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Abstract

This paper discusses the behavior of the maximum likelihood esti-
mator, when the true parameter cannot be identiÞed uniquely. Among
many statistical models with unidentiÞability, neural network models
are the main concern of this paper. The set of unidentiÞable true pa-
rameters is formulated as a conic singularity of the model, which is
embedded in an inÞnite dimensional space of probability density func-
tions. It has been known in some models with unidentiÞability the
asymptotics of the likelihood ratio of MLE has an unusually larger or-
der. Following Hartigan�s idea, the likelihood ratio of MLE is described
by the supremum of an empirical process over a set of functions, and a
useful sufficient condition of such larger orders is derived. This result
is applied to neural network models, and a larger order is observed if
the true function is realized by a network with a smaller number of
hidden units than the model. A stronger lower bound of the order of
likelihood ratio is also derived on condition that there are at least two
redundant hidden units to realize the true function.

1 Introduction

This paper discusses the asymptotic behavior of the maximum likelihood
estimator (MLE) under the condition that the true parameter is uniden-
tiÞable. The asymptotics of MLE is an important problem in statistical
estimation theory, and the asymptotic normality under some regularization
conditions is well known ([1]). However, if the dimensionality of the set of
true parameters is larger than zero, the Fisher information matrix at a true
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parameter is singular, and the asymptotic normality is no longer satisÞed.
The behavior of MLE in such unidentiÞable situations has not been clariÞed
completely.

There are many statistical models that have unidentiÞability. Finite mix-
ture models, ARMA, reduced rank regression, and change point problems
are typical examples of such models. Because the asymptotics of the MLE is
not simple, model selection needs special consideration on such models. It is
known that feed-forward neural networks have also the problem of uniden-
tiÞability. The true parameter of a feed-forward neural network model is
unidentiÞable, if the true function is realized by a network with smaller
number of hidden units than the model. In this paper, we mainly discuss
the neural network model in investigating the behavior of MLE closely.

We formulate the problem of unidentiÞability as a conic singularity ([2])
in the set of a statistical model, which is embedded in the space of all the
probability density functions. In this formulation, the likelihood ratio of the
MLE, with the true probability at the singularity, can be well described by
the supremum of an empirical process over the unit vectors in the tangent
cone. This empirical process shows very different behavior depending on
the functional property of the tangent cone, while each marginal variable
converge to a Gaussian distribution.

One of the interesting features is the order of the likelihood ratio of MLE,
as the sample-size n goes to inÞnity. A model satisfying the regularity con-
dition of the usual asymptotic theory has the likelihood ratio of the order
Op(1). However, larger orders have been reported in some unidentiÞable
models. Hartigan ([3]) discusses the normal mixture models with two com-
ponents, and shows the likelihood ratio test statistics, under the hypothesis
of one component, has a larger order than Op(1). In neural networks, the
lower bound Op(log n) has been derived in unidentiÞable cases ([4]). In this
paper, a useful sufficient condition of such larger orders than Op(1) will be
given in the term of functional properties of the tangent cone. This result
covers many models of a larger order of the likelihood ratio. Furthermore,
a stronger lower bound of the order for some neural network models will be
derived, by the analysis of the functional properties of the tangent cone.

2 UnidentiÞability and Locally Conic Models

2.1 Preliminaries

Let (Z ,B, µ) be a measure space, and S be a set of probability density
functions on (Z,B, µ). The set S is called a statistical model if there is
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a differentiable manifold (with boundary) Θ such that S is given by S =
{f(z; θ) | θ ∈ Θ}. We call Θ as the parameter space. We assume through-
out this paper that Suppf(z; θ) is invariant for all θ ∈ Θ, and f(z; θ) is
differentiable on θ for each z ∈ Z.

Suppose that the probability distribution of i.i.d. random variables
Z1, Z2, . . . , Zn is f0(z)µ with the probability density function f0(z), which
has the same support as the model S. The function f0 is called the true
probability density. Given the random variables, the likelihood ratio of the
model S with respect to {Zi}ni=1 is deÞned by

Ln(θ) =

nX
i=1

log
f(Zi; θ)

f0(Zi)
. (1)

We consider the maximum likelihood estimator (MLE) �θ that attains the
maximum of the likelihood ratio, if it exists. From the deÞnition, we have

Ln(�θ) = sup
θ∈Θ

Ln(θ) = sup
θ∈Θ

nX
i=1

log
f(Zi; θ)

f0(Zi)
. (2)

The main topic of this paper is the behavior of the likelihood ratio of
MLE under the asymptotic assumption, where the number of samples goes
to inÞnity.

2.2 UnidentiÞability of the true parameter

Throughout this paper, the true probability density f0(z) is assumed to be
included in the model {f(z; θ) | θ ∈ Θ}. Then, there exists θ0 ∈ Θ such that
f(z; θ0) = f0(z). We do not assume the uniqueness of θ0, and denote the
set of true parameters by Θ0; that is, Θ0 = {θ ∈ Θ | f(z; θ0)µ = f0(z)µ}.
Unless Θ0 is a single point, the usual view of asymptotic convergence to a
single true parameter does not hold.

We say that the true parameter is unidentiÞable, if the set of true param-
eters Θ0 is a union of Þnitely many submanifolds of Θ, and the dimension
of at least one of the submanifolds is larger than zero. There are many
important statistical models in which the true parameter can be unidenti-
Þable. One of the most famous examples is a Þnite mixture model. Let
g(z; a) be a probability density function on Z with a variable parameter a,
and f(z; a1, a2, b) be a mixture model deÞned by

f(z; a1, a2, b) = b g(z; a1) + (1− b) g(z; a2), (3)
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where b ∈ [0, 1]. Suppose that the true density f0(z) is given by g(z; a0)
for some a0. Then, the set of parameters to give f0(z) contains {(a1, a2, b) |
a1 = a2 = a0, b : arbitrary} ∪ {(a1, a2, b) | b = 0, a2 = a0, a1 : arbitrary} ∪
{(a1, a2, b) | b = 1, a1 = a0, a2 : arbitrary}, which is high dimensional.
The reduced rank problems ([5]), ARMA model ([6]), and the change point
problem ([7]) are other examples of models with unidentiÞability. Feed-
forward neural network models, such as multilayer perceptrons ([8]), are
also among such models. We will mainly discuss the multilayer perceptron
model in this paper.

Our main concern is to investigate how the likelihood ratio of MLE
behaves on condition that the true parameter is unidentiÞable. If the true
parameter is identiÞable, under some regularity conditions, the asymptotic
distribution of the likelihood ratio of MLE converges in law to the chi-square
distribution of freedom d. On the other hand, in unidentiÞable cases, even
the order of the likelihood ratio of MLE can be different from Op(1), as
shown later.

2.3 Locally conic model

In the previous subsection, the unidentiÞability was deÞned in terms of
the parameters. However, if the space of probability density functions is
considered, the set of true parameters corresponds to a single point in the
space. The point is a singularity in the set of density functions deÞned by the
model, if the dimensionality shrinks only at the point. The property of the
set of density functions around the singularity will be better understood, if
more convenient parameterization can be introduced than the original one.
Following Dacunha-Castelle & Gassiat ([2]), with some modiÞcation, a conic
singularity is utilized for describing the unidentiÞability.

Let A0 be a (d−1)-dimensional differentiable manifold (with boundary),
Θ an open set in A0 × R, and S = {f(z; θ) | θ ∈ Θ} be a statistical model.
The parameter θ ∈ Θ is decomposed as θ = (α,β) for α ∈ A0 and β ∈ R.
Let a function f0(z) be an element in S. The statistical model S is called
locally conic at f0 if the following conditions are satisÞed;

1. f(z; (α,β)) is differentiable on β for each α ∈ A0 and f0µ-almost every
z.

2. Let Θ0 and Θ(α) be subsets deÞned by Θ0 = Θ ∩ (A0 × {0}) and
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Θ(α) = Θ ∩ ({α} × R) for α ∈ A0, respectively. Then,

Θ =
[
α∈A0

Θ(α). (4)

3. The set of the parameters to give f0 is Θ0; that is,

f(z; (α,β))µ = f0(z)µ ⇐⇒ β = 0. (5)

4. For all α ∈ A0, °°°°∂ log f(z;α, 0)∂β

°°°°
L2(f0µ)

= 1. (6)

If the dimension of A0 is larger than zero, the parameter giving f0 is
not identiÞable. Intuitively, a locally conic model S is a d-dimensional set
with a singularity at f0 in the space of probability density functions. For
each α ∈ A0, the submodel Sα = {f(z; θ) | θ ∈ Θ(α)} is a one-dimensional,
identiÞable statistical model. The score function of Sα at the origin,

vα(z) =
∂ log f(z; (α, 0))

∂β
, (7)

can be looked as a unit tangent vector in the direction of Sα (see Þg.1). The
family of score functions C = {vα | α ∈ A0} generates the tangent cone at
the singularity f0. We call the set C the basis of the tangent cone, which
has a key importance in the following discussion.

The view of tangent vectors can be rigorously formulated if S is included
in a maximal exponential model ([9]), which is an inÞnite dimensional Ba-
nach manifold. In the deÞnition, we only require that the functions in C are
in L2(f0µ). They are not necessarily tangent vectors of the Banach manifold
in the sense of Pistone and Sempi ([9]).

2.4 Neural network as a locally conic model

A feed-forward neural network model is an example of a locally conic model.
This paper mainly discusses multilayer perceptrons ([8]). The multilayer
perceptron model with H hidden units is deÞned by a family of functions

ϕ(x; θ) =
HX
j=1

bj s(ajx+ cj) + d, (8)
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Figure 1: Locally conic model

where x ∈ X = R, s(t) = tanh(t), and θ = (a1, . . . , aH , b1, . . . , bH , c1, . . . , cH , d)T ∈
ΘH = R3H+1. Only models with one-dimensional input and output is dis-
cussed for simplicity.

