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Abstract

Likelihood ratio criteria are developed for hypotheses concerning multivariate regres-

sion matrices when reduced rank is assumed or equivalently hypotheses concerning

linear restrictions on regression matrices. In an econometric simultaneous equation

model a single restriction may be called a ”structural equation.” A model of reduced

rank in statistics is often termed a ”linear functional relationship.” In this paper the

likelihood ratio test that the regression matrix satisfies some specified restriction

is developed under the assumption of normality. The test for the corresponding

hypothesis that the regression matrix of given rank is a specified matrix is also de-

veloped. The asymptotic distribution of the test criterion is found under several

alternative assumptions on the sequence of models. The ”cointegration model” is

included in this study. The test for one structural equation is an advancement on

the test statistic proposed by Anderson and Rubin (1949 and 1950).
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1. Introduction

There are many problems in multivariate statistical analysis that involve tests

concerning regressions of reduced rank and of restrictions on regressions. Tests of

the general linear hypothesis are well-developed as tests of the rank of a regression

matrix. An example of the problem considered in this paper occurs in the area of

simultaneous equations in econometrics. Consider a demand and supply model. The

dependent (endogenous) variables are the price of a good and the quantity exchanged

in a market; the independent (exogenous) variables may consist of other variables

of consumers and (manufacturing) producers. The demand function (a structural

equation) depends on the income of consumer, but not on the manufacturing vari-

ables such as inventory levels. We shall often use the language of econometrics

because it furnishes an important and familiar application.

A ”reduced rank regression” model can be described in terms of the space spanned

by the columns (or by some columns) of expected values of the vector of dependent

variables given the independent variables. The same model can be put in terms of

the linear restrictions on the regression coefficients. We shall develop the tests in

terms of a single linear restriction and then obtain the general theorems. Limiting

distributions of the test statistics are developed for the number of observations

increasing.

We first develop a likelihood ratio test for a hypothesis about the coefficients of one

structural equation in a set of simultaneous equations. The null hypothesis is that

the vector of coefficients is a specified vector; the alternative hypothesis is that the

structural equation is ”identified,” that is, that some vector of coefficients satisfies

the rank or dimensionality condition. The limiting distribution of −2 times the

logarithm of the likelihood ratio criterion as the number of observations increases
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is often chi-square with degrees of freedom equal to one less than the number of

coefficients specified in the null hypothesis.

The asymptotic distribution theory is valid under various assumptions about the

model including so-called ”weak instruments”. Weak Instruments means a regres-

sion model in which the regression coefficients decrease in size as the number of

observations increases. These alternative models permit the choice of asymptotic

distributions as an approximation to the exact distribution.

The problem of testing a null hypothesis on the coefficients of the structural equa-

tion has been studied by many econometricians since Anderson and Rubin (1949).

See Andrews, Moreira and Stock (2006) for a recent review of these studies. The

present problem is broadly related to several testing problems in reduced rank re-

gression models, the errors-in-variables models and cointegration models, usually

treated separately. We shall explore these relations in a unified way. Statistical

problem concerning ”reduced rank regression” moldes have been studied in the sta-

tistical literature by Anderson (1951, 2003), Reinsel and Valu (1998), and others.

In Section 2 we define the statistical model. Then we give a new derivation of the

likelihood ratio test in Section 3 and give some results on its asymptotic distribution

under a set of general conditions including some cases of weak instruments and

many instruments in Section 4. The extensions of our approach to the reduced rank

regression models and the cointegration models are discussed in Sections 5 and 6.

Concluding remarks are given in Section 7. The proofs of theorems are in Section 8.

2. The statistical models

The observed data consist of a T ×G matrix of endogenous or dependent variables

Y and a T × K matrix of exogenous or independent variables Z. A linear model

3



(the reduced form) is

Y = ZΠ + V ,(2.1)

where Π is a K ×G matrix of parameters and V is a T ×G matrix of unobservable

disturbances. The rows of V are assumed independent; each row has a normal

distribution N(0,Ω). The coefficient matrix Π is estimated by the sample regression

matrix

P = (Z
′
Z)−1Z

′
Y .(2.2)

The covariance matrix Ω is estimated by (1/T )H, where

H = (Y − ZP)
′
(Y − ZP) = Y

′
Y −P

′
AP ,(2.3)

and A = Z
′
Z. The matrices P and H constitute a sufficient set of statistics for the

model.

A structural or behavioral equation may involve a subset of the endogenous vari-

ables, say Y1, T ×G1, a subset of exogenous variables, say Z1, T ×K1, and a subset

of disturbances, say V1, T × G1. The equation of interest is written as

Y1β = Z1γ1 + u ,(2.4)

where β and γ are vectors of G1 and K1 parameters, respectively, u = V1β and

V = (V1,V2); a component of u has the normal distribution N(0, σ2), where σ2 =

β
′
Ω11β and Ω11 is the G1 × G1 upper-left corner of Ω such that

Ω =

⎡
⎢⎣ Ω11 Ω12

Ω21 Ω22

⎤
⎥⎦ .

Let Y, Z, V and Π be partitioned accordingly so that the reduced form (2.1) is

(Y1,Y2) = (Z1,Z2)

⎡
⎢⎣ Π11 Π12

Π21 Π22

⎤
⎥⎦+ (V1,V2) ,(2.5)
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where Z2 is a T × K2 matrix. The relation between the structural equation (2.4)

and the reduced form (2.5) is⎡
⎢⎣ γ1

0

⎤
⎥⎦ =

⎡
⎢⎣ Π11 Π12

Π21 Π22

⎤
⎥⎦
⎡
⎢⎣ β

0

⎤
⎥⎦ =

⎡
⎢⎣ Π11β

Π21β

⎤
⎥⎦ .(2.6)

The second part of (2.6),

Π21β = 0 ,(2.7)

defines β except for a multiplicative constant if and only if the rank of Π21 is G1−1.

In that case the structural equation is said to be identified. Since Π21 is K2 × G1,

a necessary condition for identification is K2 ≥ G1 − 1.

Consider the null hypothesis

H0 : Π21β0 = 0 ,(2.8)

where β0 is a (non-zero) specified vector. First we shall find the likelihood ratio

criterion for H0 when the alternative hypothesis, say H2, consists of arbitrary Π and

Ω.

