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Abstract— Multibiometric systems fuse information

from different sources to compensate for the limitations

in performance of individual matchers. We propose a

framework for optimal combination of match scores that

is based on the likelihood ratio test. The distributions of

genuine and impostor match scores are modeled as finite

Gaussian mixture model. The proposed fusion approach

is general in its ability to handle (i) discrete values in

biometric match score distributions, (ii) arbitrary scales

and distributions of match scores, (iii) correlation be-

tween the scores of multiple matchers and (iv) sample

quality of multiple biometric sources. Experiments on

three multibiometric databases indicate that the proposed

fusion framework achieves consistently high performance

compared to commonly used score fusion techniques based

on score transformation and classification.

Index Terms— Multibiometric systems, score level fu-

sion, Neyman-Pearson theorem, likelihood ratio test, Gaus-

sian mixture model, image quality

I. INTRODUCTION

Biometrics refers to the automatic identification

of individuals based on their anatomical and be-

havioral characteristics. Biometric systems based

on a single source of information (unibiometric

systems) suffer from limitations such as the lack

of uniqueness and non-universality of the chosen

biometric trait, noisy data and spoof attacks [1].

Multibiometric systems fuse information from mul-

tiple biometric sources in order to achieve better

recognition performance and to overcome other lim-

itations of unibiometric systems [2]–[4]. Fusion can

be performed at four different levels of information,

namely, sensor, feature, match score, and decision

levels. Score level fusion is generally preferred

because it offers the best trade-off in terms of the
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Fig. 1. Non-homogeneity in the match scores provided by the two

face matchers in the NIST-Face database [5]. Note that about 0.2%

of the scores output by matcher 1 are discrete scores with value -1

which are not shown in this plot.

information content and the ease in fusion. Combin-

ing match scores is a challenging task because the

scores of different matchers can be either distance or

similarity measure, may follow different probability

distributions, may provide quite different accuracies

and may be correlated. Consider the scores provided

by the two face matchers in the NIST-Face database.

The scores from these two matchers are in the

range [−1, 1] and [0, 100] (see Figure 1) and the

Pearson’s correlation coefficient for the genuine and

impostor scores of the two matchers are 0.7 and 0.3,

respectively.

Score fusion techniques can be divided into the

following three categories.

• Transformation-based score fusion: The match

scores are first normalized (transformed) to a

common domain and then combined. Choice

of the normalization scheme and combination

weights is data-dependent and requires exten-

sive empirical evaluation [4], [6], [7].

• Classifier-based score fusion: Scores from mul-

tiple matchers are treated as a feature vector

and a classifier is constructed to discriminate
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genuine and impostor scores [2], [8], [9]. When

biometric score fusion is considered as a clas-

sification problem, the following issues pose

challenges. (i) Unbalanced training set: The

number of genuine match scores available for

training is O(n), but the number of impostor

scores is O(n2), where n is the number of users

in the database. (ii) Cost of misclassification:

Depending on the biometric application, the

cost of accepting an impostor may be very dif-

ferent from the cost of rejecting a genuine user.

For example, a biometric system in security

applications typically requires the false accept

rate (FAR) to be less than 0.1%. Therefore,

the fusion classifier needs to minimize the false

reject rate (FRR) at the specified FAR values

rather than minimizing the total error rate (sum

of FAR and FRR) [3]. (iii) Choice of classi-

fier: Given a variety of admissible classifiers,

selecting and training a classifier that gives

the optimal performance (minimum FRR at a

specified FAR) on a given data set is not trivial.

• Density-based score fusion: This approach is

based on the likelihood ratio test and it re-

quires explicit estimation of genuine and im-

postor match score densities [3], [10]. Den-

sity based approach has the advantage that it

directly achieves optimal performance at any

desired operating point (FAR), provided the

score densities are estimated accurately. In

fact, a comparison of eight biometric fusion

techniques conducted by NIST [11] with data

from 187, 000 subjects concluded that “Product

of Likelihood Ratios was consistently most

accurate, but most complex to implement” and

“complexity in this implementation is in the

modeling of distributions, rather than fusion

per se”. The statement in [11] about the com-

plexity of density estimation was based on

the use of kernel density estimator (KDE).

The selection of kernel bandwidth and density

estimation at the tails proved to be the most

complex steps in estimating the score densities

using KDE.

