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LIKELIHOOD INFERENCE FOR DISCRETELY OBSERVED
NONLINEAR DIFFUSIONS

BY OLA ELERIAN, SIDDHARTHA CHIB, AND NEIL SHEPHARD1

This paper is concerned with the Bayesian estimation of nonlinear stochastic differen-
tial equations when observations are discretely sampled. The estimation framework relies
on the introduction of latent auxiliary data to complete the missing diffusion between

Ž .each pair of measurements. Tuned Markov chain Monte Carlo MCMC methods based
on the Metropolis-Hastings algorithm, in conjunction with the Euler-Maruyama dis-
cretization scheme, are used to sample the posterior distribution of the latent data and
the model parameters. Techniques for computing the likelihood function, the marginal

Ž .likelihood, and diagnostic measures all based on the MCMC output are developed.
Examples using simulated and real data are presented and discussed in detail.

KEYWORDS: Bayes estimation, nonlinear diffusion, Euler-Maruyama approximation,
maximum likelihood, Markov chain Monte Carlo, Metropolis Hastings algorithm, missing
data, simulation, stochastic differential equation.

1. INTRODUCTION

1.1. Models

CONSIDER AN ITO STOCHASTIC PROCESS that satisfies a stochastic differentialˆ
Ž .equation SDE of the form

Ž . Ž . � Ž . 4 � Ž . 4 Ž .1.1 dy t �a y t , t , � dt�b y t , t , � dW t ,

� Ž . 4 � Ž . 4where a y t , t, � and b y t , t, � are the nonanticipative drift and volatility
Ž .functions, respectively, depending on y t , time t, and an unknown parameter

Ž . 2vector � , and dW t is the increment of a standard Wiener process. SDEs are
Ž .used extensively in economics: see, for example, the overviews in Dixit 1993

Ž .and Merton 1990 . Assume that the conditions under which the SDE can be
Ž . Ž Ž ..solved for a diffusion y t are satisfied see Øksendal 1995, p. 64 and suppose

Ž . � 4 †that one has measurements y �y � at times � , . . . , � , where � �� ��t t 1 T t t�1 t
Ž .��0, for t�T. The aim is to estimate � given the measurements Y� y , . . . , y .1 T

1 We would like to thank the co-editor and the four referees for their very helpful comments on a
previous draft of this paper. We also thank Peter Burridge, Bjorn Eraker, Michael K. Pitt, and¨
participants at various conferences and seminars for discussions on the issues raised by the paper. In
addition, we gratefully acknowledge the financial support of Ola Elerian by Nuffield College and
Neil Shephard through the ESRC projects R000235488, R000238391 and the EU Grant ‘‘Estimation
via Simulation in Econometrics.’’ All computations reported in this paper were carried out using the

Ž .Ox language of Doornik 1996 .
2 Ž .The same methods developed here can be applied to situations where W t is a homogeneous

ŽLevy process, that is, a process with independent increments that is continuous in probability see´
Ž ..Barndorff-Nielsen, Jensen, and Sørensen 1998 .
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In the likelihood context, estimation of � is based on the likelihood function
Ž . T�1 Ž . Ž .log L y , . . . , y � y , � �Ý log g y � y , � where g y � y , � are the2 T 1 t�1 t�1 t t�1 t

Markovian transition densities. If a strong solution of the underlying SDE
process is available, i.e., the stochastic differential equation

t tŽ . Ž . � Ž . 4 � Ž . 4 Ž .y t �y 0 � a y s , s, � ds� b y s , s, � dW sH H
0 0

Ž � Ž .can be solved analytically in Ito form, for t� 0, T , then g y �y , � isˆ t�1 t
available in closed form and likelihood inference is straightforward. The trouble,
however, is that analytic solutions of SDEs are rarely available. This has led to
growing interest in methods for estimating SDEs on the basis of discretely
sampled measurements. Important developments include the indirect inference

Ž .method of Gourieroux, Monfort, and Renault 1993 , the efficient method of
Ž .moments estimator of Gallant and Long 1997 , and the nonparametric ap-

Ž . Ž .proaches of Aıt-Sahalia 1996a and Jiang and Knight 1997 . Discretely ob-¨
served diffusions have also been fit by estimating functions; see Kessler and

Ž . Ž . Ž .Sørensen 1999 , Sørensen 1997 , Florens-Zmirnou 1989 , and Hansen and
Ž . Ž .Scheinkman 1995 , and by the likelihood based method of Pedersen 1995 .

In this paper we propose a new method for dealing with the estimation
problem of stochastic differential equations that is likelihood based, can handle
nonstationarity, and is not dependent on finding an appropriate auxiliary model.
Our idea is simply to treat the values of the diffusion between any two discrete
measurements as missing data and then to apply tuned Markov chain Monte

Ž .Carlo MCMC methods to learn about the missing data and the parameters.
Ž .We note that Kim, Shephard, and Chib 1998 have suggested this approach in

the special case of a stochastic volatility model. This idea has independently also
Ž . Ž . 3been discussed by Eraker 1998 and Jones 1998 . Related ideas have been

Ž .developed by Billio, Monfort, and Robert 1998 in their work applying the
Ž .Geyer 1999 simulated likelihood ratio method to diffusions and other econo-

metric problems.

1.2. Augmentation for SDEs: Moti�ation

Ž .To begin with, consider the Euler-Maruyama or Euler approximation of the
SDE

Ž . Ž . † Ž .Ž .1.2 y �y �a y , t , � � �b y , t , � W �W ,t�1 t t t t t�1 t

under which the transition density is

Ž . Ž . � Ž . † 2 Ž . †41.3 f y �y , � �� y �y �a y , t , � � , b y , t , � � ,t�1 t t�1 t t t t t

3 Our work differs from both papers in important respects. We develop a tuned MCMC algorithm
for carrying out the calculations, rather than a single move method, and elucidate the properties of
the proposed method in detail. In addition, our work goes beyond the estimation problem to
encompass issues involving model diagnostics and model comparisons.
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FIGURE 1.�Discretization scheme is shown where the arbitrary points y� are introducedt
between observed values y and y .t t�1

Ž .where � ��m, � denotes the Gaussian density with mean m and variance � .
Although this is the simplest discrete time approximation of the SDE with

Žrespect to the strong convergence criterion of Kloeden and Platen 1992, Section
.10.2 it is normally too coarse to approximate the true transition density

adequately.
In order to describe a modified approach consider any two consecutive times

Ž .� , � , as in Figure 1, and assume for notational simplicity that the time gapt t�1
† † � 4� �� is independent of t. Let � , . . . , � denote M auxiliary timest t, 1 t, M

Ž .between � , � , assumed to be evenly spaced, with time gapt t�1

�†

��� �� �t , k�1 t , k M�1

4 � � Ž .for all t, k. At each auxiliary time, let y �y � , j�M, denote the unob-t, j t, j

Ž . � Ž � � .served or latent observation and let y � y , . . . , y denote the entiret t, 1 t, M

� 4collection of latent observations at the times � , . . . , � .t, 1 t, M

4 The choice of units for �† has a bearing on the scale of � and implicitly scales the drift andt
volatility functions. Because the initial choice of units is merely convenient labelling, chosen for ease
of interpretation, the scaling is arbitrary and not reflected in the notation.
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Ž .Then, an improved approximation of the true transition density g y �y , �t�1 t
is given by

M
� � �MŽ . Ž . Ž . Ž .1.4 f y �y , � � f y �y , � f y �y , �ŁHt�1 t t�1 t , M t , j t , j�1½ 5

j�2

Ž � . � �� f y �y , � dy , . . . , dyt , 1 t t , M t , 1

Ž � . Ž � . �� f y �y , � f y �y , � dy ,H t�1 t t t t

where

Ž � � . � � Ž � .f y �y , � �� y �y �a y , � , � �,�t , j t , j�1 t , j t , j�1 t , j�1 t , j�1

2 Ž � .b y , � , � �4t , j�1 t , j�1

is the transition density using the Euler approximation. It can be shown that
a.s.M Ž Ž .f � g, as M�� see Pedersen 1995, Theorem 3 and Kohatsu-Higa and

Ž ..Ogawa 1997 . The global error of the approximation can be measured as
� M Ž . Ž . �E f y �y , � �g y �y , � by specializing a result of Talay and Tubarot�1 t t�1 t

Ž .1990 where it is shown that this expectation can be expanded in terms of
Ž Ž . .powers of 1	M see also Talay 1995 for a discussion , with the leading term

being of order 1	M.5 A similar type of result would hold for the convergence of
Ž .the log of the densities, which is proved in Bally and Talay 1995 using the

Malliavin calculus. The essence of this result is that the discretization error is a
function of M rather than solely a function of �†.6