It will be convenient to transform the model so that the two sets of exogenous

variables are orthogonal. Let

A =

⎡
⎢⎣ A11 A12

A21 A22

⎤
⎥⎦ =

⎡
⎢⎣ Z

′
1Z1 Z

′
1Z2

Z
′
2Z1 Z

′
2Z2

⎤
⎥⎦ ,(2.9)

Z2.1 = Z2 − Z1A
−1
11 A12 , A22.1 = A22 − A21A

−1
11 A12 ,(2.10)

P21 = A−1
22.1Z

′
2.1Y1 ,(2.11)

H =

⎡
⎢⎣ H11 H12

H21 H22

⎤
⎥⎦ .(2.12)

Define (Π∗
11,Π

∗
12) =

(
IK1

,A−1
11 A12

)
Π . Then

ZΠ = (Z1,Z2.1)

⎡
⎢⎣ Π∗

11 Π∗
12

Π21 Π22

⎤
⎥⎦ = (Z1,Z2.1)Π∗ .
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The matrix Z2.1 has the properties Z
′
1Z2.1 = O and Z

′
2.1Z2.1 = A22 −A21A

−1
11 A12 =

A22.1 . Define also

A∗ =

⎡
⎢⎣ Z

′
1

Z
′
2.1

⎤
⎥⎦ [Z1,Z2.1] =

⎡
⎢⎣ A11 O

O A22.1

⎤
⎥⎦ .

In terms of (Z1,Z2.1), the sample regression matrix is

P∗ = (A∗)−1

⎡
⎢⎣ Z

′
1

Z
′
2.1

⎤
⎥⎦Y =

⎡
⎢⎣ A−1

11 Z
′
1Y

A−1
22.1Z

′
2.1Y

⎤
⎥⎦ =

⎡
⎢⎣ P∗

1

P∗
2

⎤
⎥⎦

and

H = Y
′
Y − P∗′A∗P∗ .

3. The likelihood ratio test of a specified vector of structural

coefficients given that the equation is identified

The null hypothesis H0 : Π21β0 = 0 is relevant if the equation is ”identified”,

that is, if the rank of Π21 is G1 − 1. We develop the likelihood ratio criterion for

testing H0 against the alternative hypothesis H1 : rank (Π21) = G1 − 1 by finding

the likelihood function maximized under H0 and dividing by the likelihood function

maximized under H1. The likelihood function is

L(Π,Ω)(3.1)

= (2π)−
1
2
TG|Ω|− 1

2
T exp{−1

2
tr(Y − ZΠ)

′
(Y − ZΠ)Ω−1}

= (2π)−
1
2
TG|Ω|− 1

2
T exp{−1

2
tr
[
(P − Π)

′
A(P − Π) + H

]
Ω−1}

= (2π)−
1
2
TG|Ω|− 1

2
T exp{−1

2
tr
[
(P∗ −Π∗)

′
A∗(P∗ − Π∗) + H

]
Ω−1}

= (2π)−
1
2
TG|Ω|− 1

2
T exp{−1

2
tr
[
(P∗

1 −Π∗
1)

′
A11(P

∗
1 −Π∗

1)

+(P∗
2 − Π2)

′
A22.1(P

∗
2 − Π2) + H

]
Ω−1} ,
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where Π∗
1 = (Π∗

11,Π
∗
12) and Π2 = (Π21,Π22). The maximum of L(Π,Ω) with

respect to Π∗
1 occurrs at Π∗

1 = P∗
1 and is

L(Π2,Ω) = (2π)−
1
2
TG|Ω|− 1

2
T exp{−1

2
tr
[
(P∗

2 − Π2)
′
A22.1(P

∗
2 − Π2) + H

]
Ω−1} .

(3.2)

The maximum of L(Π2,Ω) with respect to Ω is

L(Π2) = (2π)−
1
2
TGT

1
2
TG
∣∣∣(P∗

2 − Π2)
′
A22.1(P

∗
2 − Π2) + H

∣∣∣− 1
2
T

e−
1
2
TG .(3.3)

By Lemma 3 of Section 8, the maximum of L(Π2) with respect to Π22 is

L(Π21)(3.4)

= (2π)−
1
2
TGT

1
2
TG
∣∣∣(P21 − Π21)

′
A22.1(P21 − Π21) + H11

∣∣∣− 1
2
T |H22.1|−

1
2
T e−

1
2
TG ,

where P21 = A−1
22.1Z

′
2.1Y1 , H22.1 = H22−H21H

−1
11 H12, H11 is a G1×G1 submatrix,

and

H =

⎡
⎢⎣ H11 H12

H21 H22

⎤
⎥⎦ .

Then the maximum of L(Π21) with respect to Π21 is

LH2
= (2π)−

1
2
TGT

1
2
TG |H|− 1

2
T e−

1
2
TG .(3.5)

This is the likelihood maximized with respect to Π and Ω with no rank restriction

on the coefficients.

Now consider maximizing the likelihood function under the condition H1 : rank(Π21) =

G1 − 1, that is, Π21β = 0 for some β. The matrix Π21 of rank G1 − 1 can be pa-

rameterized as

Π21 = μΓ
′
,(3.6)

where μ is K2 × (G1 − 1) of rank G1 − 1 and Γ is G1 × (G1 − 1) of rank G1 − 1 such

that

Γ
′
β = 0 .(3.7)
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Lemma 1 : The minimum of

∣∣∣(P21 − μΓ
′
)
′
A22.1(P21 − μΓ

′
) + H11

∣∣∣(3.8)

with respect to μ is

|H11|
[
1 +

β
′
G11β

β
′
H11β

]
,(3.9)

where

G11 = P
′
21A22.1P21 .(3.10)

Proof : The determinant (3.8) is

|H11|
∣∣∣(μΓ

′ −P21)H
−1
11 (Γμ

′ − P
′
21)A22.1 + IK2

∣∣∣ ,(3.11)

which is minimized at

μ̂ = P21H
−1
11 Γ

(
Γ

′
H−1

11 Γ
)−1

.(3.12)

The determinant (3.8) is then

∣∣∣∣[P21 − P21H
−1
11 Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
]
′
A22.1(3.13)

×[P21 − P21H
−1
11 Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
] + H11

∣∣∣∣
=

∣∣∣∣[IG1
− Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
H−1

11 ]G11[IG1
−H−1

11 Γ
(
Γ

′
H−1

11 Γ
)−1

Γ
′
] + H11

∣∣∣∣
= |H11|

∣∣∣∣
[
IG1

− H
−1/2
11 Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
H

−1/2
11

]
(H

−1/2
11 G11H

−1/2
11 )

×
[
IG1

− H
−1/2
11 Γ

(
Γ

′
H−1

11 Γ
)−1

Γ
′
H

−1/2
11

]
+ IG1

∣∣∣∣
= |H11|

∣∣∣[IG1
− Q(Q

′
Q)−1Q

′]
H

−1/2
11 G11H

−1/2
11

[
IG1

− Q(Q
′
Q)−1Q

′]
+ IG1

∣∣∣ ,

where Q = H
−1/2
11 Γ. The matrix Q(Q

′
Q)−1Q

′
is idempotent of rank G1−1 and IG1

−
Q(Q

′
Q)−1Q

′
is idempotent of rank G1 − (G1 − 1) = 1. Then IG1

−Q(Q
′
Q)−1Q

′
=
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x(x
′
x)−1x

′
and Q

′
x = 0 for x = H

1/2
11 β. Then (3.13) is

|H11|
∣∣∣x(x

′
x)−1x

′
H

−1/2
11 G11H

−1/2
11 x(x

′
x)−1x

′
+ IG1

∣∣∣(3.14)

= |H11|
[
1 +

β
′
G11β

β
′
H11β

]

by Corollary A.3.1 of Anderson (2003). Q.E.D.