Learning in neural networks can be regarded as statistical estimation.
Assume that the distribution of an input sample Xi is a probability Q on
X = R. When the multilayer perceptron model is discussed, it is always
assumed that Q is absolutely continuous with respect to the Lebesgue mea-
sure on R, which is written by µR, with the density function q(x), and that
the integral EQ| log q(x)| is Þnite. Let Y be a subset of R, and (Y ,By, µy) be
a measure space. Let r(y | u) be a conditional probability density function
of y ∈ Y given u ∈ R. This is used for a noise model. Throughout this
paper, we put the following assumptions;

[Conditions on noise model (NM1)]

1. The conditional density r(y|u) is of class C1 on u for all y ∈ Y.
2. For different u1 and u2, we have r(y|u1)µy 6= r(y|u2)µy.
3. The Fisher information G(u) of r(y|u), deÞned by

G(u) =

Z ³∂ log r(y|u)
∂u

´2
r(y|u)dµy, (9)

is positive, Þnite, and continuous for all u ∈ R.
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4. For all u ∈ R

lim
ρ↓0
Er(y|u)

h
sup

|u0−u|≤ρ

¯̄̄∂ log r(y|u0)
∂u

¯̄̄i
<∞. (10)

The condition 4 assures the famous relation Er(y|u)[
∂2 log r(y|u)

∂u2 ] = −G(u) by
Lebesgue�s dominated convergence theorem.

Given the function ϕ(x; θ), the statistical model of multilayer perceptron
is deÞned by

f(z; θ) = r(y | ϕ(x; θ))q(x), (11)

where z = (x, y) ∈ Z = X × Y, with respect to the measure µR × µy.
Popular choices of r(y | u) are the additive Gaussian noise model

r(y | u) = 1√
2πσ

exp
©− 1

2σ2
(y − u)2ª (12)

for continuous y, and the binomial distribution model

r(y | u) = euy

1+ eu
(13)

for binary output y ∈ Y = {0, 1}, which often appears in classiÞcation
problems.

The true parameter can be unidentiÞable in the multilayer perceptron
model. It can be seen in the simplest case as follows. Suppose we have the
multilayer perceptron model with 2 hidden units, and the true function ϕ0(x)
is given by a perceptron with only one hidden unit. If ϕ0(x) = b0 tanh(a0x),
then for any parameter θ in the set {θ ∈ Θ2 | a1 = a0, b1 = b0, c1 = 0, b2 =
0, d = 0, a2, c2 : arbitrary} ∪ {θ ∈ Θ2 | a1 = a0, b1 = b0, c1 = 0, a2 =
0, b2 tanh(c2)+ d = 0} the function ϕ(x; θ) equals to the true function1. We
can see that the set of true parameters is a high dimensional subset in the
parameter space. It is known that the true parameter is unidentiÞable if and
only if the true function can be realized by a network with smaller number
of hidden units than the model ([10],[11],[12]).

This unidentiÞability of multilayer perceptrons can be formulated as a
locally conic model. Suppose we have the multilayer perceptrons with H

1These two subsets do not give all the parameters to realize ϕ0(x). The whole set of
the true parameters is shown in [12].
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hidden units. Let K be an integer such that 0 ≤ K < H, and ϕ0(x) be a
function realizable by a multilayer perceptron with K hidden units.

A slightly restricted parameter space Θ∗H is deÞned by Θ∗H = {θ =
(a1, . . . , aH , b1, . . . , bH , c1, . . . , cH , d) ∈ ΘH | aj 6= 0, bj 6= 0 (1 ≤ j ≤
H), (aj , cj) 6= ±(ah, ch) (1 ≤ j < h ≤ H)}. Note that in Θ∗H the parameters
that correspond to the functions realizable by a smaller-sized network are
eliminated (see [10]). For a parameter in Θ∗H , it is known ([13]) that the
functions {1, s(ajx+ cj), s0(ajx+ cj)x, s0(ajx+ cj) | 1 ≤ j ≤ H} are linearly
independent.

Given a function

ϕ0(x) =

KX
k=1

b0k s(a
0
kx+ c

0
k) + d

0 (14)

for θ0 = (a
0
1, . . . , a

0
K , b

0
1, . . . , b

0
K , c

0
1, . . . , c

0
K , d

0) ∈ Θ∗K , the parameter space
is again restricted slightly toΘ∗∗H byΘ

∗∗
H = {θ ∈ Θ∗H | (aj , cj) 6= ±(a0k, c0k) (1 ≤

k ≤ K,K + 1 ≤ j ≤ H)}. This reduction does not matter in discussing the
maximum likelihood estimation, because MLE lies in Θ∗∗H with probability
one. Introduce a new parameterization by

β = sgn(bK+1)
q
b2K+1 + · · ·+ b2H ,

ξk =
ak − a0k
β

, (1 ≤ k ≤ K), ξj = aj , (K + 1 ≤ j ≤ H),

ηk =
bk − b0k
β

, (1 ≤ k ≤ K), ηj =
bj
β
, (K + 1 ≤ j ≤ H),

ζk =
ck − c0k
β

, (1 ≤ k ≤ K), ζj = cj , (K + 1 ≤ j ≤ H),

δ =
d− d0
β

. (15)
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for θ ∈ Θ∗∗H , and deÞne new parameter spaces ΠH and Π∗∗H by

ΠH = {ω = (ξ1, . . . , ξH , η1, . . . , ηH , ζ1, . . . , ζH , δ,β) |
a0k + βξk 6= 0 (1 ≤ k ≤ K), ξj 6= 0 (K + 1 ≤ j ≤ H),
(a0k + βξk, c

0
k + βζk) 6= ±(a0h + βξh, c0h + βζh) (1 ≤ k < h ≤ K),

(a0k + βξk, c
0
k + βζk) 6= ±(ξj , ζj) (1 ≤ k ≤ K,K + 1 ≤ j ≤ H),

(ξj , ζj) 6= ±(ξi, ζi) (K + 1 ≤ j < i ≤ H),
(ξj , ζj) 6= ±(a0k, c0k) (1 ≤ k ≤ K,K + 1 ≤ j ≤ H),

b0k + βηk 6= 0 (1 ≤ k ≤ K),
HX

j=K+1

η2j = 1, ηj 6= 0 (K + 1 ≤ j ≤ H),

ηK+1 > 0, β ∈ R} (16)

and Π∗∗H = {ω ∈ ΠH | β 6= 0}, respectively. The multilayer perceptron can
be rewritten using this parameterization:

ψ(x;ω) =

KX
k=1

(b0k + βηk) s
¡
(a0k + βξk)x+ (c

0
k + βζk)

¢
+

HX
j=K+1

βηj s(ξjx+ ζj) + βδ. (17)

It is easy to see that the Π∗∗H and Θ∗∗H are diffeomorphic by the transform
(15), and ϕ(x; θ) = ψ(x;ω) holds for the corresponding θ ∈ Θ∗∗H and ω ∈
Π∗∗H . Thus, it suffice to consider {ψ(x;ω) | ω ∈ ΠH}, when the maximum
likelihood estimation is discussed.

Let SH = {f(x, y;ω) | ω ∈ ΠH} be a statistical model deÞned by
f(x, y;ω) = r(y|ψ(x;ω))q(x). (18)

The model SH consists of probability density functions corresponding to
ϕ0(x) and the functions given by ϕ(x; θ) for θ ∈ Θ∗∗H . The function f0(x, y)
be a density function deÞned by ϕ0(x), that is, f0(x, y) = r(y|ϕ0(x))q(x).
The model SH is a locally conic model, if α summarizes (ξ1, . . . , ζH , δ) and
ω = (α, β).

Theorem 1. Let SH be the statistical model of multilayer perceptrons with
H hidden units deÞned by eqs. (17) and (18), and f0 be a density function
given by (14). Then, under the assumption [NM1], SH is locally conic at
f0.
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Proof. Let A0 be a set given by A0 = {α | (α, 0)}, and ΠH(α) by ΠH(α) =
{(α,β) | β ∈ R} for α ∈ A0. We can see ΠH = ∪α∈A0ΠH(α), because
for all (α,β) ∈ ΠH , the point (α, 0) is also contained in ΠH by the fact
θ0 ∈ Θ∗K and (ξj , ζj) 6= ±(a0k, c0k) for K+1 ≤ j ≤ H. We can also prove that
ψ(x;ω) = ϕ0(x) for all x if and only if ω ∈ ΠH,0. The sufficiency is trivial.
For the necessity, because s(ξjx+ ζj) (K + 1 ≤ j ≤ H) is not contained in
the linear hull of the functions {1, s(a0kx + c0k), s(ξix + ζi), s((a0k + βξk)x +
(c0k + βζk)) | 1 ≤ k ≤ K,K + 1 ≤ i ≤ H, i 6= j} by the deÞnition of ΠH , the
coefficients of s(ξjx+ ζj) in eq.(17) must be zero to realize ψ(x;ω) = ϕ0(x).
This implies β = 0. Thus, the model SH satisÞes the conditions 1, 2, and 3
in the deÞnition of a locally conic model.

For the condition 4, let N(α) be the L2(f0(x, y)µRµy)-norm of a tangent
vector ∂

∂β log f(x, y; (α, 0)). This is essentially determined by the partial
derivative:

∂ψ(x; (α, 0))

∂β
=

HX
j=K+1

ηjs(ξjx+ ζj) + δ

+

KX
k=1

ηks(a
0
kx+ c

0
k) +

KX
k=1

b0kξks
0(a0kx+ c

0
k)x+

KX
k=1

b0kζks
0(a0kx+ c

0
k). (19)

The L2 norm is calculated as

N(α)2 =

Z Z
r(y|ϕ0(x))q(x)

n∂r(y|ϕ0(x))
∂u

∂ψ(x; (α, 0))

∂β

o2
dxdµy

=

Z
G(ϕ0(x))

n∂ψ(x; (α, 0))
∂β

o2
q(x)dx. (20)

Since ϕ0(x) is bounded, so is G(ϕ0(x)) by the continuity of G(u). From

eq.(19), the function
©
∂
∂βψ(x; (α, 0))

ª2
is also bounded. Thus, N(α) is Þnite.