To illustrate the advantages of introducing auxiliary variables, consider the
Ž . Ž . Ž . 2Ž .Ornstein-Uhlenbeck OU process. In terms of 1.1 , a y , t, � �	 y , b y , t, �t t t

2 Ž 2 .�
 , and �� 	, 
 . The conditional distribution of y �y , � under thet�1 t
Euler scheme is normal with a mean of �† y and a variance of 
 2�†, whereE t
�† �1�	�†. Under the strong solution, the distribution of y �y , � is alsoE t�1 t

† Ž 2 .Ž 2† . † Ž †.normal with mean � y and variance 
 	2	 � �1 , where � �exp 	� .S t S S
Suppose we condition each y on its neighboring points, y and y . Then thet t�1 t�1
distribution of the resulting bridge process under the Euler scheme can be
expressed as

�† 
 2�†
EŽ . Ž .1.5 y �y , y , ��N y �y , ,t t�1 t�1 t�1 t�12† 2†½ 51�� 1��E E

whereas from the strong solution,
† 2 †� 
 �SŽ . Ž .1.6 y �y , y , ��N y �y , .t t�1 t�1 t�1 t�12† 2† 2†Ž . Ž .1�� 2	 1�� 	 � �1� 4S S S

5 These results extend to situations where W is a more general Levy process, and the same´
expansion can also be established when g is only assumed to be measurable and bounded; see

Ž .Protter and Talay 1997 .
6 Ž . Ž .The approach of Gallant and Tauchen 1996 also uses 1.4 as the data generating process,

however, within a method of moments approach based on a semi-parametric auxiliary model.
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� Ž � � .Similarly, if we consider a block of M latent points y � y , . . . , y , thent t, 1 t, M

Ž � .f y �y , y , � is seen to be a Gaussian distribution with expected valuet t t�1

Ž . Ž � .1.7 E y �y , y , �t t t�1

M�1
 �
2 i M� � y �� yÝ t t�1

i�0
M�2 1

2 2 i M�1 2 i� � y �� � y1 Ý Ýt t�1� i�0 i�02 2 M1�� � ��� �� ...
M�1

M 2 i� y �� � yÝt t�1� 

i�0

Ž .where � is � �exp 	� under the strong solution and � �1�	� under theS E
Euler approximation. Given the analytically tractable form of the conditional
density for the OU process, we can therefore draw the expected path of the
process between two fixed points using the strong solution of the process and
illustrate the curvature bias in the paths for different discretizations under the
Euler scheme. Figure 2 illustrates the curvature bias with M�0, 3, and 8 latent

Ž � .FIGURE 2.�E y �y , y , � is graphed for the OU process for different values of M under the1 1 2
Euler scheme. The number of latent points, M�0, 3, and 8 are shown for the Euler approximation.
The strong solution is denoted by ‘true.’ The value of 	 is taken to be �1 and �† �2 in all
computations, with fixed points y � 0 and y � y � 1 and auxiliary variables y� �1 2 1, M�1 1
Ž � � .y , . . . , y .1, 1 1, M
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� Ž � � .points denoted as y � y , . . . , y . Note that the case M�0 produces the1 1, 1 1, M
Ž .� Žlinear interpolation between the two fixed points, Y� y , y where y �0 and1 2 1

.y �y �1 , and completely misses the curvature of the strong solution.2 1, M�1
Expected paths for nonzero values of M produce a downwards bias, converging
to the strong solution of the process, depicted by the second curve from the left.
It may be seen that even a small M improves the approximation considerably
relative to the M�0 case.

In addition, we compare, in Figure 3, the true OU log-likelihood for 	
T�1 Ž .given by Ý log g y �y , � and the approximate conditional likelihoodt�1 t�1 t

T�1 M Ž .Ý log f y �y , � wheret�1 t�1 t

2

† †Ž . Ž . � Ž . 4g y �y , � �� y �exp 	� y , exp 2	� �1t�1 t t�1 t 2	

FIGURE 3.�Left panel: Approximate log-likelihoods for the OU process are graphed against 	
for different values of M. The number of latent points are M�0, 3, and 8. The strong solution is
denoted by ‘true.’ Right panel: The difference between the approximate log-likelihoods and the true
log-likelihood given by the strong solution. The number of auxiliary points are M�10, 50, 100, and

� �500. Each approximation is evaluated for different values of 	� �0.8, 0 . For the DGP, 	��0.5,

 2 �0.01, and �† �4.
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and

M� 1† †	� �
M 2Ž .f y �y , � �� y 1� y , 
t�1 t t�1 tž / ž /M�1 M�1

Ž .2 M�1†
 �	�
1� 1�ž /M�1� �� ,2†	�

1� 1�� 
ž /M�1

† 2 Žfor data generated using � �4, T�500, 	��0.5, and 
 �0.01 assumed
. M Ž .known . The transition density f y �y , � in this case is obtained analyticallyt�1 t

� M Ž � . Ž .by integrating out y from f y , y �y , � ; see 1.4 . The approximatet, M t�1 t, M t

likelihoods are computed for various values of M. Although the difference
between the approximate and the true likelihood is about ten on the log scale,
even for M�500, it is interesting to note that the quantiles of the posterior of
	 conditioned on 
 2 �0.01 stabilize for M as small as ten, as shown in Figure
4.7 The quantiles in Figure 4 are computed for values of M, ranging from 0 to

Ž .1000, but are graphed using a scale of log M�1 on the x-axis. It can be seen10
that the introduction of the auxiliary points provides a better approximation of
the likelihood function and, consequently, of the posterior distribution. Further,
we are now in a position to control the accuracy of that approximation by our
choice of M.8 The benefit of using auxiliary variables will also be demonstrated

Žwhen we analyze the MCMC output from the estimation procedure outlined in
.Section 2 applied to various models. Table I gives the drift and volatility

functions for four important processes, which will be considered in the paper.
The rest of the paper is organized as follows. In Section 2 we present a

Markov chain Monte Carlo simulation technique to sample the posterior distri-
bution of the auxiliary variables and the parameters. A method for sampling the
latent data in blocks is proposed and evaluated in relation to alternative
simulation schemes. In Section 3 we discuss how posterior inferences can be

7 � �The approximate posteriors are computed over a grid of values for 	� �0.8, 0 and the prior is
Ž . � � � �set to N �2, 2 . The grid points are �0.8, �0.6 , with step size 0.005; �0.599, �0.4 with step size

� �0.001; �0.395, �0.001 with step size 0.005.
8 Additional results, comparing the difference between the approximate and true log-likelihoods

and the average mean square error for the parameters of the OU process, as simulation size varies,
Ž .are reported in Elerian 1999 .
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FIGURE 4.�Quantile plots of the OU posterior for 	, keeping 
 2 fixed at 0.01. The approximate
posterior is computed for different values of M, ranging from 0 to 1000, but is graphed using a scale

Ž . 2 †of log M�1 on the x-axis. Again the DGP has 	��0.5, 
 �0.01, and � �4.10

conducted based on the output of the Markov chain simulation procedure.
Methods for computing the likelihood function, the marginal likelihood and
diagnostic measures are presented. The techniques are illustrated first with
simulated data in Section 4 and then in Section 5 with a real data example.
Some concluding remarks are made in Section 6.

TABLE I
2Ž . Ž .DRIFT a y, � AND VOLATILITY b y, � SPECIFICATIONS FOR THE OU, THE QUADRATIC

DRIFT PROCESS, THE CIR PROCESS, AND THE HULL-WHITE MODEL. FOR THE CIR AND

HULL-WHITE MODELS, WE WORK WITH THE TRANSFORMATION x � log y DUE TO THEt t
RESTRICTION THAT y �0 FOR t�1, . . . , T. THE PARAMETERS � , 
 , � , AND 
 ARE ALLt
POSITIVE AND CONSTANT, WHEREAS 	 IS NEGATIVE AND CONSTANT

Ž . Ž .Process OU Quadratic Drift CIR x � log y Hull-White x � log y

2 2� 
 � 

2Ž . � Ž . 4a y, � 	 y 	 y �
� �
� exp 2 ��1 x

Ž . Ž . Ž .exp x 2 exp x exp x 2
2


2 2 2Ž . � Ž . 4b y, � 
 
 
 exp 2 ��1 x
Ž .exp x
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2. MCMC-BASED ESTIMATION OF NONLINEAR DIFFUSIONS

2.1. Framework

To describe our inferential framework, consider the approximate joint density
Ž .of the observed data Y� y , . . . , y :2 T

T�1
M MŽ . Ž .f Y �y , � � f y �y , � ,Ł1 t�1 t

t�1

M Ž . Ž .where f y �y , � is the transition density in 1.4 . In general, the densityt�1 t
M Ž .f y �y , � cannot be computed exactly but, following the discussion of thet�1 t

previous section, an effective way of dealing with this difficulty is to consider the
joint posterior distribution of the parameters and the augmented data Y � �
Ž � � � . Ž .y , y , . . . , y . Let � � denote the prior density of the parameters and let1 2 T�1

