Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses

- Source link

Quang Vuong
Published on: 01 Mar 1989 - Econometrica (California Institute of Technology)
Topics: Likelihood-ratio test, Vuong's closeness test, Model selection, Test statistic and Asymptotic distribution

Related papers:

- Zero-inflated Poisson regression, with an application to defects in manufacturing
- Estimating the Dimension of a Model
- Regression Analysis of Count Data
- Specification and testing of some modified count data models
- Accounting earnings and cash flows as measures of firm performance: The role of accounting accruals

DIVISION OF THE HUMANITIES AND SOCIAL SCIENCES
 CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA 91125

LIKELIHOOD RATIO TESTS FOR MODEL
SELECTION AND NON-NESTED HYPOTHESES

Quang H. Vuong
California Institute of Technology

SOCIAL SCIENCE WORKING PAPER 605

LIKELIHOOD RATIO TESTS FOR
MODEL SELECTION AND NON-NESTED HYPOTHESES

Quang H. Vuong
California Institute of Technology Division of the Humanities and Social Sciences 228-77 Pasadena, California 91125

ABSTRACT

In this paper, we propose a classical approach to model selection. Using the Kullback-Leibler Information measure, we propose simple and directional likelihood-ratio tests for discriminating and choosing between two competing models whether the models are nonnested, overlapping or nested and whether both, one, or neither is misspecified. As a prerequisite, we fully characterize the asymptotic distribution of the likelihood ratio statistic under the most general conditions.

LIKELIHOOD RATIO TESTS FOR
MODEL SELECTION AND NON-NESTED HYPOTHESES*
Quang H. Vuong
California Institute of Technology

1. INTRODUCTION

The main purpose of this paper is to propose some new tests for model selection and non-nested hypotheses. At the same time, we shall propose a classical approach to model selection. Since all our tests are based on the likelihood ratio principle, as a prerequisite, we shall completely characterize the asymptotic distribution of the likelihood ratio statistic under general conditions. By general conditions we mean that the models may be nested, non-nested or overlapping and that both, only one, or neither of the competing models may contain the true law generating the observations.

Unlike most previous work on model selection (see, e.g., Chow (1983, Chapter 9), Judge et al. (1985, Chapter 21)), we shall adopt the classical hypothesis testing framework and propose some directional and symmetric tests for choosing between models. This approach, which has not attracted a lot of attention, dates back to Hotelling (1940). A notable and recent exception is White and Olson (1979) where competing models are evaluated according to their mean square error of prediction. In this paper, we shall follow Akaike (1973, 1974) and consider the Kullback-Leibler (1951) Information Criterion (KLIC) which measures the distance between a given
distribution and the true distribution. If the distance between a specified model and the true distribution is defined as the minimum of the KLIC over the distributions in the model, then it is natural to define the "best" model among a collection of competing models to be the model that is closest to the true distribution (see also Sawa (1978)).

We shall consider conditional models so as to allow for explanatory variables. Then, if $F_{\theta}=\{f(y \mid z ; \theta) ; \theta \varepsilon \theta\}$ is a conditional model, its distance from the true conditional density $h^{0}(y \mid z)$, as measured by the minimum KLIC, is $E^{0}\left[\log h^{0}(y \mid z)\right]$ $E^{0}\left[\log f\left(y \mid z ; \theta_{q}\right)\right]$ where $E^{0}[\cdot]$ denotes the expectation with respect to the true joint distribution of (y, z) and θ_{*} is the pseudo-true value of θ (see, e.g., Sawa (1978), White (1982a)). Thus, an equivalent selection criterion can be based on the quantity $E^{0}\left[\log f\left(y \mid z ; \theta_{*}\right)\right]$; the "best" model being the one for which this quantity is the largest.

Given two conditional models F_{θ} and $G_{\gamma}=\{g(y \mid z ; \gamma) ; \gamma \varepsilon \Gamma\}$
which may be nested, non-nested or overlapping, we shall propose tests of the null hypothesis that $E^{0}\left[\log f\left(y \mid z ; \theta_{*}\right)\right]=E^{0}\left[\log g\left(y \mid z ; \gamma_{*}\right)\right]$ meaning that the two models are equivalent, against $E^{0}\left[\log f\left(y \mid z ; \theta_{*}\right)\right]>E^{0}\left[\log g\left(y \mid z ; \gamma_{*}\right)\right]$ meaning that F_{θ} is better than G_{γ}, or against $E^{0}\left[\log f\left(y \mid z ; \theta_{*}\right)\right]<E^{0}\left[\log g\left(y \mid z ; \gamma_{*}\right)\right]$ meaning that G_{γ} is better than F_{θ}. Tests of such hypotheses will be called tests for model selection. Since the true density $h_{y / z}^{0}$ is not restricted a priori to belong to either one of the parametric models F_{θ} and G_{γ}, then by necessity, the concern of this paper will solely be with
asymptotic results.
The quantity $E^{0}\left[\log f\left(y \mid z ; \theta_{\mu}\right)\right]$ is unknown. It can nevertheless be consistently estimated, under some regularity conditions, by ($1 / n$) times the log-likelihood evaluated at the pseudo or quasi maximum likelihood estimator (MLE) (see e.g., White (1982a), Gourieroux, Monfort and Trognon (1984)). Hence (1/n) times the loglikelihood ratio (LR) statistic is a consistent estimator of the quantity $E^{0}\left[\log f\left(y \mid z ; \theta_{*}\right)\right]-E^{0}\left[\log g\left(y \mid z ; \gamma_{*}\right)\right]$. Then given the above definition of a "best" model, it is natural to consider the LR statistic as a basis for constructing tests for model selection. Since the two competing models may be nested, non-nested or overlapping, and since both, only one, or neither of the two models may be correctly specified, then it is necessary to obtain the asymptotic distribution of the LR statistic under the most general conditions. To do so, we shall use the by-now well-known framework of White (1982a) in order to handle the possibly misspecified case.

Since Neyman and Pearson (1928) advocated the LR test, it has become one of the most popular methods for testing restrictions on the parameters of a statistical model. It is well-known that minus twice the LR statistic has a limiting central chi-square distribution under the null hypothesis (Wilks (1938)), and a limiting non-central chisquare distribution under a sequence of local alternatives (Wald (1943)) with a non-centrality parameter equal to that of the Wald statistic (Wald (1943)) and Lagrange Multiplier statistic (Aitchinson and Silvey (1958), Silvey (1959)). However, as Foutz and Srivastana
(1977), Kent (1982), and White (1982a) pointed out, when the largest model is misspecified, the LR statistic is no longer necessarily chisquare distributed under the null hypothesis where the null hypothesis must be appropriately redefined in terms of the pseudo-true values satisfying the specified restrictions.

Parallel to this literature on nested hypothesis testing, the LR statistic has also been advocated as a basis for testing non-nested models (Cox (1961, 1962)). In particular Cox $(1961,1962)$ and White (1982b) showed that, if n denotes the sample size, then $n^{-1 / 2}$ times the LR statistic properly centered and normalized has a limiting standard normal distribution under the hypothesis that one of the competing models is correctly specified. This result and the result of the previous paragraph suggest that the asymptotic distribution of the LR statistic as well as the speed at which it converges to that distribution depend on whether or not the models are nested or correctly specified.

In the first part of this paper, we shall completely characterize the asymptotic distribution of the LR statistic under the most general conditions. In particular we show that the asymptotic distribution of the LR statistic and the speed at which it converges to that distribution depends on whether $f\left(y \mid z ; \theta_{*}\right)=g\left(y \mid z ; \gamma_{*}\right)$. In addition since the asymptotic distribution of the LR statistic depends on $f\left(y \mid z ; \theta_{*}\right)=g\left(y \mid z ; \gamma_{*}\right)$, we propose a test of that condition, which we call the variance test.

The paper is organized as follows. In Section 2, we present
the basic framework which is that of White (1982a) and Vuong (1983, 1984). In Section 3, we derive the asymptotic distribution of the LR statistic whether or not the models are nested or misspecified. We show that: (i) if $f\left(y \mid z ; \theta_{*}\right)=g\left(y \mid z ; \gamma_{*}\right)$ then 2 LR has a limiting weighted sum of chi-square distributions; (ii) if $f\left(y \mid z ; \theta_{*}\right) \neq$ $g\left(y \mid z ; \gamma_{*}\right)$ then $n^{-1 / 2}$ LR properly centered around $E^{0}\left[\log \left(f\left(y \mid z ; \theta_{*}\right) / g\left(y \mid z ; \gamma_{*}\right)\right)\right]$ has a limiting normal distribution with non-zero variance ω_{*}^{2}. In addition, for the first case, we characterize the conditions under which 2 LR is asymptotically chisquare distributed.

In Section 4, we show that $f\left(y \mid z ; \theta_{*}\right)=g\left(y \mid z ; \gamma_{*}\right)$ is equivalent to the hypothesis that the variance $\omega_{*}^{2}=0$. This allows us to construct a test of the hypothesis $f\left(y \mid z ; \theta_{*}\right)=g\left(y \mid z ; \gamma_{*}\right)$ based on a consistent estimator $\hat{\omega}_{n}^{2}$ of ω_{*}^{2}. We show that ${\underset{N}{N}}_{\mathbf{N}}^{2}$ has a limiting weighted sum of chi-square distributions under the null hypothesis $\omega_{*}^{2}=0$ and we also characterize the cases for which this limiting distribution reduces to a chi-square distribution.

In the next three sections, we apply the previous results to derive LR based tests for model selection in all possible situations. The case where the models are (strictly) non-nested is considered in Section 5. There, we propose a new and very simple directional test based on $\mathrm{n}^{-1 / 2} \mathrm{LR} / \omega_{\mathrm{n}}$, for selecting the best of two models. The statistic has a limiting standard normal distribution under the null hypothesis that the two non-nested models are equivalent, whether or not both, one or neither is misspecified. We also discuss the
relationship between our approach to model selection and that of Akaike (1973, 1974).

In Section 6, we consider the case where the models are overlapping. This case is seen to be more complicated than the nested case since, under the null hypothesis that the models are equivalent, the asymptotic distribution of the LR statistic depends on whether or not $\omega_{*}^{\mathbf{2}}=0$. We propose two procedures. The first procedure is used when ω_{0}^{2} is possibly null under the null hypothesis that the models are equivalent. The procedure is sequential and is based on the variance statistic of Section 4 for testing $\omega_{0}^{2}=0$ followed by the normal LR test of Section 5 in case of rejection of $\omega_{*}^{2}=0$. The second procedure applies when ω_{*}^{2} is always null under the null hypothesis that the models are equivalent. This happens, as we shall show, when one of the two overlapping models is correctly specified. Then a model selection test can be based directly on twice the LR statistic.

Finally Section 7 considers the more familiar case of nested
models. We show that testing restrictions on θ_{*} is actually identical to testing that the two models are equivalent against the hypothesis that the largest model is "best." Thus, when the competing models are nested, our model selection approach coincides with the classical hypothesis testing approach. Then we propose a test based on twice the LR statistic which reduces to the familiar Neyman-Pearson LR test when for instance the largest model is correctly specified. We also propose a new test based on the variance statistic of Section 4 for testing restrictions on θ_{*} which can also be interpreted as a model
selection test.
Section 8 summarizes our results, suggests some directions for further research, and contains our view on the general purpose of model selection and hypothesis testing in econometric modeling. In particular, we discuss the important distinction between our tests for model selection and the non-nested hypotheses tests proposed by Cox (1961, 1962). All the proofs are collected in the Appendix.

2. BASIC FRAMEWORK

Let X_{t} be a m $\times 1$ observed random vector defined on an Euclidean measurable space $\left(X, \sigma, V_{x}\right)$. For instance, in the case of a continuous random vector, X, σ, ν_{x} are respectively \mathbb{R}^{m}, the Borel σ algebra, and the usual Lebesgue measure. The process generating the observation $X_{t}, t=1,2, \ldots$ satisfies the following assumption.

Assumption A1: The random vectors $X_{t}, t=1,2, \ldots$ are independent and identically distributed (i.i.d.) with common true cumulative distribution function H^{0} on (X, σ, V_{x}).

Though there are more general assumptions on the true data generating process than Assumption A1 (see, e.g., Gallant and Holly (1980), Burguette, Gallant and Souza (1982)), Assumption A1 is the simplest assumption that still allows for the presence of exogenous variables. Following Vuong (1983), the vector X_{t} is partitioned into $X_{t}=\left(Y_{t}^{\prime}, Z_{t}^{\prime}\right)^{\prime}$ where Y_{t} and Z_{t} are respectively ℓ and k dimensional vectors with $m=l+k$. Let $\left(Y, \sigma_{y}, V_{y}\right)$ and $\left(Z, \sigma_{z}, V_{z}\right)$ be the Euclidean
measurable spaces associated with Y_{t} and Z_{t}. We shall be interested in the true conditional distribution $H_{Y \mid Z}^{0}(\cdot \mid \cdot)$ of Y_{t} given Z_{t}. It is convenient to think of Y_{t} as being the endogenous variables, and of Z_{t} as being the exogenous variables.

We now consider two competing parametric families of conditional distributions for Y_{t} given Z_{t} :
$F_{\theta} \equiv\left\{F_{Y \mid Z}(\cdot \mid \cdot ; \theta) ; \theta \varepsilon \theta \in \mathbb{R}^{P^{p}}\right\}$ and $G_{\gamma}=\left\{G_{Y \mid Z}(\cdot \mid \cdot ; \gamma) ; \gamma \varepsilon \Gamma \in \mathbb{R}^{q}\right\}$.
No assumption is here made on the relationship between the two competing conditional models F_{θ} and G_{γ} in the sense that they may be nested, overlapping, or non-nested. Moreover, both, only one, or neither may be correctly specified, i.e., may contain the true conditional distribution for Y_{t} given Z_{t}. Each conditional model satisfies, however, the following regularity conditions (Vuong (1983)) which are similar to those of White (1982, Assumptions A2-A6) with the exception that they bear on conditional models. These regularity conditions are presented without discussion. They are stated in terms of the conditional model $F_{\boldsymbol{\theta}}$. It is understood that similar assumptions are made on the conditional model $\mathrm{G}_{\boldsymbol{\gamma}}$.

Assumption A2: (a) θ is a compact subset of \mathbb{R}^{k}, and for every θ in θ and for all z the conditional distribution $F_{Y \mid Z}(\cdot \mid z ; \theta)$ has a density with respect to $V_{y}: f(\cdot \mid z ; \theta)=d F_{Y \mid Z}(\cdot \mid z ; \theta) / d V_{y}$. (b) The conditional density $f(y \mid z ; \theta)$ is a strictly positive function that is measurable in (y, z) for any θ, and continuous in θ for all (y, z).

Assumption A3: (a) For (H^{0}-almost) all $(y, z),|\log f(y \mid z ; \cdot)|$ is dominated by an $\mathrm{H}^{\mathbf{0}}$-integrable function independent of θ. (b) The function $z_{f}(\theta)=\int \log f(y \mid z ; \theta) d H^{0}(x)$ has a unique maximum on θ at θ_{*}.

The value θ_{*} is called the pseudo-true value of θ for the conditional model $\mathrm{F}_{\boldsymbol{\theta}}$ (see, e.g., Sawa (1978)). Similarly $\boldsymbol{\gamma}_{*}$ denotes the pseudo-true value of $\boldsymbol{\gamma}$ for the conditional model $\boldsymbol{G}_{\boldsymbol{\gamma}}$.

Assumption A4: (a) For (H^{0}-almost) all $(y, z), \log f(y \mid z ; \cdot)$ is twice continuously differentiable on θ. (b) For (H^{0}-almost) all (y, z), $\left|\partial \log f(y \mid z ; \theta) / \partial \theta \cdot \partial \log f(y \mid z ; \theta) / \partial \theta^{\prime}\right|$ and $\left|\partial^{2} \log f(y \mid z ; \theta) / \partial \theta \partial \theta^{\prime}\right|$ are dominated by H^{0}-integrable functions independent of θ.

This ensures the existence of the usual matrices:

$$
\begin{align*}
& A_{f}(\theta)=E^{0}\left[\frac{\partial^{2} \log f\left(Y_{t} \mid Z_{t} ; \theta\right)}{\partial \theta \partial \theta}\right] \tag{2.1}\\
& B_{f}(\theta)=E^{0}\left[\frac{\partial \log f\left(Y_{t} \mid Z_{t} ; \theta\right)}{\partial \theta} \cdot \frac{\partial \log f\left(Y_{t} \mid Z_{t} ; \theta\right)}{\partial \theta^{\prime}}\right], \tag{2.2}
\end{align*}
$$

where $E^{0}[\cdot]$ denotes the expectation with respect to the true joint distribution of $X_{t}=\left(Y_{t}, Z_{t}\right)$. Similar matrices $A_{g}(\gamma)$ and $B_{g}(\gamma)$ are defined for the conditional model G_{γ}.

Assumption 5: (a) θ_{*} is an interior point of θ. (b) θ_{*} is a regular point of $A_{f}(\boldsymbol{\theta})$.

Assumptions A1-A5 can be thought of as the simplest regularity assumptions for maximum likelihood estimation under general conditions in the presence of explanatory variables. The (quasi) maximum likelihood (ML) estimator $\hat{\boldsymbol{\theta}}_{\mathrm{n}}$ for the conditional model $\mathrm{F}_{\boldsymbol{\theta}}$ is a $\sigma_{x}^{n_{-}^{-}}$ measurable function of (x_{1}, \ldots, x_{n}) such that

$$
\begin{equation*}
L_{n}^{f}\left(\hat{\theta}_{n}\right)=\sup _{\theta z \theta} L_{n}^{f}(\theta) \tag{2.3}
\end{equation*}
$$

where $L_{n}^{f}(\theta)$ is the (conditional) log-likelinood function for the model F_{θ} :

$$
\begin{equation*}
L_{n}^{f}(\theta) \equiv \sum_{t=1}^{n} \log f\left(Y_{t} \mid z_{t} ; \theta\right) \tag{2.4}
\end{equation*}
$$

A similar definition applies to the ML estimator $\boldsymbol{\gamma}_{\mathrm{n}}$ for the conditional model G_{γ} with respect to the log-likelinood function:

$$
\begin{equation*}
L_{n}^{g}(\gamma) \equiv \sum_{t=1}^{n} \log g\left(Y_{t} \mid z_{t} ; \gamma\right) \tag{2.5}
\end{equation*}
$$

Given Assumptions A1-A5, it follows from White (1982a) among others that the ML estimator $\hat{\boldsymbol{\theta}}_{\mathrm{n}}$ exists, is consistent for $\boldsymbol{\theta}_{*}$, and is asymptotically normally distributed with asymptotic covariance matrix $A_{f}^{-1}\left(\theta_{*}\right) B_{f}\left(\theta_{*}\right) A_{f}^{-1}\left(\theta_{*}\right)$. Moreover the asymptotic covariance matrix can be consistently estimated by $A_{f n}^{-1}\left(\hat{\theta}_{n}\right) B_{f n}\left(\hat{\theta}_{n}\right) A_{f n}^{-1}\left(\hat{\theta}_{n}\right)$ where $A_{f n}(\theta)$ and $B_{f n}(\theta)$ are the sample analogs of $A_{f}(\theta)$ and $B_{f}(\theta)$. That is:

$$
\begin{equation*}
A_{f n}(\theta)=\frac{1}{n} \sum_{t=1}^{n} \frac{\partial^{2} \log f\left(Y_{t} \mid Z_{t} ; \theta\right)}{\partial \theta \partial \theta^{\prime}} \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
{ }_{B_{f n}}(\theta)=\frac{1}{n} \sum_{t=1}^{n} \frac{\partial \log f\left(Y_{t} \mid z_{t} ; \theta\right)}{\partial \theta} \cdot \frac{\partial \log f\left(Y_{t} \mid Z_{t} ; \theta\right)}{\partial \theta^{\prime}} \tag{2.7}
\end{equation*}
$$

Similar properties hold for the ML estimator $\hat{\boldsymbol{\gamma}}_{\mathrm{n}}$ of $\boldsymbol{\gamma}_{*}$.
In the next section, we shall need the joint asymptotic distribution of $\hat{\boldsymbol{\theta}}_{\mathrm{n}}$ and $\hat{\boldsymbol{\gamma}}_{\mathrm{n}}$. Since A4 holds for both models $\mathrm{F}_{\boldsymbol{\theta}}$ and $\boldsymbol{G}_{\boldsymbol{\gamma}}$, then it can be shown that for (H^{0}-almost) all (y, z),
$\left|\partial \log f(y \mid z ; \cdot) / \partial \theta \cdot \partial \log g(y \mid z ; \cdot) / \partial \gamma^{\prime}\right|$ is dominated by an H^{0} integrable function independent of θ and γ. This ensures that the $p \times q$ matrix

$$
\begin{equation*}
B_{f g}(\theta, \gamma)=B_{g f}^{\prime}(\gamma, \theta) \equiv E^{0}\left[\frac{\partial \log f\left(Y_{t} \mid Z_{t} ; \theta\right)}{\partial \theta} \cdot \frac{\partial \log g\left(Y_{t} \mid Z_{t} ; \gamma\right)}{\partial \gamma^{\prime}}\right] \tag{2.8}
\end{equation*}
$$

exists. Moreover, from Jennrich's uniform strong Law of Large Numbers (1969, Theorem 2), it follows that $B_{f_{g}}\left(\theta_{*}, \gamma_{*}\right)$ is consistently estimated by its sample analog:

$$
\begin{equation*}
B_{f g n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)=\frac{1}{n} \sum_{t=1}^{n} \frac{\partial \log f\left(Y_{t} \mid z_{t} ; \hat{\theta}_{n}\right)}{\partial \theta} \cdot \frac{\partial \log _{g}\left(Y_{t} \mid z_{t} ; \hat{\gamma}_{n}\right)}{\partial \gamma^{\prime}} \tag{2.9}
\end{equation*}
$$

The next lemma gives the joint asymptotic distribution for the quasi $M L$ estimators $\hat{\boldsymbol{\theta}}_{\mathrm{n}}$ and $\hat{\boldsymbol{\gamma}}_{\mathrm{n}}$.