Because the functions 1, s(ξjx+ζj), s(a
0
kx+c

0
k), s

0(a0kx+c
0
k)x, and s

0(a0kx+c
0
k)

(1 ≤ k ≤ K,K + 1 ≤ j ≤ H) are linearly independent (see [13]), the partial
derivative ∂

∂βψ(x; (α, 0)) is not constant zero. Hence, the zero points of
∂
∂βψ(x; (α, 0)) has no accumulation points, and the probability of the set by
Q is zero. Therefore, 0 < N(α) < ∞ for all α ∈ A0. Using N(α)β instead
of β, we have the normalized tangent vectors at f0(x, y).
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3 Maximum likelihood estimation in locally conic
models

3.1 MLE and supremum of a random process

Let S = {f(z; (α,β)) | (α,β) ∈ Θ} be a statistical model, which is locally
conic at f0 ∈ S. Suppose Z1, Z2, . . . , Zn are i.i.d. random variables with
the law f0µ. For each α ∈ A0, the submodel Sα = {f(z; (α,β)) | β ∈ Θ(α)}
is a smooth, one-dimensional model with a variable parameter β. If the
maximum likelihood estimator �βα in Sα exists for each α ∈ A0, the likelihood
ratio of the MLE in S is given by

sup
θ∈Θ

Ln(θ) = sup
α
Ln(α, �βα). (21)

Assume that each submodel Sα satisÞes some regularity conditions of the
asymptotic normality. A set of conditions, which is essentially from Wald
([16]) and Cramér ([1]), is given as follows2. For simplicity, we write each
submodel by {g(z; β)|β ∈ V }, neglecting the index α. The parameter set V
is an open set in R, and we write a0 = inf{β | β ∈ V } ∈ R ∪ {−∞} and
b0 = sup{β | β ∈ V } ∈ R ∪ {∞}.

[Conditions on asymptotic normality (AN)]

1. For any β ∈ V , the integral Ef0µ[| log g(z;β)|] is Þnite.
2. Let H+(z; t) and H−(z; s) be functions deÞned by

H+(z; t) = sup
β≥t

log g(z; β) and H−(z; s) = sup
β≤s

log g(z; β), (22)

respectively. Then,

lim
t↑b0

Ef0µ[H+(z; t)] <∞ and lim
s↓a0

Ef0µ[H−(z; s)] <∞. (23)

3. There exist ∆+ and ∆− such that
R
∆± f0(z)dµ > 0 and

lim
t↑b0

H+(z; t) = −∞ for all z ∈ ∆+, (24)

lim
s↓a0

H−(z; s) = −∞ for all z ∈ ∆−. (25)

2Another set of conditions is found in van der Vaart ([14], Section 5.3), which is more
reÞned than the famous ones by Cramér ([1]).
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4. For all β ∈ V ,
lim
ρ↓0
Ef0µ

£
sup

|β0−β|≤ρ
log g(z;β0)

¤
<∞. (26)

5. The density g(z; β) is three-times differentiable on β for all z, and

lim
ρ↓0
Ef0µ

h
sup
|β|≤ρ

¯̄̄∂3 log g(z; β)
∂β3

¯̄̄i
<∞. (27)

The conditions 1�4 are slight modiÞcation of Wald�s regularity conditions
for the consistency of MLE bβα ([16]). The condition 5 assures asymptotic
efficiency of bβα under the consistency assumption. If each submodel Sα
satisÞes the conditions [AN], the standard argument using Taylor expansion
leads to

Ln(α, �βα) =
1

2
Un(α)

2 + op(1), (28)

where Un(α) is a random variable deÞned by

Un(α) =
1√
n

nX
i=1

vα(Zi), (29)

and vα(z) is a function in the basis of the tangent cone C, deÞned by

vα(z) =
∂

∂β
log f(z; (α, 0)). (30)

The variable Un(α) converges in law to the standard normal distribution
for each α ∈ A0. If we consider the behavior of Un(α) over all α, it can be
looked as an empirical process over α or C, and every marginal distribution
on Þnite points converges to a multidimensional normal distribution. The
likelihood ratio of MLE is given by

sup
θ∈Θ

Ln(θ) = sup
α∈A0

½
1

2
Un(α)

2 + op(1)

¾
. (31)

Dacunha-Castelle and Gassiat ([2]) discuss the convergence of Un, as-
suming the uniform convergence in the asymptotic normality and the em-
pirical process. More precisely, if the higher order term of op(1) in eq.(31) is
bounded uniformly over α, the term can be eliminated from the supremum;

sup
θ∈Θ

Ln(θ) = sup
α

½
1

2
Un(α)

2

¾
+ op(1). (32)
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Furthermore, if the stochastic process Un converges �nicely� to a Gaussian
process W over C, the limit of the supremum of |Un| can be replaced by the
the supremum of |W | (see Wellner & van der Vaart ([15]) and van der Vaart
([14]) for the detail). Then, we obtain

sup
θ∈Θ

Ln(θ) = sup
α

1

2
W 2 + op(1). (33)

Dacunha-Castelle & Gassiat propose a likelihood ratio test based on the
supremum of the Gaussian process W .

Unlike Dacunha-Castelle & Gassiat ([2]), when discussing the stochastic
process Un in eq.(28), this paper will investigate non-uniform cases, in which
the simpliÞcation in eqs. (32) and (33) does not hold. In non-uniform cases,
the behavior of MLE is complex, and even the order of the likelihood ratio
can be different from the usual Op(1), as I mentioned in Section 1.

3.2 Slower convergence in non-uniform cases

The likelihood ratio of MLE can have a larger order than Op(1), if the
function class of the tangent cone is �rich� enough, as the cone in the normal
mixture and multilayer perceptrons.

In this subsection, a useful sufficient condition of such an unusually larger
order is derived, as an extension of Hartigan�s idea ([3]). Note that the
marginal distribution of Un on Þnite points v1, . . . , vm in C always converges
to a multi-dimensional normal distribution with the covariance EP [vivj ].
Thus, two components of the limit are independent on condition that their
covariance is zero. Suppose we can Þnd an arbitrary number of �almost�
uncorrelated random variables in C. Then, the supremum of Un(α) on such
variables can take an arbitrary large value, since the maximum of m in-
dependent samples from the standard normal distribution is approximately√
2 logm for large m. Hartigan ([3]) applied this idea to a normal mix-

ture model with two components, calculating the covariance explicitly. An
extension of this idea leads us to the following theorem;

Theorem 2. Let a statistical model S = {f(z; (α,β))} be locally conic at
f0 ∈ S, and C = {vα(z) = ∂

∂β f(z; (α, 0))} be the basis of the tangent cone.
Assume that for each α ∈ A0 the submodel {f(z;α,β) | β} satisÞes the
conditions of asymptotic normality [AN]. If there exists a sequence {vn}∞n=1
in C such that vn → 0 in probability, then, for arbitrary M > 0, we have

lim
n→∞Prob

³
sup
(α,β)

Ln(α,β) ≤M
´
= 0. (34)
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Proof. From Proposition 1 below, for arbitrary ε > 0 and K ∈ N, there
exist v(α1), . . . , v(αK) ∈ C such that |E[v(αi)v(αj)]| < ε for different i and
j. The rest of the proof is accomplished in the same way as Hartigan ([3]),
which will be shown below.

Let W = (W1, . . . ,WK) be a random vector following the limiting nor-
mal distribution of (Un(vα1), . . . , Un(vαK )), and Σ be the variance-covariance
matrix of W . Because the absolute value of every off-diagonal element in Σ
is less than ε, by Gerÿsgorin�s inequality ([17]), we have (1+ (K − 1)ε)IK ≤
Σ ≤ (1− (K + 1)ε)IK . Then, for arbitrary M > 0, the inequality

P
¡
max
1≤i≤K

|Wi| ≤M
¢ ≤ Z

[−M,M ]K

1√
(2π)K |Σ|e

− 1
2(1+(K−1)ε)W

TW
dW

≤ (1+(K−1)ε)K/2
|Σ|1/2

Z
[−M,M ]K

1
(2π)K/2

e−
1
2
uT udu

≤
³
1+(K−1)ε
1−(K−1)ε

´K/2{Φ(M)− Φ(−M)}K (35)

holds, where Φ(t) is the cumulative distribution function of the standard
normal distribution. For any δ > 0 and M > 0, there exists K ∈ N such
that {Φ(M)− Φ(−M)}K < δ

2 . For such K, we can Þnd ε > 0 that satisÞes¡1+(K−1)ε
1−(K−1)ε

¢K/2
< 2. Then, eq.(35) leads

P
¡
max
1≤i≤K

|Wi| ≤M
¢
< δ. (36)

The convergence of (Un(α1), . . . , Un(αK)) toW means limn→∞ P (maxi |Un(αi)| ≤
M) = P (W ∈ [−M,M ]K). This completes the proof.

On the covariance of the random variables with bounded L2 norm, we
have the following proposition, which is used in the above proof.

Proposition 1. Let {vn}∞n=1 be a sequence in L2(P ) such that kvnkL2(P ) =
1 for all n, and vn → 0 in probability. Then, there exists a subsequence
{vn(k)}∞k=1 that satisÞes

EP |vn(k)vn(h)| < ε (37)

for all different k and h.

This is a direct consequence of the following proposition.
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Proposition 2. Let (Ω,B, P ) be a probability space, and Y,X1, X2, . . . be
random variables. Suppose there exists K > 0 such that

R
Y 2dP ≤ K andR

X2
ndP ≤ K , and Xn converges to 0 in probability. Then, we have

lim
n→∞E|Y Xn| = 0. (38)

Proof. Let ε be any positive number. Because
R
Y 2dP < ∞, there exists

δ > 0 such that
R
∆ Y

2dP < ε2

9K for any measurable set ∆ with P (∆) < δ.
For each n ∈ N, a measurable set An is deÞned by

An = {ω ∈ Ω | |Y | > ε

3
√
K

and |Xn| > ε

3K
|Y |}. (39)

Because Xn → 0 in probability and An ⊂ {|Xn| > ε2

9K3/2 }, we can Þnd
n0 ∈ N such that for all n ≥ n0 we have P (An) < δ, hence

R
An
Y 2dP < ε2

9K .
Since Acn ⊂ {ω | |Y | ≤ ε

3
√
K
} ∪ {ω | |Xn| ≤ ε

3K |Y |}, we obtain for all
n ≥ n0Z
|Y Xn|dP =

Z
An

|Y Xn|dP +
Z
Acn

|Y Xn|dP

≤
³Z

An

Y 2dP
´1/2³Z

An

X2
ndP

´1/2
+

Z
{|Y |≤ ε

3
√
K
}
|Y Xn|dP +

Z
{|Xn|≤ ε

3K
|Y |}

|Y Xn|dP

<
ε

3
√
K

√
K +

ε

3
√
K

Z
|Xn|dP + ε

3K

Z
|Y |2dP

≤ ε

3
+

ε

3
√
K
·
√
K +

ε

3K
·K = ε (40)

In the last line, we use the fact
R |Xn|dP ≤ (R |Xn|2dP )1/2 ≤ √K.