M Ž � . Ž � . Ž .� � , Y �Y � f Y , Y �y , � � � ,1

where

T�1 M
� � �Ž . Ž .f Y , Y �y , � � f y �y , �Ł Ł1 t , j�1 t , j½ 5

t�1 j�0

is the complete data density with y� �y and y� �y , denote the poste-t, 0 t t, M�1 t�1
rior density of the parameters and the latent data. This augmented posterior

M Ž .density does not require the computation of the likelihood function f Y �y , � .1
To analyze the posterior density we can utilize Markov chain Monte Carlo
Ž .MCMC simulation methods. These methods allow us to sample the augmented

� j � j4posterior density by simulating a Markov chain � , Y constructed to
M Ž � .have � � , Y �Y as the limiting variant distribution; see, for example, Gilks,

Ž . Ž .Richardson, and Spiegelhalter 1996 and Chib 2000 for reviews of the litera-
ture. The trajectory of the Markov chain, after an initial transient or burn-in

Ž . M Ž � .stage, provides a sequence of correlated draws from � � , Y �Y . Further-
� j4more, the draws � are automatically from the marginal distribution

M Ž . M Ž � . �� � �Y � � � , Y �Y dY ,H
and can be used to conduct posterior inferences about � . For example, the
sample mean and the sample standard deviation of the sampled draws are
estimates of the corresponding posterior mean and posterior standard devia-
tions; simulation consistency of these estimates is established by ergodic laws of
large numbers for Markov chains on continuous state spaces. This leads to full
likelihood-based inference for the model even though the likelihood is not
evaluated.

The degree of data augmentation, M, which depends on the space between
the observed points, the nonlinearity in the drift and volatility functions and the
variance between the observed values, influences two aspects of the analysis.



O. ELERIAN, S. CHIB, AND N. SHEPHARD968

Ž .First, an increase in M improves the approximation in 1.4 , implying that
M Ž .inferences based on � � �Y will become less biased as M increases. Second,

an increase in M directly increases the dimension of the state space on which
the simulation is conducted. As a result, the sampling process must be more
carefully designed to ensure that the simulation output does not display exces-
sive serial dependence. Although one can increase the length of the simulation
sample size, a more desirable strategy is to construct samplers that produce
good mixing even when M is large.

2.2. O�er�iew of the MCMC Method

Markov chain Monte Carlo sampling from � , Y � �Y is achieved by sampling in
turn the full conditional distributions Y � �Y, � and � �Y, Y �. One iteration of the
Markov chain is completed by revising both Y � and � from these two distribu-

Ž .tions. A simple calculation based on the Markov property of the diffusion
shows that the first of these full conditional distributions can be expressed as

T�1
� �Ž . Ž .f Y �y , Y , � � f y �y , y , � ,Ł1 t t t�1

t�1

due to the fact that the latent data y� is conditionally independent of thet
Ž .remaining latent data, given y , y , � . Thus, our simulation procedure int t�1

general terms may be described as follows:

General Sampling Scheme

1. Initialize Y � , � .
2. Update y� from y� �y , y , � , for t�1, 2, . . . , T�1.t t t t�1
3. Update � from � �Y � , Y.
4. Record the value of � and then go to 2.

The most important stage and challenge is the sampling of the distributions
y� �y , y , � , t�1, 2, . . . , T�1, as these distributions are likely to be high-di-t t t�1
mensional distributions and complex, and each must be sampled for every sweep
of the algorithm.

Ž � .2.3. Simulation of the Auxiliary Variables from f y �y , y , �t t t�1

Consider the question of sampling y� �� M from the target densityt

M
� � �Ž . Ž .f y �y , y , � � f y �y , �Łt t t�1 t , j�1 t , j

j�0

M
� � �Ž .� � y �y �a y , � , � �,�Ł t , j�1 t , j t , j t , j

j�0

2 Ž � .b y , � , � �4t , j t , j



NONLINEAR DIFFUSIONS 969

where, in general, y� appears nonlinearly in both the drift and diffusiont, j
functions. A computationally effective approach for sampling y� from thist
density can be developed by working in sequence with contiguous subsets of y�.t

� Ž . �Let y denote a block of length m 1�m�M�k�1 that starts at ytŽk , m. t, k

and ends at y� :t, k�m�1
� Ž � � � .y � y , y , . . . , ytŽk , m. t , k t , k�1 t , k�m�1

Ž � � .with density conditioned on y , y , � given byt, k�1 t, k�m

Ž . Ž � � � .2.8 f y �y , y , �tŽk , m. t , k�1 t , k�m

k�m
� � � �2Ž . Ž .� � y �y �a y , � , � �, b y , � , � � ,� 4Ł t , j�1 t , j t , j t , j t , j t , j

j�k�1

for k�1, m�1, 2m�1, . . . .
The idea now is to sample each of the m dimensional vectors y� in sequencetŽk , m.
by the Metropolis-Hastings algorithm.

Ž . ŽThe Metropolis-Hastings M-H algorithm see, for example, Chib and Green-
Ž ..berg 1995 is a general MCMC method for producing sample variates from a

Ž .given multivariate density such as the ones in 2.8 . The method is defined by a
user-specified candidate generating density that is used to supply a proposal
value and a probability of move that is used to determine if the proposal value
should be taken as the next item of the chain. The probability of move is based

Žon the ratio of the target density evaluated at the proposal value in the
.numerator and the current value in the denominator times the ratio of the

Žproposal density at the current value in the numerator and the proposal value
. Ž � � � .in the denominator . Specifically, let q y �y , y , � denote the pro-tŽk , m. t, k�1 t, k�m

Ž � � .posal density conditioned on y , y , � and suppose that the currentt, k�1 t, k�m
value of y� at the end of the g th iteration of the Markov chain is y� Ž g . .9tŽk , m. tŽk , m.

Then, the M-H step for y� is implemented by first drawing a candidate valuetŽk , m.
Ž � � � .w�q y �y , y , � , computing the probabilitytŽk , m. t, k�1 t, k�m

Ž � � � .� y , w �y , y , �tŽk , m. t , k�1 t , k�m

Ž � � . � Ž g . � �f w �y , y , � q y �y , y , �ž /t , k�1 t , k�m tŽk , m. t , k�1 t , k�m�min 1, ,
� Ž g . � � � �½ 5Ž .f y �y , y , � q w �y , y , �ž /tŽk , m. t , k�1 t , k�m t , k�1 t , k�m

and then setting y� Ž g�1.�w with probability � and setting y� Ž g�1.�y� Ž g .
tŽk , m. tŽk , m. tŽk , m.

Ž .with probability 1�� . Note that since the probability of moving is based only
on ratios of densities, one does not need the normalizing constant of the target
density.

In the implementation of this method it is vital that one use a proposal
density that allows the chain to efficiently traverse the support of the invariant
distribution without staying in one place for many iterations. A simple and

9 y� is the updated point obtained at the g th iteration, while y� is set at the valuet, k�1 t, k�m
Ž .obtained at the g�1 th iterate.
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general method of specifying such a proposal density is to approximate the
target density at the mode by a multivariate-normal or multivariate-t distribu-

Ž � � .tion with location given by the mode of ln f ��y , y , � , obtained by at, k�1 t, k�m

few Newton-Raphson steps, and dispersion given by the negative of the inverse
Hessian evaluated at the mode. An early example of this tactic is Chib and

Ž .Greenberg 1994 while subsequent examples include Chib, Greenberg, and
Ž . Ž .Winkelmann 1998 and Shephard and Pitt 1997 .

To develop the proposal density let
� Ž � � � . Ž .y � y , y , . . . , y � w , . . . , w �wtŽk , m. t , k t , k�1 t , k�m�1 1 m

denote the block of latent values with neighbors w �y� and w �y� .0 t, k�1 m�1 t, k�m
Also write

Ž � . Ž .a �a y �a w ,j t , k�j j�1

�1 �1�2 2Ž . Ž .g � b y � b w ,� 4 � 4j t , k�j j�1
� Ž � . Ž .d �y � y �a � �w � w �a � ,j t , k�j�1 t , k�j j j�2 j�1 j

c �1�a� �,j j

for j��1, 0, . . . , m�1 and let a� and a� denote the first and second derivativesj j

Ž . � �of a w with respect to w , and define g and g similarly. Finally, letj�1 j�1 j j

Ž .� log f w �w , w , �0 m�1 � 4u� � u for j�1, . . . , m ,j� w
2 Ž .� log f w �w , w , �0 m�1 � 4V�� � V for i , j�1, . . . , m ,� i j� w � w

denote the gradient and negative Hessian matrix, respectively, of the log target
Ž .density. Because the only terms in log f w �w , w , � involving w are0 m�1 j�1

1 g g 2j�1 j�1 Ž .l � log � w � w �a � ,j j�1 j j�1ž /2 � 2 �
1 g g 2j j Ž .l � log � w � w �a � ,j�1 j�2 j�1 jž /2 � 2 �

we have that
� l � lj j�1

u � �j � w � wj�1 j�1

1 1 �g�
j�1� 2�� g d �g d c � g d � ,j�2 j�2 j�1 j�1 j�1 j�1 j�1ž /� 2 2 gj�1

1
� �2V �� g �g c �g d a ��2 g d cj j j�2 j�1 j�1 j�1 j�1 j�1 j�1 j�1 j�1�

2� �Ž .g g � g �1 ½ 5j�1 j�2 j�1� 2� g d � ,j�1 j�1 22 2 gj�1
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and

1
 �Ž .V �� g d �g c for i� j�1,ji j�1 j�1 j�1 j�1�V � �i j �0 for i� j�1.

