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Abstract

Likelihood of generative models has been used tra-
ditionally as a score to detect atypical (Out-of-
Distribution, OOD) inputs. However, several re-
cent studies have found this approach to be highly
unreliable, even with invertible generative models,
where computing the likelihood is feasible. In this
paper, we present a different framework for genera-
tive model-based OOD detection that employs the
model in constructing a new representation space,
instead of using it directly in computing typicality
scores, where it is emphasized that the score func-
tion should be interpretable as the similarity be-
tween the input and training data in the new space.
In practice, with a focus on invertible models, we
propose to extract low-dimensional features (statis-
tics) based on the model encoder and complexity
of input images, and then use a One-Class SVM
to score the data. Contrary to recently proposed
OOD detection methods for generative models, our
method does not require computing likelihood val-
ues. Consequently, it is much faster when using in-
vertible models with iteratively approximated like-
lihood (e.g. iResNet), while it still has a perfor-
mance competitive with other related methods.

1 Introduction

Even the machine learning models which have an excellent
performance under the assumption ‘test data comes from the
same distribution as training data’ may fail catastrophically
(e.g. make a high-confidence false prediction) on an input
that is completely different from their training data, such as a
noisy observation or rare event of the real environment. This
is where Out-of-Distribution (OOD) detection can help and
prevent consequent risky decisions. OOD detection is the task
of detecting data samples that are dissimilar from the sam-
ples in a given (regular) training set of data. Such irregular
samples are also called anomalies, novelties, and outliers in
the literature, sometimes with slight distinctions, but the term
OOD is used in this paper to refer to any type of atypical input
presented at ‘test time’.

OOD detection can aim at finding either point anomalies or
group anomalies [Ruff et al., 2020]. In the former, the input
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is assumed to be a single data vector, whereas in the latter
irregularities are detected by looking at a set of observations.
We only address point anomalies in this work, which seems to
be a more practical and challenging problem. Moreover, we
assume that the problem is completely unsupervised, which
means we do not have any examples of OOD data or any other
type of class labels at training time. Generative models are a
well-known tool in dealing with such data.

Among the OOD detection methods with a probabilis-
tic flavor, it is very common to view the likelihood (den-
sity/mass function) as a score of typicality [Bishop, 1994;
Zhai er al., 2016; Pidhorskyi et al., 2018]. More specifically,
many of these methods follow the same basic idea of estimat-
ing a probability density function p(x) based on a dataset D
at training time, and deciding according to the following sim-
ple rule at test time: x is OOD if and only if p(z) < 7, where
7 is a fixed threshold. State-of-the-art methods for density
estimation are mostly based on deep generative models, such
that x = g(z;6) where z is a latent variable with prior distri-
bution pz(z) (usually Gaussian) and g is a decoder mapping
parameterized by 6. This mapping implies a model likeli-

hood p(x) = p(x; @) on the data sample x, where the param-

eter vector 6 is obtained by training the model on D. Com-
puting the likelihood is an intractable problem in itself for
some families of models (e.g. Generative Adversarial Net-
works [Goodfellow et al., 2014]). However, with invertible
generative models [Dinh et al., 2017] it is feasible to com-
pute the exact likelihood, or a good approximation to it, via
the change-of-variables rule:

logp(x) = log pz(f(x)) + log | det(df (x)/dx)| (1)

where f(x) = g~!(z) is the encoder function mapping the
data vector to a latent code, and df (x)/dx denotes the Jaco-
bian matrix of the encoder function w.r.t. the data vector.
Having access to the data likelihood, one might expect that
these generative models should straightforwardly and effi-
ciently handle OOD detection. However, unfortunately (and
somewhat counter-intuitively) several recent studies have
found the likelihood to be an unreliable measure for OOD
detection in general. Specifically, Nalisnick er al. [2019al
report several models, including Glow [Kingma and Dhari-
wal, 2018] as an invertible model, that assign much higher
likelihoods to OOD data samples than in-distribution (train-
ing) data. In this paper, we also report empirical results
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showing the failure of conventional likelihood based OOD
detection with two newer invertible models, namely iResNet
[Behrmann et al., 2019] and ResFlow [Chen et al., 2019].
We also further shed light upon limitations of pure likeli-
hood threshold—based OOD detection. In particular, we high-
light the fact that the validity of the concentration assumption,
which is the theoretical basis for this method, can highly de-
pend on the space chosen for representing the data.