4 Likelihood Ratio of Multilayer Perceptrons

We apply the results in the previous section to the multilayer perceptron
model, which is deÞned by eq.(8). We use the same notations as Section
2.4, giving the true function ϕ0(x) by eq.(14) and the locally conic parame-
terization by eq.(17).

We need additional assumptions on the noise model r(y|u) to ensure the
asymptotic normality conditions [AN] on the one-dimensional models.
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Conditions on noise model (NM2)

1. For any compact set K ⊂ R, supξ,u∈K Er(y|ξ)| log r(y|u)| is Þnite.
2. Let h+(y|s) and h−(y|s) be functions deÞned by

h+(y|s) = sup
u≥s

log r(y|u) and h−(y|s) = sup
u≤−s

log r(y|u), (41)

respectively. For any compact setK ⊂ R and s ∈ R, supξ∈K Er(y|ξ)[h±(y|s)]
is Þnite.

3. For an arbitrary compact set K ⊂ R, there exist ∆+,∆− ⊂ Y and
B > 0 such that

lim
s→∞ h+(y|s) = −∞ for all y ∈ ∆+, (42)

lim
s→∞ h−(y|s) = −∞ for all y ∈ ∆−, (43)

and Z
∆±
r(y|ξ)dy ≥ B for ∀ξ ∈ K. (44)

4. For any compact set K ⊂ R,

lim
ρ↓0

sup
ξ∈K
u∈K

Er(y|ξ)
£
sup

|u0−u|≤ρ
log r(y|u0)¤ <∞. (45)

5. The density r(y|u) is three-times differentiable on u for all y ∈ Y, and
for any compact set K ⊂ R,

lim
ρ↓0
sup
ξ∈K

Er(y|ξ)
h
sup

|ξ0−ξ|≤ρ

¯̄̄∂3 log r(y|ξ0)
∂3u

¯̄̄i
<∞. (46)

The above conditions are satisÞed by many important noise models. In
the case of the Gaussian noise model and binary output model, they can be
checked easily. In fact, the conditions 1, 4, and 5 are easy. On the conditions
2 and 3, stronger conditions will be checked in Section 4.

The next lemma shows that the conditions [NM2] implies the asymptotic
normality [AN] in some type of submodel in SH .
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Lemma 1. Let w0(x) be a bounded function, w(x) be a positive, bounded
function, and r(y|u) be a density function on Y which satisÞes [NM1] and
[NM2]. Then, the statistical model {g(z;β) | β ∈ R}, which is deÞned by
g(z;β) = r(y|w0(x) + βw(x))q(x), satisÞes the conditions [AN].
Proof. From [NM2]-1 and boundedness of w(x) and w0(x), for each β there
is A > 0 such that Er(y|w0(x))| log r(y|w0(x) + βw(x))| ≤ A for all x ∈ R.
The fact EQ| log q(x)| <∞ implies the condition [AN]-1.

Since H+(z; t) = h+(y|w0(x) + tw(x)) + log q(x) and for any t there
exists s0 such that w0(x) + tw(x) ≥ s0 for all x , we have Ef0µ[H+(z; t)] ≤
EQ[Er(y|w0(x))[h+(y|s0)] + log q(x)]. The compactness of the range of w0(x)
and the condition [NM2]-2 show the Þrst assertion of [AN]-2. The second
one is similar.

We will show only onH+ for the assumption [AS]-3, because the proof on
H− is exactly the same. There exists M > 0 such that |w0(x)| ≤ M . Take
∆+ ⊂ Y and B > 0 in the assumption [NM2]-3 for a compact set [−M,M ].
Then, for any z ∈ X ×∆+, we have limt→∞H+(z; t) = limt→∞ h+(y|w0(x)+
tw(x)) + log q(x) = −∞, and RX×∆+ f0(z)dµ = EQ[R∆+ r(y|w0(x))] ≥ B.

From [NM2]-4 and the boundedness of w(x), for any β there exists ρ0 > 0
and C such that Er(y|w0(x))[sup|β0−β|≤ρ log r(y|w0(x) + β0w(x))] ≤ C holds
for all ρ ∈ (0, ρ0] and x ∈ R. This shows the condition [AN]-4. By a similar
argument, [NM]-5 implies [AN]-5.

Theorem 3. Assume that the model is the multilayer perceptron model (8)
with H hidden units, and the true function is given by a network with K
hidden units for K < H. Under the assumptions [NM1] and [NM2] on the
noise model r(y|u), we have for arbitrary M > 0,

lim
n→∞Prob

³
sup
θ
Ln(θ) ≤M

´
= 0. (47)

Remark. This theorem means that the order of the likelihood ratio of MLE
is strictly larger than Op(1).

Proof. For the lower bound, it suffice to consider a submodel in the locally
conic parameterization eq.(17). Let σ(x; ξ, h) be a bounded, monotone de-
creasing function given by

σ(x; ξ, h) =
1

2
{1+ s(−1

2
ξ(x− h))} = 1

1+ exp{ξ(x− h)} , (48)

and {g(z; t, c)} be a submodel deÞned by
g(z; t, c,β) = r(y|ϕ0(x) + βw(x; t, c))q(x), (49)
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where

w(x; t, c) =
1p
B(t, c)

σ(x; c2, t+ 1
c ), (50)

and B(t, c) is a normalizing constant of L2(f0µ) norm given by

B(t, c) =

Z
G(ϕ0(x))σ(x; c

2, t+ 1
c )
2dQ(x). (51)

Because ϕ0(x) and w(x; t, c) are bounded functions, from Theorem 2
and Lemma 1, we have only to show there is a sequence in the basis of the
tangent cone C, which converges to zero in probability. The set C consists
of the functions

v(x, y; t, c) =
1p
B(t, c)

∂ log r(y|ϕ0(x))
∂u

σ(x; c2, t+ 1
c ). (52)

Let a be a positive number that satisÞes G(ϕ0(x)) ≥ a for all x ∈ R.
Such a exists because of the continuity of G(u) and the boundedness of
ϕ0. Let FQ(t) be a distribution function of the input probability Q. From
the assumption that Q is absolute continuous with respect to the Lebesgue
measure, FQ is continuous on R. If we deÞne t0 = inf{t ∈ R | FQ(t) > 0} ∈
R ∪ {−∞}, we have FQ(t) > 0 for all t > t0, and limt↓t0 FQ(t) = 0.

Since σ(x; c2, t + 1
c ) is bounded and converges to χ(−∞,t](x) at every

x for c → +∞, by Lebesgue�s dominated convergence theorem, we have
limc→∞B(t, c) =

R t
−∞G(ϕ0(x))dQ(x) ≥ aFQ(t). Hence, for each t we can

Þnd c
(1)
t such that

p
B(t, c) ≥ 1

2

p
aFQ(t) for all c ≥ c(1)t .

For any t > t0 and δ > 0, there exists c
(2)
t (δ) > 0 such that σ(x; c

2, t +
1
c ) ≤ FQ(t) for all x ≥ t+ δ and c ≥ c

(2)
t (δ). Then, if a sequence (tn, δn, cn)

is chosen so that tn ↓ t0, δn ↓ 0, and cn ≥ max{c(1)tn , c
(2)
tn (δn)}, the inequality

|v(x, y; tn, cn)| ≤ 2√
a

¯̄̄∂ log r(y|ϕ0(x))
∂u

¯̄̄q
FQ(tn) (53)

holds for all x ≥ tn + δn and y. Because FQ(tn) → 0 and tn + δn ↓ t0 for
n → ∞, the sequence v(x, y; tn, cn) converges to zero for all x > t0 and y,
which means almost everywhere convergence.

If K ≤ H − 2, a different type of sequence can work for the proof of
Theorem 3. Let W = {w(x; ξ, h, t)} be a family of functions deÞned by

w(x; ξ, h, t) =
1p

A(ξ, h, t)

1

2
{s(ξ(x− t+ h))− s(ξ(x− t− h))}, (54)
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where A(ξ, h, t) is a normalization constant of L2(f0µ) norm given by

A(ξ, h, t) = Ef0µ

h³∂ log r(y|ϕ0(x))
∂u

s(ξ(x− t+ h))− s(ξ(x− t− h))
2

´2i
= EQ

£
G(ϕ0(x))

1
4{s(ξ(x− t+ h))− s(ξ(x− t− h))}2

¤
. (55)

A subfamily of the multilayer perceptron in the locally conic parameteriza-
tion is deÞned by

ψ(x; ξ, h, t,β) = ϕ0(x) + βw(x; ξ, h, t). (56)

This is obtained by setting ηi = ξi = ζi = δ = 0 (1 ≤ i ≤ k and i ≥ K + 3),
ξK+1 = ξK+2 = ξ, ζK+1 = −ζK+2 = h, and ηK+1 = ηK+2 =

1
2 in eq.

(17). The basis of the tangent cone of the submodel {r(y|ψ(x; ξ, h, t,β))q(x)}
consists of the functions of the form

v(z; ξ, h, t) =
∂ log r(y|ϕ0(x))

∂u
w(x; ξ, h, t). (57)

From the fact that G(u) is positive and continuous, and that ϕ0 is
bounded, there exist a, b > 0 such that a ≤ G(ϕ0(x)) ≤ b for all x ∈ R.
For arbitrary h > 0 we can Þnd δ(h) > 0 so that for any ξ ≥ δ(h),
1
2{s(ξ(x+ h))− s(ξ(x− h))} is larger than 1

2 on x ∈ [−h
2 ,
h
2 ] and less than h

on x /∈ [−3
2h,

3
2h]. Let hn > 0 be a decreasing sequence which converges to

zero. If ξn is taken so that ξn ≥ δ(hn), the normalization constant satisÞes

A(ξn, hn, 0) ≥
Z 1

2
hn

− 1
2
hn

G(ϕ0(x))
¡
1
2

¢2
q(x)dx ≥ a

4
hn. (58)

Thus, for all x with |x| ≥ 3
2hn, we have

|v(z; ξn, hn, 0)| =
¯̄̄∂ log r(y|ϕ0(x))

∂u

¯̄̄ 1p
A(ξn, hn, 0)

1

2
{s(ξ(x+ h))− s(ξ(x− h))}

≤ 2
√
hn√
a

¯̄̄∂ log r(y|ϕ0(x))
∂u

¯̄̄
. (59)

For all x 6= 0, the sequence v(z; ξn, hn, 0) converges to zero from the fact
hn ↓ 0,. This means almost everywhere convergence, since Q is absolutely
continuous with respect to the Lebesgue measure.