These equations are used to find the modal value of w and the inverse of V at
the mode is used as the dispersion matrix of the proposal density.

We now discuss the choice of m in the above method. First, the choice m�1
which represents single element updating of y� is not recommended. Elerian,t

Ž .Chib, and Shephard 1998 shows that this leads to poor mixing due to high
Ž � � � .correlation amongst y , y , y . Second, the choice m�M is not prac-t, k t, k�1 t, k�1

tical because it is difficult to sample a high-dimensional y� in one block. Thus,t

values of m that are different from these two choices are preferable. Further-
more, it is not necessary or desirable to fix m at the outset because that means
that the blocks always join in the same place, which can foster dependencies in
the MCMC sweeps. In order to scramble this type of dependence Shephard and

Ž .Pitt 1997 found that the chain converged faster if m were selected randomly at
each updating stage. This leads to what may be called a random block size M-H
algorithm. A simple way of carrying this out is to draw m�1 from a Poisson
distribution with mean �, which leads to an average block size of ��1.
Alternatively, other distributions instead of the Poisson can be used to select the

Ž .block size, as discussed by Wong 1999 in the context of stochastic volatility
models.

To summarize, we advocate the following algorithm which is indexed by the
tuning parameter ��1:

General Sampling Scheme with Random Block Sizes

1. Initialize Y � , � .
2. Set k�0.

Ž .3. Draw m�Po � �1; set k�k�m. If k�M, set k�M.
4. Update y� �y� , y� , � ;tŽk , m. t, k�1 t, k�m
Ž .a if k	M go to 3;
Ž . �b else update � from � �Y, Y and then go to 2.

As an example of the value of random block size sampling, we consider the
Quadratic drift model when we have an interval of M�25 points between the
observed values and we let the mean � of the random block size be either two
or ten. The iterations are run for N�10,000 sweeps with y �1 and y �2t t�1

fixed; the underlying true parameter values in the data generating process are
set to 	��0.005 and 
 2 �0.03. The results, presented in Figure 5, show that
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Ž . Ž .FIGURE 5.�Acceptance rates a, b , inefficiency factors c, d, bandwidth B �100 and correlo-N
Ž . Ž . Ž .gram e, f for average block sizes of ��2 a, c, e and ��10 b, d, f , M�25, and N�10,000,

with y �1, y �2 and parameter values 	��0.005, 
 2 �0.03, for the Quadratic drift process.t t�1

the acceptance rates in the M-H step decline slightly but that there is a marked
improvement in inefficiency factors.10 The inefficiency factors decrease from
thirty to six for the middle states indicating that the sampler is only about six
times as inefficient as a hypothetical sampler that produces i.i.d. draws. This is
confirmed by the correlogram, which shows heavy persistence until lags of 60
when ��2 against a correlogram that dies out by 30 lags when ��10.

10 ŽThe inefficiency factor, or the autocorrelation time, of each posterior estimate computed as a
. �sample average over the simulated values is defined as the spectrum at zero, 1�2Ý � , wherej�1 j

� 4� denotes the autocorrelation function of the simulated values. The inefficiency factor isj
estimated as

BN2 N j
1� K � ,ˆÝ jž /N�1 BNj�1

Ž .where � is an estimate of the autocorrelation at lag j and K � is the Parzen kernel, based on theĵ
first B autocorrelations. It is equal to the square of the numerical standard error divided by theN

Ž .variance of the posterior estimate under hypothetical i.i.d. sampling from the posterior. Geweke
Ž .1989 defines the alternative measure of relative numerical efficiency, which is the inverse of the
inefficiency factor.
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Ž � .2.4. Sampling of � from � � �Y, Y

In order to complete one cycle of our MCMC sampler we have to sample the
full conditional density of � :

Ž � . Ž . Ž � .� � �Y , Y �� � f Y , Y �y , �1

T�1 M
� �Ž . Ž .�� � f y �y , � ,Ł Ł t , j�1 t , j½ 5

t�1 j�0

Ž � � . Ž � .where f y �y , � is the normal density given above. Typically � � �Y, Y ist, j t, j�1

only available up to an unknown norming constant. In addition, the density is
conditioned on both the observed states Y and the simulated auxiliary states Y �

Ž .Ž .which means that the prior distribution of � is being revised using T�1 M�1
Žobservations. For some models, the conditional posterior for a suitable choice

.of prior can belong to a known family of distributions. As an example, suppose
that

� � � � 2 Ž � .y �y , ��N y �� y �, b y � ,� 4t , j t , j�1 t , j�1 t , j�1 t , j�1

where the unknown parameter � indexes the linear drift and the nonlinear
Ž 2 .diffusion is fully known. Then, under a normal prior on � , N 	 , 
 , the� �

� Ž 2 .conditional posterior is � �Y, Y �N 	 , 
 withp p

2�T�1 M�1 Ž .yt , j�1�2 �2
 �
 �� , andÝ Ýp � �2 Ž .b yt , j�1t�1 j�1

T�1 M�1 � � �Ž .y �y y 	t , j t , j�1 t , j�1 �2	 �
 � .Ý Ýp p �2 2½ 5Ž .b y 
t , j�1 �t�1 j�1

The nonlinearity in the volatility raises no significant issues. For most problems,
Ž � .however, the distribution � � �Y, Y is intractable and must be sampled by

Ž .say the M-H algorithm. The sampling of � is model-specific and in some
instances it may be possible to update the entire � vector at once using a

Ž � .proposal density q � �Y, Y that is matched to the conditional distribution at
the modal value. If single block updating results in high rejections then it may
be necessary to block � into subsets and sample each block in sequence by the
M-H algorithm. Specific examples of these strategies are provided below.

3. POSTERIOR INFERENCES

The techniques outlined so far do not provide an explicit form for the
Ž .likelihood g Y �y , � , or our approximation to it1

T�1
M MŽ . Ž .f Y �y , � � f y �y , � .Ł1 t�1 t

t�1
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Although we manage to estimate the parameters of the model without comput-
M Ž .ing f Y �y , � , a one-off estimate of the likelihood function is required for1

Žcomparing alternative stochastic differential equations using Bayes factors which
.are ratios of model marginal likelihoods .

3.1. Likelihood E�aluation

Ž . M Ž .Pedersen 1995 suggested estimating f y �y , � by averaging the densityt�1 t
of the Euler approximation

R1
� Ž j.M̂ Ž .f y �y , � � f y �y , � ,Ý ž /t�1 t t�1 t , MtR j�1

� Ž j. Ž .where y is drawn by iterating the discretized version, defined in 1.2 , startingt, Mt� Ž .at y �y . Results by Talay and Tubaro 1990 and Kohatsu-Higa and Ogawat, 0 t

Ž .1997 concerning the error induced by using the Euler scheme imply that the
Ž .absolute value of the expected error, with respect to g y �y , � , involvest�1 t

'terms of order smaller than or equal to the product of 1	M and 1	 R .
Ž .The Pedersen 1995 method can be embedded within a class of importance

M Ž .sampling estimators of f y �y , � . For further discussion of importancet�1 t
Ž . Ž .sampling, see Kloek and van Dijk 1978 , Ripley 1987, pp. 122�123 , or Geweke

Ž . Ž � .1989 . If we let q y �y , y , � denote some importance sampling densityt t t�1
Ž � .whose support is the same as that of f y , y �y , � , thent�1 t t

Ž � .f y , y �y , �t�1 t t � �M Ž . Ž .f y �y , � � q y �y , y , � dy .Ht�1 t t t t�1 t�Ž .q y �y , y , �t t t�1

Ž .The proposal made by Pedersen 1995 is to set

Ž � . Ž � .q y �y , y , � � f y �y , � ,t t t�1 t t

which is easy to sample from and has the significant advantage that

Ž � .f y , y �y , �t�1 t t � Ž j.� f y �y , � .ž /t�1 t , M� tŽ .q y �y , y , �t t t�1

This method is simple, but it does not exploit y in the design of thet�1
importance sampler.