We then take a different approach to OOD detection using
generative models, which is based on computing some statis-
tics (low-dimensional features) for each data sample x using
the model state when it is fed with x, and then applying a one-
class classifier for OOD detection in the new feature space. A
similar approach has been considered before in a work con-
current with ours by Morningstar et al. [2021]. They pro-
pose the Density of States (DoS) approach, in which the log-
likelihood, log-prior density, and log-determinant term in Eq.
(1) are computed with a Glow model, and then used as fea-
tures for a One-class SVM (OSVM) [Scholkopf et al., 2001].
Although DoS is close to our method at implementation level,
we derive our method from a more abstract framework based
on similarity scores and null hypothesis testing in a trans-
formed representation space, whereas the basic idea in DoS
is inspired by statistical physics.

Moreover, focusing on invertible models, we introduce
other combinations of statistics different from DoS, and ex-
plain our choice based on the relation between the probability
a model assigns to a region in feature space and its likeli-
hood function. Our main contribution in this sense is that our
method does not require the model likelihood, in contrast to
DoS and many other related methods. Instead, we make use
of other statistics derived from the encoder function and com-
plexity measure of images. This makes our method ideal to
be used with some newer invertible models such as iResNet
and ResFlow, since obtaining the likelihood in these models
requires expensive iterative approximation. As our experi-
ments show, in addition to a computational advantage, the
proposed method achieves a performance that is much better
than simple likelihood threshold—based OOD detection, and
is competitive with the other recent OOD detection methods
that can work with pretrained generative models.

2 Related Work

In DoS [Morningstar et al., 20211, the authors get inspira-
tion from physics to approach the OOD detection problem.
In statistical mechanics, the probability that a variable of the
system (such as total energy) takes a particular value is equal
to the sum over the probabilities of all equivalent microstates
that can result in that value. Similarly, in DoS, several statis-
tics (features) summarize the state of the neural network—
based model, and the probability density of these statistics
is used for OOD detection. Given the empirical distribution
of the statistics, they use both kernel density estimation and
OSVM to learn a one class classifier. They have experimented
with their method using a Variational Autoencoder as well as
Glow, where a different set of statistics has been used in each
case. Serra ef al. [2020] argue that the cause of the high like-
lihood assigned by generative models to some OOD images

is the low ‘complexity’ of those images. This is explained
by assuming an image compressor as the ‘universal’ genera-
tive model for all images, and looking at the likelihood ratio
between the universal and trained models. Thus, to obtain
a score for detecting OODs, log-likelihood is summed with
a correction term measuring the complexity of the input im-
age, which comes from the output file size of an image com-
pression software. We also use the same tool to compute a
complexity-based statistic in our method, though with a dif-
ferent theoretical motivation.

The definition of ‘typical sets’, based on comparing the en-
tropies of the samples and target distribution, is employed for
OOD detection by Nalisnick ez al. [2019b]. Although this
method is applied to group anomaly detection in the origi-
nal paper, Morningstar et al. [2021] show that a one-sample
version of it also has a relatively good performance, ranked
after DoS. All of the works mentioned so far can work with a
pretrained generative model, like our method. However, they
all need the model likelihood at test time, whereas we do not
employ likelihood as a statistic in our method. For invertible
models, computing likelihood involves computing the Jaco-
bian determinant, which is a rather costly operation for many
recently proposed models, including iResNet and ResFlow.

