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Abstract: Until the 1990s, the notion of brain lateralization—the division of labor between the two
hemispheres—and its more visible behavioral manifestation, handedness, remained fiercely defined
as a human specific trait. Since then, many studies have evidenced lateralized functions in a wide
range of species, including both vertebrates and invertebrates. In this review, we highlight the great
contribution of comparative research to the understanding of human handedness’ evolutionary and
developmental pathways, by distinguishing animal forelimb asymmetries for functionally different
actions—i.e., potentially depending on different hemispheric specializations. Firstly, lateralization
for the manipulation of inanimate objects has been associated with genetic and ontogenetic factors,
with specific brain regions’ activity, and with morphological limb specializations. These could
have emerged under selective pressures notably related to the animal locomotion and social styles.
Secondly, lateralization for actions directed to living targets (to self or conspecifics) seems to be
in relationship with the brain lateralization for emotion processing. Thirdly, findings on primates’
hand preferences for communicative gestures accounts for a link between gestural laterality and a
left-hemispheric specialization for intentional communication and language. Throughout this review,
we highlight the value of functional neuroimaging and developmental approaches to shed light on
the mechanisms underlying human handedness.

Keywords: handedness; grasping; gesture; brain asymmetry; vertebrates; invertebrates; primates;
ontogeny; evolution

1. Introduction

Humans exhibit a strong right hand preference for manual actions, which is consis-
tently observed across tasks at the population-level and is so referred as “handedness” [1,2].
Recent meta-analyses assessed more precisely the strong manual bias observed for ma-
nipulating items and for different manual tasks. Handedness is usually assessed using
questionnaires (e.g., Annett’s Hand Preference Questionnaire, Edinburgh Handedness
Inventory, Rennes Laterality Questionnaire [3–5]) asking for the preferred hand (right vs.
left) when performing a variety of manual tasks: the hand used for writing, for using
different tools (e.g., hammer, scissors, toothbrush . . . ), performing tasks like unscrewing
a lid or threading a needle, or to communicate through iconic, symbolic, or deictic ges-
tures (i.e., physically representing a shape or movement, having arbitrary meanings, or
directing other’s attention, respectively). While 10.6% of the human population shows a
left hand preference, the right-handedness prevalence lies thus around 90% [6]. It is to be
noted that values may vary according to the way handedness is measured and exclusion
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criteria for certain categories of the population (e.g., elite athletes), as highlighted in the
five meta-analyses run by Papadatou-Pastou et al. [6].

However, even if this manual bias exhibited for reaching, grasping, and manipulating
objects or even interacting and communicating with conspecifics is being better assessed,
the mechanisms underlying human handedness are still widely debated on both theoretical
and empirical grounds. The large corpus of studies on this topic suggests that, besides
genetic factors, non-genetic environmental factors play a significant role and need further
considerations [7–9].

The presence of such a population-level right-side bias (i.e., similar proportions) has
been demonstrated in hominin species prior to Homo sapiens, namely in Homo neanderthalen-
sis [10]; as evidence of this, previous studies investigated asymmetric morphological traits
of the fossil record like asymmetries in the humeral shape or dental striations, but also
asymmetrical retouch patterns on Paleolithic artifacts (i.e., when producing stone or bone
tools [11]). In Homo habilis, on a maxilla dated to ~1.8 mya (OH-65, found in Olduvai Bed),
Frayer et al. [12] documented the earliest evidence for right-handedness (i.e., oblique labial
striations) in the hominin fossil record. Another category of evidence from fossils are the
asymmetries of the endocast (i.e., cranial vault) as some authors suggested specific patterns
of the petalias (i.e., one of the brain hemispheres protruding towards the other, causing an
impression on the inner surface of the skull-that can still be visible in fossil skulls) to be
associated with right- or left-handedness [10].

Indeed, the evolution of the human brain led to a cerebral lateralization: while some
organs are duplicated (i.e., kidneys, lungs), the two hemispheres of the human brain
display a functional specialization associated with structural asymmetries [13–15]. This
dissociation of specialized processes of left and right hemispheres permits to optimize
the associated functions, for instance the language for the left hemisphere, and emotional
signals’ processing for the right one [16,17]. As the nerve fibers of the motor cortices are
contralaterally innervated, the dominant hemisphere processes can manifest as contralateral
motor behaviors [18], such as handedness.

Cerebral lateralization is not specific to humans and has been well established in many
other vertebrates such as birds, fishes, and amphibians (see [19] for a review; [20,21]), and
forelimb preferences (at the individual or population level, for one specific task or across
tasks) have been widely demonstrated among non-human animals [9,22]. Cerebral and
associated behavioral lateralizations may be beneficial for animals in terms of cognitive
and motor performance, notably permitting spatial gain within the brain [21,23] or the
processing of several simultaneous tasks [24–26].

Because of the hemispheric specialization, hand use may be mainly processed by
different brain hemispheres according to the action performed, and shows differences
in lateralization (right- versus left-hand dominance). In this review, we present the re-
sults of studies conducted in a wide variety of species (including both vertebrates and
invertebrates) that allow us to discuss the potential mechanisms underlying human hand-
edness by identifying three categories of “manual” actions: (1) towards inanimate targets,
(2) towards animate targets (i.e., self, conspecific)—that may involve emotion processing,
and (3) communicative gestures—involving language-related functions. Comparative re-
search done in the past years has been a real opportunity to better understand the different
functions in which limb use is lateralized, and thus better assess the adaptive explanations
for the evolution of limb lateralization by better understanding the different selective
pressures that may have driven this evolution. Recent studies have also further considered
that—besides adaptive explanations—the acquisition of handedness may be related to
variations in developmental trajectories in other traits across ontogeny.
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2. Current Developmental and Evolutionary Hypotheses on Object
Manipulation Laterality
2.1. Is Handedness Genetically Determined?

In humans, as hand preferences run in families, many studies in the past worked
on a genetic model [27–30], but no gene has been linked to the expression of handedness.
Running genome-wide association analyses (GWAS) with large sample sizes, recent studies
investigated more precisely how many loci are involved in determining handedness:
the results of the GWAS showed only a handful of significant associations [31–33]. For
instance, Cuellar-Partida et al. [31] analyzed data collected on a considerable sample of
1,766,671 individuals (right-handed: 86.88%; left-handed: 10.99%; ambidextrous: 2.13%)
and GWAS revealed only 48 statistically significant variants. Furthermore, a meta-analysis
on handedness in twins showed that the rate of handedness concordance was higher in
monozygotic twins compared to dizygotic twins [34], supporting the idea that genetic
factors do play a role in the determination of handedness. However, the heritability of
handedness in humans has been evaluated around 24% [30], which is a relatively modest
value showing that genetic factors explain less than one quarter of the variance in human
handedness, thus contributing only partially to handedness. Also in mice, if the degree
of paw preferences is under the influence of genetic effects, these effects only drive the
direction of the preference a little; it is to be noticed, however, that some studies brought
out that different strains of mice differ in strength and direction (for a meta-analysis in
mice, Mus musculus, Apodemus agrarius, and rats, Rattus rattus, see [35]).

These results suggest that other nongenetic factors may also play a significant role
in the development of handedness, explaining the remaining variance. In this regard,
investigating limb preference in animals brings further elements to better picture all the
factors that may affect the development of this trait.