The next lemma on the functional space W will be used in Corollary 1
after Theorem 4.
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Lemma 2. For a closed interval I, a non-negative value M(I) is deÞned by

M(I) = Ef0µ

h³∂ log r(y|ϕ0(x))
∂u

´2
χI(x)

i
=

Z
I
G(ϕ0(x))q(x)dx, (60)

and a function uI(z) by

uI(z) =
1p
M(I)

∂ log r(y|ϕ0(x))
∂u

χI(x), (61)

if M(I) > 0. Let W be deÞned as above. Under the assumptions [NM1],
there exist a, b > 0 such that for an arbitrary ε > 0 and closed interval I
with M(I) > 0, we can Þnd a function w(x; ξ, h, t) ∈W, which satisÞes (i)
0 < w(x; ξ, h, t) ≤ a√

M(I)
for all x ∈ R, (ii) w(x; ξ, h, t) ≥ b√

M(I)
for all

x ∈ I, and (iii) kv(z; ξ, h, t) − uI(z)kL2(f0µ) ≤ ε, where v(z; ξ, h, t) is given
by eq. (57).

Proof. For notational simplicity, a proof will be given in the case of I =
[−c, c]. The extension to the general case is straightforward. Write w(x; ξ, h)
and v(z; ξ, h) for w(x; ξ, h, 0) and v(z; ξ, h, 0), respectively, and use σ(x; ξ, h) =
1
2{s(ξn(x+ hn))− s(ξn(x− hn))} for abbreviation.
In a similar way to the argument before the lemma, there exist sequences

hn ↓ c and ξn →∞ such that
[1] σ(x; ξn, hn) ≤ 2 for all x ∈ R,
[2] |σ(x; ξn, hn)− χI(x)|→ 0 for all x ∈ R, and
[3] σ(x; ξn, hn) ≥ 1

2 for all x ∈ I.
From [1], [2] and the boundedness of G(ϕ0(x)), by Lebesgue�s dominated

convergence theorem, we obtain°°°∂ log r(y|ϕ0(x))
∂u

σ(x; ξn, hn)− ∂ log r(y|ϕ0(x))
∂u

χI(x)
°°°
L2(f0µ)

→ 0, (62)

as n goes to inÞnity. Eq.(62) means also A(ξn, hn) → M(I) > 0. Then, a
simple argument shows the assertion (iii). From eq. (62), there exists n0 ∈ N
such that 12M(I) ≤ A(ξn, hn) ≤ 2M (I) for all n ≥ n0. Combining this with
[1] and [3], we obtain (i) and (ii) in the assertion, by taking a = 2

√
2 and

b = 1
2
√
2
. Note that a and b are taken so that they do not depend on I.

In the case K ≤ H − 2, we can derive a better lower bound of the likeli-
hood ratio, by counting a number of almost independent random variables
in C. However, we need to strengthen the assumptions on the noise model
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r(y|u). In listing the conditions, the most concise ones are not sought for,
but the ones that can be easily checked are intended. Indeed, the following
assumptions are veriÞed easily for the Gaussian noise model and the binary
output model, as shown later. In the following conditions, h±(y|s) is the
same as in [NM2].

[Conditions on noise model (NM3)]

1. For an arbitrary compact set K ⊂ R, there exists a non-negative
function τ(s) deÞned on [0,∞) such that positive numbers Ai, δi (i =
1, 2) and T0 exist so that

τ(s) ≥ A1sδ1 for 0 ≤ s ≤ T0, τ(s) ≥ A2sδ2 for s > T0, (63)

and a lower bound of the KL-divergence is given by

Er(u|ξ)
h
log

r(y|ξ)
r(y|u)

i
≥ τ(|u− ξ|), (64)

for all ξ ∈ K and u ∈ R.
2. For an arbitrary compact set K ⊂ R, there exist ∆+,∆− ⊂ Y and
γ, B > 0 such that

lim sup
s→∞

h+(y|s)
sγ

< 0 for all y ∈ ∆+, (65)

lim sup
s→∞

h−(y|s)
sγ

< 0 for all y ∈ ∆−, (66)

and Z
∆±
r(y|ξ)dy ≥ B for ∀ξ ∈ K. (67)

3. There exist a continuous function `1(ξ) and λ > 0 such that for all
s ≥ 1

Er(y|ξ)|h±(y|s)|2 ≤ `1(ξ)sλ. (68)

4. There exist a continuous function `2(ξ) and ν > 0 such that for arbi-
trary R ≥ 1

Er(y|ξ)
h
sup
|u|≤R

¯̄̄∂ log r(y|u)
∂u

¯̄̄2i ≤ `2(ξ)Rν . (69)
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5. For any compact set K ⊂ R,

sup
ξ,u∈K

Er(y|ξ)
h¯̄̄∂2 log r(y|u)

∂u2

¯̄̄2i
<∞ and sup

u∈K
Er(y|u)

h¯̄̄∂ log r(y|u)
∂u

¯̄̄3i
<∞.

(70)

6. For any compact set K ⊂ R,

lim
ρ↓0
sup
ξ∈K

Er(y|ξ)
h
sup

|ξ0−ξ|≤ρ

¯̄̄∂3 log r(y|ξ0)
∂u3

¯̄̄2i
<∞. (71)

The conditions [NM3] are satisÞed by the Gaussian noise model and
the binary output model. Consider the Gaussian distribution with variance
one: r(y|u) = 1√

2π
exp{−1

2(y − u)2}, for simplicity. The conditions 5 and 6
are trivial. Because the KL-divergence is equal to 1

2(u− ξ)2, the condition
1 is satisÞed. We have h+(y|s) = −1

2(y − s)s − log
√
2π for y < s and

h+(y|s) = − log√2π for y ≥ s, and a similar form for h−(y|s). Then, the
condition 2 can be veriÞed for any bounded interval ∆± and γ = 2, and the
condition 3 is trivial. Because ∂ log r(y|u)

∂u = y − u, for any R > 0, we see

sup|u|≤R
¯̄∂ log r(y|u)

∂u

¯̄2
is (y + R)2 for y ≥ 0 and (y − R)2 for y < 0. Hence,

the condition 4 is satisÞed for ν = 2.
For the binary output model r(y|u) = eyu

1+eu , the conditions 5 and 6 are

trivial. The KL-divergence is Er(y|ξ)[log r(y|ξ)− log r(y|u)] = 1
1+eξ

(u− ξ) +
log(1+e−u)− log(1+e−ξ) = 1

1+e−ξ (ξ−u)+log(1+eu)− log(1+eξ). For any
C > 0 and ξ ∈ [−C,C], we have Er(y|ξ)[log r(y|ξ) − log r(y|u)] > 1

1+eC
|u −

ξ|− log(1+eC). Then, for any u with |u−ξ| ≥ 2(1+eC) log(1+eC), a lower
bound Er(y|ξ)[log r(y|ξ)− log r(y|u)] > 1

2(1+eC)
|u− ξ| is obtained. By Taylor

expansion of KL-divergence, there exists a > 0 such that Er(y|ξ)[log r(y|ξ)−
log r(y|u)] ≥ a(u−ξ)2 for all ξ ∈ [−C,C] and |u−ξ| ≤ 2(1+eC) log(1+eC).
Thus, we can choose T0 = 2(1+ e

C) log(1+ eC), and deÞne τ(s) by 1
2(1+eC)

s

for 0 ≤ s ≤ T0 and a(u− ξ)2 for s > T0. This shows the condition 1. Since
h+(y|s) = −(1 − y) log(1 + es) and h−(y|s) = y log(1 + es), The condition
3 is straightforward. For the condition 2, choose ∆+ = {0} and ∆− = {1}.
Then, lims→∞

h±(y|s)
s = −1 for all y ∈ ∆±. The condition 4 is trivial, since

∂ log r(y|u)
∂u = − log(1+ e−u) is bounded.

Theorem 4. Let r(y|u) be a conditional probability density function of y ∈
Y given u ∈ R, which satisÞes the conditions [NM1], [NM2], and [NM3],
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ϕ0(x) be a bounded function on R, and f0(z) is a density function with re-
spect to the measure µ = µR×µy, which is deÞned by f0(x, y) = r(y|ϕ0(x))q(x).
For a closed interval I, a non-negative value M(I) is deÞned by

M(I) =

Z Z ³∂ log r(y|ϕ0(x))
∂u

´2
χI(x)r(y|ϕ0(x))q(x)dµydx, (72)

and a function uI(z) is deÞned by

uI(z) =
1p
M(I)

∂ log r(y|ϕ0(x))
∂u

χI(x), (73)

if M(I) > 0, where z = (x, y). Suppose that W = {w(x;α) | α ∈ A0} is a
family of functions such that the the function

v(z;α) =
∂ log r(y|ϕ0(x))

∂u
w(x;α) (74)

satisÞes kv(z;α)kL2(f0µ) = 1 for all α ∈ A0. It is further assumed that there
exist a, b > 0 such that for any ε > 0 and closed interval I with positive
M(I) we can Þnd w(x;α) ∈W which satisÞes
(i) 0 < w(x;α) ≤ a√

M(I)
for all x ∈ R,

(ii) w(x;α) ≥ b√
M(I)

for all x ∈ I, and
(iii)

R R |v(z;α)− uI(z)|2r(y|ϕ0(x))q(x)dµydx < ε.
Then, for the locally conic model f(z;α,β) = r(y|ϕ0(x) + βw(x;α))q(x)

(α ∈ A0 and β ∈ R), there exists δ > 0 such that, given i.i.d. sample from
f0µ, we have

lim inf
n→∞ Prob

³supα,β Ln(α,β)
log n

≥ δ
´

> 0. (75)

Remark. The above theorem asserts that the order of the likelihood ratio is
at least Op(log n).

From this theorem and Lemma 2, the following result on multilayer per-
ceptrons is obtained.