There are many approaches to OOD detection using neu-
ral networks that basically cannot work without labeled data,
since they rely on some aspects of the predictive distribu-
tion [Lakshminarayanan er al., 2017; Ritter et al., 2018;
Lee et al., 2018], or internal representation of the classifier
network [Sastry and Oore, 2020]. In unsupervised OOD
detection, modern approaches mostly tend to abandon the
method of simply comparing likelihood to a threshold. For
instance, in [Erfani et al., 2016], a deep belief network (as
the generative model) is trained on the in-distribution data,
and the compact representation learned at its deepest hidden
layer is fed to an OSVM. Implementing a similar approach
with invertible models would require training the OSVM in
a space with the same high dimensionality as data. OOD de-
tection approaches based on ensembles of generative models
have been studied as well, where usually the general idea is
to measure the discrepancy between the outputs of the models
[Choi et al., 2018].

Most of the other recent ideas in unsupervised OOD detec-
tion involve a model specifically designed and trained for this
task, and cannot exploit a pretrained generative model. Some
notable examples include testing the likelihood ratio between
models of background (general) and target data [Ren et al.,
2019], combination of deep neural networks with OSVM ob-
jective function [Ruff er al., 2020], combination of autoen-
coders and adversarial training [Pidhorskyi ef al., 2018] and
contrastive training [Winkens et al., 2020].

3 When Likelihood Collapses

Relying on likelihood for OOD detection has been theoret-
ically justified via making the ‘concentration assumption’,
which formally states that we can always find a threshold
7 such that the set {x € x|p(z) > 7} contains all the in-
distribution data, where Y is the input domain [Steinwart et
al., 2005; Ruff et al., 2020]. But in addition to empirical re-
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sults against it with modern deep models [Nalisnick et al.,
2019a; Ren et al., 2019], we here emphasize the point that
this assumption is counter-intuitive even in some toy prob-
lems, where the underlying distribution of the data is per-
fectly known.

To see this, one can consider the simple example of a Gaus-
sian noise generator, where 2D image samples are drawn
from an ordinary isotropic normal density function, and the
intensity of pixels is proportional to their corresponding val-
ues. It is extremely unlikely to observe a pure blank image
at the output of this noise generator, when samples are drawn
under normal conditions, and thus it seems very intuitive to
label such images as OOD. However, a blank image with all
pixels having the value zero has clearly much higher likeli-
hood than any regularly generated image under this model,
since it is the argmax of the Gaussian density function. This
also means no 7 exists to satisfy the concentration assumption
here.

It is important to note the role of the method used to repre-
sent the data points (‘image’ random variable) in the former
example. If instead of the image pixels themselves, we look
at a feature summarizing the ‘variance of pixels’ in each im-
age, then all blank images will stand out clearly as OODs. In-
deed, the likelihood will have a chi-squared form in this new
space, which is zero for blank images. A related discussion
is given very recently by Lan and Dinh [2020], which shows
even a simple change of coordinates system from cartesian to
spherical can break down traditional likelihood based OOD
detection.

4 OOD Detection as Null Hypothesis Testing
in a New Space

Two key observations motivate us to propose a more flexible
framework for OOD detection using generative models than
the conventional likelihood based method. First, as pointed
out before, the representation space of data samples is very
important in this task, and the original input space is not nec-
essarily the best choice. Secondly, at high level, all OOD de-
tection algorithms should involve a score function that, either
explicitly or implicitly, measures the ‘similarity’ between the
input and the members of the training set, in a given represen-
tation space, since this type of similarity is an equivalent def-
inition of typicality. Although traditionally likelihood (den-
sity assigned by a model) is sometimes used ‘in place’ of this
score function, it has not been formally shown to measure the
similarity of interest, to the best of our knowledge. Ideally,
a score function should always assign a higher score to in-
distribution data than OODs. However, as this rarely happens
in practice, a compromise between different types of risks
in the corresponding binary classification is necessary, which
depends on the overlap between the distributions of scores
assigned to in-distribution and OOD data. We can leverage
the concepts of classical hypothesis testing to formalize this
further: the training data provides the distribution of scores
under the null hypothesis stating the input is in-distribution,
and the user is free to choose a significance level to control
the probability of type I errors (false rejections).