2.2. The Insights of Ontogeny

As nongenetic factors that may influence the acquisition of handedness, a growing
number of studies investigate early life parameters. For instance, still in the mice animal
model, it has been reported that prenatal stress can affect paw preference pattern, even
transgenerationally via epigenetic mechanisms [36,37]. As the mother acts on the immediate
developmental environment of the fetus and then of the infant [38], some works focused
on potential effects of mother-infant interactions during ontogeny. Since the maternal
intrauterine environment is asymmetric [39], it has been suggested that the position of the
fetus may play a role in the development of lateralization in the motor system [40,41], such
as handedness. In humans, according to Ververs et al. [42], there is a clear lateral bias at
38 weeks of pregnancy for a rightward head turning. A majority of human fetuses seem
to place their back on the left side of the mother because of asymmetries of the pregnant
uterus shape. For cephalic fetuses (i.e., positioned head-down, which is the majority case)
lying on the left maternal side, a rightward head turning could be explained by the fact that
it allows them to face maternal movements when walking, or also because the maternal
front part is clearer, exposing the fetus to more light but also to more tactile and auditory
stimulations [43]. Ultrasound scans made it possible to demonstrate that limb movements
emerge during fetal life: young human fetuses already grab the umbilical cord, push the
uterine wall, and even repeat hand-mouth contacts [44,45]; while unimanual movements
are visible between 8 and 10 weeks of gestation, hand face contacts are recorded from
12 weeks [46,47]. A consequence of the asymmetry in head position for hand use may be
that in case of a rightward head turning, the fetus’ right hand is more likely to touch the
mouth than the left one, which may consequently “encourage movements of the right arm
more than the left (...) as the fetus becomes sensitive to sensorimotor contingencies” [43].
Thumb sucking, with a rightward bias, is a very early demonstration of manual asymmetry,
observed in utero [48].

Just like in humans, some non-human primate species such as chimpanzees (Pan
troglodytes), gorillas (Gorilla gorilla), and olive baboons (Papio anubis) show an interesting
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asymmetry in maternal cradling behavior. Not only do mothers show a bias at individual-
level but also a left-side bias at population-level, which means the use of left arm is favored
over the right arm to cradle the infant in a majority of individuals [49,50]. In chimpanzees,
Hopkins et al. [51] have found an inverse relationship between this maternal ventro-ventral
cradling bias and the offspring hand preference for simple reaching at the age of 3 years.
In olive baboons, if cradled on the left, the infant embraces and holds onto the left side of
the mother with its right arm, the left hand being free, and vice versa. The hand that is
not recruited for clinging on the fur is free for reaching and fine manipulative grasping
actions, involving potentially greater motor and neurological stimulation than the other
hand. In fact, in this species, early postnatal individual hand preference for unimanual
grasping within the first months of age has been positively correlated with the maternal
cradling lateralization (infants cradled on the left side of the mother are left-handed, and
vice-versa; [52]). Hand preferences assessed later in the development, from 9 to 10 months
of age, are less dependent on maternal cradling bias and less consistent with the earlier
developmental stages, especially in infants initially cradled on the right maternal side.
These findings suggest that maternal cradling behavior might be the first environmental
factor that affects the development of early handedness in infant monkeys before being
weaned from the mother and letting other mother-independent factors change its onto-
genetic trajectory. As maternal left-cradling bias likely reflects brain right hemisphere
specialization for emotion [53–55], the early emergence of handedness in baboons might be
indirectly related to emotion processing. In Barbary macaques (Macaca sylvanus) as well,
early life asymmetries in mothers’ and infants’ behavior seems to affect the development
of hand preference: while maternal cradling is lateralized at individual-level, the infants’
nipple preference is correlated with their hand preference [56]. However, early postnatal
infant lateralization remains poorly investigated in non-human primates. In human and
chimpanzee neonates, the only few data available so far reported manual performance
asymmetries in the strength of grasping responses [57,58]. In a few other primate species,
data on the development of manual grasping and its early lateralization are available at
juvenile stages: in capuchins (in Sapajus apella, an individual hand preference by 5–6 months
of age [59,60], marmosets (in Callithrix jacchus, an individual hand preference for unimanual
reaching by 5–8 months [61], and rhesus macaques (in Macaca mulatta, a population-level
bias for both unimanual reaching and bimanual tasks by 4–11 months [62]). Regarding the
ontogeny of limb preferences in non-primate species, Wells and Millsopp [63] investigated
the development of paw preferences in the domestic cat (Felis silvestris catus) and reported
a significant effect of age: while individuals were more ambilateral at 12 weeks of age
than at later developmental stages, paw preferences at 6 months and at 1 year of age were
positively correlated. In marsupial species, the red-necked wallaby (Macropus rufogriseus)
and the eastern gray kangaroo (Macropus giganteus) show a left-forelimb preference (for
manipulating food) at population-level as soon as the pouch young stage (approximately
6–7 and 7–9 months old, respectively) [64]. In the eastern gray kangaroo, the authors
compared limb-preferences in manipulative behavior at different developmental stages,
namely before and shortly after individuals display the bipedal posture (young-at-foot,
approximately 11–15 months old): as they observed no difference between these two
juvenile stages and the adult stage, the authors concluded that “manual lateralization
in bipedal marsupials is not determined by the acquisition of habitual bipedality” but
precedes it in the course of ontogenesis [64] (p. 1). Interestingly, in the American lobster
crustacean species (Homarus americanus), while normal differential claw use during on-
togeny induces one claw to transform into the specialized crusher claw, induced insufficient
stimulation in laboratory conditions during a specific developmental stage leads to no
specialization [65,66], highlighting the strong role that behavioral asymmetry may have
“inducing and orienting morphological and subsequently functional asymmetry” [9].



Symmetry 2022, 14, 96 5 of 33

2.3. Brain Correlates of Lateralized Manual Actions

At adult stage, the asymmetric use of the hands for manipulative manual tasks in
humans has been correlated to contralateral brain structural asymmetries within a section
of the central sulcus related to the motor hand area [67]. Outside the human species,
cerebral lateralization has been well established in many other vertebrates such as birds,
fishes, and amphibians (see [19] for a review; [20,21,68]. Direction and degree of hand
preference for a bimanual task (i.e., tube task, see [69] in nonhuman primates such as
baboons, capuchin monkeys, or chimpanzees have been found to be associated—just like
in humans—with contralateral neuro-structural asymmetries in the primary motor cortex
including the surface of the motor hand area surface, its neuronal densities, or its adjacent
central sulcus depth [70–75]). Furthermore, as in humans, the hand preferences tested in
a large population of adult olive baboons, for both unimanual and bimanual tasks, are
consistent over time [76].

Regarding non-primate species, Australian parrots’ footedness is correlated with
eye lateralization for discriminating food items, supporting—according to the authors—a
functional explanation for the evolution of handedness in vertebrates (Figure 1) [77]. A
recent study investigated the association between brain size and parrots’ (psittacine) foot
preference [78]. It has been shown that cerebral lateralization enhances the brain capacity
by allowing parallel processing of sensory information (e.g., to forage efficiently while
remaining vigilant for predators) [26]. As the Australian parrot species known for having
foot preferences also has a better ability to perform certain manipulative and cognitive
tasks compared to species with no foot preference [79], Kaplan and Rogers [78] asked the
following question: «Do species with footedness have larger brains, or is footedness a
way of compensating for having a smaller brain?» (p. 2). The authors found in several
Australian parrots that species with larger brains (i.e., absolute brain mass) have stronger
foot preference and that left-footedness is stronger in species with a larger brain. Moreover,
the authors found foot preference to be associated with the size of a brain area (i.e., the
nidopallium) recruited for higher cognitive tasks, so that species with stronger left-foot
preferences have larger brains, with a larger volume of the nidopallium (compared to the
whole brain) [78].
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Interestingly, even if the eight arms of octopuses (Octopus vulgaris) were traditionally
thought to be equipotential, Byrne et al. [81] demonstrated a preference for frontal arms
in reaching and exploring objects, as well as a preference for a specific arm to reach into a
maze and retrieve a food item. Given the structure of the octopus neural network with each
arm possessing its own network operating it (i.e., all arms being coordinated by a central
hub in the head), it would be interesting to investigate whether cerebral asymmetries
related to limb preference are shaped in these species.