A more efficient importance function can be developed according to the
Ž .approach of Chib, Greenberg, and Winkelmann 1998 and Shephard and Pitt

Ž .1997 , which relies on a tailoring procedure that is analogous to that discussed
above in connection with the M-H proposal density. Let 	 be the mode ofˆ t

� � ˆŽ .log f y , y �y , � as a function of y and let � be the negative of the inverset�1 t t t t
� ˆŽ .of the Hessian of log f y , y �y , � evaluated at 	. Given 	 and � , let theˆ ˆt�1 t t t t

importance density be

� � ˆŽ .q y �y , y , � � f y �	 , � , � ,ˆŽ .t t t�1 T t t t
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a multivariate-t density with mean 	 , dispersion � and � degrees of freedom.t t
This choice leads to the importance sampling density estimator of the form

R � Ž j.1 f y , y �y , �Ž .t�1 t tM̃Ž . Ž .3.9 f y �y , � � � ,t�1 t � Ž j.R j�1 ˆf y �	 , � , �ˆž /T t t t

� Ž j. � ˆŽ .3.10 y � f y �	 , � , � .ˆŽ .t T t t t

M̃The variance of f , when it exists, can be estimated by the method provided in
Ž .Geweke 1989 . Note that all M states are integrated out by importance

sampling in one sweep. The empirical performance of this method is discussed
Ž .extensively by Elerian 1999 .

3.2. Marginal Likelihood

We now consider the question of comparing alternative, potentially nonnested,
diffusion models that have been fit to a given data set. A formal Bayesian
approach for making this comparison is through the marginal likelihood of each
model, where the marginal likelihood is defined as the integral of the likelihood
function with respect to the prior density of the parameters. Ratios of marginal
likelihoods are called Bayes factors and these provide the evidence in the data
in favor of the numerator model, relative to the model in the denominator.
Marginal likelihoods can also be used to compute the posterior probability of
each model in the collection. Besides providing information on the relative
worth of the various models, these posterior probabilities can be used to find the
model averaged Bayesian predictive densities; see Raftery, Madigan, and Volin-

Ž .sky 1994 .
Ž .Chib 1995 has developed a general method for computing the marginal

likelihood based on the output produced from the MCMC simulation. Let �
denote the parameters of a given diffusion model MM, with likelihood function

M Ž . Ž .f Y �y , � , MM and prior density � � � MM , where the likelihood function is1
computed using the efficient method just outlined. Then, the Chib method
exploits the fact that the marginal likelihood of model MM can be written as

M Ž . Ž .f Y �y , � , MM � � � MM1Ž .m Y � MM � .Ž .� � �Y , MM

The key point is that this expression, which is a consequence of Bayes theorem,
is an identity in � and can therefore be evaluated at any appropriately selected

� Ž . � Ž � .point � say . If � denotes a high density point and � � �Y, MM the estimateˆ
of the posterior ordinate at � � , then the marginal likelihood on the log scale is
estimated as

Ž . Ž . M Ž � . Ž � .3.11 log m Y � MM � log f Y �y , � , MM � log � � � MM1

Ž � .� log � � �Y , MM ,ˆ
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where the first term is the value of the log likelihood function at � � , found using
Ž .3.9 and the second term is the log of the prior density which is available
directly. The third term is estimated from the MCMC output by either kernel

Ž .smoothing if the dimension of � is small or by a marginal	conditional
decomposition of the posterior ordinate followed by reduced MCMC runs to
generate the draws necessary to estimate each of the marginal	conditional

Ž Ž . .ordinates see Chib 1995 for further details . It should be noted that an
important feature of this approach is that it requires only a single evaluation of
the likelihood function.

3.3. Diagnostic Checks on a Fitted Model

We now address the question of how well the fitted model accords with the
observed data. We employ a predictive perspective to deal with this issue.

Consider the one-step-ahead conditional predictive distribution function

Ž . Ž .G y �y , � �Pr Y �y �Y �y , � .t�1 t t�1 t�1 t t

Ž . Ž .It is easy to show that u �G y �y , � is uniformly distributed on 0, 1t�1 t�1 t
Ž .under the correctness of the model. Clearly u lies in the interval 0, 1 .t�1

Furthermore,

Ž . � Ž . 4Pr u �a �y , � �Pr G y �y , � �a �y , �t�1 t t�1 t t

� �1 Ž . 4�Pr y �G a �y , �t�1 t

�a,

which shows that u is uniform. Finally, since u does not depend on y it ist�1 t�1 t
also an independent sequence. This result, in a different context, goes back at

Ž .least to Rosenblatt 1952 .
Now consider a simulation-based approach for estimating u . First, approxi-t�1

Ž .mate G y �y , � byt�1 t

M Ž . Ž � . M Ž � . �F y �y , � � Pr Y �y �y , � f y �y , � dy ,Ht�1 t t�1 t�1 t , M t t t

Ž � . �where Pr Y �y �y , � is derived using the fact that Y �y , � ist�1 t�1 t, M t�1 t, M
approximately Gaussian. Next, estimate the integral by Monte Carlo by drawing

� Ž j. M Ž � .y � f y �y , � a large number of times and forming the average:t t t

R1
� Ž j.Mˆ Ž .u �F y �y , � � Pr Y �y �y , � .ˆ Ž .Ýt�1 t�1 t t�1 t�1 t , MR j�1

The direct Monte Carlo estimate of the integral can be improved by importance
sampling as was suggested for the estimation of the likelihood ordinate above.

Ž .The results of Talay and Tubaro 1990 imply that the error in estimating
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Ž .G y �y , � is again of an order smaller than or equal to the product of 1	Mt�1 t'and 1	 R . We now judge the adequacy of the fitted model by the serial
� 4correlation in the u and by the nature of the distributional shape of bothˆt�1

1� 4 � �4the u and its reflected version 2 �u � , the latter providing informationˆ ˆt�1 t�1 2
Ž .on dispersion. These statistics are also used in, for example, Pedersen 1994 and

Ž . � �Smith 1985 . The idea of focusing on 2 u �0.5 appears in Kim, Shephard, andˆt
Ž . 11Chib 1998 . As a by-product, we also compute the standardized forecast errors

Ž Ž ..see Pedersen 1994 as

ˆŽ .y �E y �y , �t�1 t�1 t
,�' Ž .var y �y , �t�1 t

where

R
Ž j.ˆŽ . Ž .E y �y , � � 1	R Y andÝt�1 t t�1

j�1

R� 2Ž j. ˆŽ . Ž Ž .. Ž .var y �y , � � 1	 R�1 Y �E y �y , � .� 4Ýt�1 t t�1 t�1 t
j�1

Properties of these statistics are harder to evaluate than for the u , butˆt�1
provide a graphical aid to help explain the inadequacies of the fitted model.
These ideas are illustrated in Section 5.

4. SIMULATED DATA EXAMPLE

4.1. CIR Model

In this section we apply the methods developed above to the CIR process

Ž . � Ž .4 Ž . Ž .'dy t � ��
 y t dt�
 y t dW t .

Similar detailed calculations for the OU, Quadratic drift, and Hull-White
Ž .models are given in the Appendix of Elerian, Chib, and Shephard 1998 . With

Ž . Ž .the transformation x t � log y t and Ito’s lemma, the model under the Eulerˆ
approximation is given by

� 
 2 
 2
2x �x , � , 
 , 
 �N �
� ��x , � .t�1 t t½ 5ž /exp x 2 exp x exp xt t t

11 In practice we replace � by some estimator of the parameter�usually the posterior mean. This
leads to another layer of approximation. Alternatively, one could sequentially integrate out the

Ž . Ž .effect of � and compute G y �y . Gerlach, Carter, and Kohn 1999 provide methods for doingt�1 t
this in certain time series models but in our context such computations are quite burdensome.
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The data for our illustration is simulated from the above model with ��0.5,

�0.2, and 
 2 �0.05. We specify a design to represent typical weekly and daily
financial data sets. Using an initial value of y �1, two sets of T�5000

Žobservations are obtained using the strong solution which has a noncentral
. † †chi-squared distribution , using � �1 for daily series and � �5 for weekly

data. Here �† can be thought of as the time interval in the observed data and
determines the bias in the discretized time gap.

M Ž � .In order to simulate from � � , Y �Y, y , we implement the M-H sampler1
M Ž � .for � Y �Y, y , � as discussed in Section 2. We can exploit the special1

Ž � .structure of the CIR model to efficiently update our samples from f � �Y , Y
Ž � 2 . Ž 2 � .by sampling from f � , 
 �Y , Y, 
 and then from f 
 �Y , Y, � , 
 . The

implementation is discussed in the next two subsections.