Based on the above remarks, given a generative model with
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parameters 6 trained on the in-distribution data (D;,,), our ap-
proach to OOD detection has the following three main com-
ponents:

+ A mapping T : R? — R™ from the input space of data
to a new appropriate representation space, which is both
a function of the data point and (parameters of) the gen-
erative model, and thus it can be denoted by T'(x; 6).

* A score function u(z) — R that assigns a score to data
points proportional to their similarity with the members
of D,,, in the new representation space (this is a type of
‘distance from a point to a set’).

* A null hypothesis testing step, which classifies a data
point either as OOD or in-distribution at test time, given
its score, the scores assigned to D,,,, and a significance
level a.

We use a small set of scalar functions to compose the m-
dimensional mapping 7" (in practice, m = 2 or 3), where each
function is called a statistic (the same term used by Morn-
ingstar et al. [2021]). The statistics are assumed fixed given
the model and value of §. We generally believe that designing
useful statistics for OOD detection is specific to the type of
data and generative model to some extent. The statistic that
solves the issue of blank images in Gaussian noise generator
example (previous section) does not use the model parame-
ters, but this is because the model itself is so simple that it
essentially does not provide any features beyond likelihood.
Modern deep generative models are much more elaborate,
however, and we can hopefully extract other useful statistics
from them (e.g. from their latent space). This is studied in de-
tail for the particular case of invertible models in the follow-
ing section. One should note that here the information stored
in the trained generative model is exploited in the mapping
step, instead of taking part directly in the score function, as
opposed to traditional likelihood based methods.

One naive implementation of u(z) could be to compute the
average of distances (e.g. Euclidean) from x to the points of
D;,, in the space constructed by T'(-). However, we prefer to
use an OSVM model with RBF kernel to compute the score,
which only needs to keep a subset of D;,, as support vectors.
Therefore, our score function is:

= S oo (ATETEIY

T;€D;n

where {¢;} and p are obtained by training the OSVM on the
set of mapped training data {7 (z;;0)|z; € Dsn}, 09 is the
kernel hyperparameter, and any x; with ¢; > 0 is a support
vector. We note that this equation can be easily interpreted
as measuring a kind of similarity between = and D,,, in the
space of statistics, using weighted and nonlinear distances.
At test time, an input z is detected as OOD if u(x) falls
below a threshold 7. The threshold should satisfy the follow-
ing equation with a specified «, as is usual in null hypothesis
testing:
1
a o~ Dl Z [u(z) < 7] 3)
" zeDin
The risk of such decisions can be expressed as type I and II
errors, or alternatively True/False positive rates, on test data.
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The type I error is easy to calibrate in this method using Eq.
(3), since the training and test distributions of in-distribution
data should be similar, but the type II error also depends on
the unknown distribution of OOD data (Figure 2).

It should be emphasized that, from a hypothesis testing per-
spective, virtually any function of the input can be used as a
statistic, since what we essentially need is the distribution of
the statistic under the null hypothesis, or equivalently its value
on in-distribution data (as a Monte Carlo approximation). Of
course, the power of a statistic depends on the overlap be-
tween its distribution on OOD and in-distribution data.

S Deriving OOD Detection Statistics from
Invertible Generative Models

Interestingly, some of the generative models that assign high
likelihood to OOD data are able to generate fairly plausible
images that look like in-distribution images much more than
OODs, as also pointed out by Zhang er al. [2020]. This
can be explained by noting that observing good images at
the model output is the result of a large probability assigned
by the model to the ‘regions’ of the image space where in-
distribution data lie, but does not necessarily imply that aver-
age point-wise likelihood on those data should be high.

To see this with invertible generative models, let us inves-
tigate the relation between likelihood and probability under
some simplifying assumptions. We consider a certain class
C of images (e.g. cats), and assume that any image belong-
ing to this class comes from a bounded region R.. Now, the
probability the model assigns to this class is equal to:

Po= [ palf@ldedr@)anlas @

This equation suggests that the probability of observing
samples belonging to C' (lying in R,) is related to the inte-
gration region as well as the prior density and encoder Jaco-
bian determinant, or equivalently likelihood, over the points
in R.. We note that different combinations of values are pos-
sible in theory; for instance, the (average) likelihood may be
relatively high but the total probability (F,) can be low due to
the small volume of R..