Corollary 1. Suppose that the model is the multilayer perceptron with H
hidden units, and the true function is given by a network with K hidden
units for K ≤ H−2. Then, under the conditions [NM1], [NM2] and [NM3],
there exists δ > 0 such that

lim inf
n→∞ Prob

³supθ Ln(θ)
log n

≥ δ
´

> 0. (76)
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Proof of Theorem 4. From [NM1]-3 and the boundedness of ϕ0(x), the value
M(R) is positive and Þnite. Fix a positive numberK such thatM([−K,K]) =
M(R)
2 . Such K exists, since Q is absolutely continuous with respect to the

Lebesgue measure. For an arbitrary m ∈ N, we can obtain a partition
{I [m]k | k = 1, . . . , m} of [−K,K] such that I [m]k �s are closed intervals with

disjoint interiors, and M(I
[m]
k ) = M(R)

2m for all k. For each k (1 ≤ k ≤ m, a
function u

[m]
k (z) is deÞned by

u
[m]
k (z) =

∂

∂β
log r

µ
y
¯̄̄
ϕ0(x) + β

1q
M(I

[m]
k )
χIk(x)

¶¯̄̄
β=0

=
q

2m
M(R)

∂ log r(y|ϕ0(x))
∂u

χ
I
[m]
k

(x).

(77)

This is a tangent vector of the locally conic one-dimensional model r
³
y
¯̄̄
ϕ0(x)+

β 1q
M(I

[m]
k )
χ
I
[m]
k

(x)
´
q(x) at the origin. Note that the functions u

[m]
k (z) are

uncorrelated under the probability f0µ.

Let H3(x) be a function deÞned by H3(x) = Ef0µ

¯̄̄
∂ log r(y|ϕ0(x))

∂u

¯̄̄3
. By the

assumptions [NM1]-3, [NM3]-5, and the boundedness of ϕ0(x), there exists
B > 0 such that H3(x) ≤ BG(ϕ0(x)) for all x ∈ [−K,K]. Then, we obtain

Ef0µ|u[m]k (z)|3 = 1

M(I
[m]
k )3/2

Z
H3(x)χI [m]k

q(x)dx

≤ B

M(I
[m]
k )3/2

Z
G(ϕ0(x))χI [m]k

q(x)dx =
√
2B√
M(R)

√
m.(78)

Let Pn and Qm be the probability distribution of the m-dimensional

random vector
¡
1√
n

Pn
i=1 u

[m]
1 (Zi), . . . ,

1√
n

Pn
i=1 u

[m]
m (Zi)

¢
, and of the m-

dimensional normal distribution N(0, Im), respectively. Let D denote the
family of all the convex measurable sets on Rm. The Berry-Esseen-type
inequality ([18]) gives

sup
∆∈D

|Pn(∆)−Qm(∆)| ≤ Lm4

√
n

X
1≤k≤m

Ef0µ|u[m]k (Z)|3, (79)

where L is a universal constant. From eqs.(78) and (79), choosing ∆ =
[−ν√logm, ν√logm]m, we have for all n and m¯̄̄̄
¯Prob³ max1≤k≤m

¯̄ 1√
n

nX
i=1

u
[m]
k (Zi)

¯̄
> ν

p
logm

´
− Prob

³
max
1≤k≤m

|Vk| > ν
p
logm

´¯̄̄̄
≤ C 0

m11/2

√
n
, (80)
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where Vk (1 ≤ k ≤ m) are i.i.d sample from the standard normal distribu-
tion, and C 0 is a constant independent of n and m. Let [x] denote the largest
integer that is not larger than x. If we set m = [nγ ] for 0 < γ < 1

11 , the right
hand side of eq.(80) converges to zero as n goes to inÞnity. From the ex-
treme value theory, the probability of the event {max1≤k≤m |Vk| > ν

√
logm}

converges to 1 for 0 < ν <
√
2. Thus, for such ν and arbitrary ε > 0, we

have

Prob
³
max
1≤k≤m

¯̄̄ 1√
n

nX
i=1

u
[m]
k (Zi)

¯̄̄2
> ν2γ log n

´
> 1− ε, (81)

for sufficiently large n.
By the assumptions on W, for arbitrary ε, δ > 0, m ∈ N, and k (1 ≤

k ≤ m), there exists w
[m]
k ∈ W such that (i) 0 < w

[m]
k (x) ≤ �a

√
m, (ii)

w
[m]
k (x) ≥ �b√m on Ik, and (iii) Ef0µ

¯̄
v
[m]
k (z)−u[m]k (z)

¯̄2
< εδ2

m , where v
[m]
k (z)

is a function deÞned by eq.(74) for w
[m]
k (x), and �a,�b are positive constants

independent of ε, m and k. Then, using Chebyshev�s inequality, we obtain

Prob

Ã¯̄̄̄
¯ max1≤k≤m

¯̄̄ 1√
n

nX
i=1

u
[m]
k (Zi)

¯̄̄
− max
i≤k≤m

¯̄̄ 1√
n
v
[m]
k (Zi)

¯̄̄¯̄̄̄¯ ≥ δ
!

≤ Prob
³
1 ≤ ∃k ≤ m,

¯̄̄ 1√
n

nX
i=1

u
[m]
k (Zi)− 1√

n
v
[m]
k (Zi)

¯̄̄
≥ δ

´
≤ mProb

³¯̄̄ 1√
n

nX
i=1

u
[m]
k (Zi)− 1√

n
v
[m]
k (Zi)

¯̄̄
≥ δ

´
≤ mEf0µ|u

[m]
k (z)− v[m]k (z)|2

δ2
< ε. (82)

Combining eqs.(81) and (82), there exists γ0 > 0 such that

Prob

µ
max
1≤k≤m

¯̄̄ 1√
n

nX
i=1

v
[m]
k (Zi)

¯̄̄2
> γ0 logn

¶
> 1− 2ε (83)

holds for sufficiently large n.
Since M(I) =

R
G(ϕ0(x))q(x)dx, by the assumption [NM1]-3 and the

boundedness of ϕ0(x), there exist c, d > 0 such that
c
m ≤ Q(I [m]k ) ≤ d

m holds

for all m and k (1 ≤ k ≤ m). From this fact and the choice of w
[m]
k , Lemma

3 in Appendix asserts that there exists γ1 > 0 such that for all positive γ
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satisfying 0 < γ < γ1 and m = [nγ ], the following asymptotic expansion of
the likelihood ratio holds;

max
1≤k≤m

sup
β

nX
i=1

log
f
[m]
k (Zi; β)

f0(Zi)
=
n
max
1≤k≤m

1

2

³ 1√
n

nX
i=1

v
[m]
k (Zi)

´2o
(1+ op(1)),

(84)

where f
[m]
k (z; β) = r(y|ϕ0(x) + βw[m]k (x))q(x). The proof is completed by

combination of eqs.(83) and (84).

The order Op(log n) has been formerly obtained by Hagiwara et al. ([4]).
However, they consider only the least square loss function, and use its special
property. The approach in this paper extends their results. The above
theorem can be applied to various noise models, including binary output
models.

As shown in the above discussions, the behavior of the likelihood ratio
deeply depends on the functional property of the tangent cone C. If the mul-
tilayer perceptron model has only one redundant hidden unit, the behavior
can be totally different. In fact, Hayasaka et al. ([19]) show that, if the
network model has one hidden unit of step function, and the true function
is constant zero, the likelihood ratio of MLE has the order of Op(log log n),
under the least square loss function. This is essentially the same as the
result of a change point problem ([7]).

5 Conclusion

An approach to investigate the behavior of MLE has been discussed on con-
dition that the true parameter is unidentiÞable. Following the discussion of
Dacunha-Castelle and Gassiat ([2]), this paper has formulated the likelihood
ratio of MLE by the supremum of an empirical process, which converges to
the standard normal distribution marginally. Unlike Dacunha-Castelle and
Gassiat ([2]), which concentrates on uniform convergence cases, non-uniform
cases have been the main concern of this paper, and a useful sufficient con-
dition of an unusually larger order of the likelihood ratio has been derived.
These results have been applied to neural network models, and Op(log n)
lower bound of the likelihood ratio has been obtained, under the assump-
tion that there are at least two redundant hidden units to realize the true
function.
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A Lemmas used in the proof of Theorem 5

Lemma 3. Let Y be a subset of R, r(y|ξ) be a probability density function
on a measure space (Y ,By, µy) with one-dimensional parameter ξ, which
satisÞes the assumptions [NM1], [NM2], and [NM3], and Q = q(x)dx be
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a probability on X = R, which is absolutely continuous with respect to the
Lebesgue measure on R and EQ| log q(x)| <∞. We have a bounded function
ϕ0(x), and i.i.d. random variables (X1, Y1), (X2, Y2), . . . with probability
r(y|ϕ0(x))q(x)µRµy. Let a, b, c, and d be positive constants, and D be a
compact interval. For m ∈ N, a family of functions Wm is deÞned by

Wm = {w : R→ R | 0 < w(x) ≤ a√m for all x ∈ R, and there exists
a closed interval I ⊂ D such that c

m ≤ Q(I) ≤ d
m and w(x) ≥ b√m on I}.

For γ > 0, let mn be a natural number given by mn = [n
γ ] for n ∈ N, and

Gγ be a family of sequences {{w(n)k }n∈N,1≤k≤mn | w(n)k ∈Wmn}. Then, there
exists γ0 > 0 such that for any γ ≤ γ0 and {w(n)k } ∈ Gγ, we obtain, as n
goes to inÞnity,

max
1≤k≤mn

sup
β

nX
i=1

log
r(Yi|ϕ0(Xi) + βw(n)k (Xi))

r(Yi|ϕ0(Xi)) =
n
max

1≤k≤mn

1

2

³ 1√
n

nX
i=1

u
(n)
k (Xi, Yi)

´2o
(1+ op(1)),

(85)

where u
(n)
k (x, y) is a tangent vector given by

u
(n)
k (x, y) =

∂ log r(y|ϕ0(x) + βw(n)k (x))

∂β

¯̄̄
β=0

=
∂ log r(y|ϕ0(x))

∂ξ
w
(n)
k (x).

(86)

First, we will establish the uniform consistency of the maximum likeli-
hood estimator of β.