Lemma 2.1: Given Assumptions A1-A5:

$$
n^{1 / 2}\left[\begin{array}{l}
\hat{\theta}_{n}-\theta_{*} \\
\hat{\gamma}_{n}-\gamma_{*}
\end{array}\right] \stackrel{D}{\rightarrow} N\left(0, \sum\right)
$$

where
$\Sigma=\left[\begin{array}{lll}A_{f}^{-1}\left(\theta_{*}\right) B_{f}\left(\theta_{*}\right) A_{f}^{-1}\left(\theta_{*}\right) & ; & A_{f}^{-1}\left(\theta_{*}\right) B_{f_{g}}\left(\theta_{*}, \gamma_{*}\right) A_{g}^{-1}\left(\gamma_{*}\right) \\ A_{g}^{-1}\left(\theta_{*}\right) B_{g f}\left(\gamma_{*}, \theta_{*}\right) A_{f}^{-1}\left(\gamma_{*}\right) & ; & A_{g}^{-1}\left(\gamma_{*}\right) B_{g}\left(\gamma_{*}\right) A_{g}^{-1}\left(\gamma_{*}\right)\end{array}\right] .(2.10)$
Moreover, the asymptotic covariance matrix \sum can be consistently estimated by \hat{L}_{n} which is defined as in Equation (2.10) where A and B are replaced by their sample analogs evaluated at the ML estimators $\hat{\boldsymbol{\theta}}_{\mathrm{n}}$ and $\hat{\boldsymbol{\gamma}}_{\mathrm{n}}$.
3. THE LIKELIHOOD RATIO STATISTIC

All the tests for model selection that are proposed later in this paper will be based on the likelihood ratio (LR) statistic. In this section, we shall therefore obtain the asymptotic distribution of the LR statistic under the most general conditions.

The LR statistic for the model F_{θ} against the model G_{γ} is defined as:

$$
\begin{align*}
L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) & \equiv L_{n}^{f}\left(\hat{\theta}_{n}\right)-L_{n}^{g}\left(\hat{\gamma}_{n}\right) \\
& =\sum_{t=1}^{n} \log \frac{f\left(Y_{t} \mid z_{t} ; \hat{\theta}_{n}\right)}{g\left(Y_{t} \mid z_{t} ; \hat{\gamma}_{n}\right)} \tag{3.1}
\end{align*}
$$

where $\hat{\boldsymbol{\theta}}_{\mathrm{n}}$ and $\hat{\boldsymbol{\gamma}}_{\mathrm{n}}$ are the ML estimators of $\boldsymbol{\theta}_{*}$ and $\boldsymbol{\gamma}_{*}$ defined in the previous section.

Lemma 3.1: Given Assumptions A1-A3:

$$
\begin{equation*}
\frac{1}{n} L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) \xrightarrow{\text { a.s. }} E^{0}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)}{g\left(Y_{t} \mid z_{t} ; \gamma_{*}\right)}\right] \tag{3.2}
\end{equation*}
$$

This result is important because it motivates our LR-based tests for model selection. To derive the asymptotic distribution of the LR statistic, we use the following lemma.

Lemma 3.2: Given Assumptions A1-A5:
(i) if $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$, then:

$$
\begin{align*}
L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)= & -\frac{n}{2}\left(\hat{\theta}_{n}-\theta_{*}\right)^{\prime} A_{f}\left(\theta_{*}\right)\left(\hat{\theta}_{n}-\theta_{*}\right) \\
& +\frac{n}{2}\left(\hat{\gamma}_{n}-\gamma_{*}\right)^{\prime} A_{g}\left(\gamma_{*}\right)\left(\hat{\gamma}_{n}-\gamma_{*}\right)+o_{p}(1), \tag{3.3}
\end{align*}
$$

(ii) if $f\left(\cdot \mid \cdot ; \theta_{*}\right) \neq g\left(\cdot \mid \cdot ; \gamma_{*}\right)$, then:

$$
\begin{equation*}
L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)=L R_{n}\left(\theta_{*}, \gamma_{*}\right)+0_{p}(1) . \tag{3.4}
\end{equation*}
$$

The condition $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ is to be understood as meaning that $f\left(y \mid z ; \theta_{*}\right)=g\left(y \mid z ; \gamma_{*}\right)$ for H^{0}-almost all (y, z). Lemma 3.2 shows that the asymptotic distribution of the LR statistic depends on whether or not $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$. This latter condition will be considered in the next section. Let us note that if the two models F_{θ} and G_{γ} are strictly non-nested, as defined later, then one must have $f\left(\cdot \mid \cdot ; \theta_{*}\right) \neq g\left(\cdot \mid \cdot ; \gamma_{*}\right)$. On the other hand, if the models F_{θ} and G_{γ} are nested or overlapping, then one may have $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$.

If this latter condition holds, then the first part of Lemma 3.2 states that the LR statistic is asymptotically distributed as a quadratic form in $\mathrm{n}^{\mathbf{1 / 2}}\left(\hat{\boldsymbol{\theta}}_{\mathrm{n}}-\boldsymbol{\theta}_{*}\right)$ and $\mathrm{n}^{\mathbf{1 / 2}}\left(\hat{\boldsymbol{\gamma}}_{\mathrm{n}}-\boldsymbol{\gamma}_{\boldsymbol{*}}\right)$ which are asymptotically normal as shown in Lemma 2.1. It is therefore important to consider the distributions of quadratic forms in normal
random variables. Such distributions have already been studied (see, e.g. Johnson and Kotz (1970, Chapter 29)). We call such distributions, weighted sums of (independent) chi-square distributions, for which we give the following definition.

Definition $\mathbf{3 . 3}$ (Weighted Sums of Chi-Square Distributions): Let $Z=\left(Z_{1}, \ldots, Z_{m}\right)^{\prime}$ be a vector of m independent standard normal variables, and let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{\prime}$ be a vector of m real numbers. Then, the random variable

$$
\begin{equation*}
Q(z)=\sum_{I=1}^{m} \lambda_{i} z_{i}^{2} \tag{3.5}
\end{equation*}
$$

is distributed as a weighted sum of chi-square distributions with parameters (m, λ). Its cumulative distribution function (c.d.f.) is denoted by $M_{m}(\cdot ; \lambda)$.

Let us note that the distribution of $Q(Z)$ depends only on the non-zero parameters λ_{1}. In other words, the c.d.f. $M_{\text {m }}(\cdot ; \lambda)$ is identically equal to the c.d.f. $M_{\underline{m}}(\cdot ; \underline{\lambda})$ where $\underline{\lambda}$ is the vector of nonzero $\lambda_{i} ' s$, and m is the number of such $\lambda_{i}{ }^{\prime} s$. Moreover, the mixture $M_{m}(: ; \lambda)$ reduces to a central chi-square distribution if and only if the non-zero parameters λ_{i} are equal to one, in which case the number of degrees of freedom is equal to \underline{m}.

The next lemma shows that any quadratic form in m random variables that are jointly normally distributed with zero means and some covariance matrix Ω is distributed as a weighted sum of chisquares with some parameters m and λ. This results allows Ω to be
singular, and slightly differs from Moore (1978, Theorem 1).

Lemma 3.4: Let Y be a vector of m random variables distributed as $N(0, \Omega)$ with rank $\Omega \equiv r \leq m$. Let Q be a $m \times m$ real symmetric matrix. Then the quadratic form

$$
\begin{equation*}
Q(Y) \equiv Y^{\prime} Q Y \sim M_{m}(\cdot ; \lambda) \tag{3.6}
\end{equation*}
$$

where λ is the vector of eigenvalues of QQ. ${ }^{2}$

We can now readily obtain the asymptotic distribution of the LR statistic under general conditions. Let $\omega^{\mathbf{2}}$ denote the variance of $\log \left[f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right) / g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)\right]$ where the variance is computed with respect to the true joint distribution H^{0} of $\left(Y_{t}, Z_{t}\right)$. That is:

$$
\begin{align*}
\omega_{*}^{2} & \equiv \operatorname{var} 0\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)}\right] \\
& =E^{0}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)}\right]^{2}-\left[E^{0}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma^{*}\right.}\right]\right]^{2} . \tag{3.7}
\end{align*}
$$

To ensure that such a variance exists, we make the following assumption.

Assumption A6: For ($\mathrm{H}^{\mathbf{0}}$-almost) all (y, z) the functions $|\log f(y \mid z ; \cdot)|^{2}$ and $|\log g(y \mid z ; \cdot)|^{2}$ are dominated by H^{0}-integrable functions independent of θ and γ.

Theorem 3. $\underline{5}$ (Asymptotic Distribution of the LR Statistic): Given Assumption A1-A6:
(i) if $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$, then
$2 \operatorname{LR}_{n}\left(\hat{\theta}_{n}, \hat{\boldsymbol{\gamma}}_{n}\right) \xrightarrow{D} M_{p+q}\left(\cdot ; \lambda_{*}\right)$,
where λ_{*} is the vector of $p+q$ eigenvalues of
$W=\left[\begin{array}{lll}-B_{f}\left(\theta_{*}\right) A_{f}^{-1}\left(\theta_{*}\right) & ; & -B_{f_{g}}\left(\theta_{*}, \gamma_{*}\right) A_{g}^{-1}\left(\gamma_{*}\right) \\ B_{g f}\left(\gamma_{*}, \theta_{*}\right) A_{f}^{-1}\left(\theta_{*}\right) & ; & B_{g}\left(\gamma_{*}\right) A_{g}^{-1}\left(\gamma_{*}\right)\end{array}\right], 3$
(11) if $f\left(\cdot \mid \cdot ; \theta_{*}\right) \neq g\left(\cdot \mid \cdot ; \gamma_{\psi}\right)$, then
$n^{-1 / 2} L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)-n^{1 / 2} E^{0}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{\psi}\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)}\right] \stackrel{D}{\rightarrow} N\left(0, \omega_{*}^{2}\right) .4(3.10)$

Theorem 3.5 characterizes the asymptotic distribution of the LR statistic under general conditions. It shows that the asymptotic distribution of the LR statistic as well as the speed at which it converges to that distribution depends on whether or not $f\left(\cdot \mid \cdot ; \theta_{*}\right)=$ $g\left(\cdot \mid \cdot ; \gamma_{*}\right)$.

The limiting weighted sum of chi-square distributions that arises when $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ is somewhat unusual. It is therefore useful to characterize the conditions under which this limiting distribution reduces to the familiar chi-square distribution. This is the purpose of the next result. For this result, we shall however assume that the information matrix equivalence holds for both conditional models F_{θ} and G_{γ}, i.e.:

$$
\begin{equation*}
A_{f}\left(\theta_{*}\right)+B_{f}\left(\theta_{*}\right)=0 \text { and } A_{g}\left(\gamma_{*}\right)+B_{g}\left(\gamma_{*}\right)=0 . \tag{3.11}
\end{equation*}
$$

As mentioned in White (1982a, Theorem 3.3) and Vuong (1983, Lemma 3), the information matrix equivalences hold under correct specification of the conditional models given mild additional assumptions.

Theorem 3. $\mathbf{6}$ (Asymptotic Chi-Square Distribution of the LR Statistic given Information Matrix Equivalences): Given Assumptions A1-A5, suppose that Equation (3.11) holds. If $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$, then $2 L R_{n}\left(\hat{\boldsymbol{\theta}}_{n}, \hat{\gamma}_{n}\right)$ converges to a central chi-square distribution if and only if:

$$
\begin{equation*}
B_{g}\left(\gamma_{*}\right)-B_{g f}\left(\gamma_{*}, \theta_{*}\right) B_{f}^{-1}\left(\theta_{*}\right) B_{f}\left(\theta_{*}, \gamma_{*}\right)=0, \tag{3.12}
\end{equation*}
$$

in which case the number of degrees of freedom is $p-q$.

As seen in Section 7 below, Condition (3.12) will be satisfied when the conditional model G_{γ} is nested in the conditional model $F_{\boldsymbol{\theta}}$.

4. THE VARIANCE STATISTIC

In the previous section, we showed that whether the LR statistic is asymptotically distributed as a normal or a weighted sum of chi-squares depends on whether or not $f\left(\cdot \mid \cdot ; \theta_{\psi}\right)=g\left(\cdot \mid \cdot ; \gamma_{\psi}\right)$. As mentioned there, this latter equality may hold when the conditional models F_{θ} and G_{γ} are nested or overlapping. It is therefore important to know if such a condition is satisfied. Since θ_{*} and γ_{*} are unknown, we shall propose in this section a test of such a condition. The proposed test is based on the following property.

Lemma 4.1: Given Assumptions A2, A3, and A6, $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ if and only if $\omega^{2}=0$.

The importance of Lemma 4.1 is that to test the crucial condition $\mathrm{f}\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ one can equivalently test the condition that the variance ω_{*}^{2} is equal to zero. We define the following null and alternative hypotheses:

$$
\begin{equation*}
H_{0}^{\omega}: \omega_{*}^{2}=0 \quad \text { vs. } \quad H_{A}^{(\omega)}: \omega_{*}^{2} \neq 0 \tag{4.1}
\end{equation*}
$$

Then a natural statistic that we can use to test H_{0}^{ω} against H_{A}^{ω} is the sample analog:

$$
\begin{equation*}
\hat{\omega}_{n}^{2} \equiv \frac{1}{n} \sum_{t=1}^{n}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right)}{g\left(Y_{t} \mid Z_{t} ; \hat{\gamma}_{n}\right)}\right]^{2}-\left[\frac{1}{n} \sum_{t=1}^{n} \log \frac{f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right)}{g\left(Y_{t} \mid Z_{t} ; \hat{\gamma}_{n}\right)}\right]^{2} \tag{4.2}
\end{equation*}
$$

Moreover, let us note that $\omega_{\text {a }}^{2}$ is also the variance of the limiting normal distribution of the LR statistic (see Theorem 3.4 -(ii)). Thus the variance statistic ω_{n}^{2} will play two important roles: first, to be a basis for a test of $\omega_{*}^{2}=0$ or equivalently $f\left(\cdot \mid \cdot ; \theta_{*}\right)=$ $g\left(\cdot \mid \cdot ; \gamma_{*}\right)$; second, to be an estimator of the asymptotic variance of the LR statistic when $f\left(\cdot \mid \cdot ; \theta_{*}\right) \neq g\left(\cdot \mid \cdot ; \gamma_{*}\right)$.

An alternative variance statistic that will play a similar role and that is even easier to compute than $\hat{\omega}_{n}^{2}$ is:

$$
\begin{equation*}
\widetilde{\omega}_{n}^{2} \equiv \frac{1}{n} \sum_{t=1}^{n}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right)}{g\left(Y_{t} \mid Z_{t} ; \hat{\gamma}_{n}\right)}\right]^{2} \tag{4.3}
\end{equation*}
$$

Note that from Equations (3.1) and (4.2), we have:

$$
\begin{equation*}
\tilde{\omega}_{n}^{2}=\hat{\omega}_{n}^{2}+\left(\frac{1}{n} L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)\right)^{2} \sum \hat{\omega}_{n}^{2} . \tag{4.4}
\end{equation*}
$$

The next lemma states that these variance statistics are strongly consistent estimators of their population analogs.

Lemma 4.2: Given Assumptions A1-A3, and A6:
(i) $\omega_{n}^{2} \xrightarrow{\text { a.s. }} \omega_{*}^{2}$,
(11) $\quad \omega_{n}^{2} \xrightarrow{\text { a.s. }} \omega_{*}^{2}+\left[E^{0}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)}\right]\right]^{2}$.

To construct a test of H_{0}^{ω} against H_{A}^{ω}, it is necessary to derive the asymptotic distribution of the variance statistic $\boldsymbol{\omega}_{n}^{2}$ or $\tilde{\omega}_{n}^{2}$. We make the following assumption.

Assumption A7: For (H^{0}-almost) all (y, z) the functions
$\operatorname{llog}[f(y \mid z ; \cdot) / g(y \mid z ; \cdot)] \cdot \partial^{2} \log f(y \mid z ; \cdot) / \partial \theta \partial \theta ' \mid$ and
$\operatorname{llog}[f(y \mid z ; \cdot) / g(y \mid z ; \cdot)] \cdot \partial^{2} \log g(y \mid z ; \cdot) / \partial \gamma \partial \gamma{ }^{\prime} \mid$ are dominated by $H^{0}{ }^{0}$ integrable functions idependent of θ and γ.

Theorem 4.3 (Asymptotic Distribution of the Variance Statistics given $\left.\omega_{*}^{2}=0\right):$ Given Assumptions A1-A7, under $H_{0}^{\omega}: \omega_{*}^{2}=0$, we have:

$$
\begin{equation*}
n \omega_{n}^{2}=n \tilde{\omega}_{n}^{2}+o_{p}(1) \xrightarrow{D} M_{p+q}\left(\cdot, \lambda_{*}^{2}\right) \tag{4.7}
\end{equation*}
$$

where λ_{*}^{2} is the vector of squares of the $p+q$ eigenvalues λ_{*} of W.