We use Eq. 4 as a heuristic to design statistics aiming at de-
tecting OOD samples, since in principle such samples should
come from regions with a small P.. The terms inside the in-
tegral are directly available in formulation of invertible gen-
erative models. The region R, is not well-defined in practice
however, particularly because it is difficult to associate an in-
dividual sample with a crisp region. Instead of dealing with
R, explicitly, we focus on its volume (V;) as a quantity that
is very informative about the region. But the volume is still
an intrinsic characteristic of data distribution that is not di-
rectly measurable, unfortunately. For image data, the statistic
we found promising in practice as a proxy for region volume
is the complexity measure proposed by Serra et al. [2020],
which is equal to the size of the image when encoded in FLIF
compression format'. Our intuition is that more complex im-
ages (or images with more random noise, in other words)

"https:/lif.info/
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Figure 1: (Left) Scatter plot of log-prior density versus log-
determinant of encoder Jacobian assigned by a iResNet model
trained on Fashion-MNIST to samples from the same and MNIST
dataset (Right) Histogram of complexity measure (file size after
FLIF compression) for the same samples

come from classes that occupy a higher volume in the space
of images. For example, considering single-channel images,
blank images have only one degree of freedom, and their cor-
responding region is in principle a manifold with (virtually)
zero volume. In contrast, Gaussian noise images, which have
higher complexity and larger compression sizes, are spread
over a much larger region. We note that although this statis-
tic is used by Serra er al. [2020] for OOD detection as well,
the way they look at and use it (in linear combination with
log-likelihood) is different from ours.

Figure 1 demonstrates an example of the statistics dis-
cussed so far on Fashion-MNIST versus MNIST images with
iResNet model. The prior density values are almost in the
same range for the majority of in-distribution (blue points)
and OOD samples (orange) here, but many OODs have
relatively large log-determinant values, which gives them
higher likelihoods. However, the histogram shows that in-
distribution data are considerably more complex on average,
and thus should occupy a larger volume. This explains how
the generative model can assign higher probability to the (re-
gion of) in-distribution images. We also note here the two
datasets are separated fairly well in the space of log p(2) vs.
log-determinant as well as complexity.

It would be very favorable to avoid the Jacobian determi-
nant term, due to its potentially high computational cost. For-
tunately, as discussed in the previous section, we are quite
free in choosing our statistics in the framework of hypothe-
sis testing, and can make use of other relevant functions, and
particularly other functions of the Jacobian matrix. In prac-
tice, we have used a function of the Jacobian column sum
as a statistic (see the next section), which is much faster to
compute than determinant approximation, and is also easy to
implement with automatic differentiation tools.

6 Results

We present the results of our OOD detection framework? with
the following two combinations of statistics, based on the dis-
cussions of sections 4 and 5:

1. Ty = logpz(fo(x)), To = CrLir()
2. Ty =logpz(fo(x)), Ts = mean{| 3=, J% (x)[}

>The code and supplementary material are available at:
https://github.com/aahmadian-liu/ood-likefree-invertible
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Where pz(-) and fy(-) are the prior density and encoder
function of the invertible model as before, Cgpr(x) is the size
of the input image x (in bits) after compression by the FLIF
library, and J(z) denotes the encoder Jacobian matrix of the
model at the input z. The second choice is not limited to
image data or any external library unlike the first one, though
it showed a lower average performance in the experiments.

We evaluate our OOD detection method and compare it
to four related methods: Density of States Estimation (Dos)
[Morningstar et al., 2021], one-sample Typicality Test [Nal-
isnick er al., 2019b], S Score obtained from the sum of log-
likelihood and compressed image size [Serra et al., 2020],
and simple log-likelihood threshold based method (Simple
LL), which were all briefly introduced in the previous sec-
tions. Only the results of DoS with OSVM (and not with
KDE) are compared here, since we have used an OSVM as
well. The generative models employed in all of the methods
are iResNet, ResFlow, and Glow. The performance results
in terms of the Area Under ROC curve (AUROC) are given
in Table 1 . We have experimented on some of the image
dataset pairs which are common in the literature of OOD de-
tection, such as MNIST vs. Fashion-MNIST, and CIFAR10
vs. SVHN. We also include the flipped OOD dataset, that is
the horizontal (H) and vertical (V) flipped instances of the test
images.