Lemma 4. Let r(y|ξ), q(x), ϕ0(x), and Wm be the same as in Lemma
3. For m ∈ N, let Hm be the set of m functions in Wm, that is, Hm =

{{wk}mk=1 | wk ∈ Wm}. For Ξ = {w[m]k }mk=1 ∈ Hm, we write bβ[m]k (Ξ) for the

maximum likelihood estimator of the model r(y|ϕ0(x)+βw[m]k (x))q(x), given
an i.i.d. sample (X1, Y1), . . . , (Xn, Yn) with probability r(y|ϕ0(x))q(x)µRµy.
Then, there exist positive constants A, γ, and ν such that the inequality

Prob
¡
max
1≤k≤m

¯̄ bβ[m]k (Ξ)
¯̄ ≥ ε

¢ ≤ A
mγ

nεν
(87)

holds for all 0 < ε < 1, n,m,∈ N, and Ξ ∈ Hm.
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Proof. The proof is divided into Þve parts. In the Þrst four parts, Þx w(x) ∈
Wm, and write f

[m](z;β) = r(y|ϕ0(x)+βw(x))q(x) for z = (x, y). We deÞne
H
[m]
+ (z; t), H

[m]
− (z; t), and g[m](z;β; ρ) for t,β ∈ R and ρ > 0 by

H
[m]
+ (z; t) = sup

β≥t
log f [m](z;β), H

[m]
− (z; t) = sup

β≤−t
log f [m](z;β), (88)

and g[m](z;β, ρ) = sup
|β0−β|≤ρ

log f [m](z; β0), (89)

respectively. A constant M is taken so that |ϕ0(x)| ≤M for all x ∈ R. The
true probability is denoted by f0(z)µ, where f0(z) = r(y|ϕ0(x))q(x) and
µ = µydx.

(a) Bound of Ef0µ[H
[m]
± (z; t)]. First, we will show that for arbitrary δ > 0,

there exist B1,λ1 > 0 such that for all m ∈ N and t ≥ B1mλ1 the inequality

Ef0µ[H
[m]
± (z; t)] ≤ Ef0µ[log f0(z)]− 3δ (90)

holds. We will prove it only for H
[m]
+ (z; t), since the proof on H

[m]
− (z; t) is

exactly the same. From the assumption [NM3]-2, there exist ∆ ⊂ Y, Γ1 > 0,
Λ1 > 0, γ1 > 0, and R0 > 0 such that

R
∆ r(y|u)dy ≥ Γ1 for all u ∈ [−M,M ]

and log r(y|u) ≤ −Λ1|u|γ1 for all y ∈ ∆ and u ≥ R0. If we set R = R0+M
b
√
m
,

we have ϕ0(x) + tw(x) ≥ R0 for all t ≥ R and x ∈ I, where I is the interval
on which w(x) ≥ b√m. Then, for all x ∈ I, y ∈ ∆, and t ≥ R, the bound

H
[m]
+ (z; t) = h(y|ϕ0(x) + tw(x)) + log q(x)

≤ −Λ1|ϕ0(x) + tw(x)|γ1 + log q(x)
≤ −Λ1(b

√
mt−M)γ1 + log q(x) (91)

is obtained. From the assumption [NM3]-3, there exists F1 > 0 such that
Er(y|ξ)[h+(y|−M)] ≤ F1 for all ξ ∈ [−M,M ]. Since ϕ0(x) + βw(x) ≥ −M
for β > 0, we see that for t ≥ 0

Ef0µ[H
[m]
+ (z; t)] ≤ EQ[Er(y|ϕ0(x))[h+(y|−M)]] ≤ F1. (92)

For a real number r, we deÞne (r)+ by (r)+ = r if r ≥ 0 and (r)+ = 0 if
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r < 0. Then, from eqs.(91) and (92), we obtain

Ef0µ[H
[m]
+ (z; t)] =

Z
I×∆

H+(z; t)f0(z)dµ+

Z
X×Y\I×∆

H+(z; t)f0(z)dµdxdy

≤ −Λ1(a
√
mt−M)γ1

Z
I

Z
∆
r(y|ϕ0(x))dµyq(x)dx

+ Ef0µ[(H+(z; t))+] +EQ| log q(x)|
≤ −Λ1Γ1 c

m
(b
√
mt−M)γ1 + F1 + EQ| log q(x)|. (93)

From this inequality and the fact Ef0µ[log f0(z)] < ∞, we can conclude
eq.(90) if we choose λ1 >

1
2γ1 − 1 and sufficiently large B1 > 0.

(b) L2 bound of H
[m]
± (z; t). Next, we will prove that for any B1 > 0 and

λ1 > 0 there exist B2 > 0 and λ2 > 0 such that the inequality

Ef0µ[|H [m]
± (z;B1m

λ1)|2] ≤ B2mλ2 (94)

holds for any m ∈ N.
To see this, let `1(ξ) and λ > 0 be in the assumption [NM3]-3, and Γ2 > 0

satisfy |`i(ξ)| ≤ Γ2 for all ξ ∈ [−M,M ]. Then, the bound
Ef0µ

£|H [m]
± (z; t)|2¤ = EQ£Er(y|ϕ0(x))£|h+(y|ϕ0(x)± tβw(x))|2¤¤

≤ EQ
£
`1(ϕ0(x))

2|ϕ0(x)± tβw(x)|2λ
¤

≤ Γ22(M + ta
√
m)2λ (95)

is obtained. The above assertion is straightforward, if we choose sufficiently
large B2 and λ2 ≥ 2λ(λ1 + 1

2 ).

(c) Bounds of Ef0µ[g
[m](z;β, ρ)]. We will show the fact that there exist

A3, B3 > 0, λ3 > 0, and γ3 > 0, such that for arbitrary R ≥ 1, δ > 0 and
β ∈ [−R,R] the inequalities

Ef0µ[g
[m](z;β, ρ)] ≤ Ef0µ[log f [m](z; β)] + δ (96)

and

Ef0µ[|g[m](z;β, ρ)|2] ≤ B3(
√
mR)λ3 + 2δ2 (97)

for ρ ≤ A3δ(√mR)−γ3 .
Because |ϕ0(x) + βw(x)| ≤ M + a

√
mR for β ∈ [−R,R], from the as-

sumption [NM3]-4, we can Þnd ν3 > 0, Ψ(y), and `2(ξ) such that

| log f [m](z;β)− log f [m](z; β0)| ≤ Ψ(y)w(x)|β − β0| (98)
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and

Er(y|ξ)[|Ψ(y)|2] ≤ `2(ξ)(M + a
√
mR)ν3 (99)

are satisÞed. Eq.(98) means |g[m](z;β, ρ) − log f [m](z;β)| ≤ a
√
mρΨ(y).

Since Γ3 = EQ[`2(ϕ0(x))] <∞, we obtain
Ef0µ[g

[m](z; β, ρ)] ≤ Ef0µ[log f [m](z;β)] + ρa
√
m{Γ3(M + a

√
mR)ν3}1/2

≤ Ef0µ[log f [m](z;β)] + F3ρ(
√
mR)

ν3
2
+1, (100)

for F3 = aΓ
1/2
3 (M + a)ν3/2. If we choose ρ as ρ ≤ δ©F3(√mR) ν32 +1)ª−1, the

Þrst assertion is satisÞed.
For this choice of ρ, noting that a2mρ2Ef0µ[Ψ(y)

2] ≤ δ2, we further
obtain

Ef0µ[|g[m](z;β, ρ)|2] ≤ 2Ef0µ| log f [m](z;β)|2 + 2Ef0µ[Ψ(y)2]a2mρ2
≤ 4Ef0µ[| log f0(z)|2 + β2a2mΨ(y)2] + 2Ef0µ[Ψ(y)2]a2mρ2
≤ 4Ef0µ| log f0(z)|2 + 4a2m(M + a

√
mR)2{Γ3(M + a

√
mR)ν3}+ 2δ2

≤ 4Ef0µ| log f0(z)|2 + Λ3(
√
mR)ν3+4 + 2δ2, (101)

for sufficiently large Λ3, which depends only on a, M , and Γ3. Because
Ef0µ| log f0(z)|2 <∞ from the assumption [NM3]-3, the second assertion is
obtained.

(d) Lower bound of KL-divergence. We will show that there exist B4 > 0,
λ4 > 0, and ν4 ∈ R such that the bound

Ef0µ[log f
[m](z;β)] ≤ Ef0µ[log f0(z)]−B4mν4ελ4 (102)

holds for arbitrary 0 < ε < 1, m ∈ N, and β with |β| ≥ ε.
By the property of Kullback-Leibler divergence, we have

Er(y|ϕ0(x))[log r(y|ϕ0(x) + βw(x))− log r(y|ϕ0(x))] ≤ 0, (103)

for all x and β. From the assumption [NM3]-1, there exist positive constants
A4, C4, γ4, δ4, and T0 such that, if |βw(x)| ≤ T0, the inequality

Er(y|ϕ0(x))
£
log r(y|ϕ0(x) + βw(x))− log r(y|ϕ0(x))

¤ ≤ −A4|βw(x)|γ4
(104)

holds, and if |βw(x)| > T0, the inequality
Er(y|ϕ0(x))

£
log r(y|ϕ0(x) + βw(x))− log r(y|ϕ0(x))

¤ ≤ −C4|βw(x)|δ4 (105)
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holds. Since w(x) ≥ b√m for x ∈ I, for all x ∈ I and β with |β| ≥ ε, either

Er(y|ϕ0(x))
£
log r(y|ϕ0(x) + βw(x))− log r(y|ϕ0(x))

¤ ≤ −A4(bε√m)γ4
(106)

or

Er(y|ϕ0(x))
£
log r(y|ϕ0(x) + βw(x))− log r(y|ϕ0(x))

¤ ≤ −C4(bε√m)δ4
(107)

is satisÞed.
From eqs.(103), (106), and (106), for λ4 = max{γ4, δ4}, κ4 = min{γ4, δ4},

and some constant F4 > 0, the bound

Ef0µ[log f
[m](z; β)− log f0(z)] ≤ −F4ελ4m

κ4
2
c

m
(108)

is obtained, which means the assertion.

(e) Uniform consistency. We write f
[m]
k (z;β) = r(y|ϕ0(x)+βw[m]k (x))q(x).