Theorem 4.3 says that, under the null hypotheses H_{o}^{ω}, the two statistics $n \tilde{\omega}_{n}^{2}$ and $n \tilde{\omega}_{n}^{2}$ are asymptotically equivalent, and have a limiting distribution which is again a weighted sum of chi-squares. The parameter λ_{*}^{2} are, as expected, all non-negative. This contrasts with the parameters $\lambda_{\text {* }}$ of the limiting weighted sum of chi-squares for the LR statistic which may be negative (see footnote 3).

As for the LR statistic, it is of interest to know when the limiting wieghted sum of chi-squares distribution of the variance statistics reduce to the familiar central chi-square distribution. The next result characterizes this situation. As for Theorem 3.6, we assume that the information matrix equivalences (3.11) hold.

Theorem 4.4 (Asymptotic Chi-Square Distribution of the Variance Statistics given Information Matrix Equivalences and $\omega_{*}^{2}=0$): Given Assumptions A1-A7, suppose that Equation (3.11) holds. Then, under H_{0}^{ω} : $\omega_{*}^{2}=0$, the following are equivalent:
(i) $n \omega_{n}^{2}$ converges in distribution to a chi-square,
(11) $n \tilde{\omega}_{n}^{2}$ converges in distribution to a chi-square,
(iii) $B_{f g}\left(\theta_{*}, \gamma_{*}\right) B_{g}^{-1}\left(\gamma_{*}\right) B_{g f}\left(\gamma_{*}, \theta_{*}\right) B_{f}^{-1}\left(\theta_{*}\right)$ is idempotent,
(iv) $B_{g f}\left(\gamma_{*}, \hat{\theta}_{*}\right) B_{f}^{-1}\left(\hat{\theta}_{*}\right) \bar{B}_{f}\left(\hat{\theta}_{*}, \gamma_{*}\right) B_{g}^{-1}\left(\gamma_{*}\right)$ is idempotent,
in which case the number of degrees of freedom is $p+q-2$ rank $B_{f g}\left(\theta_{*}, \gamma_{*}\right)$.

As shown in Section 7 below, conditions (iii) or (iv) will be satisfied if G_{γ} is nested in F_{θ} or if F_{θ} is nested in G_{γ}. Conditions (iii) or (iv) can, however, be satisfied even when the models are
non-nested or overlapping. In particular, it is easy to see that these conditions are satisfied when the conditional models $F_{\boldsymbol{\theta}}$ and $\boldsymbol{G}_{\boldsymbol{\gamma}}$ are asymptotically orthogonal as defined by Gourieroux, Monfort and Trognon (1983), i.e., when:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{f}_{\mathrm{g}}}\left(\theta_{*}, \gamma_{*}\right)=0 \tag{4.8}
\end{equation*}
$$

in which case the number of degrees of freedom of the limiting chi-
square distribution of $n \omega_{n}^{2}$ or $n \tilde{\omega}_{n}^{2}$ is $p+q$.

5. STRICTLY NON-NESTED MODELS

In section 1, we suggested a classical approach for selecting among competing models. In this section, we shall discuss this approach in more detail. In particular, using the results of Section 3 and 4, we shall obtain a very simple test for selecting among two non-nested models. Then we shall discuss the fundamental differences between our model selection approach and the more familiar one introduced by Alsaike $(1973,1974)$.

Following Akaike (1973, 1974), Sawa (1978) and Chow (1981), our approach is based on the minimum KLIC which measures the distance between the true distribution and a specified model. For a conditional model F_{θ}, this measure gives:

$$
\operatorname{KLIC}\left(H_{Y \mid Z}^{0} ; F_{\theta}\right) \equiv E^{0}\left[\log h^{0}\left(Y_{t} \mid Z_{t}\right)\right]-E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{\psi}\right)\right]
$$

where $h^{\mathbf{0}}(\cdot \mid \cdot)$ is the true conditional density of Y_{t} given Z_{t}, and $\boldsymbol{\theta}_{\boldsymbol{*}}$ are the pseudo-true values of θ defined in Assumption 3. ${ }^{5}$ From

Jensen's inequality, the measure (5.1) is always non-negative and is equal to zero if and only if $h^{\mathbf{0}}(\cdot \mid \cdot)=f\left(\cdot \mid \cdot ; \boldsymbol{\theta}_{\boldsymbol{*}}\right) H^{\mathbf{0}}$-almost surely, i.e., if and only if the conditional model F_{θ} is correctly specified. Moreover, since the first term in the right-hand side of Equation (5.1) does not depend on the conditional model F_{θ}, then an equivalent measure is $E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right]$.

Given a collection of competing conditional models, it is natural to select the model that is closest to the true conditional distribution. Given the above measure of distance, we shall consider the following hypotheses and definitions:

$$
\begin{equation*}
H_{0}: E^{0}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)}\right]=0 \tag{5.2}
\end{equation*}
$$

meaning that F_{θ} and G_{γ} are equivalent, against

$$
\begin{equation*}
H_{f}: E^{0}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)}\right]>0 \tag{5.3}
\end{equation*}
$$

meaning that F_{θ} is better than G_{γ}, or

$$
\begin{equation*}
H_{g}: E^{0}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)}\right]<0 \tag{5.4}
\end{equation*}
$$

meaning that F_{θ} is worse that G_{γ}. Tests of H_{0} against H_{f} or H_{g} will be called tests for model selection. There are, of course,
alternative definitions, some of which will be discussed later in this section.

The indicator $E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right]-E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)\right]$ is unknown since θ_{*}, γ_{*}, and the joint distribution H^{0} of $\left(Y_{t}, Z_{t}\right)$ with
respect to which the expectation $E^{0}[\cdot]$ is evaluated are all unknown. But it is clear that we can consistently estimate this unknown indicator by ($1 / n$) times the LR statistic (see Lemma 3.1). Thus the LR statistic is a natural statistic for discriminating between two models.

In this section, we shall consider the case where the models F_{θ} and G_{γ} are (strictly) non-nested. Since Cox (1961, 1962) initial work, non-nested models have attracted a lot of interest from econometricians (see, e.g., Mackinnon (1983) recent survey and the special issue of the Journal of Econometrics edited by White (1983)). We shall first give a formal definition of strictly non-nested models.

Definition 5.1 (Strictly Non-Nested Models): Two conditional models F_{θ} and G_{γ} are strictly non-nested if and only if:

$$
\begin{equation*}
F_{\theta} \cap G_{\gamma}=\delta .^{6} \tag{5.5}
\end{equation*}
$$

For instance, this is the case when F_{θ} and $G_{\boldsymbol{\gamma}}$ are standard linear regression models with different distributional assumptions on the errors, say normally or logistic distributed. Alternatively, the competing regressions models may have the same distributional assumption on the errors but different functional forms such as the linear or the exponential form.

Since the conditional models $F_{\boldsymbol{\theta}}$ and $\boldsymbol{G}_{\boldsymbol{\gamma}}$ do not have any conditional distribution in common, it must be the case that $f\left(\cdot \mid \cdot ; \theta_{*}\right) \neq g\left(\cdot \mid \cdot ; \gamma_{*}\right)$. It follows that the second part of Theorem 3.5 applies. Moreover, from Lemma 4.2, the asymptotic variance ω^{2} can be
consistently estimated by $\widehat{\omega}_{n}^{2}$ or by $\tilde{\omega}_{n}^{2}$ under the null hypothesis that the models F_{θ} and G_{γ} are equivalent, i.e., under H_{0}. Thus we have the following straightforward model selection test. Let $\hat{\omega}_{n}$ and $\tilde{\omega}_{n}$ be the positive square roots of $\hat{\omega}_{n}^{2}$ and $\tilde{\omega}_{n}^{2}$ respectively.

Theorem 5.2 (Model Selection Tests for Strictly Non-Nested Models): Given Assumptions A1-A6,
(i) under $H_{0}: n^{-1 / 2} L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n} \xrightarrow{D} N(0,1)$,
(11) under $\mathrm{H}_{\mathrm{f}}: \mathrm{n}^{-1 / 2} \operatorname{LR}_{\mathrm{n}}\left(\hat{\theta}_{\mathrm{n}}, \hat{\gamma}_{\mathrm{n}}\right) / \hat{\omega}_{\mathrm{n}} \xrightarrow{\text { a.s. }}+\infty$,
(iii) under $H_{g}: n^{-1 / 2} L_{n}\left(\hat{\theta}_{n}, \tilde{\gamma}_{n}\right) / \hat{\omega}_{n} \xrightarrow{\text { a.s. }}-\infty$,
(iv) properties (i)-(iii) hold if $\hat{\omega}_{n}$ is replaced by $\tilde{\omega}_{n}$.

Theorem 5.2 provides a very simple directional test for model selection. Specifically, one chooses a critical value c from the standard normal distribution for some significance level. If the value of the statistic $n^{-1 / 2} L R_{n}\left(\hat{\boldsymbol{\theta}}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n}$ is higher than c then one rejects the null hypothesis that the models are equivalent in favor of F_{θ} being better than G_{γ}. If $n^{-1 / 2} \operatorname{LR}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n}$ is smaller than $-c$ then one rejects the null hypothesis in favor of G_{γ} being better than F_{θ}. Finally if $\left|n^{-1 / 2} L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n}\right| \leq c$ then one cannot discriminate between the two competing models given the data. Similar inferences can of course be made based on the other statistic
$\mathrm{n}^{-1 / 2} \mathrm{LR}_{\mathrm{n}}\left(\hat{\theta}_{\mathrm{n}}, \hat{\gamma}_{\mathrm{n}}\right) / \tilde{\omega}_{\mathrm{n}} .{ }^{7}$
Let us note that these statistics are extremely easy to compute. Indeed from Equations (3.1), (4.2) and (4.3) these statistics are:

$$
\begin{equation*}
\frac{n^{-1 / 2} L R_{n}(\hat{\theta}, \hat{\gamma})}{\hat{\omega}_{n}}=\frac{L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)}{\left\{\sum_{t=1}^{n}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right)}{g\left(Y_{t} \mid Z_{t} ; \hat{\gamma}_{n}\right)}\right]^{2}-\frac{1}{n}\left[\operatorname{LR}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)\right]^{2}\right\}^{1 / 2}}, \tag{5.9}
\end{equation*}
$$

$\frac{n^{-1 / 2} L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)}{\tilde{\omega}_{n}}=\frac{\operatorname{LR}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)}{\left\{\sum_{t=1}^{n}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right)}{g\left(Y_{t} \mid Z_{t} ; \hat{\gamma}_{n}\right)}\right]^{2}\right\}^{1 / 2}}$.

Hence both statistics are equal to the difference in the maximum loglikelihood values for the two models suitably normalized. The normalization in Equation (5.10) is directly obtained from the sum of squares of $m_{t}=\log \left[f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right) / g\left(Y_{t} \mid Z_{t} ; \hat{\gamma}_{n}\right)\right]$, while the normalization in Equation (5.9) is obtained from the sum of squared deviations of m_{t} from its sample mean which is equal to $\frac{1_{n}}{L R}{ }_{n}\left(\hat{\boldsymbol{\theta}}_{n}, \hat{\gamma}_{n}\right)$. Alternatively, these statistics can be readily obtained from an additional linear regression. For instance, it can be shown that the statistic (5.9) is numerically equal to $[(n-1) / n]^{1 / 2}$ times either the usual t-statistic on the constant term in a linear regression of m_{t} on only the constant term, or the usual t - statistic on the coefficient of m_{t} in a linear regression of 1 on $m_{t}{ }^{8}$

We now contrast our approach to the more familiar approach initiated by Akaike $(1973,1974)$. First, as in the model selection iferature, our statistics (5.9) and (5.10) can be thought of as defining a criterion for selecting among competing models. Omitting the normalizing factors $\hat{\omega}_{n}$ and $\tilde{\omega}_{n}$, our criterion is based on the uncorrected log-likelihood $\mathrm{L}_{\mathrm{n}}\left(\hat{\boldsymbol{\theta}}_{\mathrm{n}}\right)$ of a model. Thus to decide which model is "best" one can directly compare the maximum values of the log-likelihoods of the competing models and choose the model with the highest log-likelihood. Our criterion is very intuitive. It contrasts with the previous model selection criteria that are based on the maximum log-likelihood corrected for the number of estimated parameters (Akaike (1973, 1974), Sawa (1978), Schwarz (1978), Chow (1981)). Such a difference arises for the reason that these latter model selection criteria were initially derived, not as estimates of $E^{0}\left[\log f\left(Y_{t}, Z_{t} ; \theta_{*}\right)\right]$, but as approximations to the alternative criterion $\mathrm{E}_{\hat{\boldsymbol{\theta}}_{\mathrm{n}}}\left[\mathrm{E}^{0}\left[\log \mathrm{f}\left(\mathrm{Y}_{\mathrm{t}} \mid \mathrm{Z}_{\mathrm{t}} ; \hat{\boldsymbol{\theta}}_{\mathrm{n}}\right)\right]\right]$ where $\mathrm{E}_{\hat{\boldsymbol{\theta}}_{\mathrm{n}}}[\cdot]$ is the expectation with respect to the (asymptotic) distribution of the ML estimator $\hat{\boldsymbol{\theta}}_{\mathrm{n}}$, and $E^{0}[\cdot]$ is the expectation with respect to the true (joint) distribution of $\left(Y_{t}, Z_{t}\right)$ where $\hat{\boldsymbol{\theta}}_{\hat{n}}$ is treated as a constant (see Sawa (1978, Rule 2.1 - (ii)), and Chow (1981)). ${ }^{9}$

Lien and Vuong (1986) pointed out, however, that each of these well- known model selection criteria can be thought of as a consistent estimate of $E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right]$. In addition, each of these model selection criterion appropriately normalized is asymptotically equivalent to the LR-statistics (5.9) and (5.10) under the null
hypothesis that the models are (KLIC) equivalent, i.e.. under H_{0}. More generally, let

$$
\begin{equation*}
L \hat{R}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) \equiv L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)-K_{n}\left(F_{\theta}, G_{\gamma}\right) \tag{5.11}
\end{equation*}
$$

where $K_{n}\left(F_{\theta}, G_{\gamma}\right)$ is a correction factor depending on the characteristics of the competing models F_{θ} and $G_{\boldsymbol{\gamma}}$. We have:

Corollary 5. $\mathbf{B}_{\text {(Equivalent Model Selection Tests of Strictly Non-Nested }}$ Models): Given Assumptions A1-A6, suppose that

$$
\begin{equation*}
n^{-1 / 2} K_{n}\left(F_{\theta}, G_{\gamma}\right)=o_{p}(1) \tag{5.12}
\end{equation*}
$$

(i) under $H_{0}: n^{-1 / 2} L \tilde{A}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n} \xrightarrow{D} N(0,1)$,
(ii) under $H_{f}: n^{-1 / 2} L \tilde{R}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n} \xrightarrow{\text { a.s. }}+\infty$,
(iii) under $H_{g}: \quad n^{-1 / 2} L \tilde{R}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n} \xrightarrow{\text { a.s. }}-\infty$.

This result follows by noticing that:

$$
\begin{equation*}
n^{-1 / 2} L_{n}\left(\tilde{\hat{\theta}}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n}=n^{-1 / 2} L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n}+o_{p}(1) . \tag{5.13}
\end{equation*}
$$

It also follows that $\tilde{\omega}_{n}$ can equivalently replace $\hat{\omega}_{n}$ in Corollary 5.3. Example of correction factors that satisfy (5.12) are $K_{n}\left(F_{\boldsymbol{\theta}}, G_{\gamma}\right)=$ $p-q$ and $K_{n}\left(F_{\theta}, G_{\gamma}\right)=\frac{p_{1}}{2} \log n-\frac{q}{2} \log n$, which correspond to Akaike (1973) and Schwarz (1978) information criteria.

Corollary 5.3 implies that one can also use the corrected log-
likelihood ratio $L \tilde{R}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)$ as a basis for a model selection test. Then, in terms of the uncorrected LR statistic, one would not reject H_{0} whenever $-c+n^{-1 / 2} \mathrm{~K}_{\mathrm{n}}\left(\mathrm{F}_{\boldsymbol{\theta}}, \sigma_{\gamma}\right) / \omega_{\mathrm{n}} \leq \mathrm{n}^{-1 / 2} \mathrm{LR}_{\mathrm{n}}\left(\hat{\theta}_{\mathrm{n}}, \hat{\gamma}_{\mathrm{n}}\right) / \hat{\omega}_{\mathrm{n}} \leq$ $c+n^{-1 / 2} K_{n}\left(F_{\theta}, G_{\gamma}\right) / \omega_{n}$ where c is obtained from the standard normal distribution. It is clear that the main effect of the correction factor $K_{n}\left(F_{\theta}, G_{\gamma}\right)$ is to translate the critical region ($-c,+c$) in the appropriate direction. Which correction factor is preferable depends on how well the exact small sample distribution of $n^{-1 / 2} L \tilde{R}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n}$ is approximated under H_{0} by the asymptotic $N(0,1)$ distribution.

A second fundamental difference between our approach and the previous literature on model selection is that our approach is probabilistic. Though Amemiya (1980) and McAleer and Bera (1983) have argued that an important difference between non-nested hypothesis testing and model selection is that the former framework allows "a probabilistic statement to be made regarding model selection," while the second does not, this criticism no longer applies to our approach which puts model selection in a significance testing situation. Indeed, by appropriately normalizing the LR statistic, we were able to construct a directional test of the hypothesis that the competing models are equivalent against the hypothesis that one of the two models is "better." As a consequence we do not necessarily have to choose a "best" model if the competing models turn out to be statistically equivalent.

Our definitions have the desirable property that a correctly specified model is necessarily at least as good as any other models.

They are nonetheless arbitrary. Indeed, there exist many criteria other than the KLIC that can be used to measure the distance between two distributions. Clearly, an analysis analogous to the one given here can be worked out for each of these other criteria. For instance, using the mean square error (MSE) of prediction, White and Olson (1979) obtained a symmetric and directional normal test for choosing between two non-linear regression models. When the errors are normally distributed, the KLIC and the MSE of prediction lead, however, to identical definitions of equivalence. Moreover, as Lien and Vuong (1986) showed, the White and Olson test and our LR-based test become asymptotically equivalent when the competing models are normal linear regressions.

Finally, one may not be so much interested in the truth of a model, but may be concerned by the number of parameters in a model. To take into account the parsimonious nature of a model, one may add to the criterion (5.1) a penalty $k(\cdot)$ depending on the number of parameters in the model. In this case, the model F_{θ} is said to be better than, equivalent to, or worse than the competing model G_{γ} if and only if

$$
\begin{equation*}
\Delta \equiv E^{o}\left[\log _{g\left(Y_{t} \mid Z_{t} ; \boldsymbol{\theta}_{*}\right)}\right]-[k(p)-k(q)] \tag{5.14}
\end{equation*}
$$

is positive, equal to zero, or negative respectively. ${ }^{10}$ Let \tilde{H}_{0}, \tilde{H}_{f}, and \tilde{H}_{g} denote the hypotheses $\Delta=0, \Delta>0$, and $\Delta<0$ respectively. As before we can consider the statistic (5.11) where the correction factor is now:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{n}}\left(\mathrm{~F}_{\boldsymbol{\theta}}, \mathrm{G}_{\boldsymbol{\gamma}}\right)=\mathrm{nk}(\mathrm{p})-\mathrm{nk}(\mathrm{q}) . \tag{5.15}
\end{equation*}
$$

Theorem 5. 4 (Alternative Model Selection Tests for Strictly NonNested Models): Let $K_{n}\left(F_{\theta}, G_{\gamma}\right)$ be as in (5.15). Given Assumptions A1-A6,
(i) under $\tilde{H}_{0}: n^{-1 / 2} L \tilde{R}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n} \xrightarrow{D} N(0,1)$,
(ii) under $\tilde{f}_{f}: \quad n^{-1 / 2} L \tilde{R}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \omega_{n} \xrightarrow{\text { a.s }}+\infty$,
(iii) under $\boldsymbol{f}_{g}: \quad n^{-1 / 2} L \tilde{R}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n} \xrightarrow[\rightarrow]{\text { a.s. }}-\infty$.

