

θ∗ = (−4.61,−0.69, 0,−4.61).

M/G/1 queuing model This model describes a queuing

system of continuously arriving jobs at a single server and

is described by a model parameter θ ∈ R
3. The time it

takes to process every job is uniformly distributed in the

interval [θ1,θ2]. The arrival time between two consecutive

jobs is exponentially distributed according to the rate θ3.

An observation x are 5 equally spaced percentiles of inter-

departure times, i.e., the 0th, 25th, 50th, 75th and 100th

percentiles. An observation xo is generated by condition-

ing the forward model on θ∗ = (1.0, 5.0, 0.2) as in Papa-

makarios & Murray (2018). We consider a uniform prior

p(θ) , U(0, 10)× U(0, 10)× U(0, 0.333).

5.2. Results

Table 1 shows the posterior log probabilities of the generat-

ing parameter θ∗ for an observation xo. Additionally, the

ROC diagnostic for our method reports AUC = 0.58 for the

tractable problem, AUC = 0.5 for the detector calibration and

M/G/1 benchmarks, and AUC = 0.55 for the population evo-

lution model. These results demonstrate that the proposed

ratio estimator provides accurate ratio estimates.

If we assess the quality of the methods exclusively based

on the log posterior probabilities in Table 1, we could ar-

gue that all methods are close to each other in terms of

approximation, with AALR-MCMC yielding the best results

for the detector calibration and M/G/1 and SNL and SNPA-A

respectively producing the most accurate inference for the

tractable problem and the population evolution model. How-

ever, this is potentially misleading, as the metric does not

take the structure of the posterior into account. Again, we

stress that the ability of inference techniques to approximate

the posterior accurately is critical in scientific applications

which seek to, for instance, constrain the model parameter

θ. To demonstrate this point, we focus on the tractable

Algorithm MMD ROC AUC

AALR-MCMC (ours) 0.05± 0.005 0.58± 0.0080
AALR-MCMC (LRT) 0.53± 0.004 0.99± 0.0001
ABC 0.29± 0.004 0.98± 0.0007
SNPE-A 0.21± 0.070 0.93± 0.0305
SNPE-B 0.20± 0.061 0.91± 0.0409
APT 0.17± 0.036 0.83± 0.0145
SNL 0.11± 0.091 0.63± 0.0564

Table 2. Results for the tractable benchmark. AALR-MCMC outper-

forms all other methods across in terms of accuracy and robustness

(low variance). Numerical errors introduced by MCMC might have

contributed to these results. The MMD scores are in agreement

with Greenberg et al. (2019).
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(a) MCMC groundtruth (b) AALR-MCMC (c) SNPE-A (d) SNPE-B (e) APT (f) SNL

Figure 4. Posteriors from the tractable benchmark. The experiments are repeated 25 times and the approximate posteriors are subsampled

from those runs. An objective visual assessment can be made: AALR-MCMC shares the same structure with the MCMC truth, demonstrating

its accuracy. Some runs of the other methods were not consistent, contributing to the variance observed in Table 2.

problem and carry out two distinct quantitative analyses

between the samples of the approximate posterior and the

MCMC groundtruth. The first computes the Maximum Mean

Discrepancy (MMD) (Gretton et al., 2012) while the latter

trains a classifier to compute the ROC AUC. Results are

summarized in Table 2 while Figure 4 shows the approxi-

mations and the groundtruth. Both AALR-MCMC and SNL

accurately model the true posterior, but SNPA-A, SNPA-B

and APT clearly fail to do so. The observed discrepancy

between the LRT and the proposed ratio estimator indicates

that the improvements in Section 3.1 are critical.

In addition to comparing the final approximations, we eval-

uate the accuracy of the approximations with respect to

a given simulation budget. In doing so we challenge our

method even further, as sequential approaches are specifi-

cally designed to be simulation efficient. We expect sequen-

tial approaches to obtain more accurate approximations with

less simulations. The results of this evaluation are shown in

Figure 5. With the exception of SNL which produces results

comparable to ours, we unexpectedly find that the sequen-

tial approaches were not able to outperform our method on

this (toy) problem, even though AALR-MCMC and its ratio

estimator tackle the harder task of amortized inference. This

demonstrates the accuracy and robustness of our method.