4.2. Full Conditional Density of the Drift Parameters

Ž .�Let �� � , 
 and suppose that � is given a bivariate normal prior distribu-
tion with mean � and variance ��1. Then a simple calculation shows that0 0
the full conditional density given the observations and augmented data, z�
Ž . Ž � � � .z , . . . , z � y , y , . . . , y , y , . . . , y , y is1 n 1 1, 1 1, M 2 T�1, M T

2 Ž �1 �1 .� �z , 
 �N V u , V

where

X � � X � X�
u� �� � , V� �� ,0 0 02 2ž / ž /
 


and

2
 �
z log z � � log z' 1 2 1 �1	2 1	2ž /2 z z �z1 1 1

. . .. . .� � , X� .. . .
 0�1	2 1	22 z �z
 � n�1 n�1
z log z � � log z' n�1 n n�1ž /2 zn�1

4.3. Full Conditional Density of the Volatility

The posterior of the volatility coefficient is no longer conjugate when the log
of the process is considered. We propose taking a first-order Taylor expansion of

Ž 2 .the nonconjugate part to upperbound log f 
 �z, � , 
 , which we can denote by
Ž 2 . Ž .g 
 �z, � , 
 where f�Cg for 0	C	� , and hence obtain the posterior

Ž Ž ..using an Accept	Reject technique Ripley 1987, pp. 60�61 . We generate a
2 Ž 2 .candidate value, 
 , from g 
 �z, � , 
 and a uniform random number U onˆ
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Ž 2 . � Ž 2 .4 2 2the interval 0 to 1. If U� f 
 �z, � , 
 	 Cg 
 �z, � , 
 , the value 
 �
 isˆ
returned. If the value is rejected, another candidate value is drawn and the
algorithm is repeated.

2 ŽŽ . Ž ..Let 
 a priori follow the Inverse of Gamma p	2 , 1	2 S p distribution,0
Ž .where S �c�, p and c are constants typically 10 and 0.001 respectively ; the0

log-full conditional density is

Ž 2 . � Ž 2 . �2 2log f 
 �z , � , 
 �c �� log 
 �� 
 �S 
 ,1 2 1

where

nn�p 1
2� � , � � z d �S p� ,Ý1 2 t�1 t�1 0ž / ž /2 2 � t�2

n� ��
�1S � z and d � log z � log z � �
�.Ý1 t�1 t�1 t t�18 zt�1t�2

Let �� log 
 2; then

2�

2Ž . Ž . Ž .4.12 log f � �z , � , 
 � log f 
 �z , � , 
 � log

��

� Ž . Ž . Ž .�c � � �1 ��� exp �� �p � ,1 2

Ž . Ž . �Ž . �Ž . Ž .where � �0, and p � �S exp � is concave in �, that is p � �p � �p �2 1
�Ž . �Ž .is negative for all �, and p � and p � are the first and second derivatives of

Ž .p � with respect to �. Then we can sample from � �z, � , 
 by making sugges-
tions

� ˆŽ . Ž . Ž . Ž .4.13 log g � �z , � , 
 �exp � �Inverse Gamma � �p � �1, � ,� 41 2

� ˆ ˆŽ .where � �p � �1, � �0, and � is an arbitrary fixed value of �. These1 2
ˆ � ˆ ˆ� Ž . Ž . Ž .Ž .4proposed values are accepted with probability exp p � �p � �p � ��� .

4.4. MCMC Output Analysis

We now apply our MCMC sampling procedure to the first simulated data set,
which corresponds to the case �† �1. The MCMC algorithm is run for N�
10,000 cycles with �† �1. In Figure 6 we show the sample path, autocorrelation
function, and histogram based on the MCMC output of 
 2. The output for �
and 
 displays similar features. In the top graphs M�0, in the middle graphs
M�1, and in the bottom graphs M�10. Figure 7 corresponds to the case
�† �5, where the bias is more pronounced. These graphs demonstrate the clear
advantage of using auxiliary variables in the estimation procedure. Bias de-
creases quickly and the autocorrelation in the sampler is low.
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Ž . Ž . Ž . 2FIGURE 6.�Paths a, d, g , correlograms b, e, h , and histograms c, f , i for draws from 
 �y
Ž .true value 0.05 . Top graph uses discretization M�0, middle graphs have M�1, and bottom
graphs have M�10, ��3. N�10,000 with thin �10 and �† �1 in all simulations.

Ž . Ž . Ž . 2FIGURE 7.�Paths a, d, g , correlograms b, e, h , and histograms c, f , i for draws from 
 �y
Ž .true value 0.05 . Top graph uses discretization M�0, middle graphs have M�1, and bottom
graphs have M�10, ��3. N�10,000 with thin �10 and �† �5 in all simulations.
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ŽSummaries of the MCMC output for the second data set which correspond to
† .the case � �5 are reported in Table II. The MCMC algorithm is now run with
Ž . Ž . Ž .M�0, 1, 10 ��3 , 20 ��5 , and 30 ��9 for N�10,000 iterations. The

inefficiency factors are small for M	20. When M�20, the MCMC sampler is
approximately fourteen times less efficient than a hypothetical algorithm that
produces independent draws. The inefficiency factor increases to twenty when

TABLE II
Ž .THE POSTERIOR MEANS, INEFFICIENCY FACTORS BANDWIDTH B �100 , COVARIANCES, ANDN

CORRELATIONS ARE SHOWN FOR THE PARAMETERS OF THE CIR PROCESS. TRUE VALUES ARE
2��0.5, 
�0.2, AND 
 �0.05. DATA WERE OBTAINED USING T�500, R�100,000, AND

† Ž . Ž .� �5. THE M-H ALGORITHM WAS RUN WITH M�0, 1, 10 ��3 , 20 ��5 , AND 30
Ž .��9 FOR N�10,000 ITERATIONS

Ž .Summary statistics for the parameters CIR process

Posterior mean Inefficiency Covariance & Correlation

M�0
� �y 0.31760 0.77854 0.0054081 0.97279 �0.092305

 �y 0.12770 0.84724 0.00021815 9.2992e-005 �0.21829

2
 �y 0.022571 1.1696 �1.2008e-005 �1.1775e-005 3.1291e-005

M�1
� �y 0.40436 1.1150 0.0013566 0.98856 0.54185

 �y 0.16207 1.1429 0.00054035 0.00022024 0.53330

2
 �y 0.031452 0.81728 4.8755e-005 1.9335e-005 5.9681e-006

M�3
� �y 0.46317 1.2305 0.0026897 0.99218 0.68820

 �y 0.18467 1.2050 0.0010667 0.00042976 0.67840

2
 �y 0.039716 1.0100 0.00012994 5.1199e-005 1.3253e-005

M�5
� �y 0.48435 2.9272 0.0029436 0.99234 0.75960

 �y 0.19274 2.8637 0.0011658 0.00046890 0.75262

2
 �y 0.043112 3.4651 0.00017067 6.7491e-005 1.7150e-005

M�10
� �y 0.51020 3.2109 0.0031933 0.99134 0.75791

 �y 0.20257 3.2473 0.0012596 0.00050556 0.75184

2
 �y 0.047446 3.7755 0.00020091 7.9299e-005 2.2005e-005

M�20
� �y 0.51063 11.035 0.0037585 0.99268 0.80889

 �y 0.20264 11.189 0.0014996 0.00060718 0.80235

2
 �y 0.048186 14.682 0.00026019 0.00010373 2.7529e-005

M�30
� �y 0.50255 14.210 0.0033777 0.99158 0.78960

 �y 0.19932 14.063 0.0013367 0.00053798 0.78177

2
 �y 0.047606 19.590 0.00022342 8.8281e-005 2.3704e-005
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M�30. The autocorrelation plots in Figure 6 reinforce this point, dying down
more quickly for smaller values of M. There is strong correlation between �

Ž . 2and 
 0.99 regardless of M, while the correlation between 
 and � , 

initially increases with M, fluctuating around 0.75 and 0.8 for higher values of
M. Table III shows the results from a small simulation study for the parameters
of the CIR process. Ten data sets of length T�500 and �† �5 were generated
using the strong solution and the M-H algorithm was run with M�0, 1, 10, 20,
and 30 for N�10,000 iterations. In general, N�10,000 iterations were used
since the simulation inefficiency for the largest M hovered around 20. On the
basis of the Monte Carlo results reported in Table III, we see that as M
increases there is a marked decrease in bias, though the difference in results for
M�10, 20, and M�30 is negligible. Hence, the initial increase in M gives more
precise estimates of the parameters, but there are diminishing returns after

TABLE III

THE RESULTS FROM A SMALL SIMULATION STUDY FOR THE PARAMETERS OF THE CIR
†PROCESS ARE SHOWN. TEN SETS OF DATA WITH T�500, R�100,000, AND � �5