Theorem 5.4 generalizes Theorem 5.2 to allow for any kind of penalty function in the definition of equivalent models. As in corollary 5.3, σ_{n} can replace $\hat{\omega}_{n}$ in that theorem. A fundamental difference is that the null and alternative hypotheses are now different from those considered up to now. Also, unlike Corollary 5.3, the correction factor (5.15) does not have to satisfy Condition (5.12). The remarks following Corollary 5.3 nonetheless apply, and for instance, one cannot reject \tilde{H}_{0} whenever $-c+n^{-1 / 2_{K}}{ }_{n}\left(F_{\theta}, G_{\gamma}\right) / \omega_{n} S$ $n^{-1 / 2} L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n} \leq c+n^{-1 / 2} K_{n}\left(F_{\theta}, G_{\gamma}\right) / \hat{\omega}_{n}$.

In the next sections on overlapping models and nested models, we shall not discuss the generalizations of Corollary 5.3 and Theorem 5.4. It is clear that similar results can be established.

6. OVERLAPPING MODELS

In this section, we shall apply our model selection approach to the case where the two competing models are overlapping. A simple example of two overlapping models is that of two standard linear regression models with some common explanatory variables. Another example is the dichotomous logit and probit models. ${ }^{11}$ As in the previous section, we shall propose some significance tests for discriminating and choosing between two models. We first give a formal definition of overlapping models.

Definition 6.1 (Overlapping Models): Two conditional models F_{θ} and G_{γ} are overlapping if and only if:

$$
\begin{equation*}
\text { (i) } F_{\theta} \cap G_{\gamma} \neq \boldsymbol{\sigma} \tag{6.1}
\end{equation*}
$$

(ii) $\mathrm{F}_{\boldsymbol{\theta}} \notin \mathrm{G}_{\boldsymbol{\gamma}}$ and $\mathrm{G}_{\boldsymbol{\gamma}} \notin \mathrm{F}_{\boldsymbol{\theta}}$.

Condition (i) says that F_{θ} and $G_{\boldsymbol{\gamma}}$ must have some common conditional distributions for Y_{t} given Z_{t}, while condition (ii) says that neither model must be nested in the other.

As in the previous section, our objective is to construct tests of H_{0} against H_{f} or H_{g}. Given the definitions (5.2)-(5.4) of these hypotheses, a natural test statistic is again the LR statistic. The overlapping case is, however, more difficult than the strictly non-nested case for the following reason. Contrary to the strictly non-nested case, the asymptotic distribution of the LR statistic and the speed at which it converges to the distribution is unknown under
the null hypothesis H_{0}. Indeed, since $F_{\theta} \cap G_{\gamma} \neq \boldsymbol{\sigma}$, then one may have $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$. From Theorem 3.5, it follows that, under $H_{0}: E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right]=E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma^{*}\right)\right]:$
(i) if $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$,

$$
\begin{equation*}
2 L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) \xrightarrow{D} M_{p+q}\left(\cdot, \lambda_{*}\right), \tag{6.3}
\end{equation*}
$$

(ii) if $f\left(\cdot \mid \cdot ; \theta_{*}\right) \neq G\left(\cdot \mid \cdot ; \gamma_{*}\right)$,

$$
\begin{equation*}
\mathrm{n}^{-1 / 2} \mathrm{LR}_{n}\left(\hat{\theta}_{\mathrm{n}}, \hat{\gamma}_{\mathrm{n}}\right) \xrightarrow{D} N\left(0, \omega_{*}^{2}\right) . \tag{6.4}
\end{equation*}
$$

Since one does not know a priori if $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ holds, one does not know the form of the asymptotic distribution of the LR statistic under the null hypothesis H_{0}. We distinguish two cases: the general case and the case where one knows a priori that at least one model is correctly specified.

For the general case we propose a sequential procedure which consists in testing first whether $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ and then in using the appropriate null distribution of the LR statistic to construct a model selection test. From Lemma 4.1, we know that $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ if and only if $\omega_{*}^{2}=0$. Thus, for the first step, a natural test can be based on the variance statistics ω_{n}^{2} and $\tilde{\omega}_{n}^{2}$ of which the asymptotic properties are derived in Section 3. We call such a test, the variance test since it is used to test $f\left(\cdot \mid \cdot ; \theta_{\boldsymbol{*}}\right)=$ $g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ against $f\left(\cdot \mid \cdot ; \theta_{*}\right) \neq g\left(\cdot \mid \cdot ; \gamma_{*}\right)$, or equivalently:

$$
\begin{equation*}
H_{0}^{\omega}: \omega_{*}^{2}=0 \quad \text { against } \quad H_{A}^{\omega}: \omega_{*}^{2} \neq 0.1^{12} \tag{6.5}
\end{equation*}
$$

Once it is known whether or not $\omega_{*}^{2}=0$, then one can use the appropriate null distribution of the $L R$ statistic to test H_{0} against H_{f} or H_{g}. The second step simplifies since one need not in fact carry out a test of H_{0} against H_{f} or H_{g} when $\omega_{*}^{2}=0$. Indeed H_{0}^{ω} is included in H_{0} since if $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ then the models F_{θ} and G_{γ} must necessarily be equivalent. On the other hand, when $\omega_{*}^{2} \neq 0$, then one may have $E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right]=E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)\right]$ so that a test of H_{0} against H_{f} or H_{g} must still be carried out. However, when $\omega_{\neq}^{2} \neq 0$, then (6.4) holds so that the simple normal test based on $n^{-1 / 2} L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \omega_{n}$ or $n^{-1 / 2} L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \omega_{n}$ discussed in the previous section can be applied.

To summarize, the sequential procedure is:
(i) Test H_{0}^{ω} against H_{A}^{ω} using the variance test based on $n \omega_{n}^{2}$ or $n \widetilde{\omega}_{n}^{2}$. If H_{0}^{ω} cannot be rejected, then conclude that the models F_{θ} and G_{γ} cannot be discriminated given the data. If H_{0}^{ω} is rejected, then proceed to
(ii) Test H_{0} against H_{f} or H_{g} using the normal model selection test based on the statistic $n^{-1 / 2} L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n}$ or $n^{-1 / 2} L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \tilde{\omega}_{n}$ as discussed in Section 5.

As a test of the null hypothesis of interest H_{0} that the models are equivalent, this sequential procedure has an exact significance level which is asymptotically bounded above by the maximum of the asymptotic significance levels α_{1} and α_{2} used for the variance test (i) and the normal LR-test (ii). ${ }^{13}$ For instance if $\alpha_{1}=\alpha_{2}=10 \%$, than the exact significance level of this procedure, as
a test of H_{0}, is asymptotically no larger than 10%.
We now consider in more detail the variance test to be used in the first step. Let $\hat{\lambda}_{n}$ be the vector of $p+q$ eigenvalues of \hat{W}_{n} where \hat{W}_{n} is the sample analog of W as defined in Equation (3.9). For instance, \hat{W}_{n} is obtained by replacing in Equation (3.9) the matrix $B_{f_{g}}\left(\boldsymbol{\theta}_{*}, \boldsymbol{\gamma}_{*}\right)$, say, by its sample analog $\mathrm{B}_{\mathrm{f}_{\mathrm{gn}}}\left(\hat{\boldsymbol{\theta}}_{\mathrm{n}}, \hat{\boldsymbol{\gamma}}_{\mathrm{n}}\right)$ defined in Equation (2.9). Let $\hat{\lambda}_{n}^{2}$ be the vector of squares of $\hat{\lambda}_{n}$.

Theorem 6. 2 (Variance Tests for Discrimination): Given Assumptions A1-A7,
(i) under H_{0}^{ω}, for any $\times 20$,

$$
\begin{equation*}
\operatorname{Pr}\left(n \hat{\omega}_{n}^{2} \leq x\right)-M_{p+q}\left(x ; \hat{\lambda}_{n}^{2}\right) \xrightarrow{\text { a.s. }} 0 \tag{6.6}
\end{equation*}
$$

(ii) under $H_{A}^{\omega}, \operatorname{n\omega }_{n}^{\infty} \xrightarrow{\text { a.s. }}+\infty$,
(iii) properties (i) and (ii) hold for $n \tilde{\omega}_{n}^{2}$.

The variance test consists first in choosing a critical value x so that $M_{p+q}\left(x, \hat{\lambda}_{n}^{2}\right)=1-\alpha \%$ for some significance level α, and then in rejecting H_{0}^{ω} if $\hat{n u}_{\overline{\mathrm{I}}}^{2}$ > x^{14} Part (i) ensures that the asymptotic size is α, while Part (ii) says that the test is consistent. Similar conclusion applies to the test based on $n \tilde{\omega}_{n}^{2}$. Let us note that computation of the statistic $n \omega_{n}^{2}$ and $n \tilde{\omega}_{n}^{2}$ is straightforward given their definitions (4.2) and (4.3).

As mentioned in Section 4 , computation of the eigenvalues $\hat{\lambda}_{n}$ somewhat simplifies if the information matrix equivalences (3.11)
hold. Moreover, the eigenvalues $\hat{\lambda}_{n}$ need not be computed when
condition (iii) or (iv) of Theorem 4.4 holds, in which case both $n \omega_{n}^{2}$ and $n \tilde{\omega}_{n}^{2}$ converges, under H_{ω}^{0}, to a chi-square distribution with degrees of freedom equal to $p+q-2$ rank $B_{f_{g n}}\left(\hat{\boldsymbol{\theta}}_{\mathrm{n}}, \hat{\boldsymbol{\gamma}}_{\mathrm{n}}\right)$. As mentioned in Section 4, condition (iii) - (iv) of Theorem 4.4 are satisfied when F_{θ} and G_{γ} are orthogonal models, in which case both $n \omega_{n}^{2}$ and $n \tilde{\omega}_{n}^{2}$ converge to a chi-square distribution with $p+q$ degrees of freedom under the null hypothesis H_{0}^{ω}.

As pointed out earlier, the difficulty in selecting among overlapping models arises from the fact that $f\left(\cdot \mid \cdot ; \theta_{*}\right)$ may or may not be equal to $g\left(\cdot \mid \cdot ; \gamma_{\xi}\right)$ under the null hypothesis H_{0} : $E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right]=E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)\right]$ so that the form of the asymptotic null distribution of the LR statistic is a priori unknown. This is not, however, the case if one knows a priori that at least one of the two overlapping models is correctly specified, as this is frequently assumed in the model selection literature. Let us note that we do not say whether it is F_{θ} or G_{γ} that is correctly specified.

Lempa 6.3: Given Assumptions A2 and A3, suppose that

$$
\begin{equation*}
H^{0}(y \mid z) \varepsilon F_{\theta} \cup G_{\gamma} \tag{6.7}
\end{equation*}
$$

then the following statements are equivalent:

$$
\begin{aligned}
& \text { (i) } H^{0}(y \mid z) \varepsilon F_{\theta} \cap G_{\gamma} \\
& \text { (ii) } f\left(\cdot \mid \cdot, \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right) \\
& \text { (iii) } E^{0}\left[\log ^{\prime} f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right]=E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)\right] .
\end{aligned}
$$

From (i) and (iii) it follows that, when at least one model is known to be correctly specified, then the models F_{θ} and G_{γ} are (KLIC) equivalent if and only if the other model is correctly specified. That (i) implies (iii) is obvious. The intuition behind the reverse implication is based on the fact that when the model F_{θ}, say, is correctly specified then $E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right]=E^{0}\left[\log h^{0}\left(Y_{t} \mid Z_{t}\right)\right]$. Thus, when condition (iii) holds, $E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)\right]=$ $E^{0}\left[\log h^{0}\left(Y_{t} \mid Z_{t}\right)\right]$ and therefore G_{γ} must be correctly specified.

From (ii) and (iii) we have that the models F_{θ} and G_{γ} are equivalent if and only if $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right) .^{15}$ The importance of this second equivalence is that under the null hypothesis H_{0}, we now always have $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ so that the asymptotic distribution of the LR statistic is given by the weighted sum of chi-squares obtained in Theorem 3.5 - (i). Thus in this case we can bypass the above sequential procedure, and directly construct a model selection test based on the $L R$ statistic.

Theorem 6.4 (Model Selection Test for Overlapping Models): In addition to Assumptions A1-A5, suppose that at least one model is correctly specified. ${ }^{16}$ Then:
(i) under H_{0}, for any $\times 20$,

$$
\begin{equation*}
\operatorname{Pr}\left(2 L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) \leq x\right)-M_{p+q}\left(x ; \hat{\lambda}_{n}\right) \xrightarrow{\text { a.s. }} 0, \tag{6.8}
\end{equation*}
$$

(ii) under $H_{f}: \quad 2 L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) \xrightarrow{\text { a.s. }}+\infty$,
(iii) under $H_{g}: \quad 2 L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) \xrightarrow{\text { a.s. }}-\infty$.

The LR-based test is carried out by choosing critical values from the weighted sum of chi-squares $M_{p+q}\left(\cdot ; \hat{\lambda}_{n}\right)$. Since the LR-based test is two sided, two critical values c_{1} and c_{2} are chosen, one from the upper-tail and one from the lower-tail of this distibution. As for the normal LR-based test of Section 5, the test is directional in the sense that H_{0} is rejected in favor of H_{f} or H_{g} according to whether $2 L_{n}\left(\hat{\boldsymbol{\theta}}_{n}, \hat{\boldsymbol{\gamma}}_{n}\right)>c_{1}$ or $2 L_{n}\left(\hat{\boldsymbol{\theta}}_{n}, \hat{\boldsymbol{\gamma}}_{n}\right)<c_{2}$ respectively. ${ }^{17}$

Let us also note that the burdensome computation of the eigenvalues $\hat{\lambda}_{n}$ simplifies when one model is correctly specified. Indeed, under H_{0}, when one model is correctly specified then the other must also be correctly specified (see Lemma 6.3) so that, from the information matrix equivalences (3.11), the matrix W reduces to: ${ }^{18}$

$$
W=\left[\begin{array}{ll}
I_{p} & B_{f_{g}}\left(\theta_{*}, \gamma_{*}\right) B_{g}^{-1}\left(\gamma_{*}\right) \tag{6.9}\\
-B_{g f}\left(\gamma_{*}, \theta_{*}\right) B_{f}^{-1}\left(\theta_{*}\right) & -I_{q}
\end{array}\right]
$$

In addition, the eigenvalues $\hat{\lambda}_{n}$ need not be computed when the two overlapping models are orthogonal in which case the off-diagonal blocks of W are identically null. The distribution then reduces to the distribution of a difference between two independent chi-squares with p and q degrees of freedom.

7. NESTED MODELS

We now consider the more familiar case of nested models. We first relate our probabilistic model selection approach to the classical nested-hypothesis testing situation. Then we propose a LR-
based test for selecting between two nested models. This test reduces to the classical Neyman-Pearson (1928) LR test when the largest model is correctly specified. We also propose a new test for nested hypotheses based on the variance statistics of Section 3.

We first give a formal definition of nested models.

Definition 1.1 (Nested Models): Two conditional models F_{θ} and G_{γ} are nested if and only if:

$$
\begin{equation*}
G_{\gamma}=\mathrm{F}_{\theta} \text { or } \mathrm{F}_{\theta} \simeq \mathrm{G}_{\gamma} \tag{7.1}
\end{equation*}
$$

We shall assume throughout this section that G_{γ} is nested in F_{θ}, i.e., that $G_{\gamma} \subset F_{\theta}$. We make the following regularity assumption on the parameterizations θ and γ.

Assumption A8: There exists a c^{2}-function $\phi(\cdot)$ from Γ to θ such that:

$$
\begin{equation*}
g(\cdot \mid \cdot ; \gamma)=f(\cdot \mid \cdot ; \phi(\gamma)) \text { for any } \gamma \text { in } \Gamma \tag{7.2}
\end{equation*}
$$

Condition (7.2) states that any conditional density $g(\cdot \mid \cdot ; \gamma)$ is also a conditional density $f(\cdot \mid \cdot ; \theta)$ for some θ in θ. Since $\phi(\Gamma)$ is included in θ, then the conditional model G_{γ} is indeed nested in F_{θ}.

Let us note that the pseudo-true parameter θ_{*} is not necessarily equal to $\phi\left(\gamma_{*}\right)$ since θ_{*} may not even belong to $\phi\left(\Gamma^{\prime}\right)$. The next result relates the condition $\theta_{*} \varepsilon \sigma\left(\Gamma^{\circ}\right)$ to the condition that F_{θ} and G_{γ} are equivalent, and to the condition that $f\left(\cdot \mid \cdot ; \theta_{*}\right)=$ $g\left(\cdot \mid \cdot ; \gamma_{*}\right)$.

Lemma 1.2: Given Assumptions A2, A3, and A8, the following statements are equivalent:
(i) $\theta_{*}=\boldsymbol{\sigma}\left(\boldsymbol{\gamma}_{*}\right)$,
(ii) $\theta_{*} \in d\left(\Gamma^{\prime}\right)$,
(iii) $E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right]=E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)\right]$,
(iv) $f\left(\cdot \mid \cdot ; \theta_{\psi}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$.

Lemma 7.2 is important since it shows that our model selection approach coincides with the classical testing approach when the models are nested. For, the condition $H_{0}^{\boldsymbol{\theta}}: \quad \theta_{*} \in \boldsymbol{\varepsilon}(\bar{\Gamma})$ can be interpreted as the condition that θ_{*} satisfies some restrictions, and thus corresponds to the parametric null hypothesis of the classical testing framework in implicit form. On the other hand, the null hypothesis in our model selection approach is H_{0}. From (ii) and (iii), we have that $H_{0}^{\boldsymbol{\theta}}$ and H_{0} are equivalent, as must be their respective alternatives $H_{A}^{\boldsymbol{\theta}}: \boldsymbol{\theta}_{*} \& \delta\left(\Gamma^{\prime}\right)$ and $H_{f} \cup H_{g}$. Thus testing $H_{0}^{\boldsymbol{\theta}}$ against $H_{A}^{\boldsymbol{\theta}}$ is equivalent to testing H_{0} against $H_{f} \cup H_{g}$. In other words, testing whether or not θ_{*} satisfies some restrictions is equivalent to testing whether or not the smaller model is equivalent to the larger model. 19

As a matter of fact, the alternative to the null hypothesis H_{0} is H_{f}, i.e.., that the model F_{θ} is better than $G{ }_{\gamma}$. Indeed F_{θ} can never be worse that G_{γ} since we must have:

$$
\begin{equation*}
E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right] 2 E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)\right], \tag{7.3}
\end{equation*}
$$

so that H_{g} can never occur. Thus, we in fact have the equivalence
between H_{A}^{θ} and H_{f}.
As argued earlier, the LR statistic is a natural statistic for selecting among models. Thus, we shall consider a LR-based test of H_{0} against H_{f} or equivalently of $H_{0}^{\boldsymbol{\theta}}$ against $H_{A}^{\boldsymbol{\theta}}$. From Lemma 7.2, we always have $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ under the null hypothesis H_{0}. Thus, there is here no ambiguity as to the asymptotic distribution of the LR statistic which is the weighted sum of chi-squares obtained in Theorem 3.5 - (i). We need a preliminary result relating the matrices B_{G}, A_{g}, B_{f}, A_{f} and $B_{f g}$ under the null hypothesis H_{0}.