In this paper, we show that (i) finite Gaussian

mixture model (GMM) is quite effective in model-

ing the genuine and impostor score densities and is

easier to implement than KDE, (ii) fusion based on

the resulting density estimates achieves consistently

high performance on three multibiometric databases

involving face, fingerprint, iris, and speech modali-

ties and (iii) biometric sample quality can be easily

incorporated in the likelihood ratio based fusion

framework.

II. LIKELIHOOD RATIO BASED SCORE FUSION

A. Likelihood ratio test

Let X = [X1, X2, · · · , XK ] denote the match

scores of K different biometric matchers, where Xk

is the random variable representing the match score

of the kth matcher, k = 1, 2, · · · , K. Let fgen(x)
and fimp(x) be the conditional joint densities of

the K match scores given the genuine and impostor

classes, respectively, where x = [x1, x2, · · · , xK ].
Suppose we need to assign the observed match

score vector X to genuine or impostor class. Let Ψ
be a statistical test for testing H0: X corresponds

to an impostor against H1: X corresponds to a

genuine user. Let Ψ(x) = i imply that we decide

in favor of Hi, i = 0, 1. The probability of rejecting

H0 when H0 is true is known as the false accept

rate (size or level of the test). The probability of

correctly rejecting H0 when H1 is true is known

as the genuine accept rate (power of the test). The

Neyman-Pearson theorem [12] states that

1) For testing H0 against H1, there exists a test

Ψ and a constant η such that

P (Ψ(X) = 1|H0) = α (1)

and

Ψ(x) =











1, when
fgen(x)

fimp(x)
≥ η,

0, when
fgen(x)

fimp(x)
< η.

(2)

2) If a test satisfies equations (1) and (2) for

some η, then it is the most powerful test for

testing H0 against H1 at level α.

According to the Neyman-Pearson theorem, given

the false accept rate (FAR) α, the optimal test for

deciding whether a score vector X corresponds to

a genuine user or an impostor is the likelihood

ratio test given by equation (2). For a fixed FAR,

we can select a threshold η such that the likeli-

hood ratio test maximizes the genuine accept rate

(GAR). Based on the Neyman-Pearson theorem, we

are guaranteed that there does not exist any other
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decision rule with a higher GAR. However, this

optimality of the likelihood ratio test is guaranteed

only when the underlying densities are known.

In practice, we estimate the densities fgen(x) and

fimp(x) from the training set of genuine and impos-

tor match scores, respectively and the performance

of likelihood ratio test will depend on the accuracy

of these estimates.

B. Estimation of Match Score Densities

It is well known that the Gaussian density is not

appropriate for modeling biometric match scores

because the score distributions generally have a long

tail and may have more than one mode. Moreover,

the presence of discrete score values and correlation

among match scores of different biometric matchers

makes density estimation a challenging task. Non-

parametric techniques like density histogram and

kernel density estimator require careful choice of

histogram bin width or kernel bandwidth [11], [13]

that is critical to the fusion performance. Gaussian

mixture model (GMM) has been successfully used

to estimate arbitrary densities and theoretical results

in [14], [15] show that the density estimates ob-

tained using finite mixture models indeed converge

to the true density when a sufficient number of

training samples are available. For these reasons, we

use GMM for estimating the genuine and impostor

score densities.

Let φK (x; µ, Σ) be the K-variate

Gaussian density with mean vector µ and

covariance matrix Σ, i.e., φK (x; µ, Σ) =
(2π)−K/2|Σ|−1/2 exp

(

−1
2
(x − µ)T Σ−1(x − µ)

)

.

The estimates of fgen(x) and fimp(x) are obtained

as a mixture of Gaussians as follows.

f̂gen(x) =

Mgen
∑

j=1

pgen,jφ
K

(

x; µgen,j, Σgen,j

)

, (3)

f̂imp(x) =

Mimp
∑

j=1

pimp,jφ
K

(

x; µimp,j, Σimp,j

)

, (4)

where Mgen (Mimp) is the number of mixture com-

ponents used to model the density of the genuine

(impostor) scores, pgen,j (pimp,j) is the weight as-

signed to the jth mixture component in f̂gen(x)

(f̂imp(x)),
∑Mgen

j=1 pgen,j =
∑Mimp

j=1 pimp,j = 1.