WERE GENERATED, AND THE M-H ALGORITHM WAS RUN WITH M�0, 1, 10, 20, AND

30 FOR N�10,000 ITERATIONS

Ž .Monte Carlo Results CIR process

Ž . Ž .Mean Bias s.d. Mean s.e. MSE �100

Ž .� 0.5
M�0 0.310 �0.190 0.0161 0.0227 3.6190
M�1 0.393 �0.107 0.0276 0.0359 1.2303
M�3 0.449 �0.051 0.0375 0.0480 0.4032
M�5 0.470 �0.031 0.0403 0.0515 0.2570
M�10 0.496 �0.004 0.0461 0.0543 0.2136
M�20 0.498 �0.0019 0.0451 0.0580 0.2035
M�30 0.494 �0.0061 0.0445 0.0579 0.2021

Ž .
 0.2
M�0 0.127 �0.074 0.0069 0.0095 5.4814
M�1 0.159 �0.041 0.0115 0.0146 0.1806
M�3 0.181 �0.019 0.0154 0.0194 0.0605
M�5 0.189 �0.011 0.0165 0.0208 0.0400
M�10 0.199 �0.000 0.0188 0.0219 0.0355
M�20 0.200 �0.000 0.0185 0.0236 0.0341
M�30 0.198 �0.002 0.0182 0.0234 0.0337

Ž .
 0.05
M�0 0.023 �0.027 0.0008 0.0056 0.0738
M�1 0.032 �0.018 0.0013 0.0025 0.0325
M�3 0.040 �0.010 0.0022 0.0036 0.0097
M�5 0.044 �0.006 0.0026 0.0042 0.0044
M�10 0.048 �0.002 0.0033 0.0048 0.0013
M�20 0.049 �0.001 0.0033 0.0052 0.0011
M�30 0.049 �0.001 0.0034 0.0051 0.0013
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Ž . 2 12certain values for example, M�20 . The MSE for 
 is smallest for M�20.
Additional simulation experiments, reported elsewhere, show that an increase in
the DGP drift parameter values, holding the volatility parameter constant, is
associated with a small increase in the bias, MSE, and inefficiency factors for all
three parameters. Interestingly, increasing the volatility parameter, while keep-
ing the drift parameters fixed, has the opposite effect. The computer time to run
100 iterations of the sampler, with T�500 observations, is 66.08 seconds for

Ž . Ž .M�3 ��1 , 125.82 seconds for M�10 ��3 , and 245.58 seconds for
Ž . Ž .M�30 ��5 , using the matrix language Ox developed by Doornik 1996 .

5. REAL DATA EXAMPLE

We now consider the analysis of a diffusion model of the type outlined in
Ž . Ž .Aıt-Sahalia 1996b and apply this and related models to the 7-day Eurodollar¨

Ž .deposit spot rate measured as the midpoint of the bid-ask rates . The data,
which consist of daily observations over the period 1st of June, 1973 to 25th of

Ž . 13February, 1995, have also been considered by Aıt-Sahalia 1996b . The model¨

12 To monitor the convergence of each parameter, we can additionally compute the Gelman-Rubin
Ž . Ž .r statistic: see Gelman and Rubin 1992 and Gelman, Carlin, Stern, and Rubin 1995, pp. 331�332 .

Suppose we denote one of the parameters of � as � and run J parallel sequences of the M-H
algorithm with overdispersed starting values. Each sequence is run for N iterations, to obtain draws

Ž .� i�1, . . . , N; j�1, . . . , J . The between, B, and inbetween, W, sequence variances can bei j
computed as

J N JN 1 12
Ž .B� � �� , where � � � , � � � ,Ý Ý Ý. j . . . j i j . . . jJ�1 N Jj�1 i�1 j�1

J N1 1 22 2 Ž .W� s , where s � � �� .Ý Ýj j i j . jJ Nj�1 i�1

Ž .The estimate var � �Y is then given by a weighted average of B and W as

N�1 1
� Ž .var � �Y � W� B ,

N N

which is in fact an overestimate of the variance of the marginal posterior density. The convergence
'ˆcan be assessed through R , where

� Ž .var � �Yˆ N�� �'R̂ � 1.( W

2 'ˆŽ .For the parameters � , 
 , 
 of the CIR model in one of the experiments, the corresponding R
Ž . Ž .statistic is given by 1.0001, 1.0001, 1.0013 . The M-H algorithm was run using M�10 ��3 ,

N�5000 and a burn-in of 500 simulations.
13 The data can be downloaded from http:		www.princeton.edu	yacine	research	.
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is specified by the diffusion functions

Ž . Ž . 2 �15.14 a y , � �� �� y�� y �� y ,0 1 2 3

2 Ž . 
3b y , � �
 �
 y�
 y ,0 1 2

Ž .�where �� � , � , � , 
 , 
 , 
 , 
 and0 1 3 0 1 2 3

Ž
 �0 and 
 �0 if 
 �0 and 0	
 	1, or0 2 0 3

.
 �0 if 
 �0 and 
 �1 ,1 0 3


 �0 if either 
 �1 or 
 �0, and2 3 1


 �0 if either 0	
 	1 or 
 �0,1 3 2

� �0 and � 	0 if � �0,2 1 2

� �0 and 2� �
 �0, or3 3 0

� �0, � �0, 
 �0, 
 �1, and 2� �
 �0.3 0 0 3 0 1

The first two sets of constraints are necessary for b2 to be positive, the third
ensures that the drift is mean reverting for large values of y, while the fourth
ensures that the values are positive. Note that instead of letting 
 be restricted3

Ž . Ž . Ž .to the region 0, 1 � 1, � , we could let 
 � 1, � , given the characteristics of3
Žthe data at hand the sample data contain T�5505 observations with a mean of

0.083621 and variance of 0.0012893; the observations range from 0.029150 to
.0.24333 . The other model specifications are outlined in Table IV. These

alternative specifications are considered because the above model is practically
unidentified for these data.

Our first set of results are for the Vasicek, CIR, and Affine CIR models,
where we have fit the model after taking logs and applying the Ito transforma-ˆ
tion. The results are given in Table V, where we report the posterior means,
Monte Carlo standard errors, inefficiency factors, and the covariances and

Ž .correlations of the parameters. The Highest Probability Density HPD regions
14 Ž .are also reported. The results are based on M�10 ��3 using N�2000

TABLE IV

MODELS TO BE CONSIDERED FOR THE SHORT-RATE PROCESS: VASICEK, CIR, AFFINE CIR,
Ž .AıT-SAHALIA 1996B MODEL, AND GENERAL PARAMETRIC MODEL¨

2Ž . Ž .Model Drift function a y, � Volatility function b y, �

Vasicek � �� y 
0 1 0
CIR � �� y 
 y0 1 1
Affine CIR � �� y 
 �
 y0 1 0 1

2 
 3Ž .Aıt-Sahalia 1996b � �� y�� y �� 	y 
 �
 y�
 y¨ 0 1 2 3 0 1 2
2 2 3General parametric model � �� y�� y �� 	y 
 �
 y�
 y �
 y0 1 2 3 0 1 2 3

14 The �% HPD region represents the shortest interval that contains �% of the points of highest
Ž .posterior density; for example, see Besag, Green, Higdon, and Mengersen 1995 .
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TABLE V
ŽTHE POSTERIOR MEANS, HPD, MONTE CARLO STANDARD ERRORS, INEFFICIENCY FACTORS INEFF,

. Ž .BANDWIDTH B �100 , COVARIANCES AND CORRELATIONS IN ITALICS ARE SHOWN FOR THE PARAME-N
TERS USING THE EURODOLLAR SHORT-RATE DATA APPLIED TO THE VASICEK PROCESS. THE M-H

Ž .ALGORITHM WAS RUN WITH M�10 ��3 , FOR N�2000 ITERATIONS

Parameters of Vasicek applied to Eurodollar short-rate data

Mean HPD MCse Ineff Covariance & Correlation

M�10
� �y 0.000563 0.000271 0.000821 8.74e-08 1.2 1.98e-08 �0.917 0.0650
� �y �0.00673 �0.00972 �0.00377 8.85e-07 1.2 �1.97e-07 2.33e-06 �0.0801

 �y 1.66e-05 1.60e-05 1.71e-05 3.37e-09 22.4 2.73e-12 �3.67e-11 9.04e-140

Ž .MCMC iterations for the Vasicek shown and CIR models and N�5000 for
the Affine CIR model. For each of these models, the output paths, correlo-

Ž .�grams, and histograms of �� � , � , 
 are given in Figures 8, 9, and 10. We0 1 1
Ž .selected B �100 400 in the Parzen computations of the Monte Carlo stan-N
Ž .dard errors for � 
 . We set standard diffuse normal priors on the alpha

coefficients and diffuse inverse Gamma priors on 
. In the Affine CIR and
general parametric model, however, 
 is given a diffuse normal prior.1

It will be seen that for each model the correlogram of � dissipates quickly,
though that of 
 in the Affine CIR model shows persistence up to lag 100. In1
all models, the posterior mean of � is positive and that of � is negative. The0 1

Ž . Ž . Ž .FIGURE 8.�Paths a, d, g , correlograms b, e, h , and histograms c, f , i for � , � , and 
 for0 1 0
the Vasicek process fitting the Eurodollar short-rate. The algorithm was run with M�10 and ��3.
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Ž . Ž . Ž .FIGURE 9.�Paths a, d, g , correlograms b, e, h , and histograms c, f , i for � , � , and 
 for0 1 1
the CIR process fitting the Eurodollar short-rate. The algorithm was run with M�10 and ��3.