Lemma 1.3: Given Assumptions A2 - A5, and A8, then under $H_{0}^{\boldsymbol{\theta}}$:

(ii) $B_{g f}\left(\gamma_{*}, \theta_{*}\right)=\frac{\partial d^{\prime}\left(\gamma_{*}\right)}{\partial \gamma} B_{f^{\prime}}\left(\theta_{*}\right)$,
(iii) q $\leq p, \operatorname{rank} \frac{\partial \delta^{\prime}\left(\gamma_{*}\right)}{\partial \gamma}=q$.

Let us note that Lemma 7.3 says in particular that the
dimension q of the parameters γ cannot be greater than the dimension p of the parameter θ. This is expected since G_{γ} is nested in $F_{\boldsymbol{\theta}}$.

It is convenient to define $\hat{\boldsymbol{\theta}}_{\mathrm{n}} \equiv \boldsymbol{\rho}\left(\hat{\boldsymbol{\gamma}}_{\mathrm{n}}\right) ; \tilde{\boldsymbol{\theta}}_{\mathrm{n}}$ is nothing else than the constrained (quasi) maximum likelihood estimator of θ_{*} subject to the constraints that θ belongs to $\phi\left(\Gamma^{\prime}\right)$. Then the usual LR statistic of the unconstrained vs. the constrained model is:

$$
L R_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right) \equiv L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right),
$$

$$
\begin{equation*}
=\sum_{t=1}^{n} \log \frac{f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right)}{f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right)} . \tag{7.4}
\end{equation*}
$$

where the second equality follows from Assumption A8 and the definition of $\boldsymbol{\theta}_{\mathrm{n}}$.

The next result is similar to Kent (1982) Theorem 3.1, and gives the properties of the model selection or nested hypothesis test based on the LR statistic. In particular, it greatly simplifies the computation of the non-zero eigenvalues of the general matrix W in Theorem 3.5 by replacing W by a matrix H of lower dimension.

Specifically, let:

$$
\begin{equation*}
\underline{W}=B_{f}\left(\theta_{*}\right)\left[\frac{\partial \alpha\left(\gamma_{*}\right)}{\partial \gamma^{\prime}} A_{g}^{-1}\left(\gamma_{*}\right) \frac{\partial \sigma^{\prime}\left(\gamma_{*}\right)}{\partial \gamma}-A_{f}^{-1}\left(\theta_{*}\right)\right] \tag{7.5}
\end{equation*}
$$

and let $\hat{\boldsymbol{\lambda}}_{n}$ be the vector of p eigenvalues of the sample analog H_{n} of W.

Theorem 1.4 (LR Tests for Nested Models): Given Assumptions A1-A5 and A8, the eigenvalues $\hat{\lambda}_{\mathrm{n}}$ are almost surely all real non-negative and:
(i) under $H_{0}^{\boldsymbol{\theta}}$, for any $\times 20$,

$$
\begin{equation*}
\operatorname{Pr}\left(2 L R_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right) \leq x\right)-M_{p}\left(x ; \hat{\lambda}_{n}\right) \xrightarrow{\text { a.s. }} 0, \tag{7.6}
\end{equation*}
$$

(ii) under $H_{A}^{\theta}, 2 L R_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right) \xrightarrow{\text { a.s. }}+\infty$.

The test is one sided. It is carried out by choosing a
critical value from $M_{p}\left(\cdot ; \hat{\lambda}_{n}\right)$ and by rejecting the hypothesis that the
models are equivalent or that θ^{*} belongs to $\phi(\Gamma)$ if twice the LR statistic is greater than this critical value. The test applies whether or not the larger model is correctly specified.

As noted by White (1982a), if the information matrix holds for the larger model then one obtains from Lemma 7.3 and Theorem 3.6:

Corollary 1.5 (LR Tests for Nested Models given Information Matrix Equivalence): Given Assumptions A1-A5. A8 suppose that $A_{f}\left(\theta_{\boldsymbol{*}}\right)+$ $B_{f}\left(\theta_{\boldsymbol{q}}\right)=0$:
(i) under $H_{0}^{\theta}, 2 L R_{n}\left(\hat{\theta}_{n}, \theta_{n}\right) \xrightarrow{D} x_{p-q}^{2}$,
(ii) under $H_{A}^{\theta}, 2 L R_{n}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right) \xrightarrow{\text { a.s. }}+\infty$.

The well-known Wilks (1938) result follows since the information matrix equivalence $A_{f}\left(\theta_{*}\right)+B_{f}\left(\theta_{*}\right)=0$ holds if the larger model is correctly specified (see footnote 18).

Using the equivalence between $H_{0}^{\boldsymbol{\theta}}$ and H_{0}, we have motivated the LR statistic as a basis for constructing a test of $H_{0}^{\boldsymbol{\theta}}$ against $H_{A}^{\boldsymbol{\theta}}$ under general conditions. But from Lemmas 7.2 and 4.1, we also have the equivalence between $H_{0}^{\boldsymbol{\theta}}$ and $H_{0}^{\omega}: \omega_{0}^{2}=0$. This suggests that, to test the parametric hypothesis $H_{0}^{\boldsymbol{\theta}}$ against $H_{A}^{\boldsymbol{\theta}}$ we can equivalently test H_{0}^{ω} against H_{A}^{ω}.

Thus, we have a new test for nested hypothesis based on the variance statistics $\hat{\omega}_{n}^{2}$ and $\tilde{\omega}_{n}^{2}$ as defined in Equations (4.2) and (4.3). Let $\hat{\lambda}_{n}^{2}$ be the squares of the eigenvalues $\hat{\lambda}_{n}$.

Theorem 1. $\underline{6}$ (Variance Tests for Nested Models): Given Assumptions A1-A8:
(i) under H_{0}^{θ}, for any $\times 20$,

$$
\begin{equation*}
\operatorname{Pr}\left(n \hat{\omega}_{n}^{2} \leq x\right)-M_{p}\left(x ; \hat{\lambda}_{n}^{2}\right) \xrightarrow{\text { a.s. }} 0, \tag{7.7}
\end{equation*}
$$

$$
\text { (ii) under } H_{A}^{\theta}, \operatorname{nN}_{n}^{\omega_{2}^{2}} \xrightarrow{\text { a.s. }}+\infty \text {, }
$$

(iii) properties (i) and (ii) hold for $n \tilde{\omega}_{n}^{2}$.

As for the LR test of Theorem 7.4, variance tests are onesided. They are carried out by choosing a critical value from $M_{p}\left(\cdot ; \hat{\lambda}_{n}^{2}\right)$ and by rejecting the hypothesis that $\theta_{\text {. }}$ belongs to $\delta(\Gamma)$ if $\mathbf{n N}_{n}^{\mathbf{2}}$ or $n \tilde{\omega}_{n}^{2}$ is larger than this critical value. These statistics $n \hat{\omega}_{n}^{2}$ and $n \tilde{\omega}_{n}^{2}$ are readily computed. Indeed from Equation (4.2) and (4.3) we have using Assumption A8:

$$
\begin{align*}
& n \hat{\omega}_{n}^{2}=\sum_{t=1}^{n}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right)}{f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right)}\right]^{2}-\frac{1}{n} L R_{n}^{2}\left(\hat{\theta}_{n}, \tilde{\theta}_{n}\right), \tag{7.8}\\
& n \tilde{\omega}_{n}^{2}=\sum_{t=1}^{n}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right)}{f\left(Y_{t} \mid Z_{t} ; \tilde{\theta}_{n}\right)}\right]^{2}, \tag{7.9}
\end{align*}
$$

where $\boldsymbol{\theta}_{n}$ is the constrained ML estimator. For instance, $n \omega_{n}^{2}$ is the sum of square residuals in a linear regression of $m_{t} \equiv \log \left[f\left(Y_{t} \mid Z_{t} ; \hat{\theta}_{n}\right) / f\left(Y_{t} \mid Z_{t} ; \theta_{n}\right)\right]$ on the constant term. ${ }^{20}$

If, however, the larger model is correctly specified, then the
eigenvalues $\hat{\lambda}_{n}$ need not be computed since in this case the limiting distribution reduces to the central chi-square distribution with $p-q$ degrees of freedom, as other classical statistics.

Corollary 1.1 (Variance Tests for Nested Models given Information Matrix Equivalence): Given Assumptions A1 - A8, suppose that $A_{f}\left(\theta_{*}\right)+B_{f}\left(\theta_{*}\right)=0:$
(i) under $H_{0}^{\theta}, \underset{n}{\omega_{n}^{2}} \xrightarrow{D} x_{p-q}^{2}$,
(ii) under $H_{A}^{\boldsymbol{\theta}}, \mathrm{nN}_{\mathrm{n}}^{\boldsymbol{N}} \xrightarrow{\text { a.s. }}+\infty$,
(iii) properties (i) and (ii) hold for $n \tilde{\omega}_{n}^{2}$.

As mentioned earlier, the information matrix equivalence $A_{f}\left(\theta_{*}\right)+B_{f}\left(\theta_{\psi}\right)=0$ holds if the larger model is correctly specified.

8. CONCLUSION

In this paper, we have proposed a new and general approach to model selection whether the competing models are nested, overlapping or non-nested, and whether the models are correctly specified. This approach has the desirable property that it coincides with the usual classical testing approach when the models are nested. It is probabilistic and is based on testing if the competing models are as close to the true distribution against the hypothesis that one model is closer than the other. Since the maximum log-likelihood of a model is a natural estimator of the distance between the model and the true distribution as measured by the Kullback-Leibler information criterion, all our model selection tests, with the exception of the
variance tests discussed above, are LR-based tests. As a prerequisite, we have therefore fully characterized the asymptotic distribution of the LR statistic under the most general conditions.

In Section 5 on non-nested models, we have contrasted our model selection approach to the more familiar one originated by Akaike (1973, 1974). In Section 7 on nested models, we have shown that classical nested hypothesis tests are in fact model selection tests. We now express our view on the general purpose of model selection, specification testing, and non-nested hypothesis testing in econometric modelling.

First, it is important to note that model selection tests, as we have defined, can be thought of as specification tests. Indeed, given a statistical model, it is natural to question its validity. If one has in mind some reasons for possible misspecification of the initial model, one has in fact a list of competing models. To simplify, suppose that there is only one competing model. Then, by carrying out the model selection tests proposed in this paper, one may be able to conclude that the initial model is misspecified. Specifically, if one rejects the equivalence between these two models in favor of the competing model being better, then the initial model must be misspecified. Moreover, rejection suggests in which direction the initial model must be modified since the test indicates that the alternative model is closer to the truth. ${ }^{21}$ On the other hand, in the other two situations where the equivalence cannot be rejected or the equivalence is rejected in favor of the initial model being better,
one cannot infer that the initial model is correctly specified. This is usual in specification testing where acceptance of the null hypothesis does not in general imply correct specification of the model under test.

The previous paragragh does not imply that specification tests as originated by Hausman (1978) and White (1982a) are unimportant. ${ }^{22}$ First, as we have seen in the overlapping case, our model selection tests simplify if the information matrix equivalence holds or if at least one model is correctly specified. Second, and more importantly, specification tests are useful when one does not have any precise alternative models in mind. There is, however, a difference between model specification testing and our approach to model selection. Indeed, in model specification testing, one first performs various available specification tests, and then investigates the power of the tests so as to interpret the implicit alternatives to the initial model specification. On the other hand, in model selection, one must first have some ideas about possible form of misspecification to formulate alternative models. Then one carries out some model selection tests to decide if the initial model is correctly specified. ${ }^{23}$

We now turn to the important comparison between our model selection approach and the non-nested hypotheses approach as originated by Cox (1961, 1962). In the conditional framework of Section 2, the Cox statistic for testing the model F_{θ} using the evidence provided by G_{γ} is based on the modified LR statistic:

$$
\begin{equation*}
T_{n}^{r}=\frac{1}{n} L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)-\frac{1}{n} \sum_{t=1}^{n} \int_{Y} \log \frac{f\left(y \mid z_{t} ; \hat{\theta}_{n}\right)}{g\left(y \mid z_{t} ; \hat{\gamma}_{n}\right)} f\left(y \mid z_{t} ; \hat{\theta}_{n}\right) d y .{ }^{24} \tag{8.1}
\end{equation*}
$$

It is easy to see that the implicit null and alternative hypotheses of the Cox test are:

$$
\begin{equation*}
H_{0}^{f}: \int_{Z}\left\{\int_{Y} \log \frac{f\left(y \mid z ; \theta_{*}\right)}{g\left(y \mid z ; \gamma_{*}\right)}\left[h^{0}(y \mid z)-f\left(y \mid z ; \theta_{*}\right)\right] d y\right\} h^{0}(z) d z=0, \tag{8.2}
\end{equation*}
$$

where $h^{0}(z)$ is the true marginal density of Z_{t}, and H_{A}^{f} is the negation of H_{0}^{f}. It is clear that if F_{θ} is correctly specified so that $h^{0}(y \mid z)=f\left(y \mid z ; \theta_{*}\right)$, then Equation (8.2) is satisfied. On the other hand, the null hypothesis H_{0}^{f} may hold even though the model F_{θ} is misspecified so that the Cox-test does not have power against this type of misspecification. Along the same lines, let us note that when G_{γ} is nested in F_{θ}, the parametric hypothesis $H_{0}^{\boldsymbol{\theta}}: \quad \boldsymbol{\theta}_{*}=\boldsymbol{\gamma}\left(\boldsymbol{\gamma}_{*}\right)$ is included but not necessarily equal to H_{0}^{f}. Hence, contrary to our approach, Cox's approach does not coincide with the classical hypothesis approach when the models are nested. This is so because Cox's null hypothesis H_{0}^{f} is different from our null hypothesis H_{0}. Though MacKinnon (1983) has argued that non-nested hypothesis tests should be interpreted as "model specification tests using the evidence provided by non-nested alternative hypotheses," it is wellknown that Cox-type tests have also been used as discrimination or model selection tests. This is done by reversing the role of F_{θ} and G_{γ} in which case one has nine possible outcomes (see, e.g., Fisher and McAleer (1979)) according to whether H_{-}^{f}, H_{0}^{f}, or H_{+}^{f} holds on the one
hand, and H_{-}^{G}, H_{0}^{g}, or H_{+}^{g} holds on the other hand. The hypotheses H_{-}^{f}, $\mathrm{H}_{0}^{\mathrm{f}}$, and $\mathrm{H}_{+}^{\mathrm{f}}$ corresponds to whether the left-hand side of (8.2) is negative, zero, or positive. Similar definitions apply to H_{-}^{G}, H_{0}^{g}, and H_{+}^{g} when F_{θ} is replaced by G_{γ}. Given our definitions of equivalent and better models, we can provide in the following table the conclusion associated with each of these nine possibilities:

	$\mathrm{H}_{-}^{\mathbf{f}}$	$\mathrm{H}_{0}^{\mathrm{f}}$	$\mathrm{H}_{+}^{\text {f }}$
$\mathrm{H}_{-}^{\mathrm{G}}$	indecisive	$F_{\theta} \geq \mathrm{G}_{\boldsymbol{\gamma}}$	$\mathrm{F}_{\boldsymbol{\theta}}>\mathrm{G}_{\boldsymbol{\gamma}}$
$\mathrm{H}_{0}^{\mathrm{B}}$	$\mathrm{G}_{\boldsymbol{\gamma}} \geq \mathrm{PF}_{\boldsymbol{\theta}}$	$\begin{gathered} f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right) \\ \left(\Rightarrow F_{\theta} \equiv G_{\gamma}\right) \end{gathered}$	impossible
$\mathrm{H}_{+}^{\mathbf{8}}$	$G_{\gamma}>F_{\theta}$	impossible	impossible

where, for instance, $G_{\gamma} \geq F_{\theta}$ indicates that G_{γ} is at least as good as F_{θ}, and $G_{\gamma}>F_{\theta}$ indicates that G_{γ} is (strictly) better than F_{θ}.

We now explain such a table which relies on the remark that the hypotheses H_{-}^{f}, H_{0}^{f}, and H_{+}^{f} can be rewritten respectively as:
$E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{\xi}\right)\right] \stackrel{\varsigma}{\Gamma} E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma_{\xi}\right)\right]$

$$
\begin{equation*}
+\int_{Z} \int_{Y} \log \frac{f\left(y \mid z ; \theta_{*}\right)}{g\left(y \mid z ; \gamma_{*}\right)} f\left(y \mid z ; \theta_{*}\right) h^{0}(z) d y d z \tag{8.3}
\end{equation*}
$$

Similarly, $H_{-}^{\mathrm{B}}, \mathrm{H}_{0}^{\mathrm{B}}$, and $\mathrm{H}_{+}^{\mathrm{B}}$ can be rewritten as:
$E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)\right] \frac{\varsigma}{\Gamma} E^{0}\left[\log f\left(Y_{t} \mid z_{t} ; \gamma_{*}\right)\right]$

$$
\begin{equation*}
+\int_{Z} \int_{Y} \log \frac{g\left(y \mid z ; \gamma_{*}\right)}{f\left(y \mid z ; \theta_{*}\right)} g\left(y \mid z ; \gamma_{\psi}\right) h^{0}(z) d y d z . \tag{8.4}
\end{equation*}
$$

By Jensen's inequality, the second terms in Equations (8.3) and (8.4) are both non-negative, and equal to zero if and only if $f\left(\cdot \mid \cdot ; \theta_{*}\right)=$ $g\left(\cdot \mid \cdot ; \gamma_{*}\right)$. This explains why the three possibilities $\left(H_{0}^{\mathrm{g}}, \mathrm{H}_{+}^{\mathrm{f}}\right)$, $\left(H_{+}^{g}, H_{0}^{f}\right)$, and $\left(H_{+}^{g}, H_{+}^{f}\right)$ cannot occur (asymptotically). 25 As a consequence, when one rejects, say, H_{0}^{f} in favor of H_{+}^{f} in a Cox test, one need not reverse the hypotheses since one already knows that F_{θ} is better than G_{γ}. Moreover, from the second column of the table, one need not either reverse the hypotheses when H_{0}^{f} cannot be rejected since F_{θ} is at least as good as G_{γ}. This follows by noticing from Equations (8.3) and (8.4) that (i) (H_{-}^{g}, H_{0}^{f}) implies that F_{θ} is at least as good as G_{γ}, (ii) $\left(H_{0}^{g}, H_{0}^{f}\right)$ implies that $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{\psi}\right)$ and hence that F_{θ} and G_{γ} are equivalent, and (iii) that ($H_{+}^{\mathbb{B}}, H_{0}^{f}$) cannot occur. But let us note that if one cannot reject H_{0}^{f} so that $F_{\theta} \geq G_{\gamma}$, there is no way using the Cox test to determine if F_{θ} is (strictly) better than G_{γ}. The situation becomes worse if H_{0}^{f} is rejected in favor of H_{-}^{f}. Indeed, as the first column of the table indicates, even if one reverse the hypotheses, one may conclude that the combination ($\mathrm{H}_{-}^{\mathrm{B}}, \mathrm{H}_{-}^{\mathrm{f}}$) holds, but this combination is indecisive since all we know is that $E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right]-E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)\right]$ is less than the second term in Equation (8.3), but larger than minus the second term in Equation (8.4).