The likelihood maximized over H0 : β = β0 is

LH0
= (2πe)−

1
2
TGT

1
2
TG |H|− 1

2
T

[
1 +

β
′
0G11β0

β
′
0H11β0

]− 1
2
T

.(3.15)

The likelihood maximized over β is

LH1
= max

β
(2πe)−

1
2
TGT

1
2
TG |H|− 1

2
T

[
1 +

β
′
G11β

β
′
H11β

]− 1
2
T

(3.16)

= (2πe)−
1
2
TGT

1
2
TG |H|− 1

2
T

[
1 + min

β

β
′
G11β

β
′
H11β

]− 1
2
T

= (2πe)−
1
2
TGT

1
2
TG |H|− 1

2
T

⎡
⎣1 +

β̂
′
G11β̂

β̂
′
H11β̂

⎤
⎦
− 1

2
T

,

where β̂ satisfies

G11β̂ = ν1H11β̂(3.17)

and ν1 as the smallest root of

|G11 − νH11| = 0 ;(3.18)

that is, β̂ is the Limited Information Maximum Likelihood Estimator of β.

Theorem 1: The likelihood ratio criterion for testing the null hypothesis H0 : Π21

has rank G1 − 1 and Π21β0 = 0 vs. H1 : Π21 has rank G1 − 1 is

LH0

LH1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 +
β̂

′
G11β̂

β̂
′
H11β̂

1 +
β

′
0G11β0

β
′
0H11β0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

1
2
T

=

⎡
⎢⎢⎢⎢⎢⎣

1 + min
b

b
′
G11b

b′H11b

1 +
β

′
0G11β0

β
′
0H11β0

⎤
⎥⎥⎥⎥⎥⎦

1
2
T

(3.19)
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=

⎡
⎢⎢⎢⎢⎣

1 + ν1

1 +
β

′
0G11β0

β
′
0H11β0

⎤
⎥⎥⎥⎥⎦

1
2
T

.

The null hypothesis H0 that β = β0 is rejected if (3.19) is less than a suitable

constant; that is, if

1 +
β̂

′
G11β̂

β̂
′
H11β̂

1 +
β

′
0G11β0

β
′
0H11β0

< c(K2, T − K) .(3.20)

We call the left-hand side of (3.20) the Rank-Adjusted Anderson-Rubin (RAAR)

criterion.

Comments :

1. The RAAR criterion does not depend on a normalization of the vector of coef-

ficients. The ratio β
′
0P

′
21A22.1P21β0/β

′
0H11β0 is unchanged by replacing β0 by β0

times an arbitrary constant. Similarly, β̂
′
P

′
21A22.1P21β̂/β̂

′
H11β̂ is unchanged by

replacing the LIML estimator multiplied by a constant. The normalization of β0

does not have to be the same as of β̂.

2. The RAAR criterion compares the hypothesized β0 with the LIML estimator β̂.

3. The RAAR criterion is a function of the sufficient statistics P and H.

4. The RAAR criterion is invariant with respect to linear transformations Y1 →
Y1C, β0 → C−1β0 and Z2 → Z2D for C and D nonsingular.

The only invariants of β
′
0G11β0/β

′
0H11β0 and β̂

′
G11β̂/β̂

′
H11β̂ are β

′
0G11β0/β

′
0H11β0

and the roots of (3.18).
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5. The logarithm of the criterion (3.19) is

−2 log
LH0

LH1

= −T

⎡
⎣log

⎛
⎝1 +

β̂
′
G11β̂

β̂
′
H11β̂

⎞
⎠− log

(
1 +

β
′
0G11β0

β
′
0H11β0

)⎤⎦ ,(3.21)

which is approximately

β
′
0G11β0

β
′
0

1
T
H11β0

− min
b

b
′
G11b

b′ 1
T
H11b

.(3.22)

6. The RAAR is a likelihood ratio criterion. In many statistical inference problems

concerning normal distributions a likelihood ratio test has optimum properties.

Moreira (2003) arrived at a statistic similar to (3.22) by a somewhat different

route. He calls the crtiterion a conditional likelihood statistic.

4. Limiting Distributions

4.1 The Standard Case

The likelihood ratio criterion for testing H0 : β = β0 vs. H1 : rank(Π21) = G1 − 1

has been derived on the basis of the rows of V being independently distributed

according to N(0,Ω). For the limiting distribution of −2 times the logarithm of

(3.19) we assume that the rows of Z = (z1, · · · , zT )
′
satisfy

(I)
1

T

T∑
t=1

ztz
′
t

p−→ M (as T → ∞) ,

(II)
1

T
max
1≤t≤T

‖zt‖2 p−→ 0

as T → ∞. The limiting distribution of −2 times (3.19) holds under relaxed con-

ditions on Z and V. The conditions allow for components of zt being components
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of yt−1, · · · ,y1 and components of vt depending on zt, · · · , z0. Let the σ−field Ft

be generated by z0,v0, · · · , zt,vt, t = 1, · · · , T, and F0 is the initial σ−field gen-

erated by y1. (See Anderson and Kunitomo (1992), for instance.) Partition the

(G1 + G2)-vector v
′
t = (v

′
1t,v

′
2t) (t = 1, · · · , T ). We assume that E(vt|Ft) = 0 a.s.,

E(vtv
′
t|Ft−1) = Ωt a.s., and Ωt is a function of z1,v1, · · · , zt−1,vt−1, zt. Since

ut = v
′
1tβ, we have E(ut|Ft) = 0 a.s. and E(u2

t |Ft) = σ2
t = β

′
Ω

(t)
11 β a.s., where

Ωt is a (G1 + G2) × (G1 + G2) matrix

Ωt =

⎡
⎢⎣ Ω

(t)
11 Ω

(t)
12

Ω
(t)
21 Ω

(t)
22

⎤
⎥⎦ .