Before feeding the statistics to the OSVM, they are nor-
malized, and PCA is used to remove possible linear correla-
tions. We used the publicly available pretrained models for
ResFlow and Glow °, but had to train the iResNet ourselves
(training details in appendix A). Despite of having D;,, in Eq.
2, in practice the OSVM is trained on another small partition
of the in-distribution data, to reduce the risk of overfitting
and training cost. More specifically, the generative model is
(or has been) trained on the entire standard training partition
of the in-distribution data; the OSVM model is trained on
3000 random samples from the standard test partition of the
in-distribution data, and is tested on 3000 different random
samples from the test partition of this dataset in addition to
3000 random samples from the OOD dataset. All of the other
compared methods have been evaluated on the same test set
as well, with the same trained generative model.

The last column in Table 1 clearly shows that the phe-
nomenon of high likelihood OOD samples is present in all
of the experimented models, which has led to total failure of
conventional likelihood based OOD detection in three cases.
The other methods have mitigated this problem to a great ex-
tent. However, all the methods have a rather poor perfor-
mance on most of the difficult dataset pairs, which are the
flipped OOD images, and CIFAR10 vs. CIFAR100. This
is not surprising since in those cases the in-distribution and
OOD images are quite similar in low level features, and
discriminating them seems to require a deeper understand-
ing of the content (note that in CIFAR10 vs. CIFAR100,
there are several ‘close’ classes, such as ‘dog’/‘wolf’, and
‘bus’/‘automobile’). By looking at the samples generated by
our models, we realize that they are often not good enough

3https://github.com/rtgichen/residual-flows,
https://github.com/y0ast/Glow-PyTorch
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at simulating the details which give a ‘precise’ semantics to
the image (appendix E). Hence, we conjecture that the per-
formance bottleneck in these examples is the quality of the
generative models, and not the OOD detection framework it-
self.

The results suggest that our method is generally compet-
itive with the compared ones. Our first setting has the best
performance on 5 dataset pairs (though with a slight improve-
ment over the second-best method), and is outperformed by
another method only on 2 pairs (FashionMNIST vs. Flip-V,
and CIFARIO vs. Flip-V with ResFlow). In the cases where
our method does not rank first, the maximum AUROC differ-
ence with the best method is 0.04 and 0.06 for our first and
second settings respectively.

Despite of the close performances, the main advantage of
our method is its lower computational cost for the invert-
ible models which do not have a closed form Jacobian log-
determinant term. The iResNet and ResFlow models approx-
imate this term via a truncated power series and stochastic
trace estimator, which is the main bottleneck in computing
the log-likelihood required by all the other compared methods
(the settings for this approximation in our experiments can be
found in appendix B). In Table 2, we have shown the empir-
ical values of the time it takes to compute the log-likelihood
(log-determinant term) as well as our Jacobian based statistic
(T3) with each of the models. The complexity based statistic
(T%) is computed by a fast image compression software (FLIF
toolbox), and its computation time is usually small compared
to determinant approximation, although the exact time is plat-
form dependent, as it uses a third-party library (around 13ms
per image on an Intel Core-i7 laptop with Linux). The con-
clusion from performance and time results is that substituting
log-likelihood with our suggested statistics can hugely speed
up the process for some models, without a big decay (if any)
in OOD detection performance. The time advantage disap-
pears for Glow, since its log-likelihood does not require ap-
proximation. However, it is worth noting that basically Glow
has a less flexible network architecture than iResNet/ResFlow
, which in practice can hurt the discriminative performance
[Behrmann et al., 2019] as well as resulting in larger models
(this can be seen by comparing the number of model param-
eters between the last two rows of Table 2).