Several structural asymmetries have been observed in the fetal brain, during human
development [82–86]. Further studies, benefitting from the improvements in MRI tech-
nology, should help to determine whether contralateral hemispheric specialization of the
brain within the central sulcus is present at early developmental stages, its potential change
across ontogeny, and whether it predicts hand preference at later stages.

2.4. Morphological Limb Specialization

A recent study (published in this volume) assessed grip strength—a common indicator
of overall muscle strength—in a large sample of humans (i.e., 662 individuals aged 17 to
83 years), testing the effects of hand dominance (i.e., asymmetric use of the dominant vs.
the non-dominant hand, without considering the left-right direction) and handedness [87].
The authors found that both males and females are significantly stronger with their domi-
nant hand compared with their non-dominant hand; however, they found no significant
difference in grip strength between right- and left-handed individuals [87].

Whether limb preference is associated with asymmetric body traits in the limb mor-
phology is especially visible in crustaceans, namely the brachyuran crustaceans (i.e., crabs)
and lobsters. For instance, In American lobsters, if both the left and right claws are initially
similar, they transform during a given developmental stage and become morphologically
different: one being a large slow-acting (i.e., closing slowly, made of only slaw muscle fibers)
“molar-toothed” crusher claw, and the other being a minor fast-acting (mainly fast fibers)
“incisor-toothed” cutter claw; both being used when foraging [65,88]. The pattern of this
claw asymmetry in American lobsters appears to be random, with half of the population
having the major claw on the right and the other half having it on the left side [9]. Such a
1:1 ratio in limb asymmetry suggests no advantage to any of the two groups. Additionally,
in fiddler crabs (genus Uca), while a few species have been reported to be predominantly
right-clawed (i.e., major claw on the right side; with a population-level bias greater than
95%), most species show populations with equal numbers of right-clawed and left-clawed
individuals (for a review, see [89]). These differences in limb (i.e., claw) asymmetry between
crab species make it difficult to conclude whether this trait is under selective pressure or a
bimodal trait [90]. Perhaps, next studies may further investigate the differences observed
between these species by carefully taking into consideration the functional context in which
asymmetric claws are used: whether there are more recruited in feeding behaviors or in
interactions towards conspecifics (i.e., animate targets) like courtship or fights. Interestingly,
in the males of the Uca vocans dampieri species—which fight using their enlarged major
claw—it has been shown that only 1.4% of males are left-clawed, and that being left-clawed
was a disadvantage for fighting (i.e., left-clawed males were both less likely to engage in a
fight and less likely to win a fight; [91]).

2.5. The Effects of Posture and Locomotion Mode

If several primate species display a right-hand preference for bimanual manipulative
tasks that is associated with a left-hemisphere specialization, some other primate species—
namely lemur species—show a left-handedness for reaching food items, suggesting right
hemisphere prehension specialization (for reviews, see [92,93]). Facing this paradoxical
finding of left-handedness in strepsirrhine species (e.g., sifakas, black lemurs, indris), Mac-
Neilage et al. developed in 1987 the “Postural Origins (PO) theory” as an evolutionary
theory of handedness in primates [93–95]. The PO theory relies on the fact that several strep-
sirrhines species show a “vertical clinging and leaping” [96] locomotor style and display
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unimanual predation: one side of the body ensures anchor to the substrate while the other
grabs the prey [93,97]. The authors thus suggested two complementary specializations:
a “left hand-right hemisphere specialization for unimanual predatory prehension” and a
specialization of the right side of the body for postural support that would be controlled by
the left hemisphere [93,97]. Even if the PO theory focuses on primates, it is interesting to re-
port that several parrot species—which are not primate, nor mammal species either—show
a similar left-footedness predominance for grasping and holding food items while they use
their right foot for perching or climbing (also using their beak to help them climb), (for a
review, see [98]).

The PO theory further suggests that given “the greater physical strength of the right
side of the body”, the right hand would have become “the operative side”, favored in
object manipulation, in primate species abandoning the vertical clinging locomotor style-
giving the forelimbs more freedom with regard to postural support—and showing a
more omnivorous diet requiring more manipulative skills for foraging. An interaction
between effects of postures and arborealism on the direction of grasping laterality is indeed
observable in primate species, being biased in favor of the right hand in terrestrial and
bipedal species and of the left hand in arboreal, quadrupedal ones [99–102]. For both a
unimanual task (food grasping of grains) and a bimanual task (i.e., tube task: the two hands
are used in an asymmetric but complementary matter, e.g., holding a tube with one hand
and removing the food inside a tube with the other hand), adult olive baboons, which are
mainly terrestrial monkeys, show a right-handedness predominance at population level [76].
Moreover, capuchin monkeys are well known as tool users [103], namely stones to crack
nuts, and display a right hand preference for feeding [104] and coordinated-bimanual
tasks [105]. Human right-handedness may have then derived from a selective pressure
for tool use or coordinated bimanual manipulations [9]; as MacNeilage highlighted in
his review, the conclusion of the Hook-Costigan and Rogers [104] study suggested that
“tool use and right handedness may have evolved before bipedalism, and well before the
apes and, indeed, humans evolved” (p. 195), although bipedalism seem to strengthen
right-biased manual laterality consequently to the suppression of the locomotory function
of hands [60].

If a large body of literature documents the lateralization of the primate limb motor
systems at both individual and population levels [76,93,104,106–108], there is very little
comparative research of manual lateralization in non-primate mammals [9,22]. Giljov
et al. [109] assessed handedness in marsupial species, one of the other large mammalian
lineages. The authors reported a population-level manual preference for multiple behaviors
(e.g., unimanual feeding, grooming) in red (Macropus rufus) and grey (Macropus giganteus)
kangaroos, which mainly display a bipedal gait, freeing the hands to perform other tasks.
By comparing mainly bipedal and quadrupedal marsupial species, Giljov et al. [109] high-
lighted the crucial role that postural characteristics (i.e., bipedality), rather than phylogeny,
may have play in the origin of handedness in mammals, beyond the order of primates.

These works on lateralization open many perspectives of comparison within tetrapods:
the questions addressed and the new ones that arise can be applied to other species
outside primates. However, it has to be noted that interspecies comparisons of handedness
measured using different tasks has to be done carefully. A task effect related to variation
in motor demand has been reported in several studies in both humans and non-human
primates: namely, differences between unimanual and bimanual tasks when assessing
the hand preference: handedness in unimanual grasping seems to be not as strong as
in bimanual grasping [76,110–112], but also less sensitive than bimanual manipulations
in detecting population-level bias [113,114]. About the literature focusing on humans,
Fagard and Marks [110] highlighted that the use of different tasks to measure handedness
(i.e., asymmetric bimanual actions vs. unimanual actions, reaching vs. manipulation)
led to contradictory interpretations. To better assess the validity of the PO theory, for
instance, handedness in strepsirrhine species should be additionally assessed for a bimanual
coordinated manipulation such as in the tube task.
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In addition to the above-cited observations suggesting that species locomotory style
affects manual laterality, the PO theory is supported by findings on postural effects at the
individual level in several mammal species. Indeed, an increased manual preference can
be observed in human and non-human primates performing manual tasks in a bipedal
compared to quadrupedal posture [60,115–118]. Similar observations have been made in
other mammals, such as red-necked wallabies (Macropus rufogriseus) [115] (but see absence
of postural effect in tree shrews, Tupaia belangeri [119], and in cats, Felis silvestris catus [120]).
This corroborates the hypothesis that the need for postural support acts as a constraint on
hand availability for manual actions, and so on manual laterality. The PO theory proposes
this as a critical evolutionary mechanism which would have shaped handedness emergence.