Suppose

(III)
1

T

T∑
t=1

Ω
(t)
11 ⊗ ztz

′
t

p−→ Ω11 ⊗ M (as T → ∞) ,

(IV)
1

T

T∑
t=1

Ω
(t)
11

p−→ Ω11 (as T → ∞) ,

(V) sup
t≥1

E [v
′
1tv1tI(v

′
1tv1t > c)|Ft]

p−→ 0 (as c → ∞) ,

where I(·) is the indicator function, and M and Ω11 are nonsingular (constant)

matrices. Conditions (IV) and (V) imply

1

T

T∑
t=1

v1tv
′
1t

p−→ Ω11 (as T → ∞)(4.1)

and σ2 = β
′
Ω11β (> 0).

Comments :

1. We allow some heteroscedasticity of disturbances and only require second-order

moments. Thus the conditions on disturbances are minimal.

2. The conditions (I) and (II) on instruments include the situations that the lagged

endogenous variables are subsets of instruments when they follow a stationary au-

toregressive process, for instance.
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Although the RAAR statistic is invariant with respect to normalization, we shall

find it convenient to normalize β0 and β so β0 = (1,−β0′
2 )

′
and β = (1,−β

′
2)

′
.

In order to investigate the limiting null distribution and the local power of the

LRC, we consider a sequence of local alternatives Π(T ) such that⎡
⎢⎣ Π

(T )
11 Π

(T )
12

Π
(T )
21 Π

(T )
22

⎤
⎥⎦
⎡
⎢⎣ β0

0

⎤
⎥⎦ =

⎡
⎢⎣ γ1

0

⎤
⎥⎦ +

1√
T

⎡
⎢⎣ ξ1

ξ2

⎤
⎥⎦ ,(4.2)

where ξi is a Ki×1 vector (i = 1, 2), each element of the (K1+K2)×(G1+G2) matrix

Π is a function of T (say ΠT ) partitioned as ΠT = (Π
(T )
ij ) and rank(Π21) = G1 − 1.

Hence limT→∞ Π
(T )
21 = Π21 and Π21β0 = 0 as the limit (T → ∞) in (2.8). (See (2.6)

and (2.7) in Section 2.) Then Theorem 2 is an extension of Theorem 4 of Anderson

and Kunitomo (1994). The proof is given in Section 8.

Theorem 2 : Assume Conditions (I)-(V). Under the local alternative sequences

(4.2), as T → ∞ the limiting distribution of

LR1 = −2 log
LH0

LH1

= T

[
log

(
1 +

β
′
0G11β0

β
′
0H11β0

)
− log

(
1 + min

b

b
′
G11b

b′H11b

)]
(4.3)

is noncentral χ2 with G1 − 1 degrees of freedom and the noncentrality parameter

κ1 = θ1σ
−2, where σ2 = β

′
0Ω11β0, M22.1 = M22 − M21M

−1
11 M12,

θ1 = ξ
′
2M22.1Π

∗
2(Π

∗′
2 M22.1Π

∗
2)

−1Π∗′
2 M22.1ξ2 ,(4.4)

M =

⎡
⎢⎣ M11 M12

M21 M22

⎤
⎥⎦ , Π∗

2 = Π21

⎡
⎢⎣ 0

′

IG1−1

⎤
⎥⎦ ,

in which we assume that Π∗
2 has rank G1 − 1.

Let Π21 = (π1,Π
∗
2). Then (2.7) is

0 = Π21β = (π1,Π
∗
2)

⎛
⎜⎝ 1

−β2

⎞
⎟⎠ = π1 − Π∗

2β2 .(4.5)
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Thus when β is normalized as (1,−β2) and Π has rank G1 − 1, Π∗
2 must have rank

G1−1 to solve (4.5) for β2. The noncentrality parameter θ1 is invariant with respect

to multiplying Π∗
2 on the right by an arbitrary nonsingular (G1−1)×(G1−1) matrix.

Under H0 (ξ = 0), the limiting distribution of LR1 is χ2 with G1 − 1 degrees of

freedom under the general conditions on the disturbances. Then by using the χ2

distribution in Theorem 2 when T is large in (2.18), we can take the rejection region

as

β
′
0G11β0

β
′
0H11β0

> [1 + ν1] e
1
T

χ2
G1−1

(ε) − 1(4.6)

by using χ2(ε) with G1 − 1 degrees of freedom. It is also possible to investigate the

power function under the local alternative hypotheses of (4.2).

4.2 Weak Instruments

Next, we consider a case of so-called weak instruments. Let ΠT = C/T δ for a

constant matrix C and δ > 0; as T grows the regression matrix ΠT becomes smaller.

The (K1 + K2) × (G1 + G2) matrices ΠT = (Π
(T )
ij ) and C = (Cij) are partitioned

as ΠT . Then Condition (I) implies

(I
′
)

1

T 1−2δ

T∑
t=1

Π
′
Tztz

′
tΠT

p−→ C
′
MC (as T → ∞) .

We rewrite (2.1), (2.12) and (3.10) as

(Y
(T )
1 ,Y

(T )
2 ) =

(
Z

(T )
1 ,Z

(T )
2

) ⎡⎢⎣ Π
(T )
11 Π

(T )
12

Π
(T )
21 Π

(T )
22

⎤
⎥⎦+

(
V

(T )
1 ,V

(T )
2

)
,(4.7)

G
(T )
11 = P

(T )′
21 A22.1P

(T )
21 ,

and

H
(T )
11 = Y

(T )′
1 Y

(T )
1 − P

(T )′
21 A22.1P

(T )
21 .

14



Define ν
(T )
1 as the smallest root of

∣∣∣G(T )
11 − λ(T )H

(T )
11

∣∣∣ = 0 ; that is,

ν
(T )
1 = min

b

b
′
G

(T )
11 b

b′H
(T )
11 b

=
β̂

(T )′
G

(T )
11 β̂

(T )

β̂
(T )′

H
(T )
11 β̂

(T )
,(4.8)

and the LIML estimator β̂
(T )

= (1,−β̂
(T )′

2 )
′
satisfying

(
G

(T )
11 − ν

(T )
1 H

(T )
11

)
β̂

(T )
= 0.

The weak instruments case is different from the standard situation for (2.1) and

(2.4). The limiting distribution of LR1 depends on the weakness of instruments,

which can be measured by the parameter δ. Theorem 3 states the limiting distribu-

tion of the LR statistic when 0 < δ < 1/2. The proof is similar to Theorem 1 and

is omitted.