Selecting the appropriate number of components

is one of the most challenging issues in mixture

density estimation; while a mixture with too many

components may result in over-fitting, a mixture

with too few components may not approximate

the true density well. The GMM fitting algorithm

proposed in [16] 1 automatically estimates the num-

ber of components and the component parameters

using an EM algorithm and the minimum message

length criterion. This algorithm is also robust to

initialization of parameter values (mean vectors and

covariance matrices) and can handle discrete com-

ponents in the match score distribution by modeling

the discrete scores as a mixture component with

very small variance. This is achieved by adding a

small value (regularization factor) to the diagonal

of the covariance matrices. The actual value of this

variance does not affect the performance as long as

it is insignificant compared to the variance of the

continuous components in the match score distri-

bution. For example, the lowest value of variance

in the match score data used in our experiments

is of the order of 10−3. Hence, we used the value

of 10−5 as the lower bound for the variance. Our

experiments indicate that a value smaller than 10−5

(say, 10−7 or 10−9) does not change the performance

of GMM. Since we do not place any restrictions

on the component covariance matrices Σgen,j and

Σimp,j , the estimates of the joint densities f̂gen(x)
and f̂imp(x) also take into account the correlation

between the match scores. Figure 2 shows that

Gaussian mixture model reliably estimates the 2-

D genuine and impostor densities of the two face

matchers in the NIST-Face database.
We now define the likelihood ratio (LR) fusion

rule as follows. Given a vector of K match scores

x = [x1, . . . , xK ] and estimated densities f̂gen(x)
and f̂imp(x), compute the likelihood ratio LR(x) =
f̂gen(x)/f̂imp(x).

Assign x to the genuine class if LR(x) ≥ η, (5)

where η is the decision threshold that is determined

based on the specified FAR.

C. Incorporating Image Quality in Fusion

It is well known that the quality of biometric

samples has a significant impact on the accuracy of a

1The MATLAB code for this algorithm is available at http://

www.lx.it.pt/˜mtf/mixturecode.zip
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Fig. 2. Density estimation based on Gaussian mixture models for the NIST-Face database. (a) Scatter plot of the genuine scores along

with the fitted mixture components, (b) density estimates of the genuine scores, (c) scatter plot of the impostor scores along with the fitted

mixture components and (d) density estimates of the impostor scores. In this example, the estimated number of mixture components is 12

for the genuine density and 19 for the impostor density. The discrete score in the first matcher at value −1 is modeled as a separate mixture

component as shown in (a) and (c).

matcher [17]. Several schemes have used biometric

sample quality for improving the performance of a

multibiometric system [8], [18]–[20] by assigning

weights to individual match scores. To incorporate

sample quality in the likelihood ratio framework, we

first make the following observation. Since a poor

quality sample will be difficult to classify as genuine

or impostor (see Figure 3), the likelihood ratio for

such a sample will be close to 1. On the other hand,

for good quality samples, the likelihood ratio will be

greater than 1 for genuine users and less than 1 for

impostors. Hence, if we estimate the joint density

of the match score and the associated quality, the

resulting likelihood ratios will be implicity weighted

by the respective sample quality.

Let Q = [Q1, Q2, · · · , QK ] be the quality vec-

tor, where Qk is the quality of the match score

provided by the kth matcher, k = 1, . . . , K.

Let f̂gen(x, q) and f̂imp(x, q) be the joint den-

sities of the K-dimensional match score vector

and the K-dimensional quality vector estimated

from the genuine and impostor template-query

pairs, respectively. The quality-based likelihood ra-

tio, QLR(x, q), is given by

QLR(x, q) =
f̂gen(x, q)

f̂imp(x, q)
. (6)

The decision rule based on QLR(x, q) is similar

to the one used in equation (5). Note that the joint
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Fig. 3. Variation of match score with quality for fingerprint modality

in the WVU-Multimodal database. We observe that the genuine and

impostor match scores are well-separated only for good quality (with

quality index > 0.5) samples.

density estimation of (X, Q) now involves 2K vari-

ables which may not be very reliable with limited

training data. To avoid the curse of dimensionality,

we assume independence of K matchers and write

equation (6) as f̂(x, q) =
∏K

k=1 f̂k(xk, qk). So, now

we estimate K 2-dimensional densities for both

genuine and impostor classes. To perform quality-

based fusion based on equation (6), we use quality

metrics proposed in [21] for fingerprint and iris.