2.6. Social Origins of Manual Laterality

The fact that social animals exhibit population-level forelimb preferences [22] also
led to the hypothesis that the alignment of individual lateralization may be under specific
social constraints. An evolutionary theory has been proposed regarding lateralities at the
population level, which postulates that the alignment of individual lateralizations favors the
coordination and cooperation between individuals of the same social group [21,121–123].
First supported by observations of population-level behavioral asymmetries in social
vertebrates (e.g., of flight behavior in fishes, [124]), this theory is also corroborated by group-
level lateralizations of social invertebrates compared to solitary ones (see for review: [125]),
suggesting a wide phenomenon in animal phylogeny.

In the case of manual actions, social constraints on laterality may arise from the need
for inter-individual coordination to perform complex tasks and from social learning. The
acquisition of tool use, for instance, may be facilitated if the learner uses the same hand
as the teaching expert [123]. Parental hand preferences have been shown to affect the
development of children’s handedness, notably through social play involving object manip-
ulation [7]. Diverse other social factors affect individuals’ hand preferences [37], resulting
in slight variations in the rate of left-handedness across different geographical and cultural
regions [6,126,127]. One of the most striking examples of cultural pressures modulating
handedness might be the constraints exerted against left-handedness for writing and eating,
which directly affects the development of children hand preference [128,129].

In spite of these social constraints and of the advantages of the alignment of individual
lateralization for intragroup coordination, one can note that in all species in which we
observe a population-level laterality (including humans), there still exist a certain propor-
tion of individuals lateralized in the opposite direction compared to the majority of others.
Ghirlanda et al. [130] suggested that the frequency of minority laterality results from a
costs-benefits balance of behavioral lateralization. Although the alignment of laterality is
beneficial for cooperation, it disadvantages individuals in competition contexts, as their de-
cisions become more predictable [24]. In humans, left-handers are indeed more frequently
represented in competitive sports, and seem to benefit from strategic advantages (e.g., in
tennis [131]). Recently, a large-sample study on professional boxers evidenced greater suc-
cess for left-handed subjects [132], supporting the hypothesis that fighting interactions may
have constituted an evolutionary constraint in favor of left-handedness in humans [133].
As individual- and population-level behavioral lateralizations amongst a species may result
from the relative frequencies of cooperative and competitive social interactions [130,134], it
may be hypothesized that the high proportion of right-handedness in humans results from
a high need for inter-individual cooperation and coordination in manual tasks [135].

While the process of manipulating inanimate objects involves a left-hemisphere spe-
cialization (as shown by the contralateral left-brain asymmetries present in the predominant
right-handed individuals), a growing number of studies in vertebrates support the idea that
the grasping function when involved in interactions with animate targets (i.e., conspecifics,
self) is processed differently, namely in relationship with the hemispheric specialization for
emotion processing.
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3. Manual Laterality for Living Object Manipulation and the Role of
Emotional Lateralization

Along with the hypotheses previously mentioned regarding the origins of manual
laterality, behavioral asymmetries in animals suggests that hemispheric specializations
for specific cognitive mechanisms, such as emotion processing, might have driven the
lateralization of associated manual tasks. In gorillas and chimpanzees, hand preference
for manipulative actions has been shown to depend on the living nature of the target
objects [136,137]. Although these apes exhibited a right-hand bias for inanimate object
manipulation (i.e., objects and environment), they used the left as much as the right hand
to act toward animate objects (i.e., self or conspecifics), supposedly because self- or socially-
directed actions imply emotional processes in addition to manipulative ones. Recently,
Baldachini et al. [138] reported concordant observations in Barbary macaques. Although
the animacy of targets did not affect the direction and strength of manual laterality at the
population level, individual lateralizations differed depending on whether actions were
directed to an object or to a living being. These results are in favor of the hypothesis of
(socially-driven) emotions affecting the laterality of manipulative actions.

3.1. Current Hypotheses on Emotional Lateralization

Different theories have been formulated and co-exist regarding emotional lateraliza-
tion in vertebrates, i.e., to explain the differential involvement of the two brain hemispheres
in the processing of emotions (see for reviews [139,140]). The “Right hemisphere theory”,
which postulates that the right hemisphere is specialized in both positive and negative emo-
tion processing, is particularly relevant to explain the asymmetries which are observed in
the expression and perception of emotional signals [16,141,142]. Notably, the facial and vo-
cal expressions of emotions are associated with leftward oro-facial asymmetries in humans
and other primates [143–147]. Moreover, behavioral leftward-biases have been evidenced
for the perception of emotional stimuli (including intraspecific or interspecific signals) in
numerous species ([148]; e.g., in humans [149,150]; chimpanzees [151]; olive baboons [152];
vervet monkeys, Chlorocebus pygerythrus [153]; and dogs, Canis familiaris [154,155]). Other
theories suggest that both hemispheres are involved in emotional processing but that the
left and right side of the brain are differently involved depending on the emotional valence
or motivation elicited by the context. The “Valence theory” thus proposes that the right
hemisphere is involved in the treatment of negative emotions, frequently associated with
withdrawal behaviors, and that conversely, the left hemisphere is responsible of the pro-
cessing of positive emotions, frequently associated with approach behaviors [156–158]. The
theory has been supported by behavioral asymmetries expressed by numerous vertebrates
in contexts with different emotional valences [148,155]. In the last decades, this assumption
has been updated by differentiating affective hypotheses (i.e., the left and right hemispheres
are respectively associated with positive and negative emotions) from motivational hy-
potheses (i.e., the left and right hemispheres are respectively associated with approach and
withdrawal/flight motivations). This idea is strengthened by the fact that a positive relation
was found between right-handedness and approach motivations in captive chimpanzees
in an experimental context [159]. A similar association was observed in Geoffroy’s mar-
mosets (Callithrix geoffroyi), in which right-handed individuals presented with novel objects
seemed less fearful and exhibited more frequent approach behaviors than left-handed
subjects [160,161]. Although affective and motivational hypotheses have long been amalga-
mated, they can result in contrary predictions for some contexts such as aggressivity, which
involve both negative emotional states and high approach motivations [139,162–164].

Some authors propose that the affective hypothesis may explain how the valence
of a particular situation is experienced by individuals, whereas the motivational hypoth-
esis may account for the decision-making process to approach or avoid an emotional
stimulus [162,163,165]. It is to note that these different theories might all be compatible with
one another, as they relate to different levels of cerebral processing of emotions [140,166].
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As we may assume that self- or socially directed manual actions are more likely than
others to be underlined by specific emotional states, the associated hand preferences may be
representative of the role of emotional lateralization in the evolutionary and developmental
history of handedness.