Theorem 3 : Assume ΠT = C/T δ for a (constant) K × G matrix C with

0 < δ < 1/2 and Conditions (I) − (V). Under a local alternative sequence (4.2)

as T → ∞ the limiting distribution of LR1 is noncentral χ2 with G1 − 1 degrees of

freedom and the noncentrality parameter κ2 = θ2σ
−2, where σ2 = β

′
0Ω11β0,

θ2 = ξ
′
2M22.1C

∗
2

[
C∗′

2 M22.1C
∗
2

]−1
C∗′

2 M22.1ξ2(4.9)

and

C∗
2 = C21

⎡
⎢⎣ 0

′

IG1−1

⎤
⎥⎦(4.10)

has rank G1 − 1.

If ⎡
⎢⎣ Π

(T )
11 Π

(T )
12

Π
(T )
21 Π

(T )
22

⎤
⎥⎦
⎡
⎢⎣ β0

0

⎤
⎥⎦ =

⎡
⎢⎣ γ1

0

⎤
⎥⎦+

1

Tη

⎡
⎢⎣ ξ1

ξ2

⎤
⎥⎦(4.11)

and η > 1/2 then the statistic LR1 has the limiting distribution of central χ2 with

G1 − 1 degrees of freedom.

Note that the noncentrality parameter in Theorem 3 is the same as in Theorem 2

except ΠT = (1/T )δC. A large value of δ corresponds to a small value ΠT (for fixed
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C); hence a relatively small value of θ2. The limiting distribution of LR1 under the

null hypothesis in Theorem 3 is the same as in Theorem 2.

Staiger and Stock (1997) considered statistical inference for the model (2.1) and

(2.2) with weak instruments defined by ΠT = C/T 1/2 for a fixed C. Note that

this case of weak instruments is not included in the study here of ΠT = C/T δ for

0 < δ < 1/2. Staiger and Stock (1997) get nonstandard distributions for various

estimators and test statistics.

4.3 Many Weak Instruments

The model of K2 → ∞ as T → ∞ has been called the case of many weak instru-

ments, recently discussed in econometrics. An alternative formulation of many weak

instruments is to let each element, as well as the size, of Π be a function of T . We

denote K2T and KT for K2 and K, respectively. In this model we denote a sequence

of KT × G (KT = K1 + K2T , T ≥ 3) matrices ΠT , each matrix is partitioned into

(K1 + K2T ) × (G1 + G2) submatrices

ΠT =

⎡
⎢⎣ Π

(T )
11 Π

(T )
12

Π
(T )
21 Π

(T )
22

⎤
⎥⎦ .

Suppose

(VI)
KT

T
−→ 0 .

Instead of Conditions (I)-(III), we suppose the conditions

(I
′′
)

1

T

T∑
t=1

Π
′
Tz

(T )
t z

(T )′
t ΠT

p−→ Φ (as T → ∞) ,

(II
′′
)

1

T
max
1≤t≤T

‖Π′
Tz

(T )
t ‖2 p−→ 0 (as T → ∞) ,

(III
′′
)

1

T

T∑
t=1

Ω
(t)
11 ⊗ Π

′
Tz

(T )
t z

(T )′
t ΠT

p−→ Ω11 ⊗ Φ (as T → ∞) ,
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where Ω11 is a positive definite constant matrix, Φ is a nonnegative definite constant

matrix (the upper-left G1 × G1 sub-matrix of Φ is of rank G1 − 1), and z
(T )
t is a

KT × 1 vector of instruments.

In this model, there can be alternative assumptions about the relative magnitudes

of T, KT and ΠT . The condition (VI) is a necessary and sufficient condition for the

next result 1 . The many weak instruments case is different from the standard

situation for (2.1) and (2.4) with fixed K and K2. We have omitted the proof of

Theorem 4 because it is similar to those of Theorem 2.

Theorem 4 : Let z
(T )
t , t = 1, · · · , T, be a sequence of KT ×1 vectors of instruments.

For a sequence of KT ×G coefficient matrices ΠT , T = K+1, · · · , assume Conditions

(I)
′′
-(III)

′′
, (IV)-(V) and (VI). Under the local alternative sequence

ΠT

⎡
⎢⎣ β0

0

⎤
⎥⎦ =

⎡
⎢⎣ γ1

0

⎤
⎥⎦ +

1√
T

⎡
⎢⎣ ξ1

ξ2T

⎤
⎥⎦ ,(4.12)

as T → ∞ the statistic LR1 has the limiting distribution of noncentral χ2 with

G1 − 1 degrees of freedom and the noncentrality parameter κ3 = θ3σ
−2, provided

that the probability limits of

θ3 =
[
plim

1

T
ξ

′
2T A22.1Π2T

] [
plim

1

T
Π

′
2TA22.1Π2T

]−1 [
plim

1

T
Π

′
2TA22.1ξ2T

]
,(4.13)

exist and θ3 is positive for a sequence of the K2T × 1 vectors ξ2T , the K2T × 1

sub-vectors z
(T )
2t of z

(T )
t , a sequence of the K2T × K2T matrices

A22.1 =
T∑

t=1

z
(T )
2t z

(T )′
2t −

T∑
t=1

z
(T )
2t z

′
1t

[
T∑

t=1

z1tz
′
1t

]−1 T∑
t=1

z1tz
(T )′
2t ,

and a sequence of K2T × (G1 − 1) matrices

Π2T = Π
(T )
21

⎡
⎢⎣ 0

′

IG1−1

⎤
⎥⎦ .

1 Recently, Matsushita (2007) has investigated the finite sample distribution of LR1 without

Condition (VI). The related problem on estimation with many instruments has been explored by

Anderson, Kunitomo and Matsushita (2005, 2008), for instance.
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Thus we find that rejection regions and confidence regions based on the χ2 dis-

tribution with G1 − 1 degrees of freedom are asymptotically valid for some cases

of weak instruments including some many weak instruments. The assumptions of

Theorem 3 on weak instruments (with ξ2 = C21β0 = 0) or Theorem 4 (with θ3 = 0)

on many instruments are sufficient for χ2 with G1 − 1 degrees of freedom as the

asymptotic null distribution.

5. Blocks of Structural Equations and Reduced Rank Regres-

sion

The likelihood ratio criterion we have developed can be extended to more general

multivariate models such as the errors-in-variable model and the linear functional

relationship model. See Anderson (1976), Anderson (1984), and Anderson and Ku-

nitomo (2007).