Though non-nested hypothesis tests have sometimes been advocated by the fact than "an economic researcher would be more
interested in the truth of a particular model than in choosing from among a given set of models" (Datsoor (1981)), we believe that this leads to a non-optimal strategy in econometric modeling. ${ }^{26}$ Indeed, instead of testing the specification of each model in a list of competing models using the evidence provided by the alternative models, as this is done in non-nested hypothesis testing, it is more economical to choose the best model among this list and then, if one is still interested in the truth, to perform either some specification tests on the best model or to expand the list of competing models so as to perform some further model selection tests. That this latter strategy is internally consistent is ensured by the fact that our definition of a "best" model is compatible with that of a model being correctly specified.

Much work remains to be done. First, an important task is to apply the proposed tests for model selection to some special cases such as the linear and non-linear regression models. Comparison between the resulting tests and the available Cox-type tests would be useful. Second, asymptotic power comparison between our model selection tests, when treated as model specification tests, and current specification tests would be interesting. Third, it would be useful to compare our approach to the comprehensive approach advocated by Atkinson $(1969,1970)$ which requires to nest the competing models in a larger model. An interesting case is that of a linear as a loglinear functional form as considered by Box and Cox (1964). Fourth, it would be interesting to compare the performance of our model
selection tests to the tests using the encompassing principle as advocated by Hendry (1983), and Mizon and Richard (1982). Fifth, the above model selection tests have been obtained under the assumption that there are only two competing models. It is therefore important to generalize our procedures to the case where there are many competing models. It appears that the likelihood ratio principle can still be invoked by taking the supremum of the log-likelihood over all the alternative models.

APPENDIX

Except when explicitly mentioned, all the matrices A_{f}, B_{f}, A_{g}, B_{g}, and $B_{f g}$ are evaluated at the pseudo-true values θ_{*} and γ_{*}.

Proof of Lemma 2.1: Given Assumptions A1-A5, we obtain using the Taylor expansions of the normal equations:

$$
\begin{align*}
& 0=n^{-1 / 2} \frac{\partial L_{n}^{f}\left(\theta_{\psi}\right)}{\partial \theta}+A_{f} \cdot n^{1 / 2}\left(\hat{\theta}_{n}-\theta_{*}\right)+o_{p}(1), \tag{A.1}\\
& 0=n^{-1 / 2} \frac{\partial L_{n}^{g}\left(\gamma_{*}\right)}{\partial \gamma}+A_{g} \cdot n^{1 / 2}\left(\hat{\gamma}_{n}-\gamma_{*}\right)+o_{p}(1), \tag{A.2}
\end{align*}
$$

(see, e.g., Vuong (1983), proof of Theorem 3)). On the other hand from the multivariate Central Limit Theorem (see, e.g. Rao (1973)):

$$
n^{-1 / 2}\left[\begin{array}{l}
\partial L_{n}^{f}\left(\theta_{*}\right) / \partial \theta \tag{A.3}\\
\partial L_{n}^{g}\left(\gamma_{*}\right) / \partial \gamma
\end{array}\right] \xrightarrow[\rightarrow]{D} N\left(0,\left[\begin{array}{lll}
B_{f} & B_{f g} \\
B_{g f} & ; & B_{g}
\end{array}\right]\right)
$$

The desired result follows from (A.1) - (A.3) by noticing that A_{f} and A_{g} are non-singular (see, White (1982a, Theorem 3.1)).

Proof of Lemma 3.1: Obvious from, e.g., Vuong (1983, Theorem 1).

Proof of Lemma 3.2: Taking a Taylor expansion of $L_{n} f_{*}\left(\theta_{*}\right)$ around $\hat{\theta}_{n}$, we have for some $\overline{\boldsymbol{\theta}}_{\mathrm{n}}$ in the segment $\left[\boldsymbol{\theta}_{*}, \hat{\boldsymbol{\theta}}_{\mathrm{n}}\right]$:
$L_{n}^{f}\left(\theta_{*}\right)=L_{n}^{f}\left(\hat{\theta}_{n}\right)+\frac{\partial L_{n}^{f}\left(\hat{\theta}_{n}\right)}{\partial \theta^{\prime}}\left(\theta_{*}-\hat{\theta}_{n}\right)+\frac{1}{2}\left(\hat{\theta}_{n}-\theta_{*}\right) \frac{\partial^{2} L_{n}^{f}\left(\bar{\theta}_{n}\right)}{\partial \theta \partial \theta^{\prime}}\left(\hat{\theta}_{n}-\theta_{*}\right)$.
(A.4)

But the second term is null by definition of $\hat{\boldsymbol{\theta}}_{\mathrm{n}}$. Since $n^{-1} \partial^{2} L_{n}{ }_{n}\left(\bar{\theta}_{*}\right) / \partial \theta \partial \theta^{\prime}=A_{f}+o_{p}(1)$, if follows that:

$$
\begin{equation*}
L_{n}^{f}\left(\theta_{\phi}\right)=L_{n}^{f}\left(\hat{\theta}_{n}\right) \& \frac{n}{2}\left(\hat{\theta}_{n}-\theta_{\psi}\right)^{\prime} A_{f}\left(\hat{\theta}_{n}-\theta_{\psi}\right)+o_{p}(1) \tag{A.5}
\end{equation*}
$$

Similarly, we have:

$$
\begin{equation*}
L_{n}^{g}\left(\gamma_{*}\right)=L_{n}^{g}\left(\hat{\gamma}_{n}\right)+\frac{n}{2}\left(\hat{\gamma}_{n}-\gamma_{*}\right)^{\prime} A_{g}\left(\hat{\gamma}_{n}-\gamma_{*}\right)+o_{p}(1) . \tag{A.6}
\end{equation*}
$$

Since $L R_{n}\left(\theta_{*}, \boldsymbol{\gamma}_{*}\right)=L_{n}^{f}\left(\theta_{*}\right)-L_{n}^{g}\left(\boldsymbol{\gamma}_{*}\right)$, we obtain:

$$
\begin{align*}
L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)= & L R_{n}\left(\theta_{*}, \gamma_{\psi}\right)-\frac{n}{2}\left(\hat{\theta}_{n}-\theta_{*}\right)^{\prime} A_{f}\left(\hat{\theta}_{n}-\theta_{*}\right) \\
& +\frac{n}{2}\left(\hat{\gamma}_{n}-\gamma_{*}\right)^{\prime} A_{g}\left(\hat{\gamma}_{n}-\gamma_{*}\right)+o_{p}(1) . \tag{A.7}
\end{align*}
$$

Part (i) follows from the fact that $L R_{n}\left(\theta_{*}, \gamma_{*}\right)=0$ if $f\left(\cdot \mid \cdot ; \theta_{*}\right)=$ $g\left(\cdot \mid \cdot ; \gamma_{*}\right)$. On the other hand, if $f\left(\cdot \mid \cdot ; \theta_{*}\right) \neq g\left(\cdot \mid \cdot ; \gamma_{*}\right)$, then $L R_{n}\left(\theta_{*}, \gamma_{*}\right)$ is not zero. But we always have $n^{1 / 2}\left(\hat{\theta}_{n}-\theta_{*}\right)$ and $n^{1 / 2}\left(\hat{\gamma}_{n}-\gamma_{*}\right)$ being $O_{p}(1)$. This establishes Part (ii).

Proof of Lemma 3.4: From Moore (1978, Theorem 1), we know that $Y^{\prime} Q Y \sim M_{\text {III }}(\cdot ; \lambda)$ where λ are the eigenvalues of $\Omega^{1 / 2} Q \Omega^{1 / 2}$ where $\Omega^{1 / 2}=$ $P^{\prime} D^{1 / 2} P$, and P is an orthogonal matrix that diagonalizes Ω into $D_{\text {: }}$ i.e., $P Q P^{\prime}=D$ and $P P^{\prime}=P^{\prime} P=I_{m}$. It remains to show that the eigenvalues of $\Omega^{1 / 2} Q_{Q^{1 / 2}}$ are the eigenvalues of $Q \Omega$. Let us order the eigenvalues and eigenvectors so that:

$$
D=\left[\begin{array}{ll}
D_{1} & 0 \tag{A.8}\\
0 & 0
\end{array}\right], P^{\prime}=\left[P_{1}^{\prime} ; P_{0}^{\prime}\right]
$$

where D_{1} is an $r \times r$ diagonal matrix of which all the diagonal elements are strictly positive (since Ω is p.s.d.). Then, using the orthogonality of P and the properties of determinants, the eigenvalues of $\Omega^{1 / 2} Q_{\Omega^{1 / 2}}^{1 / 2}$ solve:

$$
0=\left|D^{1 / 2} P Q P^{\prime} D^{1 / 2}-\lambda I_{m}\right|
$$

$$
\begin{equation*}
=\left|D_{1}^{1 / 2} P_{1} Q P_{1}^{\prime} D_{1}^{1 / 2}-\lambda I_{r}\right| \lambda^{m-r} \tag{A.9}
\end{equation*}
$$

Similarly the eigenvalues of Q solve:

$$
0=\left|P Q P^{\prime} D-\lambda I_{m}\right|
$$

$$
\begin{equation*}
=\left|P_{1} Q P_{1}^{\prime} D_{1}-\lambda I_{r}\right| \lambda^{m-r} \tag{A.10}
\end{equation*}
$$

which is equivalent to (A.9) by pre and post multiplying by $D_{1}^{1 / 2}$ and $\mathrm{D}_{1}^{-1 / 2}$.

Proof of Theorem 3.5: Part (i) follows from Lemma 2.1, Lemma 3.2 -
(i) and Lemma 3.4 by considering the quadratic form associated with the block-diagonal matrix:

$$
Q=\left[\begin{array}{cc}
-A_{f} & 0 \tag{A.11}\\
0 & A_{g}
\end{array}\right]
$$

Then, one can check that $Q[$ is equal to W as given in Equation (3.9). From Lemma 3.2 - (ii), we have:

$$
n^{-1 / 2} L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)-n^{1 / 2} E\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)}\right]
$$

$$
=n^{1 / 2}\left[\frac{1_{L R_{n}}}{n}\left(\theta_{*}, \gamma_{*}\right)-E^{0}\left[\frac{f\left(Y_{t} \mid z_{t} ; \theta_{*}\right)}{\log _{g}\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)}\right]\right]+o_{p}(1) .
$$

But from the multivariate Central Limit Theorem, the first term in the right hand side converges in distribution to $N\left(0, \omega_{*}^{2}\right)$ where ω_{*}^{2} is the variance defined in Equation (3.6). This variance $\omega_{*}^{\mathbf{2}}$ is finite given Assumption A6 and the Cauchy-Shwartz inequality. Part (ii) follows.

Proof of Theorem 3.6: From Lemma 3.2 - (i), $2 \operatorname{LR}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)$ is asymptotically distributed as a quadratic form in
$\mathrm{n}^{1 / 2}\left(\hat{\theta}_{\mathrm{n}}^{\prime}-\theta_{*}^{\prime}, \hat{\gamma}_{\mathrm{n}}^{\prime}-\gamma_{*}^{\prime}\right)^{\prime}$ which is asymptotically normal $\mathrm{N}\left(0, \sum\right)$ (Lemma 2.1). Thus, from Rao and Mitra (1971, Theorem 9.2.1), $2 L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)$ is asymptotically distributed as a (central) chi-square if and only if:

$$
\begin{equation*}
\sum \square \square a \Sigma=[a \Gamma . \tag{A.12}
\end{equation*}
$$

where Q is given in (A.11), in which case the number of degrees of freedom is tr $Q \sum$.

We now use the fact that:

$$
\begin{equation*}
\Sigma=\mathrm{A}^{-1} \mathrm{BA}^{-1} \tag{A.13}
\end{equation*}
$$

where

$$
B=\left[\begin{array}{ll}
B_{f} & B_{f_{g}} \tag{A.14}\\
B_{g f} & B_{g}
\end{array}\right] ; A=\left[\begin{array}{ll}
A_{f} & 0 \\
0 & A_{g}
\end{array}\right]
$$

Noticing that $A^{-1} Q_{A^{-1}}=Q^{-1}$, Condition (A.14) becomes:

$$
\begin{equation*}
\mathrm{BQ}^{-1} \mathrm{BQ} \mathrm{Q}^{-1} \mathrm{~B}=\mathrm{BQ}{ }^{-1} \mathrm{~B} \tag{A.15}
\end{equation*}
$$

Using now the information matrix equivalences (3.11), we obtain after some matrix multiplications that (A.15) is equivalent to:

$$
\begin{align*}
& {\left[\begin{array}{ll}
B_{f}-B_{f_{g}} B_{g}^{-1} B_{g f} & ; B_{f_{g}} B_{g}^{-1}\left(B_{g}-B_{g f} B_{f}^{-1} B_{f_{g}}\right) \\
\left(B_{g}-B_{g f} B_{f}^{-1} B_{f g}\right) B_{g}^{-1} B_{g f} & ; B_{g}-B_{g f} B_{f}^{-1} B_{f g}
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
{ }^{B_{f}}-B_{f g} B_{g}^{-1} B_{g f} & ; & 0 \\
0 & ; & -B_{g}+B_{g f}{ }^{B_{f}}{ }^{-1} B_{f_{g}}
\end{array}\right] \tag{A.16}
\end{align*}
$$

Hence $2 L_{n}\left(\hat{\boldsymbol{\theta}}_{\mathrm{n}}, \hat{\gamma}_{\mathrm{n}}\right)$ has a limiting (central) chi-square distribution if and only if (3.12) holds. Its number of degrees of freedom is then:

$$
\operatorname{tr} Q \sum=\operatorname{tr}\left[\begin{array}{cc}
\mathrm{I}_{\mathrm{p}} & \mathrm{~B}_{\mathrm{fg}_{\mathrm{B}} \mathrm{~B}^{-1}} \tag{A.17}\\
-\mathrm{B}_{\mathrm{gf}} \mathrm{~B}_{\mathrm{f}}^{-1} & -\mathrm{I}_{\mathrm{q}}
\end{array}\right]=\mathrm{p}-\mathrm{q} .
$$

Proof of Lemma 4.1: From Definition (3.7) of ω_{*}^{2}, it follows that $\omega_{*}^{2}=0$ if and only if:

$$
\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{\psi}\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)} \stackrel{\text { a.s. }}{=} E^{0}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)}\right]=\text { constant, }
$$

i.e., if and only if: $f\left(\cdot \mid \cdot ; \theta_{*}\right)=\mathrm{Kg}\left(\cdot \mid \cdot ; \gamma_{*}\right)$ for some constant K. Since $f\left(\cdot \mid \cdot ; \theta_{*}\right)$ and $g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ are densities, then $K=1 .{ }^{27}$

Proof of Lemma 4.2: Given Assumptions A1-A3, and A6, it follows from the Cauchy-Scwartz inequality and Jennrich's uniform Strong Law of Large Numbers (1969, Theorem 2) that

$$
\begin{equation*}
\frac{1}{n} \sum_{t=1}^{n}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma\right)}\right]^{2} \xrightarrow{\text { a.s. }} E^{0}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta\right)}{g\left(Y_{t} \mid Z_{t} ; \gamma\right)}\right]^{2}, \tag{A.18}
\end{equation*}
$$

uniformly in θ on θ. The result follows from Lemma 3.1 and the strong consistency of $\hat{\theta}_{\mathrm{n}}$ and $\hat{\gamma}_{\mathrm{n}}$ to $\boldsymbol{\theta}_{*}$ and $\boldsymbol{\gamma}_{*}$.

Proof of Theorem 4.3: Since $\omega_{*}^{2}=0$ is equivalent to $f\left(\cdot \mid \cdot ; \theta_{*}\right)=$ g $\left(\cdot \mid \cdot ; \gamma_{*}\right)$ (Lemma 4.1), it follows from Theorem 3.5-(i) that: $L R_{n}\left(\hat{\theta}_{n}, \hat{r}_{n}\right)=O_{p}(1)$. Thus, from Equation (4.4), we have:

$$
n \tilde{\omega}_{n}^{2}=n \hat{\omega}_{n}^{2}+n^{-1} O_{p}(1)=n \hat{\omega}_{n}^{2}+o_{p}(1)
$$

Hence, we need only to study the null asymptotic distribution of $n \tilde{\omega}_{n}^{2}$. Using a Taylor expansion around (θ_{*}, γ_{*}), we obtain:

$$
\begin{align*}
\widetilde{\omega}_{n}^{2} & =\frac{1}{n} \sum_{t=1}^{n}\left[\log \frac{f_{t}\left(\theta_{*}\right)}{g_{t}\left(\gamma_{*}\right)}\right]^{2}+2\left[\frac{1}{n} \sum_{t=1}^{n}\left[\log \frac{f_{t}\left(\theta_{*}\right)}{g_{t}\left(\gamma_{*}\right)}\right] \frac{\partial \log f_{t}\left(\theta_{*}\right)}{\partial \theta^{\prime}}\right]\left(\hat{\theta}_{n}-\theta_{*}\right) \\
& -2\left[\frac{1}{n} \sum_{t=1}^{n}\left[\log \frac{f_{t}\left(\theta_{*}\right)}{g_{t}\left(\gamma_{*}\right)}\right] \frac{\partial \log g_{t}\left(\gamma_{*}\right)}{\partial \gamma^{\prime}}\right]\left(\hat{\gamma}_{n}-\gamma_{*}\right) \\
& +\left(\hat{\theta}_{n}^{\prime}-\theta_{*}^{\prime}, \hat{\gamma}_{n}^{\prime}-\gamma_{*}^{\prime}\right) \bar{v}_{n}\left(\hat{\theta}_{n}^{\prime}-\theta_{n}^{\prime}, \hat{\gamma}_{n}^{\prime}-\gamma_{*}^{\prime}\right) \tag{A.19}
\end{align*}
$$

where, to simplify the notation, we have used $f_{t}\left(\theta_{*}\right)$ and $g_{t}\left(\gamma_{*}\right)$ for $f\left(Y_{t} \mid Z_{t}: \theta_{*}\right)$ and $g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)$ respectivel y, and where:

$$
\bar{v}_{n}=\left[\begin{array}{ccc}
\bar{v}_{\theta \theta n} & ; & \bar{v}_{\theta \gamma n} \\
\bar{v}_{\gamma \theta n} & : & \bar{v}_{\gamma \gamma n}
\end{array}\right] \text {. }
$$

$\bar{v}_{\theta \theta n}=\frac{1}{n} \sum_{t=1}^{n} \frac{\partial \log f_{t}\left(\bar{\theta}_{n}\right)}{\partial \theta} \cdot \frac{\partial \log f_{t}\left(\bar{\theta}_{n}\right)}{\partial \theta^{\prime}}+\frac{1}{n} \sum_{t=1}^{n}\left[\log \frac{f_{t}\left(\bar{\theta}_{n}\right)}{B_{t}\left(\bar{\gamma}_{n}\right)}\right] \frac{\partial^{2} \log f_{t}\left(\bar{\theta}_{n}\right)}{\partial \theta \partial \theta}{ }^{\prime}$,
$\bar{v}_{\theta \gamma n}=\bar{v}_{\gamma \theta n}^{\prime}=-\frac{1}{n} \sum_{t=1}^{n} \frac{\partial \log f_{t}\left(\bar{\theta}_{n}\right)}{\partial \theta} \cdot \frac{\partial \log g_{t}\left(\bar{\gamma}_{n}\right)}{\partial \gamma^{\prime}}$,
$\bar{v}_{\gamma \gamma n}=\frac{1}{n} \sum_{t=1}^{n} \frac{\partial \log g_{t}\left(\bar{\gamma}_{n}\right)}{\partial \gamma} \cdot \frac{\partial \log g_{t}\left(\bar{\gamma}_{n}\right)}{\partial \gamma^{\prime}}-\frac{1}{n} \sum_{t=1}^{n}\left[\log \frac{f_{t}\left(\bar{\theta}_{n}\right)}{g_{t}\left(\bar{\gamma}_{n}\right)}\right] \frac{\partial^{2} \log g_{t}\left(\bar{\gamma}_{n}\right)}{\partial \gamma \partial \gamma^{\prime}}$,
for some $\bar{\theta}_{\mathrm{n}}$ and $\bar{\gamma}_{\mathrm{n}}$ in the segments $\left[\boldsymbol{\theta}_{*}, \hat{\theta}_{\mathrm{n}}\right]$ and $\left[\gamma_{*}, \hat{\gamma}_{\mathrm{n}}\right]$ respectively.