3.2. The Case of Self-Directed Manual Actions

Behaviors such as scratching or self-grooming may be identified as “displacement
activities” in response of social or predatory stress in primates [167–172]. Therefore, several
primatology studies have addressed the potential brachio-manual asymmetries in self-
directed actions commonly considered as indicators of negative emotional states, but have
led to discordant results. Some revealed a left-hand preference for self- touching and scratch-
ing in great apes, as expected according to both the “Right hemisphere hypothesis” and the
“Valence theory” considering the negative emotional state associated with these behaviors,
such as anxiety (in humans, gorillas, chimpanzees, and orangutans [173–175]). Human
children exhibit similar leftward bias for actions directed to self [176], and left-handed face
touch in fetuses has been evidenced to be associated with maternal stress [177]. Other
studies showed a preference for the right hand for self-scratching in squirrel monkeys [178]
and for self-rubbing but not scratching in chimpanzees under stressful situations [179,180],
highlighting the effect of the type of self-directed on laterality. Bard et al. [181] also evi-
denced a right-hand preference for self-calming behaviors in young chimpanzees under
human care (e.g., “hand-to-mouth” behaviors, such as thumb sucking, and “hand-to-hand”
grasps, i.e., holding and pressing one hand with the other). Authors interpreted it as result-
ing from the left hemispheric specialization for anxiety regulation in mammals, and notably
for dopaminergic reward circuits whose activity is affected by stressful stimuli [182–184].
Finally, other research works did not show any lateral bias for self-directed manipulation in
primates [173,178,185–187], though it is to be noted that they were based on small samples
of subjects, which may prevent the evidence of a population-level bias [188,189]. Very few
studies in other animals as in primates reported forelimb laterality for self-directed actions
(e.g., no lateral bias for autogrooming in rats and mice: Stieger et al., 2021), but noteworthy
results on these topics arose from marsupial studies [109]. Comparably to the leftward
lateralization of self-touching observed in great apes, red-necked wallabies (Macropus rufo-
griseus), Eastern grey kangaroos (Macropus giganteus), and red kangaroos (Macropus rufus)
preferentially use their left limb for autogrooming in bipedal position [64,109,115], which
suggests similar hemispheric specialization for emotional control in these marsupials than
in primates. Interestingly, such lateralization for self-touching has not been reported for the
Goodfellow’s tree-kangaroos, Dandrolagus goodfellowi, which is mainly arboreal, suggesting
some effect of species characteristics [109].

3.3. Laterality of Conspecifics-Directed Manipulative Actions

A difference in hand preference between unimanual interactions with inanimate
targets (i.e., food, objects) and physical contacts made toward a conspecific has been re-
ported in ape species-chimpanzees and gorillas: in the two studies conducted by Forrester
et al. [136,137], while a group-level right hand preference for interaction with inanimate tar-
gets was confirmed in these species, no right-handed bias was reported toward conspecifics,
further suggesting that manual lateralization reflects right- or left hemisphere processing
according to the emotive or functional characteristics of the target. The right hemisphere
of vertebrates seems specialized for the processing of social information, notably for the
purpose of emotional signal perception [16,141,142] or individual recognition [190]. This
may result in a higher involvement of this hemisphere for performing manual actions
directed towards conspecifics compared to manual actions directed to inanimate objects,
resulting in a higher use of the left side of the body.

Interestingly, forelimb actions directed to conspecifics may also be lateralized in in-
vertebrate species. A greater involvement of the left body part in interactions towards
conspecifics has been observed in insects: for instance, in the Mediterranean fruit flies
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(Ceratitis capitata, “medflies”), Benelli et al. [191] observed a left-biased population level
lateralization of aggressive displays executed with their forelegs. In fact, during a fight,
when boxing with their forelegs (i.e., the boxing attacker raises a foreleg, hitting the op-
ponent on the head or thorax), a majority of medflies (almost 70%) were “left-handed”
(i.e., performing with their left foreleg significantly more than with their right one); more-
over, the authors reported that performing aggressive displays with the left body parts
(including foreleg and wing) enhanced fighting success compared to those performed
with right body parts [191]. This lateralization in insects may not be homologous (i.e., be
inherited from a common ancestor) to the left-hand/right-hemispheric preference observed
in vertebrates for socially-directed actions, hence it reflects the possibly ubiquitous nature
of the constraints that social interactions represent on the lateralization of social animals’
behaviors [192].

3.4. The Case of Maternal Cradling

A phenomenon that raised lots of questions is the maternal left-cradling bias that
has been demonstrated in humans (66–72% [193]) but also in great apes (chimpanzees
and gorillas [50]) and more recently in olive baboons in the same proportions [49]. At the
human population-level, inanimate objects (i.e., bags) are carried on the right side for the
greatest part [194]. However, just a pillow adorned with a proto-face is enough to elicit
a left-cradling bias in children [53]. A study even asked adult humans (including both
women and men) to imagine themselves holding in their arms an object (i.e., either an
expensive vase or an old shoebox) and then an infant (i.e., about 3 months of age): while a
right-cradling bias was reported for both imagined objects, a left-cradling bias (i.e., 66%)
was reported for holding the imagined infant [194]. When cradling their baby, mothers
hold their infant in their arms close to their body, positioning the infant’s face in one of
their peri-personal hemispace (e.g., left side of their body) and supporting the weight
with the corresponding arm (e.g., left arm), see Figure 2. The maternal left-cradling bias
seems not to be related with the mother handedness [53]. Next to the manual preference
for manipulating items, the heart position (i.e., soothing sound of heartbeats [195–197])
and cultural considerations [198] do not affect the left-cradling bias. The theory reaching
a consensus combines visual field and cerebral hemispheric specialization. The maternal
cradling bias would reflect the right-hemispheric dominance for emotional processing [55].
In fact, the brain right hemisphere is specialized in the perception of emotional facial
expressions [16,199]. Since left-side cradling exposes the baby face to the left visual field
of the mother, which is projected mainly to her right brain hemisphere, this would favor
the mother’s monitoring of the emotional state of the infant. In parallel, the left-cradled
infant looks at the left side of the mother’s face, which has been described as being the
most expressive [142,200,201]. According to some authors, this direct access to the mother’s
emotional state would then facilitate creating and reinforcing social bonds within the
mother baby dyad [55].

Furthermore, in human mothers, affective symptoms such as stress, depression, and
anxiety can alter left cradling, reflecting a reduced ability to be emotionally involved with
the infant [54,202–204]. A recent study investigated the link between left-cradling bias
and the maternal emotional state in a non-human primate, the olive baboon [49]. The
authors found the maternal cradling bias to shift toward a right bias in mothers living in
high density groups with higher social pressure, likely involving higher levels of stress for
the mothers (e.g., by increased frequency of conflicts and severe aggression). The socially
related stress would alter the rightward hemispheric resources allocated to the maternal
monitoring and ultimately affect the left-cradling bias [21]. Those results clearly illustrate
the phylogenetic continuity between humans and catarrhine monkeys concerning this
lateralization and its potential links with hemispheric specialization for emotions, inherited
from a common ancestor 25–35 million years ago.
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Interestingly, the lateralization of cradling in human mothers is under further investi-
gations to assess the potential of this behavior as a tool to better understand and even early
diagnose social disorders in infants, namely autism spectrum disorders (ASD). Several
studies have already shown that atypical trajectory in maternal cradling might be one of the
early signs of interference in dyadic socio-emotional communication, and thus of potential
neurodevelopmental dysfunctions: for instance, right-cradling bias may be associated with
a lack of social interactions or degraded interactions within the mother-infant dyad and
induce disorders later in life, regarding sociality, namely socio-emotional communication;
also, a left-cradling period which lasts too long may reflect the overstimulation in which
mothers try to engage ASD infants in response to their lack of responsiveness and social
initiative [54,205–209].

Asymmetries in an infant’s positioning have been also reported in non-primate species
that do not carry their babies. In a wide range of marine and terrestrial mammals, juveniles
have a strong preference for keeping their mother on their left side, namely in their left
visual field [210]. This has prompted previous authors to propose the idea that the right
lateralized “social brain” as described in primates has an ancient evolutionary origin. It
would be derived from earlier forms of lateralization in vertebrates, namely lateralization
in interactions within the mother-infant dyad that promote bonding and thus maximize
the infants’ survival.
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4. Gestural Laterality and Language Evolutionary Origins

A particular case of socially-directed manual movements are communicative gestures,
whose laterality presents specific features compared to manipulative actions and whose
characterization in non-human primates provides valuable insights into the evolutive
history of human handedness and language.