A block of structural equations is

Y1B = Z1Γ1 + U ,(5.1)

where B is G1 × r of rank r, Γ1 is K1 × r and U is T × r. Corresponding to (2.6),

⎡
⎢⎣ Γ1

0

⎤
⎥⎦ =

⎡
⎢⎣ Π11 Π12

Π21 Π22

⎤
⎥⎦
⎡
⎢⎣ B

O

⎤
⎥⎦ =

⎡
⎢⎣ Π11B

Π21B

⎤
⎥⎦ .(5.2)

The second part of the above equation Π21B = O has a solution for B that is unique

except for multiplication on the right by a nonsingular r × r matrix if and only if

the rank of Π21 is G1 − r. We say the block of equations (5.1) is block-identified.

Consider the null hypothesis

H
′
0 : Π21B0 = O ,(5.3)
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where B0 is a specified G1 × r matrix of rank r (1 ≤ r < G1). When the set of

alternatives H
′
2 includes all K2 × G1 matrices Π21, the likelihood ratio criterion is

LH
′
0

LH
′
2

=

⎡
⎣
∣∣∣B′

0(G11 + H11)B0

∣∣∣∣∣∣B′
0H11B0

∣∣∣
⎤
⎦
−T/2

.(5.4)

(See Anderson (2003), Section 8.3.)

The likelihood ratio criterion for testing the null hypothesis

H
′
1 : rank(Π21) = G1 − r(5.5)

against the alternatives H
′
2 is

L
H1

′

L
H2

′
=

⎡
⎣min

B

∣∣∣B′
(G11 + H11)B

∣∣∣
|B′H11B|

⎤
⎦
−T/2

=
r∏

i=1

(1 + νi)
−T/2 ,(5.6)

where ν1, · · · , νr are the r smallest roots of (3.18) and ν1 ≤ ν1 ≤ · · · ≤ νG1
. (See

Anderson (1951), Theorem 2.)

The likelihood ratio criterion for testing H
′
0 against H

′
1 is

L
H0

′

L
H1

′
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

min
B

∣∣∣B′
(G11 + H11)B

∣∣∣
|B′H11B|∣∣∣B′

0(G11 + H11)B0

∣∣∣∣∣∣B′
H11B

∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T/2

(5.7)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r∏
i=1

(1 + νi)∣∣∣B′
0(G11 + H11)B0

∣∣∣∣∣∣B′
0H11B0

∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T/2

.

This is the likelihood ratio criterion for testing H
′
0 : B = B0 given that B is block-

identified.

The criterion (5.7) can also be derived by the method of obtaining Theorem 1.

Parametrize Π21 as

Π21 = μΓ
′
,(5.8)
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where μ is K2× (G1 −r) of rank G1−r and Γ is G1× (G1−r) of rank G1−r. Then

Γ
′
B = O for a G1 × r matrix B if and only if Π21B = O. The proof of Lemma 1

proceeds with Q(Q
′
Q)−1Q

′
being idempotent of rank G1−r, and IG1

−Q(Q
′
Q)−1Q

′

being idempotent of rank G1−(G1−r) = r. Then IG1
−Q(Q

′
Q)−1Q

′
= X(X

′
X)−1X

′

and Q
′
X = 0 for X = H

1/2
11 B. Hence

∣∣∣(P21 − μΓ
′
)
′
A22.1(P21 − μΓ

′
) + H11

∣∣∣(5.9)

= |H11||Ir + B
′
G11B(B

′
H11B)−1| .

Then the maximum of (5.9) for B = B0 divided by the maximum of (5.9) with

respect to B is (5.7).

Define

LR2 = −2 log
LH

′
0

LH
′
1

(5.10)

= T log

∣∣∣B′
0(G11 + H11)B0

∣∣∣∣∣∣B′
0H11B0

∣∣∣ − T
r∑

i=1

log(1 + νi) .

When the null hypothesis H0 is true, the first term on the right-hand side has a

limiting χ2−distribution with K2 degrees of freedom; the second term has a limiting

χ2−distribution with [K2 − (G1 − r)]r degrees of freedom. These facts suggest that

the limiting distribution of LR1 is the χ2−distribution with K2r−[K2−(G1−r)]r =

(G1−r)r degrees of freedom. This assertion was proved in Anderson and Kunitomo

(2007) for r = 1 and in Section 8 by another method (Theorem 2).

The regression matrix Π21 is said to be of reduced rank if Π21 = μΓ
′
, where the

ranks of μ and Γ are lower than K2 and G1. In such a case the columns of Π
′
21

lie in a (G1 − r)−dimensional subspaces of the G1−space, which is spanned by the

columns of Γ. This space is orthogonal to the r−dimensional subspace spanned by

the columns of B satisfying Γ
′
B = O. The Γ−space is equivalently spanned by the

columns of ΓA, where A is (G1 − r) × (G1 − r) of rank G1 − r; the B−space is

equivalently spanned by the columns of BC, where C is r × r matrix of rank r.
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Now consider the null hypothesis

H
′′
0 : Γ = Γ0 ,(5.11)

where Γ0 is a specified G1 × (G1 − r) matrix of rank G1 − r. There exists a G1 × r

matrix B0 of rank r such that

Γ
′
0B0 = O .(5.12)

Then the likelihood maximized with respect to Γ at Γ = Γ0 is exactly the likelihood

maximized with respect to B at B = B0. Thus (5.7) is LH
′′
0
/LH

′
1
. The likelihood

ratio test of H
′′
0 : Γ = Γ0 is also the likelihood ratio test of H

′
0 : B = B0 as long as

Γ
′
0B0 = O. Note that B0 can be replaced by B0C, where C is r × r of rank r.

Lemma 2 : If

B =

⎡
⎢⎣ Ir

B2

⎤
⎥⎦ , Γ =

⎡
⎢⎣ Γ2

IG1−r

⎤
⎥⎦ ,(5.13)

and

Γ
′
B = Γ

′
2 + B2 = O ,(5.14)

then

|Γ′
H−1Γ| =

|B′
HB|
|H|(5.15)

for H positive definite.

Proof of Lemma 2 : Let

H =

⎡
⎢⎣ H11 H12

H21 H22

⎤
⎥⎦(5.16)

and use the partitioned formula for H−1 of Theorem A-3-3 in Anderson (2003).

Then

B
′
HB = H11.2 + (H21H

−1
22 + B

′
2)H22(H

−1
22 H12 + B2)(5.17)

Γ
′
H−1Γ = H−1

22 + (H−1
22 H21 + B2)H

−1
11.2(H12H

−1
22 + B

′
2) ,(5.18)
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where H11.2 = H11 − H12H
−1
22 H21.