III. EXPERIMENTAL RESULTS

The performance of likelihood ratio based fu-

sion rule was evaluated on two public-domain

databases, namely, NIST-BSSR1 [5] and XM2VTS-

Benchmark databases [22]. The performance of the

quality-based product fusion rule was evaluated only

on the WVU-Multimodal database since the two

public databases did not contain raw images to

estimate the quality. The three databases used in

our study are summarized in Table I.

For each experiment, half of the genuine and

half of the impostor match scores were randomly

selected to form the training set for density esti-

mation. This training-test partitioning was repeated

m times (m = 20) and the reported ROC curves

correspond to the mean GAR values over the m
trials at different FAR values. We also report the

95% confidence interval for the improvement in

GAR achieved by likelihood ratio-based fusion at

specific FAR values2.

The receiver operating characteristic (ROC)

curves of the individual matchers and the LR fusion

rule for the three partitions of the NIST-BSSR1 and

XM2VTS databases are shown in Figure 4. The

LR fusion leads to significant improvement in the

performance compared to the best single modality

on all the four databases. At a false accept rate

(FAR) of 0.01%, the improvement in the genuine

accept rate (GAR) achieved due to LR fusion is

presented in Table II. We observe that the 95%

confidence intervals estimated in Table II are fairly

tight which indicates that the performance improve-

ment is consistent across the 20 cross-validation

trials. We also observe that multimodal fusion (face

and two fingers) in NIST-BSSR1 results in larger

improvement in GAR than two-finger fusion or

multi-algorithm fusion (two face matchers).

The performance of LR fusion rule is first com-

pared to fusion based on Support Vector Ma-

chine (SVM) classifier. While the performance of

SVM based fusion is comparable to LR fusion

on the NIST-Fingerprint and XM2VTS-Benchmark

databases (see Figures 4(b) and Figures 4(d)), it is

inferior to LR fusion on the NIST-Multimodal and

NIST-Face databases (see Figures 4(a) and 4(c)).

Moreover, the kernel function and the associated

parameters for SVM must be carefully chosen in or-

der to achieve this performance. For example, while

linear SVM gave good performance on the NIST-

Multimodal and XM2VTS-Benchmark databases,

we had to use a radial basis function kernel with

different parameter values for the NIST-Fingerprint

(γ = 0.005) and NIST-Face (γ = 0.1) databases to

obtain the results reported in Figure 4.

We also compared the performance of LR fusion

rule with a commonly used transformation-based

score fusion technique, namely, the sum of scores

fusion method, which can be derived as an approx-

imation to LR fusion rule under a set of conditions

[23]. However, in order to use the sum of scores

fusion method, we need to choose a score normal-

ization method. After an empirical evaluation, we

found that the min-max normalization [7] is the best

for the datasets used here. The ROC curves for the

2For experiments on XM2VTS-Benchmark database, we do not

randomly partition the scores into training and test sets because this

partitioning is already defined in [22]. Hence, confidence intervals

are not estimated for this database.
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TABLE I

SUMMARY OF MULTIBIOMETRIC DATABASES. NOTE THAT THE NIST-MULTIMODAL, NIST-FINGERPRINT AND NIST-FACE DATABASES

ARE DIFFERENT PARTITIONS OF THE NIST BIOMETRIC SCORE SET RELEASE-1 (BSSR1).

Database Biometric Traits No. of matchers (K) No. of users

NIST-Multimodal
Fingerprint (Two fingers)

4 517
Face (Two matchers)

NIST-Fingerprint Fingerprint (Two fingers) 2 6,000

NIST-Face Face (Two matchers) 2 3,000

XM2VTS-Benchmark
Face (Five matchers)

8 295
Speech (Three matchers)

WVU-Multimodal Fingerprint, Iris 2 320
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Fig. 4. Performance of likelihood ratio based fusion rule and SVM-based fusion on (a) NIST-Multimodal, (b) NIST-Fingerprint, (c) NIST-

Face and (d) XM2VTS-Benchmark databases. Although there are 8 matchers in the XM2VTS-Benchmark database, only the ROC curves

of the best face matcher (DCTb-GMM) and the best speech matcher (LFCC-GMM) are shown in (d) for clarity. A linear SVM was used in

(a) and (d) and a SVM with radial basis function kernel was used in (b) and (c) (with γ = 0.005 and γ = 0.1, respectively).
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TABLE II

PERFORMANCE IMPROVEMENT ACHIEVED BY LIKELIHOOD RATIO BASED FUSION.