$$
\text { But, } f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right) \text { under } H_{0}^{\omega} \text { (Lemma 4.1) so that the }
$$

first three terms in (A.19) are null. Moreover, given Assumption A1A7, Jennrich's uniform strong Law of Large Numbers, the second term in $\overline{\mathrm{v}}_{\theta \theta \mathrm{n}}$ (or $\overline{\mathrm{v}}_{\gamma \gamma \mathrm{r}}$) goes almost surely to zero since $\mathrm{f}\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ under H_{0}^{ω}. Hence $\bar{v}_{\theta \theta n}=B_{f}+o_{p}(1), \bar{v}_{\gamma \gamma n}=B_{g}+o_{p}(1), \bar{v}_{\theta \gamma n}=\bar{v}_{\gamma \theta n}^{\prime}=$ $-\mathrm{B}_{\mathrm{f}_{\mathrm{g}}}+o_{\mathrm{p}}(1)$. Since $\mathrm{n}^{1 / 2}\left(\hat{\theta}_{\mathrm{n}}-\theta_{*}\right)$ and $\mathrm{n}^{1 / 2}\left(\hat{\gamma}_{\mathrm{n}}-\gamma_{*}\right)$ are both $O_{\mathrm{p}}(1)$, it follows that under H_{o}^{ω} :

$$
\begin{align*}
n \hat{\omega}_{n}^{2} & =n \tilde{\omega}_{n}^{2}+o_{p}(1) \\
& =n\left(\hat{\theta}_{n}^{\prime}-\theta_{*}^{\prime}, \hat{\gamma}_{n}-\gamma_{*}^{\prime}\right) v\left(\hat{\theta}_{n}^{\prime}-\theta_{*}^{\prime}, \hat{\gamma}_{n}^{\prime}-\gamma_{*}^{\prime}\right)^{\prime}+o_{p}(1) \tag{A.20}
\end{align*}
$$

where

$$
\mathrm{V}=\left[\begin{array}{cc}
\mathrm{B}_{\mathrm{f}} & -\mathrm{B}_{\mathrm{f}_{\mathrm{g}}} \tag{A.21}\\
-\mathrm{B}_{\mathrm{gf}} & \mathrm{~B}_{\mathrm{g}}
\end{array}\right]
$$

From Lemmae 2.1 and 3.4 , it remains to show that the eigenvalues of $v \sum\left(\right.$ or $\sum^{1 / 2} v \sum^{1 / 2}$) are equal to the squares of the eigenvalues of $W=Q \sum$ (or $\sum^{1 / 2} Q \sum^{1 / 2}$) where Q is defined in Equation (A.11). It is easy to check that $V=Q \sum Q$. Hence if R is the matrix that orthogonalizes $\sum^{1 / 2} Q \sum^{1 / 2}$ so that $R \sum^{1 / 2} Q \sum^{1 / 2} R^{\prime}=\Lambda_{*}$, then $\Lambda^{2}=R \sum^{1 / 2} Q \sum^{1 / 2} \sum^{\prime}=R \sum^{1 / 2} v \Sigma^{1 / 2} R^{\prime}$. This completes the proof.

Proof of Theorem 4.4: From Lemma 2.1, Equation (A.20), and Rao and Mitra (1971, Theorem 9.2.1), it follows that $n \omega_{n}^{2}$ (or $n \tilde{\omega}_{n}^{2}$) has a limiting (central) chi- square distribution if and only if $\sum V \sum V E=\sum V \sum$ in which case the number of degrees of freedom is $\operatorname{tr} \mathrm{V} \sum$. Using the information matrix equivalences (3.11), we have:

$\sum V \sum V \sum=\left[\begin{array}{ll}B_{f}^{-1}\left(I_{p}-B_{f g} B_{g}^{-1} B_{g f} B_{f}^{-1}\right)^{2} & ; B_{f}^{-1} B_{f_{g}} B_{g}^{-1}\left(I_{q}-B_{g f^{B}} f_{f}^{-1} B_{f g} B_{g}^{-1}\right)^{2} \\ B_{g}^{-1} B_{g f} B_{f}^{-1}\left(I_{p}-B_{f g} B_{g}^{-1} B_{g f} B_{f}^{-1}\right)^{2} & ; \quad B_{g}^{-1}\left(I_{q}-B_{g f} B_{f}^{-1} B_{f g} B_{g}^{-1}\right)^{2}\end{array}\right]$.
 $I_{q}-B_{g f_{f}} \mathrm{~B}_{\mathrm{f}}^{-1} \mathrm{~B}_{\mathrm{f}_{\mathrm{g}}} \mathrm{B}_{\mathrm{g}}^{-1}$ are both idempotent. Or equivalently $\sum \mathrm{V} \sum \mathrm{V} \sum=$

idempotent.
But, $\mathrm{B}_{\mathrm{fg}} \mathrm{B}_{\mathrm{g}}^{-1} \mathrm{~B}_{\mathrm{gf}} \mathrm{B}_{\mathrm{f}}^{-1}$ is idempotent if and only if $\mathrm{B}_{\mathrm{gf}} \mathrm{B}_{\mathrm{f}}^{-1} \mathrm{~B}_{\mathrm{fg}} \mathrm{B}_{\mathrm{g}}^{-1}$ is idempotent. Indeed, $\operatorname{rank}\left(\mathrm{B}_{\mathrm{f}_{\mathrm{g}}} \mathrm{B}_{\mathrm{g}}^{-1}\right)\left(\mathrm{B}_{\mathrm{gf}} \mathrm{B}_{\mathrm{f}}^{-1}\right)=\operatorname{rank} \mathrm{B}_{\mathrm{f}_{\mathrm{g}}} \mathrm{B}_{\mathrm{g}}^{-1} \mathrm{~B}_{\mathrm{gf}}=\operatorname{rank}$
 follows that if $\left(B_{f_{g}} B_{g}^{-1}\right)\left(B_{g f^{\prime}} B_{f}^{-1}\right)$ is idempotent then $\left(B_{g f_{f}} B_{f}^{-1}\right)\left(B_{f_{g}} B_{g}^{-1}\right)$ is also idempotent. By the same argument, if $\mathrm{B}_{\mathrm{gf}} \mathrm{B}_{\mathrm{f}}^{-1} \mathrm{~B}_{\mathrm{fg}_{\mathrm{g}}} \mathrm{B}_{\mathrm{g}}^{-1}$ is idempotent then ${ }^{B_{f}} B_{B}^{-1} B_{g} f^{B_{f}}$ is also idempotent. This establishes the equivalence between (i), (ii), (iii), and (iv). Finally, from (A.22):

$$
\begin{aligned}
\operatorname{tr} v \sum & =p+q-\operatorname{tr}\left(B_{f_{g}} B_{g}^{-1} B_{g f} B_{f}^{-1}\right)-\operatorname{tr}\left(B_{g f} B_{f}^{-1} B_{f_{g}} B_{g}^{-1}\right) \\
& =p+q-2 \operatorname{tr}\left(B_{f_{g}} B_{g}^{-1} B_{g f} B_{f}^{-1}\right) .
\end{aligned}
$$

Since $\mathrm{B}_{\mathrm{f}_{\mathrm{g}}} \mathrm{B}_{\mathrm{g}}^{-1} \mathrm{~B}_{\mathrm{gf}} \mathrm{B}_{\mathrm{f}}^{-1}$ must be idempotent for $\mathrm{n} \hat{\omega}_{\mathrm{n}}^{\mathbf{2}}$ to be chi-square distributed asymptotically, then $\operatorname{tr}\left(\mathrm{B}_{\mathrm{f}_{\mathrm{g}}} \mathrm{B}_{\mathrm{g}}^{-1} \mathrm{~B}_{\mathrm{g}} \mathrm{f}_{\mathrm{f}}^{-1}\right)=$ rank $\left(B_{f_{g}} B_{g}^{-1} B_{g f} B_{f}^{-1}\right)=\operatorname{rank} B_{g f}$. This establishes that the number of degrees of freedom is $p+q-2$ rank $B_{g f}$.

Proof of Theorem 5.2: Straightforward from Theorem 3.5-(ii), and Lemma 4.2 since $f\left(\cdot \mid \cdot ; \theta_{*}\right) \neq g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ and $\omega_{*}^{2}>0$.

Proof of Corollary 5.3: Obvious from Equation (5.13) and Theorem 5.2.

Proof of Theorem 5.4: To prove Part (i), note that under $\mathrm{F}_{0}: \Delta=0$ so that by subtractiving $n \Delta$ from $L \tilde{R}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)$ we obtain after multiplication by $n^{-1 / 2} / \hat{\omega}_{n}$:

$$
\frac{n^{-1 / 2}}{\hat{\omega}_{n}} L \tilde{R}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)=\frac{1}{\hat{\omega}_{n}}\left[n^{-1 / 2} L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)-n^{1 / 2} E^{0}\left[\log _{g\left(Y_{t} \mid Z_{t} ; \gamma_{*}\right)}^{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)}\right]\right.
$$

Since $f\left(\cdot \mid \cdot ; \theta_{*}\right) \neq g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ because the models are strictly nonnested, Part (i) follows from Theorem 3.5-(ii) and Lemma 4.2 - (i). To prove Parts (ii) and (iii), note that
$\frac{n^{-1 / 2}}{\hat{\omega}_{n}} L \tilde{R}_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)=\frac{1}{\hat{\omega}_{n}}\left[n^{-1 / 2} L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)-n^{1 / 2} E^{o}\left[\log \frac{f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right.}{\left.\operatorname{H}_{t} \mid Z_{t} ; \gamma_{*}\right)}\right]\right]+\frac{n^{1 / 2}}{\hat{\omega}_{n}} \Delta$.

The first term is $O_{p}(1)$ from Theorem 3.5 - (ii), and the second term goes almost surely to $+\infty$ under \tilde{H}_{f} and to $-\infty$ under \tilde{H}_{g}.

Proof of Theorem 6.2: Part (i) follows from Theorem 4.3, since the c.d.f. $M_{p+q}(\cdot ; \lambda)$ is continuous in λ, and since \hat{W}_{n} converges almost surely to W so that the eigenvalues $\hat{\lambda}_{n}$ converge also almost surely to $\lambda_{\text {* }}$. Part (ii) follows from Lemma 4.2 - (i). Part (iii) follows by the same argument.

Proof of Lemma 6. $\mathbf{3}$: We shall prove that (ii) \Rightarrow (i) \Rightarrow (iii) \Rightarrow (ii). Without loss of generality, we assume that $H^{0}(\cdot \mid \cdot)$ e F_{θ}, i.e., that $h^{0}(\cdot \mid \cdot)=f\left(\cdot \mid \cdot ; \theta_{0}\right)$ for some θ_{0} in θ. Then, as is well known, it follows from the uniqueness of $\theta_{\text {. }}$ (Assumption A3 - (b)) and Jensen's inequality that $\theta_{*}=\theta_{0}$. Thus $h^{0}(\cdot \mid \cdot)=f\left(\cdot \mid \cdot ; \theta_{*}\right)$
(ii) \Rightarrow (i): Since $h^{0}(\cdot \mid \cdot)=f\left(\cdot \mid \cdot ; \theta_{*}\right)$, then
$h^{0}(\cdot \mid \cdot)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ using (ii), so that $H^{0}(\cdot \mid \cdot) \varepsilon G_{\gamma}$, and hence $H^{0}(\cdot \mid \cdot) \in F_{\theta} \cap G_{\gamma}$.
(i) \Rightarrow (iii): Since $H^{0}(\cdot \mid \cdot)$ e G_{γ}, then $h^{0}(\cdot \mid \cdot)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ as above. Since $h^{0}(\cdot \mid \cdot)=f\left(\cdot \mid \cdot ; \theta_{*}\right)$, then $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$, which implies (iii).

$$
(\text { iii }) \Rightarrow(i i): \text { Since } h^{0}(\cdot \mid \cdot)=f\left(\cdot \mid \cdot ; \theta_{*}\right) \text {, then (iii) implies }
$$ that:

$$
\int_{Z}\left\{\int_{Y} \log \frac{f\left(y \mid z ; \theta_{*}\right)}{g\left(y \mid z ; \theta_{*}\right)} f\left(y \mid z ; \theta_{*}\right) d y\right\} d z=0
$$

Then (ii) follows from Jensen's inequality.

Proof of Theorem 6.4: Under H_{0}, it follows from Lemma 6.3 that $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$. Then, Part (i) follows from Theorem 3.4 - (i), the continuity of the c.d.f. $M_{p+q}(\cdot ; \lambda)$ in λ, and the strong convergence of $\hat{\lambda}_{n}$ to the eigenvalues λ_{*} of W. Parts (ii) and (iii) follow from Lemma 3.1.

Proof of Lemma 1.2: We shall prove that (ii) \Rightarrow (i) \Rightarrow (iv) \Rightarrow (iii) \Rightarrow (ii).
(ii) \Rightarrow (i): Since $\theta_{*} \in \phi(\Gamma), \exists \tilde{\gamma} \in \Gamma$ such that $\theta_{*}=\sigma(\tilde{\gamma})$.

Thus, from Assumption $A 8, \log g(\cdot \mid \cdot ; \tilde{\gamma})=\log f\left(\cdot \mid \cdot ; \theta_{*}\right)$ which implies $E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \tilde{\gamma}\right)\right]=E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right] 2 E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta\right)\right]$ for any θ in θ and, in particular for any θ in $\phi\left(\Gamma^{\prime}\right)$, i.e., for any $\theta=\phi(\gamma)$ for $\gamma \in \Gamma^{\prime}$. Then, using again Assumption A8, we have $E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \tilde{\gamma}\right)\right] 2 E^{0}\left[\log g\left(Y_{t} \mid Z_{t} ; \gamma\right)\right]$ for any $\gamma \varepsilon \Gamma$, which implies that $\tilde{\boldsymbol{\gamma}}=\boldsymbol{\gamma}_{*}$ from Assumption A3 - (b), and hence that $\boldsymbol{\theta}_{*}=\boldsymbol{\gamma}\left(\boldsymbol{\gamma}_{*}\right)$.
$(i) \Rightarrow($ iv $):$ Obvious given Assumption A8.
$(i v) \Rightarrow($ iii $):$ Obvious.
$(i i i) \Rightarrow(i i):$ Suppose that $\theta_{*} \& \delta(\Gamma)$, then $\theta_{*} \neq \tilde{\theta \equiv \phi\left(\gamma_{*}\right)}$

But from (iii) and Assumption A8, we have $E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right)\right]=$ $E^{0}\left[\log f\left(Y_{t} \mid Z_{t} ; \tilde{\theta}\right)\right]$, which contradicts the uniqueness of θ_{*} (Assumption

A3 - (b)).

Proof of Lemma 1.3: First; we note that, under Assumption A8, $\partial \log g(\cdot \mid \cdot ; \gamma) / \partial \gamma=\partial \alpha^{\prime} / \partial \gamma \delta \partial \log \mathrm{f}(\cdot \mid \cdot ; \phi(\gamma)) / \partial \theta$. But under H_{0}^{θ}, we have $\theta_{*}=\phi\left(\gamma_{*}\right)$ (Lemma 7.2), which establishes Part (ii) and the first equality of Part (i) using the definitions of B_{g}, B_{f}, and $B_{g f}$. In addition:

$$
\frac{\partial^{2} 10 R_{B} B}{\partial \gamma \partial \gamma^{\prime}}=\frac{\partial \alpha^{\prime}}{\partial \gamma} \cdot \frac{\partial^{2} 10 g_{R} f}{\partial \theta \partial \theta^{\prime}} \cdot \frac{\partial \alpha^{\prime}}{\partial \gamma^{\prime}}+\sum_{K} \frac{\partial \phi_{k}}{\partial \gamma \partial \gamma^{\prime}} \frac{\partial 10 \mathcal{R}^{\prime} P}{\partial \theta_{k}}
$$

where we have omitted the arguments of the functions, and where $\boldsymbol{\phi}_{k}$ is the k-th component of d. Since $E^{0}\left[\partial \log f\left(Y_{t} \mid Z_{t} ; \theta_{*}\right) / \partial \theta\right]=0$ and since $\theta_{*}=\phi\left(\gamma_{*}\right)$, then the second equality of Part (i) follows. Finally, Part (iii) follows from this equality and the fact that $A_{f}\left(\theta_{*}\right)$ and $A_{g}\left(\gamma_{*}\right)$ are non- singular matrices (see, White (1982a), Theorem 3.1)). Proof of Theorem 1.4: Since under H_{0}^{θ}, we have $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ (Lemma 7.2), then Part (i) follows from Theorem 3.5 - (i) if we show that the non-zero eigenvalues λ_{*} of W are the non-zero eigenvalues of W. But, using Lemma 7.3, the eigenvalues of W solve:

$$
\begin{aligned}
& =\operatorname{det}\left[\begin{array}{ll}
-B_{f^{\prime}} A_{f}^{-1}-\lambda I_{p} & ;-B_{f^{\prime}}^{\partial \gamma_{r}} A_{g} \\
-\lambda \frac{\partial \sigma^{\prime}}{\partial \gamma} & ;-\lambda I_{q}
\end{array}\right],
\end{aligned}
$$

$$
=\operatorname{det}\left[\begin{array}{cc}
-B_{f} A_{f}^{-1}-\lambda I_{p}+B_{f^{\prime}} \frac{\partial \gamma_{\gamma}}{} A_{g} A_{g}^{-1} \frac{\partial \alpha^{\prime}}{\partial \gamma} & ;-B_{f^{\prime}} \frac{\partial \phi_{\gamma}}{} A_{g}^{-1} \\
0 & ;-\lambda I_{q}
\end{array}\right]
$$

where the second equation follows from the first equation by adding to the second-row matrices the first-row matrices premultiplied by the full row-rank matrix $\partial \sigma^{\prime} / \partial \gamma$ (Lemma 7.3 - (iii)), and where the third equation follows from the second equation by adding to the firstcolumn matrices the second-column matrices postmultiplied by $-\partial \sigma^{\prime} / \partial \gamma$. Hence, the eigenvalues of W solve:

$$
\begin{equation*}
0=\lambda^{q} \operatorname{det}\left\{-B_{f^{\prime}} A_{f}^{-1}+B_{f} \frac{\partial \alpha_{\gamma}}{\partial A_{g}} A^{-1} \frac{\partial \alpha^{\prime}}{\partial \gamma}-\lambda I_{p}\right\} \tag{A.23}
\end{equation*}
$$

which establishes that the non-zero eigenvalues of W are the non-zero eigenvalues of \underline{W} as defined by Equation (7.5). Equation (A.23) also shows that the eigenvalues of $\underset{W}{ }$ are all real and non-negative since $A_{f}^{-1}-\left[\partial \delta / \partial \gamma^{\prime}\right] A_{g}^{-1}\left[\partial \delta^{\prime} / \partial \gamma\right]=A_{f}^{-1}-\left[\partial \delta / \partial \gamma^{\prime}\right]\left(\left[\partial \delta^{\prime} / \partial \gamma\right] A_{f}\left[\partial \delta / \partial \gamma^{\prime}\right]\right)^{-1}$ [$\partial \alpha^{\prime} / \partial \gamma$] which is n.s.d.