For any r × (G1 − r) matrix C we have

|CC
′
+ Ir| = |C′

C + IGr
1
| .(5.19)

By using this relation, we find

|Γ′
H−1Γ| = |H−1

22 | × |IG1−r + H
1/2
22 (H−1

22 H21 + B2)H
−1
11.2(H12H

−1
22 + B

′
2)H

1/2
22 | ,

= |H−1| × |H11.2 + (H21H
−1
22 + B

′
2)H22(H

−1
22 H12 + B2)| ,

which is the result. Q.E.D.

The likelihood ratio criterion for testing the hypothesis that Γ = Γ0, where

Π21 = μΓ
′

(5.20)

is

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

min
Γ

∣∣∣Γ′
(G11 + H11)

−1Γ
∣∣∣∣∣∣Γ′

H−1
11 Γ

∣∣∣∣∣∣Γ′
0(G11 + H11)

−1Γ0

∣∣∣∣∣∣Γ′
0H

−1
11 Γ0

∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T/2

(5.21)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r∏
i=1

(1 + νi)∣∣∣Γ′
0(G11 + H11)

−1Γ0

∣∣∣∣∣∣Γ′
0H

−1
11 Γ0

∣∣∣ × |G11 + H11|
|H11|

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

T/2

.

6. Cointegration

The ”cointegration” problem in econometrics can be formulated in terms of the

reduced rank regression in Section 5. It is a multivariate time series model with

stationary components and (a nonstationary) random walk components. The main
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interest is to make statistical inferences on linear relationships. (See Johansen (1995)

and Anderson (2000), for instance.)

Let a G1 × 1 autoregressive model {xt} be defined by

Δxt =
[
Π

′
(1), · · · ,Π′

(p)
]
⎡
⎢⎢⎢⎢⎢⎣

Δxt−1

...

Δxt−p

⎤
⎥⎥⎥⎥⎥⎦ + Π

′
2xt−1 + vt(6.1)

= Π
′
1z1t + Π

′
2z2t + vt ,

where Δxt = xt −xt−1, Π
′
1 = (Π

′
(1), · · · ,Π′

(p)) and Π
′
2 are G1 ×G1p and G1 ×G1

matrices of coefficients, z
′
1t = (Δx

′
t−1, · · · ,Δx

′
t−p), z

′
2t = x

′
t−1 and E(vtv

′
t) = Ω.

The model (6.1) is of the form of the reduced form (2.1) with Z = (Z1,Z2) and

Π
′

= (Π
′
1,Π

′
2) with G = G1. The t−th row of Y is Δx

′
t; the t−th row of Z2 is

x
′
t−1, t = 1, · · · , T .

Suppose that Π2 is of rank G1 − r and hence can be written as Π2 = μΓ
′
, where

μ is G1 × (G1 − r) and Γ is G1 × (G1 − r). Note that μ can be multiplied on the

right by an arbitrary nonsingular matrix and Γ
′
on the left by the inverse of that

arbitrary matrix. (The matrix Γμ
′
is αβ

′
in Johansen’s notation.)

The likelihood ratio criterion for testing Γ = Γ0 against alternatives rank Γ =

G1 − r is the same as the likelihood ratio criterion for testing Π2B0 = O when B0

is a G1 × r matrix satisfying Γ
′
0B0 = O.

LR3 = T log

⎡
⎣
∣∣∣Γ′

0(G11 + H11)
−1Γ0

∣∣∣∣∣∣Γ′
0H

−1
11 Γ0

∣∣∣
⎤
⎦− T

G1−r∑
i=1

log ξi ,(6.2)

where ξG1+1−i = 1/(1 + νi) (i = 1, · · · , G1) are the characteristic roots (ξ1 ≤ ξ2 ≤
· · · ≤ ξG1

) of ∣∣∣(G11 + H11)
−1 − ξH−1

11

∣∣∣ = 0 .(6.3)

In the cointegration case instead of Conditions (I)-(III) in Section 4, we assume
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the condition 2 that all characteristic roots of

(VII)

∣∣∣∣∣(λ − 1)λpIG − λpΠ
′
2 − (λ − 1)

p∑
i=1

λp−iΠ
′
1(i)

∣∣∣∣∣ = 0

are in the range (−1, 1] or their absolute values are in the range [0, 1).

Theorem 5 : Assume that {vt} is a sequence of i.i.d. random vectors with

E(vt) = 0 and E(vtv
′
t) = Ω, and Condition (VII). Then under the rank condition

H
′
0 : rank(Π2) = G1 − r and Γ = Γ0, as T → ∞ LR3 has the limiting distribution

of χ2 with r(G1 − r) degrees of freedom.

The resulting test procedure and confidence region are invariant to orthogonal trans-

formations of Γ0 (i.e. cointegrating vectors) and they are direct extensions of Section

4 to the cointegration problem.

There are some applications of Weak Instruments and Many Weak Instruments

in Section 4 to the cointegration problem.

7. Concluding remarks

This paper has shed a new light on the classical problem of the likelihood ratio

tests of structural coefficients in a structural equation in the simultaneous equation

system. The method developed by Anderson and Rubin (1949, 1950) can be modified

to the situation when there are many (or weak in some sense) instruments which

may have some relevance in recent econometrics. We have found that the asymptotic

null distribution of LRC is often the χ2−distribution with G1−1 degrees of freedom

under a set of fairly general conditions.

Then we have shown that the testing problems in the structural equation (simul-

taneous equations) model, the reduced rank regression and the cointegration models

2 It is sufficient that Δxt is stationary and xt is an I(1)−process.
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are essentially the same. Furthermore, the testing problems in the linear functional

relationships or the errors-in-variables models are also mathematically the same to

those in the reduced regression problem, which are related to the testing problems

in factor models. (See Anderson (1984).) Since these statistical models have been

used in many applications, it is worthwhile and useful to show that the problems

can be indeed formulated as direct extensions of the classical method by Anderson

and Rubin for a single structural equation model 3 in an unified fashion.

This paper is written in terms of testing a null hypothesis B = B0 or Γ = Γ0.

Any of resulting test procedure can be inverted to obtain a confidence region of B

or Γ; that is, a confidence region for B consists of all B0 not rejected by the test.

8. Mathematical Details

In this section we give some technical details which were omitted in the previous

sections. At the last part of this section, we shall refer to Anderson and Kunitomo

(1994) as AK (1994) and use their method for Theorem 4. Also we shall use the no-

tation of projection operators PZ = Z(Z
′
Z)−1Z

′
and PZ1

= Z1(Z
′
1Z1)

−1Z
′
1. (These

matrices are idempotent.)