4.1. A Complex Relationship between Handedness and the Hemispheric Specialization for Language

Humans present a left-hemispheric specialization for language functions, involving
in particular the Broca and Wernicke’s brain area for the production and processing of
speech, respectively in the Inferior Frontal Gyrus and Planum Temporale [211–217]. The
strong right-handedness observed in the human species has long been hypothesized to be
uniquely related to this brain specialization for language [218,219]. This assumption was
based in particular on the mirror neuron system being apparently predominant in the left-
hemisphere and driven by neurons of the left Inferior Frontal Gyrus in humans [220,221].
First evidenced in the ventral premotor cortex of rhesus macaques, more specifically in
the F5 region which is considered as Broca’s area homologue, mirror neurons have the
particularity to discharge both during the production of a manual action and during the
observation of another individual producing it [222–224]. A large number of studies
implying functional neuroimaging in humans have then shown, however, that mirror
activity could be evidenced in a wide range of brain regions, both on the left and right
hemisphere [225,226]. Moreover, in spite of the above-cited theory, results arising from
both neurofunctional and behavioral studies suggest a rather indirect relationship between
human language and handedness (see for review [8]). Recent fMRI (functional Magnetic
Resonance Imaging) studies revealed independent neuronal circuits for language pro-
cessing and action observation [227–229]. Häberling et al. [228] notably brought to light
three distinct networks within the mirror neuron system which were related to language
production and processing, to tool use, and to subjects’ handedness, defined in this case as
the preferred hand used for writing. Interestingly, among these three networks, only the
handedness-linked one was for the most part independent from the Broca’s area, and was
mainly composed by circuits of the parietal lobe. In addition, it seems that the direction
of the laterality for manual actions and the hemispheric specialization for language are
relatively disentangled. Indeed, although the incidence of right-hemisphere language
dominance is higher among left-handers compared to right-handers, the vast majority of
left-handed adults (above 70%) still show a left-hemispheric lateralization for language
production [17,230]. The reduced hemispheric lateralization for language production ob-
served amongst left-handed individuals, rather than being due to a reversed asymmetry,
might result from a generally weaker lateralization at both the group and individual levels
for different cognitive functions [231,232].

By contrast with manipulative actions, the production of communicative manual
gestures involves brain regions that are similar to those underlying verbal languages in
the left hemisphere [233–238]. Moreover, the tight link between articulated and gestural
communication can be observed early in development, the production of pointing ges-
tures playing a key role in the ontogeny of verbal language [239–245]. Population-level
right-hand preferences may be observed for the production of communicative gestures in
humans, i.e., for co-speech gestures [246,247] (but see [248]), for sign language by deaf adult
speakers [249], as well as for deictic and symbolic gestures in preverbal babies, children
and adults [3,4,250–254]. Furthermore, even though no significant difference has been
found between the direction of manual preference for some communicative gestures and
coordinated bimanual actions in adults [251,252], the laterality observed for communicative
and non-communicative manual movements seems to be related to different brain region
specializations. This is especially underlined by behavioral descriptions in young children,
which show that right-hand preference is stronger for gestures (i.e., pointing or signing)
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than for non-communicative manual actions, suggesting that these two types of manual
laterality develop independently [241,242,250,253–256].

Gestural laterality is thus likely to have an evolutionary history inextricably linked to
the emergence of intentional communication. In that respect, the great body of research
regarding the gestural communication of non-human primates has shed light upon the
evolutionary roots of the left-hemispheric specialization for gestures and language.

4.2. Gestural Laterality in Non-Human Primates

As a matter of fact, brachio-manual communicative gestures are found both in human
and non-human primates, in which communication relies strongly on the visual sensory
channel [257–265]. The question of whether the gestures of humans and other primates
(particularly great apes) are homologous has long been a debate, which has been limited by
the heterogeneity of studies’ focuses depending on the species (see for reviews [266–268]).
However, in addition to recent results showing that human infants share the most part of
their gestural repertoire with chimpanzees [269], the fact that the functional definitions of
primate gestures have been built based on developmental psychology studies [260] allows
us to make relative comparisons. The formal gesture definitions used in primate studies
may vary from one study to another (see for review [267,268,270,271], yet the commu-
nicative nature of these movements is the core elements which functionally differentiate
them from other actions. In that respect, the terms “manual gestures” refer to brachio-
manual movements which (i) are directed to a recipient; (ii) receive a voluntary response,
i.e., induce a change in the recipient’s behavior without acting as a direct physical agent,
and thus (iii) are mechanically ineffective. Intraspecific manual gestures which fulfill these
criteria have long been thought to be unique to humans and great apes [272–274], but in
the last years so-defined gestures have been reported in the spontaneous communication
of other catarrhine primates (e.g., in olive baboons [275–277]; bonnet macaques, Macaca
radiata [278]; red-capped mangabeys, Cercocebus torquatus [279–281]). To our knowledge, no
such forelimb gestures (i.e., apparently intentional) have yet been demonstrated outside
the primate lineage, hence the following discussion will focus on this clade.

Interestingly, a right-biased gestural laterality is observed at the population level in
great apes, both for gestures directed to humans in experimental contexts, such as pointing
or requesting (e.g., in chimpanzees, Pan troglodytes, bonobos, Pan paniscus, gorillas, Go-
rilla gorilla, and orangutans, Pongo pygmaeus [107,282]) and for intraspecific, spontaneous
gestures (e.g., in chimpanzees [283–285]; in gorillas [286–289]). Similar findings were re-
ported in primate species that are more phylogenetically distant from humans, especially
in olive baboons whose production of threatening “hand-slap” is preferentially produced
with the right hand, in intraspecific as well as interspecific contexts [275,276]. Moreover,
this gestural laterality is stable through time at the individual level in baboons and chim-
panzees [275,290]. As in the case of children, non-human primates’ hand preferences for
intraspecific gestures are not correlated with manual laterality for non-communicative
actions, whether they are manipulative or self-directed (e.g., in chimpanzees [284,285] and
in baboons [291]). Experimental studies also evidenced in other Cercopithecidae species
that subjects’ hand preference for interspecific communicative gestures (i.e., pointing)
was uncorrelated to hand preference for manipulative actions (i.e., food grasping), sug-
gesting different cerebral bases for these two types of laterality (in Tonkean macaques,
Macaca tonkeana [292]; in Campbell’s monkeys, Cercopithecus campbelli, and red-capped
mangabeys [293]). By contrast, Meguerditchian and Vauclair [291] showed that handed-
ness scores computed for different communicative gestures in olive baboons (i.e., “food-
beg” and “hand-slap” gestures) were significantly correlated. Additionally, the manual
preferences evidenced for pointing gestures in experimental conditions were shown to
depend less on the position of the referent object than in the case of grasping actions
(in olive baboons [256,294]; in Tonkean macaques [292]; Campbell’s monkeys and red-
capped mangabeys [293]), similarly to the pattern of manual laterality observed in human
children [256]. Moreover, a divergence between gestural laterality patterns was found
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between platyrrhine monkeys (tufted capuchins) and catarrhine species (human infants,
olive baboons, and Tonkean macaques) in a comparative experiment involving pointing
gestures [295]. These results suggested that the right-biased gestural laterality observed in
catarrhine species may be limited to this clade. However, gesture studies in platyrrhine
primates are still rare (but see experimental studies on learnt begging or pointing ges-
tures [296–299]) and do not address the potential laterality of spontaneous brachio-manual
gestures in these species, which are phylogenetically more distant from humans than
African and Asian monkeys [300]. Thus, supplementary research work might be needed in
this area in order to assess when gestural laterality emerged in primate phylogeny.