Part (ii) follows from Lemma 3.1 and $H_{A}^{\boldsymbol{\theta}}=H_{f}$.

Proof of Corollary 1.5: If $A_{f}+B_{f}=0$, then it follows from Lemma 7.3 - (i) that under $H_{0}^{\theta}, A_{G}+B_{G}=0$. Part (i) follows from Theorem 3.6 and Lemma 7.3 since Condition (3.12) is satisfied. Part (ii) is identical to Theorem 7.4-(ii).

Proof of Theorem 1.6: Since $H_{o}^{\boldsymbol{\theta}}=H_{o}^{\omega}$, Part (i) follows from Theorem 4.3 since the non-zero eigenvalues of W are the eigenvalues of W (see
the proof of Theorem 7.4). Parts (ii) follows from Lemma 4.2 since H_{A}^{θ} is equivalent to H_{A}^{ω}. Part (iii) is proved similarly.

Proof of Corollary 1.1: As noticed in the proof of Corollary 7.5, given the assumptions of Corollary 7.7, we have both information matrix equivalences (3.11) under $H_{0}^{\boldsymbol{\theta}}$. Then Part (i) follows from Theorem 4.4 - (iv) by noticing that the matrix $\mathrm{B}_{\mathrm{gf}} \mathrm{B}_{\mathrm{f}}^{-1} \mathrm{~B}_{\mathrm{f}_{\mathrm{g}}} \mathrm{B}_{\mathrm{g}}^{-1}$ is equal to I_{q} (using Lemma 7.3) and hence is idempotent. Parts (ii) and (iii) are identical to Parts (ii) and (iii) of Theorem 7.6.

FOOTNOTES

* This research was supported by National Science Foundation Grant SES-8410593. I am indebted to P. Bjorn, D. Lien, D. Rivers for helpful discussions, and to J. M. Dufour for some references on weighted sums of chi-square distributions. I would like to thank especially H. White whose comments much improved this paper. I am also grateful to C. R. Jackson without whom this paper would not have been written and to L. Donnelly for stimulating thoughts. Remaining errors are mine.

1. The notation $o_{p}(1)$ indicates a quantity that converges in probability to zero, while the notation $O_{p}(1)$ indicates a quantity that is bounded in probability as n goes to infinity (see, e.g.. Mann and Wald (1943)). As a matter of fact, Equation (3.4) holds whether or not $f\left(\cdot \mid \cdot ; \theta_{\psi}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$. The point is that, if $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$, then the asymptotic distribution of the LR statistic will be given by Equation (3.3).
2. As noticed earlier, only the \underline{m} non-zero eigenvalues $\underline{\lambda}$ are relevant, i.e., $M_{m}(\cdot ; \lambda)=M_{\underline{\underline{m}}}(\cdot ; \lambda)$. Moreover, these eigenvalues are all real, and that they are all non-negative if Q is positive semi-definite.
3. Since rank $W=\operatorname{rank} \sum=r$, then the limiting distribution in (3.8) is equal to $M_{r}\left(\cdot ; \lambda_{*}\right)$ where $\underline{\lambda}_{*}$ is the vector of non-zero eigenvalues of W. Let us also note that some eigenvalues λ_{*} may be negative since the matrix defining the quadratic form in Equation (3.3) is not p.s.d. (see footnote 2).
4. In fact, Property (3.10) holds whether or not $f\left(\cdot \mid \cdot ; \theta_{\boldsymbol{*}}\right)=$ $g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ (see also footnote 1). However, $\omega_{*}^{2}=0$ if and only if $f\left(\cdot \mid \cdot ; \theta_{*}\right)=g\left(\cdot \mid \cdot ; \gamma_{*}\right)$ (see Lemma 4.1 below). Thus, one must instead rely on the asymptotic approximation (3.8).
5. Given the definition of θ_{*}, it is clear that $\operatorname{KLIC}\left(\mathrm{H}_{\mathrm{Y} \mid \mathrm{Z}^{0}}^{0} ; \mathrm{F}_{\boldsymbol{\theta}}\right)$ is the minimum distance between the true conditional distribution $\mathrm{H}^{\mathbf{0}}(\cdot \mid \cdot)$ and any conditional distribution $\mathrm{F}(\cdot \mid \cdot ; \theta)$ in $\mathrm{F}_{\boldsymbol{\theta}}$.
6. The case when F_{θ} and G_{γ} are not nested but do have a non-empty intersection is treated in the next section on overlapping models. for a long time, non-nested hypotheses were defined as hypotheses that cannot be obtained from the other by a suitable limiting approximation (Cox (1961, 1962)). Noting that there were no satisfactory definitions of this concept, Pesaran (1985) recently proposed formal definitions of globally non-nested, partially non-nested, and nested hypotheses based on the KLIC. It can be shown that Pesaran's definitions are equivalent to our Definitions 5.1, 6.1, and 7.1. Our definitions appear to be more intuitive and natural.
7. Note that, from Equation (4.4), it follows that:

$$
n^{-1 / 2} L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \tilde{\omega}_{n} \leq n^{-1 / 2} L R_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \hat{\omega}_{n}
$$

Thus, even though under the Pittman approach the tests will have the same asymptotic power, this inequality suggests that the test based on $\hat{\omega}_{n}$ will be asymptotically more powerful than the test based on $\tilde{\omega}_{n}$ according to other definitions of asymptotic power
such as Bahadur (1960)'s definition.
8. I owe this point to Hal White.
9. The reason for this multitude of criteria is that Sawa (1978) and Chow (1981) question the validity of Akaike's initial derivation.
10. Note that a correctly specified model is no longer necessarily best. More generally, $k(p)$ may depend on n.
11. In the univariate dichotomous case, Cox (1970) points out that the logit and probit models are approximations of each other. If the explanatory variables are all discrete, Lee (1981) points out that in the bivariate dichotomous case the probit and logit models are either identical or nested. Morimune (1979) proposes some Cox-type tests for discriminating between the logit and the probit models. As argued in Section 8, these tests are conceptually different from the ones proposed here.
12. The variance test can be avoided by testing only some implications of the hypothesis $\mathrm{f}\left(\cdot \mid \cdot ; \theta_{*}\right)=\mathrm{g}\left(\cdot \mid \cdot ; \gamma_{*}\right)$. This is done by first characterizing the conditions that θ and γ must satisfy for $f(\cdot \mid \cdot ; \theta)$ to be equal to $g(\cdot \mid \cdot ; \gamma)$. (See Lien and Vuong (1986) for an illustration.) In general, tests of some appropriately selected conditions are easier to perform than the variance test, and can be done using only $\hat{\boldsymbol{\theta}}_{\mathrm{n}}$ or $\hat{\boldsymbol{\gamma}}_{\mathrm{n}}$. The difficulty is to derive these conditions.
13. To see this, Note that H_{0} is a composite of H_{0}^{ω} and $H_{0}-H_{0}^{\omega}$. Let $\left.A \equiv\left\{n \omega_{n}^{2}\right\rangle c_{1}\right\}$ and $B \equiv\left\{\left|n^{-1 / 2} \operatorname{LR}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right) / \omega_{n}\right|>c_{2}\right\}$. Then $\operatorname{Pr}\left[\right.$ reject $\left.H_{0} \mid H_{0}\right]=\operatorname{Pr}\left[A \cap B \mid H_{0}\right]=$
$\max \left\{\operatorname{Pr}\left(A \cap B \mid H_{0}^{\omega}\right), \operatorname{Pr}\left(A \cap B \mid H_{0}-H_{0}^{\omega}\right)\right\} \leq$
$\max \left\{\operatorname{Pr}\left(A \mid H_{0}^{\omega}\right), \operatorname{Pr}\left(B \mid H_{0}-H_{0}^{\omega}\right)\right]$. But from Theorems 5.2 and 6.2, $\operatorname{Pr}\left(A \mid H_{o}^{\omega}\right) \rightarrow a_{1}$ and $\operatorname{Pr}\left(B \mid H_{o}-H_{o}^{\omega}\right) \rightarrow a_{2}$.
14. Johnson and Kotz (1969) give values of $M_{m}(x ; \lambda)$ for $m=4$ and some values of x and λ with a Fortran IV program for calculating $M_{m}(x ; \lambda)$ which can also be used to compute the upper-tail
probability $1-M_{p+q}\left(\tilde{n}_{n} \tilde{N}_{n}^{2} \hat{\lambda}_{n}^{2}\right)$. Paul Bjorn told me, however, that there are some problems with this Fortran program.
15. It follows that $H_{0}^{\omega}=H_{0}$ and $H_{A}^{\omega}=H_{f} U H_{g}$. The variance test of Theorem 6.2 can therefore be thought of as a discrimination test since the null and alternative hypotheses correspond respectively to the equivalence and non-equivalence of the models. Contrary to the LR- based test proposed below, the variance test is not directional in the sense that when one rejects H_{0}, one does not know if it is in favor of H_{f} or H_{g}.
16. It is worth noting that if one rejects H_{0} using the LR-based test, then one knows if it is in favor of H_{f} or H_{g}. Since it is assumed that at least one model is correctly specified, then rejection in favor of H_{f} will imply that F_{θ} is correctly specified and G_{γ} is incorrectly specified. A similar research applies in case of rejection in favor of H_{g}.
17. In fact, the computation of both c_{1} and c_{2} can be replaced by the computation of only the upper-tail probability of $2 L_{n}\left(\hat{\theta}_{n}, \hat{\gamma}_{n}\right)$ from the distribution $M_{p+q}\left(\cdot ; \hat{\lambda}_{n}\right)$.
18. It is assumed throughout this and the next sections that the
information matrix equivalence holds whenever the model is correctly specified. This actually requires a mild additional assumption (see, e.g. White (1982, Assumption A7), Vuong (1983, Assumption A6)).
19. Classical nested hypothesis testing actually assumes that the larger model is correctly specified. Only recently this framework has been extended to the misspecified case (see, e.g., White (1982a)). Let us also note that the equivalence between model selection tests and nested hypothesis tests does not hold if one introduces a correction factor as in the criterion (5.14).
20. Though the variance tests are asymptotically equivalent, they are not asymptotically equivalent to the LR test under $H_{0}^{\boldsymbol{\theta}}$. In addition, these tests are not asymptotically equivalent under $H_{o}^{\boldsymbol{\theta}}$ to the robust Wald and LM tests proposed by White (1982a) for testing the parametric restrictions $H_{o}^{\boldsymbol{\theta}}$. The relative asymptotic power properties of all these tests of $H_{0}^{\boldsymbol{\theta}}$ in the misspecified case is left for future research.
21. Rejection of the equivalence in favor of the competing model being better does not, of course, imply that the alternative model is correctly specified. Note also that rejection of the equivalence in favor of the initial model being better implies that the alternative model is misspecified.
22. For subsequent work on specification tests, see Newey (1983), Ruud (1984), Vuong $(1983,1984)$, among others.
23. Another important difference is that most specification tests use

References

Aguirre-Torres, V., and A. R. Gallant: "The Null and Non-Null Asymptotic Distribution of the Cox Test for Multivariate Nonlinear Regression: Alternatives and a New Distribution-Free Cox Test," Journal of Econometrios, 21(1983), 5-33.

Aitchinson, J., and S. D. Silvey: "Maximum Likelihood Estimation of Paramaters Subject to Restraints," Annals of Mathematical Statistics, 29(1958), 813-828.

Akaike, H.: "Information Theory and an Extension of the Likelihood Ratio Principle," Proceedings of the Second International Symposium of Information Theory, ed. by B. N. Petrov and F. Csaki. Budapest: Akademiai Kiado, 1973, 257-281.
_: "A New Look at the Statistical Model Identification," IEEE Transactions on Automatic Control, AC-19(1974), 716-723.

Amemiya, T.: "Selection of Regressors," International Economic Revien, 21(1980), 331-354.

Atkinson, A. C.: "A Test for Discriminating between Models," Biometrika, 56(1969), 337-347.
_: "A Method for Discrimating between Models," Journal of the Royal Statistical Society, Series B, 32(1970), 323-353.

Bahadur, R. R.: "Stochastic Comparison of Tests," Annals of Mathematical Statistics, 31(1960), 276-295.
_: "An Optimal Property of the Likelihood Ratio Statistics," Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics. Berkeley: University of California Press, 1967, Vol. 1, 13-26.
Box, G. E. P., and D. R. Cox: "An Analysis of Transformations," Journal of the Royal Statistical Society, Series B, 26(1964), 211-243.

Burguette, J., A. R. Gallant, and G. Souza: "On the Unification of the Asymptotic Theory of Nonlinear Econometric Models," Econometric Reyiens, 1(1982), 151-190.

Chow, G.: "Selection of Econometric Models by the Information Criterion," Proceedings of the Econometric Society European Meeting, ed. E. G. Charatsis. Amsterdam: North Holland, 1981.
\qquad : Econometrics. New York: McGraw-Hill, 1983.
Cox, D. R.: "Tests of Seperate Families of Hypotheses," Proceedings $\frac{\text { of }}{\text { the Pourth Berkeley Symposium on Mathematical Statistics and }}$ Probability, 1(1961), 105-123.
\qquad : "Further Resufics on Tests of Separate Families of Hypotheses," Journal of the Royal Statistical Society, Series B, 24(1962), 406-424.
: The Analysis of Binary Data. London: Methuen, 1970.
Dastoor, N. K.: "A Note on the Interpretation of the Cox Procedure for Non-Nested Hypotheses," Economics Letters, 8(1981), 113119.

Davidson, R., and J. G. MacKinnon: "Several Tests for Model Specification in the Presence of Alternative Hypotheses," Econometrica, 49(1981), 781-793.

Fisher, G., and M. McAleer: "On the Interpretation of the Cox Test in Econometrics," Economics Letters, 4(1979), 145-150.

Foutz, R. V., and R. C. Srivastana: "The Performance of the Likelihood Ratio Test When the Model is Incorrect," Annals of Statistics, $5(1977), 1183-1194$.

Gallant, A. R., and A. Holly: "Statistical Inference in an Implicit, Nonlinear, Simultaneous Equation Model in the Context of Maximum Likelihood Estimation," Econometrica, 48(1980), 697720.

Gourieroux, C., A. Monfort, and A. Trognon: "Testing Nested or NonNested Hypotheses," Journal of Econometrics, 21(1983), 83-115. _: "Pseudo Maximum Likelihood Method: Theory," Econometrica, 52 (1984), 681-700.

Hausman, J.: "Specification Tests in Econometrics," Econometrica 46(1978), 1251-1272.
Hendry, D. F.: "Comment," Econometric Reviews, 2(1983), 111-114.
Hotelling, H.: "The Selection of Variables for Use in Prediction with Some Comments on the Problem of Nuisance Parameters," Annals of Mathematical Statistics, 11(1940), 271-283.

Jennrich, R. I.: "Asymptotic Properties of Non-Linear Least Squares Estimators," Annals of Mathematical Statistics, 40(1969), 633643.

Johnson, N. L., and S. Kotz: "Tables of Distributions of Positive Definite Quadratic Forms in Central Normal Variables," Sankhya, Series B, (1969), 303-314.
: Continuous Univariate Distributions - 2. New York: John Wiley and Sons, 1970.

Judge, G. G., W. E. Griffiths, R. C. Hill, H. Lutkepohl, and T. C. Lee: The Theory and Practice of Econometrics. New York: John Wiley and Sons, Second edition, 1985.

Kent, J. T.: "Robust Properties of Likelihood Ratio Tests," Biometrika, 69(1982), 19-27.

Klein, R. W.: "Comment," Econometric Reviews, 2(1983), 115-119.
Kullback, S., and R.A. Leibler: "On Information and Sufficiency," Annals of Mathematical Statistics, 22(1951), 79-86.

Lee, L. F.: "On Comparisons of Normal and Logistic Models in the Bivariate Dichotomous Analysis," Economic Letters, 4(1979), 151-155.

Lien, D., and Q. H. Vuong: "Selecting the Best Linear Regression Model: A Classical Approach," mimeo, California Institute of Technology, 1986.

MacKinnon, J. G.: "Model Specification Tests against Non-Nested Alternatives," Econometris Reviews, 2 (1983), 85-110.
: "Reply," Econometric Reviews, 2(1983), 151-158.
Mann, H. B., and A. Wald: "On Stochastic Limit and Order Relationships," Annals of Mathematical Statistics, 14(1984), 217-226.

McAleer, M., and A. Bera: "Comment," Econometric Reviews, 2(1983), 121-130.
Mizon, G., and J. F. Richard: "The Encompassing Principle and its Application to Non-Nested Hypotheses," Discussion Paper, University of Southampton, 1982.

Moore, D. S.: "Chi-Square Tests," in Studies in Statistics, R. V. Hogg (ed.), The Mathematical Association of America, Volume 19, 1978.

Morimune, K.: "Comparisons of Normal and Logistic Models in the Bivariate Dichotomous Analysis," Econometrica, 47(1979), 957975.
\qquad : "Comment," Econometric Reviews, 2(1983), 137-143.
Newey, W.: "Maximum Likelihood Specification Testing and Instrumented Score Tests," mimeographed, Princeton University, 1983.

Neyman, J., and E. S. Pearson: "On the Use and Interpretation of Certain Test Criteria for Purposes of Statistical Inference," Biometrika, 20A(1928), 175-240.

Pesaran, M. H.: "On the General Problem of Model Selection," Review of Economic Studies," 41(1974), 153-171.
, "Global and Partial Non-nested Hypotheses and Asymptotic Local Power," mimeo, Trinity College, 1985.

Pesaran, M. H., and A. S. Deaton: "Testing Non-Nested Nonlinear Regression Models," Econometrica, 46(1978), 677-694.

Rao, C. R.: Linear Statistical Inference and its Applications. New York: John Wiley and Sons, 1973.

Rao, C. R., and S. K. Mitra: Generalized Inverse of Matrices and its Applications. New York: John Wiley and Sons, 1971.

Ruud, P.: "Tests of Specification in Econometrics," Econometric Reviens, 3(1984), 211-242.

Sawa, T.: "Information Criteria for Discriminating among Alternative Regression Models," Econometrica, 46(1978), 1273-1291.

Schwarz, G.: "Estimating the Dimension of a Model," Annals of Statistics, 6(1978), 461-464.

Silvey, S. D.: "The Lagrangian Multiplier Test," Annals of Mathematical Statistics, 30(1959), 389-407.

Vuong, Q. H.: "Misspecification and Conditional Maximum Likelihood Estimation," Social Science Working Paper, No. 503. Pasadena: California Institute of Technology, 1983.
: "Two-Stage Conditional Maximum Likelihood Estimation of Econometric Models," Social Science Working Paper, No. 538. Pasadena: California Institute of Technology, 1984.

Wald, A.: "Tests of Statistical Hypotheses Concerning Several Parameters when the Number of Observations is Large," Transaction of the American Mathematical Society, 54(1943), 426-482.

White, H.: "Maximum Likelihood Estimation of Misspecified Models,"

Econometrica, $50(1982), 1-25$.
_: "Regularity Conditions for Cox's Test of Non-Nested Hypotheses," Journal of Econometrics, 19(1982), 301-318.
_: "Editor's Introduction," Journal of Econometrics. 21(1983), 1-3.

White, H. and L. Olson: "Determinants of Wage Change on the Job: A Symmetric Test of Non-nested Hypotheses, " mimeo, University of Rochester, 1979.

Wilks, S. S.: "The Large Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses," Annals of Mathematical Statistics, 9(1958), 60-62.