Figure 5. We evaluate the accuracy of the approximations with

respect to different simulation budgets on the tractable benchmark.

The accuracy is obtained by computing the ROC AUC between sam-

ples from the approximation and the MCMC groundtruth. Except

for SNL which yields comparable results, sequential approaches

are not able to outperform AALR-MCMC.

5.3. Demonstrations: strong gravitational lensing

The following demonstrations will showcase several aspects

of our method while considering the problem of strong grav-

itational lensing. We use autolens (Nightingale et al.,

2018) to simulate the telescope optics, imaging sensors and

physics governing strong lensing. The simulation black-box

encapsulates these components. The output of the simula-

tion is a high-dimensional observation x ∈ R
128×128 with

uninformative data dimensions. We use a ratio estimator

based on RESNET-18 (He et al., 2016) parameterized by θ

in the fully connected trunk. Appendix D.6 discusses the

setups and the simulation models in detail.

5.3.1. MARGINALIZATION OF NUISANCE PARAMETERS

Often scientists are aphetic about a posterior describing all

model parameters. Rather, they are interested in a posterior

in which nuisance parameters have been marginalized out.

This is easily achieved within our framework by including

all parameters (including nuisance parameters) to the simu-

lation model, but only presenting the parameters of interest

to the ratio estimator during training. The training procedure

remains otherwise unchanged. This problem focuses on re-

covering the Einstein radius θ ∈ R of a gravitational lens.

We are not interested in the parameters describing the source

and foreground galaxy (15 parameters). Figure 6 depicts our

posterior approximation, ROC diagnostic and observation

xo with θ∗ = 1.66 and prior p(θ) , U(0.5, 3.0).

Figure 6. (Left): Approximation of the posterior. (Middle): Di-

agonal ROC diagnostic, indicating a good approximation of the

posterior. (Right): Observation associated with the posterior.
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5.3.2. AMORTIZATION ENABLES POPULATION STUDIES

Consider a set of n independent and identically distributed

observationsX = {x1, . . . ,xn}. The amortization of the ra-

tio estimator allows additional observations to be included in

the computation of the posterior p(θ |X ) without requiring

new simulations or retraining. This allows us to efficiently

undertake population studies. Bayes’ rule tells us

p(θ |X ) =
p(θ)

∏

x∈X
p(x |θ)

∫

p(θ)
∏

x∈X
p(x |θ)dθ

,

≈
p(θ)

∏

x∈X
r̂(x |θ)

∫

p(θ)
∏

x∈X
r̂(x |θ)dθ

.

(18)

The denominator can efficiently be approximated by Monte

Carlo sampling using the ratio estimator r̂(x |θ). However,

with MCMC the denominator cancels out within the ratio

between consecutive states θt → θ′. Thereby obtaining

p̂(θ′|X )

p̂(θt|X )
=

p(θ′)
∏

x∈X
r̂(x |θ′)

p(θt)
∏

x∈X
r̂(x |θt)

. (19)

We consider the same simulation model as in Section 5.3.1,

with the exception that the Einstein radius used to simu-

late a gravitational lens is not θ, but instead drawn from

N (θ, 0.25). We reduce the uncertainty about the generat-

ing parameter θ∗ = 2 by modeling the posterior p̂(θ |X ).
This is demonstrated in Figure 7. All individual posteriors

(dotted lines) are derived using the same pretrained ratio

estimator. The posterior p̂(θ |X ) is approximated using the

formalism described above.

Figure 7. (Left): The dotted lines represent the posteriors p̂(θ |x =
xi) for every independent and identically distributed observation

xi, while the solid line depicts the posterior p̂(θ |X ). All posteriors

are derived using the same pretrained ratio estimator. (Right):

Observations sampled from p(x |θ = θ
∗).

5.3.3. BAYESIAN MODEL SELECTION

Until now we only considered posteriors with continuous

model parameters. We turn to a setting in which scientists

are interested in a discrete space of models. In essence

casting classification as Bayesian model selection, allowing

us the quantify the uncertainty among models (classes) with

respect to an observation. We demonstrate the task of model

selection by computing the posterior p̂(m|x) across a space

of 10 modelsM = {m0, . . . ,m9}. The index i of a model

mi corresponds to the number of source galaxies present in

the lensing system. The categorical prior p(m) is uniform.