Lemma 3 : Let a p×p nonsingular matrix D be decomposed into (p1+p2)×(p1+p2)

submatrices D = (Dij) and D−1 = (Dij). For any q × p1 matrix B, q × p2 matrix

C and any positive definite matrix A,

min
C

∣∣∣∣∣∣∣
⎛
⎜⎝ B

′

C
′

⎞
⎟⎠A (B,C) + D

∣∣∣∣∣∣∣ =
∣∣∣D22 − D21D

−1
11 D12

∣∣∣ ∣∣∣D11 + B
′
AB

∣∣∣(8.1)

and the minimum occurs at C = −BD−1
11 D12.

3 Some results on the corresponding estimation problems have been investigated by Anderson,

Kunitomo and Matsushita (2005, 2008).

25



Proof of Lemma 3: For |D| 
= 0 and A > 0,

∣∣∣∣∣∣∣D +

⎛
⎜⎝ B

′

C
′

⎞
⎟⎠A (B,C)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
D −

⎛
⎜⎝ B

′

C
′

⎞
⎟⎠A1/2

A1/2 (B,C) Iq

∣∣∣∣∣∣∣∣∣∣∣
(8.2)

= |D|
∣∣∣∣∣∣∣Iq + A1/2 (B,C)D−1

⎛
⎜⎝ B

′

C
′

⎞
⎟⎠A1/2

∣∣∣∣∣∣∣ .

Also we have

A1/2 (B,C)D−1

⎛
⎜⎝ B

′

C
′

⎞
⎟⎠A1/2

= A1/2
[
C + BD12(D22)−1

]
D22

[
C + BD12(D22)−1

]′
A1/2 ≥ A1/2BD22B

′
A1/2 .

Then ∣∣∣∣∣∣∣D +

⎛
⎜⎝ B

′

C
′

⎞
⎟⎠A (B,C)

∣∣∣∣∣∣∣ ≥ |D|
∣∣∣Iq + A1/2BD22B

′
A1/2

∣∣∣(8.3)

=
|D|
|D11|

∣∣∣D11 + B
′
AB

∣∣∣ ,

which is the right-hand side of (8.1).

Q.E.D

In order to prove Theorem 2, we first prove two lemmas. (Similar arguments can be

used for the proofs of Theorem 3 and Theorem 5.)

Lemma 4 : Under the assumptions of Theorem 2, for any 0 ≤ ε < 1

T εν1
p→ 0 .(8.4)

Proof of Lemma 4 : It is immediate to see that (1/T )H11
p→ Ω11 and

β
′
0G11β0 = β

′
0V

′
1Z2.1A

−1
22.1Z2.1V1β0 +

2√
T

β
′
0V

′
1Z2.1ξ2 +

1

T
ξ

′
2Z

′
2.1A

−1
22.1Z2.1ξ2 ;
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for every β0, then β
′
0G11β0 converges to a limiting random variable as T → ∞.

Then for 0 ≤ ε < 1 ,

0 ≤ T ε min
b

b
′
G11b

b′H11b
≤ 1

T 1−ε

β
′
0G11β0

β
′
0

1
T
H11β0

p→ 0 .

Q.E.D.

Define

LRd = T

[
β

′
0G11β0

β
′
0H11β0

− min
b

b
′
G11b

b′H11b

]
.(8.5)

Lemma 5 : Under the assumptions of Theorem 2 (as T → ∞)

LR1 − LRd
p→ 0 .(8.6)

Proof of Lemma 5 : Taylor’s expansion yields

|T log(1 + ν1) − Tν1| ≤ 1

2

[
T 1/2ν1

]2
,

which converges to zero by Lemma 3 as T → ∞.

Q.E.D.

Proof of Theorem 2 : By using Lemma 3, we find that as T → ∞ β̂
p→ β0.

Then (1/T )G11
p→ Π

′
21M22.1Π21. By using the fact that 1√

T
G11β0 = Op(1) and

substituting Π
′
21M22.1Π21 into the set of equations [G11 − ν1H11] β̂ = 0, we have

1√
T

G11β0 + Π
′
21M22.1Π21

⎡
⎢⎣ 0

−√
T
(
β̂2 − β2

)
⎤
⎥⎦ = op(1) .(8.7)

By multiplying (0, IG1−1) from the left, we find

√
T
(
β̂2 − β2

)
=

⎡
⎢⎣(0, IG1−1)Π

′
21M22.1Π21(

0
′

IG1−1

)

⎤
⎥⎦
−1

(0, IG1−1)
1√
T

G11β0 + op(1) .

(8.8)
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Because (1/T )H11 = Ω11+Op(1/
√

T ), we rewrite the set of equations [G11 − ν1H11] β̂ =

0 as

G11β0−Tν1

[
Ω11 + Op(

1√
T

)

]
β0−

[
G11 − Tν1

(
Ω11 + Op(

1√
T

)

)]⎡⎢⎣ 0

−
(
β̂2 − β2

)
⎤
⎥⎦ = 0.

By multiplying β
′
0 from the left, we find that

β
′
0G11β0 − Tν1β

′
0Ω11β0 −

1√
T

β
′
0G11

⎡
⎢⎣ 0

−
(
β̂2 − β2

)
⎤
⎥⎦ = op(1) .(8.9)

Then by using (8.8) and (8.9) we find that

β
′
0G11β0 − Tν1β

′
0Ω11β0(8.10)

=
1√
T

β
′
0G11

⎡
⎢⎣ 0

′

IG1−1

⎤
⎥⎦
⎡
⎢⎣(0, IG1−1)Π

′
21M22.1Π21(

0
′

IG1−1

)

⎤
⎥⎦
−1

[0, IG1−1]
1√
T

G11β0

+op(1) .

The limiting distribution of (8.10) is the limiting distribution of β
′
0Ω11β0 × LRd as

T → ∞. The local alternatives of Theorem 1 imply

Y1β0 = Z1

(
γ1 +

1√
T

ξ1

)
+ V1β0 +

1√
T

Z2ξ2

and then

1√
T

G11β0 =
1√
T

Π
′
21Z

′
2.1A

−1
22.1Z2.1Π21β0 +

1√
T

Π
′
21Z

′
2.1V1β0 + op(1)(8.11)

=
1√
T

Π
′
21Z

′
2.1V1β0 + Π

′
21M22.1ξ2 + op(1) .

By applying the Lindeberg-type Central Limit Theorem (see Anderson and Kunit-

omo (1992) for instance) to the first term on the right of (8.11) and using (8.10), we

have the result.

Q.E.D.
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