Database Best Single

Matcher

Mean GAR at 0.01% FAR 95% Confidence

Interval on

Best

Single

Matcher

Likelihood

Ratio based

Fusion

increase in GAR at

0.01% FAR

NIST-

Multimodal

Right Index Finger 85.3% 99.1% [13.5%, 14%]

NIST-

Fingerprint

Right Index Finger 83.5% 91.4% [7.6%, 8.2%]

NIST-Face Matcher 1 71.2% 77.2% [4.7%, 7.3%]

XM2VTS-

Benchmark

DCTb-GMM Face

Matcher

89.5% 98.7% N/A
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Fig. 6. Distribution of genuine and impostor match scores in the

XM2VTS-Benchmark database for (a) MLP-face classifier and (b)

speech.

LR rule and sum of scores fusion rule with min-

max normalization are shown in Figure 5. While

the sum rule is quite comparable to LR rule for

NIST-Multimodal database, it does not perform well

on the XM2VTS-Benchmark database (see Figure

5(b)).

The reason for the inferior performance of sum

rule in the case of XM2VTS-Benchmark database

is that the score distributions of the face and

speech matchers are very different (see Figure 6).

The min-max normalization is not effective for the

face scores in Figure 6(a) because the genuine

and impostor scores are peaked around 1 and −1,

respectively. This is because the face match scores

were the output of a multi-layer perceptron classifier

that used a tanh non-linearity function. However, if

we first transform the distribution in Figure 6(a)

by applying an inverse tangent function to these

scores followed by min-max normalization, then the

performance of the sum rule improves and it is

now comparable to the LR fusion as observed in

Figure 5(b). These results demonstrate that while

it is possible to achieve good fusion performance

for a specific database using the simple sum rule

by carefully choosing the normalization scheme, the

proposed LR fusion rule is a general approach that

consistently provides good performance.

Figure 7 shows the performance of the LR

and QLR fusion rules on the WVU-Multimodal

database. For this data, the LR fusion rule improves

the GAR compared to the best single modality (iris)

and the quality-based fusion (QLR) rule further

improves the GAR. For example, at a FAR of

0.001%, the mean GAR of the iris modality is

66.7%, while the GAR values of the LR and QLR

fusion rules are 85.3% and 90%, respectively. The

95% confidence interval for the improvement in

GAR obtained by using QLR fusion instead of LR

fusion is [4.1%, 5.3%].

IV. CONCLUSIONS

We have proposed a framework for fusion of

match scores in a multibiometric system based on

the likelihood ratio test. This approach is general

and is able to minimize the FRR at a specified

FAR. In practice, one needs to reliably estimate

the genuine and impostor match score densities

from the available training set of match scores.

Due to the availability of relatively large multi-

biometric databases and the low dimensionality of

the score vectors, the density estimation problem

in the proposed LR fusion rule is quite tractable.

We show that densities estimated using a mixture

of Gaussian model lead to good performance on

To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007
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Fig. 5. Performance of likelihood ratio based fusion rule and sum of scores fusion rule with min-max normalization on (a) NIST-Multimodal

database and (b) XM2VTS-Benchmark database. In (b), IT-MM denotes that an inverse tangent function is applied only to the match scores

of the MLP classifiers prior to normalizing all the match scores using min-max normalization.
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Fig. 7. Performance of LR and QLR fusion rules on the WVU-

Multimodal database.

several multibiometric databases. Based on these

experiments, our conclusions are as follows.

• The likelihood ratio based fusion rule with

GMM-based density estimation achieves con-

sistently high recognition rates without the

need for parameter tuning by the system de-

signer.

• While other fusion schemes such as sum rule

and SVM can provide performance comparable

to that of LR fusion, these approaches require

careful selection of parameters (e.g., score nor-

malization and fusion weights in sum rule, type

of kernel and kernel parameters in SVM) on a

case-by-case basis. The LR rule does not need

to make these choices.

• Biometric sample quality information can be

incorporated within the likelihood ratio based

fusion framework leading to improvements in

the performance of multibiometric systems.
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