Ž . Ž . Ž .FIGURE 10.�Paths a, d, g, j , correlograms b, e, h, k , and histograms c, f , i, l for � , � , 
 ,0 1 0
and 
 for the Affine CIR process fitting the Eurodollar short-rate. The algorithm was run with1
M�10 and ��3.
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results on 
 in the Vasicek model and those of 
 in the CIR model are0 1
consistent with those in the Affine CIR model. The Figures show that 
 is0
close to zero and that the variance is mainly determined by 
 y. The � and 
1
parameters are close to being uncorrelated. One point to note is that the
inefficiency factors are low for � . For 
 , we are up to twenty five times less
efficient.

In Figure 11 we plot the standardized forecast errors, defined in Section 3.3,
for all models. A plot of the autocorrelation functions is provided in Figure 12
with the corresponding QQ plots. The residuals and their reflected versions are
computed using the one-step-ahead prediction distribution. The standardized
forecast errors show that the extremes in the data are not being picked up for a
large part of the data. This is further confirmed by the correlograms which show
remaining structure not being accounted for. The lack of fit is also highlighted
by the amount of activity present, which occurs in concentrated clumps of
observations, an indication that these Markov models do not account for the
volatility clustering present in the series.

We now turn our attention to the general parametric model given by equation
Ž .5.14 . We first show that 
 and 
 are difficult to identify separately from our2 3
data. In Figure 13 we show a plot of 
 y 
3 against a range of y values2
determined from the data. The function is plotted for five pairs of values of
Ž . Ž �4 . Ž �4 . Ž �4 . Ž
 , 
 : 4.511 � 10 , 1.5 , 6.9338 � 10 , 1.7 , 7.021 � 10 , 1.8 , 1.312 �2 3

�3 . Ž �3 .10 , 2 and 1.5177�10 , 2.1 . These were obtained from the MCMC algo-

FIGURE 11.�Standardized one-step-ahead forecast errors for the Vasicek, CIR, Affine CIR, and
Ž̂ . Ž . Ž .general parametric models. We graph y �E y �y , � 	 var y �y , � , taking ��E � �y .'t�1 t�1 t t�1 t
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� 4 Ž .FIGURE 12.�Top graphs: Autocorrelation functions of residuals, u left panel and reflectedˆt
� �4 Ž .residuals, 2 �u �0.5 right panel for the Vasicek, CIR, Affine CIR, and general parametricˆt

process. Bottom graphs: The corresponding QQ plots against observations.

FIGURE 13.�Top graph plots 
 y 
3 against a range of values for y between the minimum and2
Ž .maximum values observed from the data, for five pairs of values of 
 , 
 . Bottom graph plots the2 3

kernel estimate for the density using the interest data.
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rithm fixing a value of 
 and evaluating the posterior mean of 
 . In the3 2
bottom graph we plot the kernel density estimate of the y data. We see that for

Ž .the range of y values with mass essentially values of y below 0.16 , the five
Ž . 
3different pairs of 
 , 
 values produce virtually the same value of 
 y . On2 3 2

Ž Ž ..the basis of this analysis see also Tauchen 1997 we estimate an alternative
model in which the volatility specification is cubic, preserving the quadratic
shape exhibited above


 �
 y�
 y2 �
 y3 ,0 1 2 3

as suggested by Figure 13. Results are shown in Table VI. Similar diagnostics
were obtained on setting 
 �0. Standardized forecast errors in Figure 11 show3
that the extremes in the data are not being picked up, and the autocorrelation
functions in Figure 12 confirm that the models have not provided a good fit to
the data.

To complete the analysis we also compute the marginal likelihoods of these
various models. The required likelihood ordinate is computed by importance
sampling, as discussed earlier, using M�10 latent values between every two
data points and the posterior ordinate is found by the method of kernel
smoothing. Both these quantities and the prior ordinate are evaluated at the
posterior mean of the parameters. The resulting log marginal likelihood esti-
mates are shown in Table VII. We infer that there is almost equal support in the
data for the CIR and the Affine CIR models but that the general parametric
model receives overwhelming support in relation to the other three models.
Nonetheless, volatility clustering in the residuals suggests that each of these
models should be elaborated to include a heavy tailed stochastic volatility

Ž .component, perhaps along the lines of Andersen and Lund 1997 .

TABLE VI
ŽTHE POSTERIOR MEANS, STANDARD ERRORS, HPD, INEFFICIENCY FACTORS INEFF, BAND-

. Ž .WIDTH B �100 , COVARIANCES AND CORRELATIONS IN ITALICS ARE SHOWN FOR THEN
PARAMETERS USING THE EURODOLLAR SHORT-RATE DATA APPLIED TO THE

Ž .GENERAL-PARAMETRIC PROCESS. THE M-H ALGORITHM WAS RUN WITH M�10 ��3 ,
FOR N�1500 ITERATIONS

Mean MCse HPD Ineff

M�10
� �y �0.00441 1.25e-06 �0.00674 �0.00215 1.60
� �y 0.0612 1.83e-05 0.0280 0.0924 1.71
� �y �0.259 7.72e-05 �0.387 �0.118 1.72
� �y 9.85e-05 2.53e-08 4.97e-05 0.000145 1.53

 �y 4.71e-06 2.32e-09 4.40e-06 5.04e-06 21.20

 �y 1.13e-06 6.32e-09 3.90e-07 1.95e-07 21.61

 �y 2.25e-05 1.61e-07 6.62e-06 4.21e-05 24.12

 �y 0.00106 5.21e-06 0.00997 0.0115 21.03
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TABLE VII

THE LOG MARGINAL LIKELIHOOD COMPUTATIONS ARE SHOWN
� �Ž . Ž .FOR x� log y. f x �� AND � � �x ARE COMPUTED USING

M�10, BURN-IN�200, AND N�2000. PRIORS USED ARE IN-
� � � �2�Ž Ž . . Ž .4VERSE GAMMA � 	 15
 �2, � 
 �1 FOR 
 AND

� � � 2� Ž . 4 ŽNORMAL � �4
 , 15
 FOR � , 
 USES NORMAL SPECI-1
�.FICATION IN GENERAL PARAMETRIC MODEL , WHERE � AND

�
 ARE THE RESPECTIVE POSTERIOR MEANS AND STANDARD

DEVIATIONS, BASED ON A TRAINING SAMPLE DATA SET. THE

NUMERICAL STANDARD ERROR OF THE MARGINAL LIKELIHOOD

Ž . Ž .LOG SCALE IS DENOTED BY NUMERICAL SE

Ž .Model log m x � MM Numerical se

Vasicek 8328.9 0.52857
CIR 9430.5 0.25093
Affine CIR 9436.9 0.26587
General parametric model 9716.8 0.60919

6. CONCLUDING REMARKS AND FURTHER TOPICS

In this paper we have provided a full Bayesian approach to the analysis of
discretely observed diffusions. Our approach is based around the introduction of
auxiliary observations which are then integrated out of the likelihood function
by tuned Markov chain Monte Carlo simulation methods. We have proposed
efficient ways of summarizing the posterior distributions in these problems and

Žprovided methods for finding the model marginal likelihood to compare alter-
.native stochastic differential equations and for computing model fit measures,

both based on the MCMC output.
This paper differs from much of the recent econometric literature on the

estimation of diffusions. In comparison with the EMM	indirect inference
literature, no auxiliary model to sample the latent data is required. This feature
is likely to be particularly helpful in the analysis of multivariate stochastic
differential equation models where finding good auxiliary models is known to be
difficult. Although we have used a prior in our analysis, the results are largely
determined by information in the likelihood function and not the prior given the
sample sizes that are encountered in this area.

Another important characteristic of our approach is that it can be extended to
Ždeal with partially observed diffusions i.e., diffusions containing an unobserved

.state variable such as a stochastic volatility component , multivariate observa-
tions and nonstationary data. We have initiated further work on these problems.
Finally, the approach can be easily modified to include the more sophisticated
Milstein approximation as the basis of the discretization scheme; see Elerian
Ž .1998 . Comparable results based on this modification will be reported else-
where.
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