For a Þxed δ > 0, take B1 and λ1 in the assertion (a), and denote Rm =
B1m

λ1. Because we have

sup
β≥Rm

nX
i=1

log f
[m]
k (Zi;β) ≤

nX
i=1

H
[m]
+ (Zi;Rm), (109)

for all m and k, eq.(90) and Chebyshev�s inequality give

Prob
³
∃k, sup

β>Rm

1

n

nX
i=1

log f
[m]
k (Zi;β) ≥ 1

n

nX
i=1

log f0(Zi)
´

≤ mProb
³ 1
n

nX
i=1

H
[m]
+ (Zi;Rm) >

1

n

nX
i=1

log f0(Zi)
´

≤ m
n
Prob

³ 1
n

nX
i=1

H
[m]
+ (Zi;Rm)− Ef0µ[H [m]

+ (Z;Rm)] > δ
´

+ Prob
³ 1
n

nX
i=1

f0(Zi)− Ef0µ[log f0(Z)] < −δ
´o

≤ m
(
V [H

[m]
+ (Z;Rm)]

nδ2
+
V [log f0(Z)]

nδ2

)
. (110)
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We can obtain a similar bound for β < −Rm also, using H
[m]
− (z; t). From

the fact (b), the variance V [H
[m]
± (Z;Rm)] is bounded by by B2m

λ2 for some
B2 > 0 and λ2 > 0. This shows there exist A5 > 0 and λ5 > 0 such that

Prob(∃k, | �β[m]k | ≥ Rm) ≤ A5m
λ5

n
(111)

holds for all m,n ∈ N.
By the fact (d), we have Ef0µ[log f

[m]
k (z;β)]−Ef0µ[log f0(z)] ≤ −4δm for

all β with |β| ≥ ε and m ∈ N, where δm = 1
4B4m

ν4ελ4 . From the fact (c),
we have

Ef0µ[g
[m](z;β, ρm)] ≤ Ef0µ[log f(z;β)] + δm (112)

for all β ∈ [−Rm, Rm] and ρm = A3δm
1

(
√
mRm)γ3

. Let Nm be a natural

number given by Nm = [Rmρm ] + 1. Then, there exist positive constants C5

and ν5 such thatNm ≤ C5mν5ε−λ4. Dividing the interval [−Rm,−δ]∪[δ, Rm]
into Nm intervals Jj = [βj−ρm,βj+ρm] (1 ≤ j ≤ Nm) with disjoint interior,
we have

Ef0µ[g
[m](z; βj , ρm)] ≤ Ef0µ[log f0(z)]− 3δm (113)

for each j. Then, we obtain

Prob
³
∃β ∈ [−Rm,−ε] ∪ [ε, Rm], 1

n

nX
i=1

log f
[m]
k (Zi;β) ≥ 1

n

nX
i=1

log f0(Zi)
´

≤ Prob
³
∃k, 1 ≤ ∃j ≤ Nm, 1

n

nX
i=1

sup
β∈Jj

log f
[m]
k (Zi;β) ≥ 1

n

nX
i=1

log f0(Zi)
´

≤ Nm Prob
³ 1
n

nX
i=1

g[m](Zi; βj , ρm) >
1

n

nX
i=1

log f0(Zi)
´

≤ C5mν5+1ε−λ4
n
Prob

³ 1
n

nX
i=1

g[m](Zi; βj , ρm)− Ef0µ[g[m](z; βj , ρm)] > δm
´

+ Prob
³ 1
n

nX
i=1

log f0(Zi)− Ef0µ[log f0(Z)] < −δm
´o

≤ C5mν5+1ε−λ4
nV [g[m](z;βj , ρm)]

nδ2m
+
V [log f0(Z)]

nδ2m

o
. (114)

From the fact (c), we see that there exist F5 > 0 and τ5 > 0 such that

Prob
³
∃k, �β[m]k ∈ [−Rm,−ε] ∪ [ε, Rm]

´
≤ F5 m

τ5

nε3λ4
(115)
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for all m,n ∈ N, and 0 < ε < 1.
Combining eqs. (111) and (115), we have the assertion of Lemma 4.

Proof of Lemma 3. From Lemma 4, for a Þxed small ε > 0, the probability

of the event {max1≤k≤mn |bβ(n)k | < ε} converges to one. Then, the maximum
likelihood estimator bβ(n)k of the model f

(n)
k (z;β) = r(y|ϕ0(x)+βw(n)k (x))q(x)

satisÞes the likelihood equation

nX
i=1

∂ log f
(n)
k (Zi; bβ(n)k )

∂β
= 0 (116)

for all 1 ≤ k ≤ mn, with a probability which converges to one. Taylor
expansion of eq.(116) and Ln leads

X
i=1

∂ log f
(n)
k (Zi; 0)

∂β
+

nX
i=1

∂2 log f
(n)
k (Zi;β

∗
k)

∂β2
bβ(n)k (117)

and

nX
i=1

log
f
(n)
k (Zi; bβ(n)k )

f0(Zi)
=

nX
i=1

∂ log f
(n)
k (Zi; 0)

∂β
bβ(n)k +

1

2

nX
i=1

∂2 log f
(n)
k (Zi;β

∗∗
k )

∂β2
(bβ(n)k )2

(118)

for some β∗k and β
∗∗
k between 0 and bβ(n)k . A simple calculation shows

nX
i=1

log
f
(n)
k (Zi; bβ(n)k )

f0(Zi)
=

³
1√
n

Pn
i=1

∂ log f
(n)
k (Zi;0)

∂β

´2
− 1
n

Pn
i=1

∂2 log f
(n)
k (Zi;0)

∂β2

n
S(k)n − 1

2
T (k)n

o
, (119)

where

S(k)n =

1
n

Pn
i=1

∂2 log f
(n)
k (Zi;0)

∂β2

1
n

Pn
i=1

∂2 log f
(n)
k (Zi;β∗k)
∂β2

(120)

and

T (k)n =

1
n

Pn
i=1

∂2 log f
(n)
k (Zi;0)

∂β2
1
n

Pn
i=1

∂2 log f
(n)
k (Zi;β∗∗k )
∂β2³

1
n

Pn
i=1

∂2 log f
(n)
k (Zi;β∗k)
∂β2

´2 . (121)
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The proof of Lemma 3 is completed if we show for arbitrary ε > 0

Prob
³
max

1≤k≤mn

¯̄̄ 1
n

nX
i=1

∂2 log f
(n)
k (Zi; �βk)

∂β2
+ 1
¯̄̄
≥ ε

´
−→ 0 (n→∞),

(122)

for �βk = 0, bβ∗k, and bβ∗∗k . In fact, maxk |S(k)n −1| and maxk |T (k)n −1| converge
to 0 in probability from the above convergence.

By Taylor expansion, we have

1

n

nX
i=1

∂2 log f
(n)
k (Zi; �βk)

∂β2
=
1

n

nX
i=1

∂2 log f
(n)
k (Zi; 0)

∂β2
+
1

n

nX
i=1

∂3 log f
(n)
k (Zi; η)

∂β3
�βk,

(123)

where η is between 0 and �βk. Because
∂2 log f

(n)
k (z;0)

∂β2 = ∂2 log r(y;ϕ0(x))
∂u2 (w

(n)
k (x))2,

from the assumption [NM3]-5 and the fact |w(n)k (x)| ≤ a√mn, there exists
B1 > 0 such that

Ef0µ

h¯̄̄ 1
n

nX
i=1

∂2 log f
(n)
k (Zi; 0)

∂β2
+ 1

¯̄̄2i ≤ 2 + 2B1m
2
n

n
, (124)

holds for all n ∈ N. Therefore, by Chebyshev�s inequality, for 0 < γ < 1
3 we

obtain

Prob
³
max

1≤k≤mn

¯̄̄ 1
n

nX
i=1

∂2 log f
(n)
k (Zi; 0)

∂β2
+ 1
¯̄̄
>
ε

2

´
≤ mn Prob

³¯̄̄ 1
n

nX
i=1

∂2 log f
(n)
k (Zi; 0)

∂β2
+ 1
¯̄̄
>
ε

2

´
≤ mn

2 + 2B1m
2
n

n
−→ 0. (125)

Let d be a positive number such that d > 2. From the assumption
[NM3]-6, there exist B2 > 0 and n0 ∈ N such that

Er(y|ϕ0(x))
h
sup

|β|≤m−d
n

¯̄̄∂3 log r(y|ϕ0(x) + βw(n)k (x))

∂u3

¯̄̄2i ≤ B2, (126)
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for all n ≥ n0 and x ∈ R. Let M (n)
k (z) be a function deÞned by

M
(n)
k (z) = sup

|β|≤m−d
n

¯̄̄∂3 log f (n)k (z;β)

∂β3

¯̄̄
. (127)

The L2 norm of this function is bounded by

Ef0µ[(M
(n)
k (z))2] = EQ

h
Er(y|ϕ0(x))

h
sup

|β|≤m−d
n

¯̄̄∂3 log r(y|ϕ0(x) + βw(n)k (x))

∂u3

¯̄̄2{w(n)k (x)}6
ii

≤ B2(a
√
m)6. (128)

Then, we obtain a bound of the probability

Prob
³
1 ≤ ∃k ≤ m,

¯̄̄ 1
n

nX
i=1

∂3 log f
(n)
k (Zi; η)

∂β3
�βk

¯̄̄
≥ ε

2

´
≤ Prob

³
max

1≤k≤mn

|bβk| ≥ 1

md
n

´
+ Prob

³
max

1≤k≤mn

|bβk| < 1

md
n

, and 1 ≤ ∃k ≤ mn,
¯̄̄ 1
n

nX
i=1

∂3 log f
(n)
k (Zi; η)

∂β3

¯̄̄
≥ ε

2
md
n

´
≤ Prob

³
max

1≤k≤mn

|bβk| ≥ 1

md
n

´
+mn Prob

³ 1
n

nX
i=1

M
(n)
k (Zi) ≥ ε

2
md
n

´
. (129)

From Lemma 4, there exist positive constants A, λ, and ν such that the

Þrst term of eq.(129) is bounded by Am
λ+dν
n
n . By Chebyshev�s inequality, the

second term is not greater than
4mnE[M

(n)
k (z)2]

ε2m2d
n

≤ 4B2a6m
4−2d
n

ε2
, which converges

to zero because we take d > 2. For such d Þxed, taking sufficiently small
γ such that γ(λ+ dν) < 1, we see that the Þrst term of eq.(129) converges
to zero for mn = [n

γ ]. Thus, we have for any sufficiently small γ > 0 and
mn = [n

γ ],

Prob
³
1 ≤ ∃k ≤ mn,

¯̄̄ 1
n

nX
i=1

∂3 log f
(n)
k (Zi; η)

∂β3
�βk

¯̄̄
≥ ε

2

´
−→ 0, (130)

as n→∞.
Combination of eqs.(123), (125) and (130) means eq.(122), and completes

the proof.
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