Figure 8 shows p̂(m|x) and the associated diagnostic for

different observations. Both posteriors were computed using

the same ratio estimator.

Figure 8. Posterior p̂(m|x) over the model space M. Both diag-

nostics are diagonal. (Top): Lensing system with a single source

galaxy. (Bottom): Lensing system with 6 different source galaxies.

The MAP of the posterior p̂(m|x) identifies the correct number of

source galaxies, despite abundant lensing artifacts.

5.4. Estimator capacity and sequential ratio estimation

The amortization of our ratio estimator requires sufficient

representational capacity to accurately approximate r(x |θ),
which of course directly depends on the complexity of the

task at hand. As we explore in Appendix E, if the capacity

of the ratio estimator is too low, then the quality of inference

is impaired.

However, increasing the capacity of a ratio estimator to

match the complexity of the inference problem is not al-

ways a viable strategy, nor easy to determine beforehand.

We observe that for a trained classifier d(x,θ) with insuf-

ficient capacity (AUC > 0.5) the posterior p̂(θ |x = xo)
is typically larger compared to the true posterior. Since

the true decision function cannot be modeled, the loss of

the classifier d(x,θ) is indeed necessarily larger than the

loss of the optimal classifier, which effectively means that

the classifier d(x,θ) should not be able to exclude sample-

parameter pairs (x,θ). This is a desirable property because

the generating parameters θ∗ should not be excluded ei-

ther. From this observation, we can run a sequential ratio

estimation procedure in which the posterior for x = xo is

refined iteratively across a series of rounds. Starting with

the initial prior p0(θ) := p(θ), we improve the posterior by

setting as prior for the next round, pt+1(θ), the posterior



Likelihood-free Markov chain Monte Carlo with Amortized Approximate Ratio Estimators

p̂t(θ |x = xo) obtained at the previous round. At each

iteration, the training procedure is repeated and eventually

terminates based on the ROC diagnostic (AUC = 0.5).

To demonstrate this sequential ratio estimation procedure,

let us assume the population model setting. Our ratio esti-

mator is a low-capacity MLP with 3 layers and 50 hidden

units. In every round t, 10,000 sample-parameter pairs are

drawn from the joint p(x,θ) with prior pt(θ) for training.

The following AUC scores were obtained: .99, .92, .54, and

finally .50, terminating the algorithm.

Let us finally note that some time after the first version of

this work, Durkan et al. (2020) identified that the sequential

ratio estimation procedure outlined here is strongly related

to APT/SNPE-C, in the sense that both approaches can actu-

ally be viewed as instances of a more general and unified

constrastive learning scheme.

6. Summary and discussion

This work introduces a novel approach for Bayesian infer-

ence.We achieve this by replacing the intractable evaluation

of the likelihood ratio in MCMC with an amortized likeli-

hood ratio estimator. We demonstrate that a straightforward

application of the likelihood ratio trick to MCMC is insuffi-

cient. We solve this by modeling the likelihood-to-evidence

ratio for arbitrary observations x and model parameters θ.

This implies that a pretrained ratio estimator can be used

to infer the posterior density function of arbitrary observa-

tions. A theoretical argument demonstrates that the training

procedure yields the optimal ratio estimator. The accuracy

of an approximation can easily be verified by the proposed

diagnostic. No summary statistics are required, as the tech-

nique directly learns mappings from observations and model

parameters to likelihood-to-evidence ratios. Our framework

allows for the usage of off-the-shelf neural architectures

such as RESNET (He et al., 2016). Experiments highlight

the accuracy and robustness of our method.

Simulation efficiency We take the point of view that ac-

curacy of the approximation is preferred over simulation

cost. This is the case in many scientific disciplines which

seek to reduce the uncertainty over a parameter of inter-

est. Despite the experimental handicap, we have shown

that existing simulation efficient approaches are not able to

outperform our method in terms of accuracy with respect to

a certain (and small) simulation budget.
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