All the above-cited behavioral data suggest that catarrhine primates all share a left-
hemispheric intentional communication system, which support their gesture production.
This theory is supported by neuroanatomical and neurofunctional imaging studies reveal-
ing a relationship between gestural laterality and brain regions homologous to language-
related cortical area in African primates (see for reviews [8,301–303]). One of the first key
results in this area has been RMI imaging in great apes showing anatomical asymmetries
within cortical regions homologous to Broca’s area, which were found to be enlarged in
the left hemisphere (in chimpanzees, bonobos, and gorillas [304]). A contralateral associa-
tion was then evidenced between the direction of gestural laterality and the anatomical
asymmetries found in the Inferior Frontal Gyrus and Planum Temporale of adult chim-
panzees [290,305,306]. The direct link between the production of communicative gestures
and the activation of these cortical regions was then brought to light by functional imaging
(PET-MRI: Positron Emission Tomography–MRI) [307]. More recently, Marie et al. [308]
showed for the first time a population-level asymmetry of the Planum Temporale in a non-
hominoid species, olive baboons. Above the 96 study subjects, 62.5% presented an enlarged
Planum Temporale in the left hemisphere, consistently with the population-level asymme-
try observed in humans and chimpanzees [305,309–311]. A study conducted in the same
baboon population then revealed that this leftward planum temporale asymmetry already
existed in the early development of individuals, being observable in newborn baboons and
getting stronger in their first year of life [312,313]. Comparably, in humans, the asymmetry
of the planum temporale can be observed before birth and continuously develop in favour
of the left hemisphere [314]. A longitudinal neuroimaging study evidenced that similar
leftward asymmetries of the planum temporale as well as of the Inferior Frontal Gyrus may
be observed consistently from 1 to 19 months old in another species of catarrhine monkeys,
rhesus macaques [315]. A preprint study authored by Becker et al. [316] reported that olive
baboons may also exhibit anatomical asymmetry of markers of Broca’s homolog, and that
the direction and depth of this asymmetry may be associated with a contralateral gestural
lateralization but not with laterality for non-communicative, manipulative actions. At this
point, it remains to be investigated whether these anatomical asymmetries in baboon brains
are functionally associated with a specialization for the control of gestural communication,
similarly to great apes [307], in adulthood as well as across development. By contrast
with the trend observed in the human gesture literature, very few studies have explored
the development of apes and monkeys’ gestural communication [267,317], resulting in a
scarcity of data related to the ontogeny of gestural laterality. However, the first promising
results cited here pave the way for exciting new research perspectives, exploring whether
and how monkeys’ gestural laterality develop during their early years of life, potentially in
line with the development of cerebral asymmetries.

According to all the commonalities between humans and other catarrhine primates
regarding gestural laterality and the associated brain asymmetries, several evolutionary hy-
potheses proposed that a left-lateralized gestural communication system may have already
existed in the brain of the common ancestor of African and Asian primates, over 29 million
years ago [8,295,300,302,303,318]. The neural substrates of human intentional communi-
cation would then have derived from this hemispheric specialization for gestures, under
different evolutionary constraints and at different phylogenetic levels [8,303,319]. Notably,
ecological changes might have represented significant pressures shaping catarrhine visual
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communication, such as a shift from arboreal to terrestrial habitats, associated with an
increased visibility and a change of locomotion patterns [320,321]. Moreover, modifications
of social systems (and consequently of social complexity) might have affected the extent
to which communication relied on brachio-manual gestures, and then on language in the
human lineage, depending on the need of sufficiently diverse and flexible communicative
signaling to deal with different contexts of cooperation, competition, and cultural trans-
mission [322–326]. Therefore, in line with these theories, the characterization of factors
affecting gestural laterality in non-human primates is of great interest for the purpose of
depicting the constraints under which humans’ gesture and language laterality emerged.
We will present, in the following, the main proximate and ultimate causes that have been
hypothesized and/or shown to affect the gestural laterality of catarrhine primates.

4.3. Ultimate and Proximal Factors Impacting Primate Gestural Laterality
4.3.1. Effect of Species and Study Population Characteristics

Firstly, the existence of a population-level gestural laterality and its strength ap-
pears to depend on the species characteristics, particularly in relation with variation in
social systems and ecological characteristics [327]. According to the theory of a social
origin of laterality (Section 2.6), it may be predicted that species with high levels of inter-
individual cooperation will be more likely to exhibit alignment of individuals’ gestural
laterality. Moreover, the strength of gestural laterality may depend on social constraints
in these species. Observational studies on captive gorillas and chimpanzees brought to
light such effects of social dynamics on lateralization of the species’ most frequent ges-
tures [288,289,327]. When comparing the production of brachio-manual gestures shared
by both species, Prieur et al. [287] found for instance that gorillas were more right-handed
than chimpanzees when producing auditory gestures, such as “slap hand”. These gestures
are more frequent in gorillas probably because of the higher inter-individual distances gen-
erally found in this species compared to chimpanzees [328], and are therefore more likely
to be socially codified and lateralized. Other species characteristics than sociality might
affect gestural laterality, such as the locomotory posture. The theory of a postural origin of
manual laterality suggests that the right hand is specialized for complex tasks in terrestrial
mammals, the use of one hand or another being less limited by the need for postural stabil-
ity than in arboreal species [93–95]. In the case of visual communication, it may thus be
hypothesized that terrestrial primates are more lateralized when producing brachio-manual
gestures than arboreal ones. To our knowledge, there exist no direct comparison of gestural
laterality between primate species with different locomotory postures, although compara-
tive studies would be very beneficial to the debate on the origin of primate manual laterality
in general [100]. That said, it may be noted that intraspecific gestural laterality has been
essentially evidenced at the population-level in terrestrial species, namely chimpanzees,
gorillas, and olive baboons [107,275,276,284,285,288,289,327], and spontaneous gestures
seem generally more used in primates living in open environments which facilitate the per-
ception of visual signals [329–331]. Finally, the population characteristics, such as the wild
or captive environment in which apes and monkeys are studied, may also have an effect on
the laterality of manual gestures. Some authors suggested that manual laterality measured
in captive primates may be the artefactual results of experimental conditions, particularly
those implying the presence of human experimenters ([332–334] but see [188]). Concerning
gestural laterality, the effect of captivity is not completely elucidated, particularly because
of the lack of direct comparisons between wild and captive populations of primates, and
because of the small numbers of studies addressing spontaneous, intraspecific gestures. It
is to be noted, however, that some great ape studies show a higher right-hand preference
for intraspecific gestures than for human-directed ones, in spontaneous or experimental
contexts [107,287].
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4.3.2. Effect of Gesture Characteristics

Thus, the preference of one hand to communicate also depends on the characteristics of
the gesture itself. The gestural laterality measured in primates differs according to which ges-
ture of the repertoire is studied (e.g., in chimpanzees and gorillas [282,285,289,319,335,336].
As evoked earlier, some authors propose that the most frequent gestures are more likely
to be shaped by social pressures, explaining stronger hand preferences when producing
them [285]. Moreover, the sensory modality in which the gestural signal is delivered
(i.e., visual only, tactile, or audible) impacts its laterality, notably because visual and tactile
gestures are more physically directed to the recipient than audible ones, hence are produced
preferentially with the ipsilateral hand in relation with the position of the receiver (see in
chimpanzees [285]).