Figure 2 gives an instance of type I and II test error curves
of our method for Fashion-MNIST vs. MNIST using iResNet.
We note that the type I error vs. significance level is close to
the identity line, which verifies that training and test statistics
of in-distribution data come from the same distribution.

6.1 Ablation Study

We have also investigated other combinations of the intro-
duced statistics in addition to the reported results. Particu-
larly, it was necessary to see if our 75 and T3 statistics provide
any additional useful information in practice when added to
the log-prior density (77). We found that adding one of 7%
or T3 is often beneficial, but adding both of them is likely
to cause slight overfitting. Table 3 gives an instance of the
outcomes on CIFAR-10 vs. SVHN with Glow.
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Model / Datasets Our (T1,75) Our (11,753) DoS S Score Typicality Test Simple LL
iResNet trained on MNIST

Fashion-MNIST 0.99 099 0.99 0.97 0.99 0.99
Uniform Noise 0.99 099 0.99 0.99 0.99 0.99
Flip-V 0.57 0.56 0.56 0.54 0.49 0.51
Flip-H 0.53 0.52 0.51 0.52 0.49 0.49
iResNet trained on Fashion-MNIST

MNIST 0.96 0.89 0.88 0.95 0.85 0.07
Flip-V 0.62 0.60 0.63 0.66 0.52 0.55
Flip-H 0.56 0.55 0.56 0.56 0.50 0.52
ResFlow trained on CIFAR-10

SVHN 0.96 092 0.94 0.89 0.80 0.10
CIFAR-100 0.56 0.56 0.56 0.48 0.55 0.51
Flip-V 0.50 0.54 0.52 0.54 0.50 0.51
Glow trained on CIFAR-10

SVHN 0.96 091 0.95 0.88 0.82 0.09
CIFAR-100 0.57 0.56 0.57 0.49 0.55 0.52
Flip-V 0.51 0.51 0.51 0.51 0.50 0.50

Table 1: AUROC results of our OOD detection method (for two combinations of statistics) versus some other related methods, with 4 different
generative models. In each part of the table, model name and the training (in-distribution) data have been specified, and each row corresponds
to a dataset used as the OOD. One should note that many of the classes in these datasets are basically invariant to horizontal/vertical flips.

Model /

Training Data T3 (ms) Log-Likelihood Approximation (ms) #Parameters (x 109)
iResNet (MNIST) 3 209 1.17
ResFlow (CIFAR-10) 20 378 25.17
Glow (CIFAR-10) 18 N/A 4423

Table 2: Comparison of the computation time of our 7% statistic (column sum of the Jacobian matrix) with log-likelihood for three generative
models (implemented in PyTorch) as well as the number of model parameters, on a Titan X Pascal GPU with batch size=10. In Glow,
obtaining the likelihood does not generally require any approximation at test time.

| ToTy | ~ToTy | To-Ts | =To—Ty
T, | 095] 091 096 064
~Ty | 085 | 072 088 | -

Table 3: AUROC values obtained by our method with different com-
binations of statistics on CIFAR-10 vs. SVHN using Glow model.
The rows and columns correspond to different choices for including
T, and {T%, T5} respectively. A negation symbol before a statistic
indicates that it is excluded.

7 Conclusion

Pitfalls of traditional likelihood based OOD detection were
re-emphasized in this paper in different aspects, including
empirical failure results with the two recent invertible genera-
tive models iResNet and ResFlow. Considering that comput-
ing likelihood is quite costly in such models as well, an OOD
detection method was proposed that is not dependent on like-
lihood. This method uses a pretrained invertible model and an
image complexity measure to summarize the data points in a
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Figure 2: Type I and II errors of our method (with 71, T%) versus o
in Fashion-MNIST vs. MNIST OOD detection using iResNet

very low dimensional representation, assigns scores to them
using an OSVM, and then classifies them in a null hypothesis
testing fashion. The experiments show that, compared to re-
lated works, the proposed method has a competitive or even
better performance and/or more favorable computational cost
in several cases, depending on the datasets and model.
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