4.3.3. Effect of the Interactional Context

The context in which gestures are produced, and particularly the emotional value of
certain social situations, has been proven to affect gestural laterality in several primate
species. Prieur et al. [285,289] demonstrated that the right hand preference of chimpanzees’
and gorillas’ gestures was stronger in contexts associated with negative emotional valence
than in others. Recently, similar observations were made in red-capped mangabeys [280],
in which brachio-manual gestures were more produced with the right hand than the left
in aggression and submissive contexts compared to positive or neutral social situations
(Figure 3). These results corroborate findings in humans, showing an activation of prefrontal
regions of the left brain hemisphere in aggression contexts [164]. This right hand preference
for aggressive gestures might be explained by “motivational hypotheses” in line with
the “Valence theory” of emotional lateralization (see II.1.), which proposes that the left
and right brain hemisphere are respectively specialized in approach- and withdrawal-
motivated behaviors [139,156–158,162–164]. Indeed, although aggressive gestures might
be underlined by negative emotions in the signaler (for instance, anger), they are also likely
to imply a high motivation for approaching the interactant, and thereby to specifically
involve left-hemispheric brain regions. In other vertebrate species, non-communicative
aggressive behaviors have been found to be lateralized to the right and controlled by the
left-hemisphere (e.g., in fishes, Gambusia holbrooki, Xenotoca eiseni, Betta splendens [337];
in green and brown anoles, Anolis carolinesis and A. sagnei [338]; in mammals such as
the European fallow deer, Dama dama [339]; but see in domestic and Przewalski horses,
Equus caballus and E. przewalskii [340,341]). Apart from this “motivational hypothesis”,
the fact that catarrhine primates preferentially gesture with the right hand in aggression
situations may be explained by a lesser flexibility of communication in negative contexts,
as evidenced for some vocalizations (e.g., alarm calls [342]). Aggressive gestures may be
more lateralized than others consequently to a stronger effect of social influences through
ontogeny (Section 2.6), and thus be less submitted to the influence of proximate factors.
This may be the case of the threatening “hand-slapping” of olive baboons, which has been
shown to be highly right-handed at the individual and population-level [275,276].

The emotional value of the interaction is not the only contextual factor which has
been shown to affect gestural laterality. The hand used to communicate in primates may
also depend on the relative position of the receiver and signaler [280,285,287,327]. One
explanation for this is the directionality of gestures, which can result in the use of the
ipsilateral hand to efficiently convey visual or tactile signals to a receiver. Moreover, as
several primates favor one side or another to approach conspecifics, notably depending
on dominance relationships (e.g., in red-capped and grey-cheeked mangabeys, Cercocebus
torquatus and Lophocebus albigena [343]) or depending on the type of interactions (e.g.,
embracing and grooming in Colombian spider monkeys, Ateles fusciceps rufiventris [344]), it
may be hypothesized that social laterality affects manual preferences in social interactions,
including for gestural communication.
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4.3.4. Effect of Signaler and Receiver Characteristics

Primate gestural laterality indeed depends on the relationship between interacting
individuals. In captive chimpanzees, gestures are more lateralized to the right hand
when directed to dominant conspecifics, and this effect is lessened if the interactants
are strongly affiliated [285]. These observations might be explained by the signaler’s
emotional state varying depending on the identity of the receiver, and particularly the level
of psychosocial stress induced by competitive contexts. Such dominance effect has not been
evidenced in captive gorillas [327], who exhibit lesser intragroup competition compared
to chimpanzees [345–347]. Kinship between signaler and receiver seems to not affect the
gestural laterality of gorillas and chimpanzees [285,289,348], however the possible effect of
such factors has not been tested in other species.

In addition, demographic factors, i.e., the sex and age of the signaler, has been evi-
denced to affect gestural laterality in several primate species. Although no effect of sex
has been found in chimpanzees and olive baboons’ gestural laterality [275,276,291,348],
male bonobos have been found to be more right-handed than females for gesture produc-
tion [186]. Moreover, the converse sex effect has been evidenced in gorillas, in which females
are more lateralized in favor of the right hand than are males, and in which males are
more right-handed when they gesture toward females than toward male conspecifics [289].
Considering the social structure of these two species, we may hypothesize that these results
are related to the dominance relationships of subjects (i.e., female dominance in bonobos
and male dominance in gorillas [346,349]), yet the determinants of sex effect on primate
gestural laterality is not clear. In humans, more left-handers are found amongst men than
women regarding handedness in general, and some cognitive processes are lateralized
differentially depending on the individual’s sex [6,350–352], though no difference seems to
be found for language-related functions and corresponding cerebral asymmetry [352,353].
Different hypotheses have been formulated concerning the effect of sex on human handed-
ness or forelimb asymmetries for non-communicative actions in other mammals (e.g., cats
and dogs, Felis cactus and Canis familiaris [354–356]). Notably, authors suggest a possible
effect of sex hormones on cognitive lateralization [350,355], of genetic determinants located
on the X chromosome [219,357,358] (but see [31]), and of gender-dependent differences in
individual social experience through ontogeny, in the case of humans [359].

Finally, primate gestural laterality is affected by individuals’ ages. In chimpanzees,
gorillas, and olive baboons, the preference for right-hand gesturing is stronger in adults
compared to juveniles [276,282,285,289,335]. This may be due to a maturation of the left
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hemisphere specialization for intentional communication [276], or it may result from the
subjects’ individual experience, as adults’ gestures are more likely to have been shaped by
social experiences [360]. Further studies on the ontogeny of gestural communication would
provide a better understanding of this phenomenon. Prieur et al. [285] also observed a
senescence effect on chimpanzee gestural laterality, older individuals being less lateralized
than young adults possibly because of physical limitations. Nevertheless, other studies have
not highlighted any significant effect of age on the gestural laterality of captive chimpanzees
and olive baboons [275,361]. On the whole, the extent to which sociodemographic factors
affect primate gestural laterality is still poorly or not described in most species.

Multifactorial analyses have been applied to characterize the effect of all these param-
eters on the gestural laterality of captive chimpanzees and gorillas [285,289,327], and more
recently in an exploratory study on captive red-capped mangabeys [280]. Studying primate
gesturing with a multifactorial as well as comparative approaches represent promising
perspectives for the understanding of the proximate and ultimate factors which shaped
human gestural laterality [100,285,289]. In addition, further research efforts are needed
with respect to the ontogeny of primate gestural communication and to the potential gestu-
ral laterality of non-hominid species, in order to better understand the evolutionary and
developmental pathway of this trait.

5. Conclusions–The Way Forward

We aimed to emphasize here the importance of characterizing animal limb preferences
to understand the development and evolution of human handedness, by distinguishing
laterality for functionally different manual actions (i.e., object manipulation, actions di-
rected to living targets, and non-manipulative, communicative gestures), which might be
supported by different hemispheric specializations.

Future research may benefit from recent advances in neuroimaging methods [362],
notably functional techniques permitting researchers to link lateralized behaviors to spe-
cific brain regions’ activity. For instance, the use of functional Near-Infrared Spectroscopy
(fNIRS) has been recently validated in non-human primates, allowing non-invasive record-
ing of brain processing lateralization from a functional perspective [363].

Moreover, further developmental studies in different animal species may be needed to
unravel the ontogeny of manual lateralities (for instance, regarding the development of
gestural communication in non-human primates [267]). Improvements in MRI technology
should help to determine whether contralateral hemispheric specialization of the brain is
present at early developmental stages, its potential change across ontogeny, and whether it
predicts limb preference at later stages [313].

Additionally, one of the major challenges for the understanding of human handedness
origins is the improvement of comparative approaches, as still few studies directly involve
several species [364]. Research on animal forelimb asymmetries often focuses on mammals
(and particularly on the primate lineage), however comparisons of forelimb preferences
across a wider range of vertebrate and invertebrate species may provide valuable insights
into the evolutionary constraints that have shaped this trait [161]. Behavioral lateralization
similarities in species which are phylogenetically distant may result from evolutionary con-
vergence. Their characterization may thus permit us to make hypotheses on the ecological
constraints which led to their emergence.

Finally, reliable comparisons of forelimb lateralizations in different species may only
be made by homogenizing the task complexity in both experimental and observational
studies. Human manual laterality has been argued to be unique because it is observed
across different tasks in a large part of the population compared to other species, but one
could argue that animals’ forelimb asymmetries are rarely assessed for as complex tasks as
the ones investigated in humans (e.g., writing or other complex tool uses). Quantitatively,
would the right bias observed in humans still be as strong as the ones observed in other
species when performing lower demanding tasks? Marchant et al. [365] described humans’
manual preferences in diverse spontaneous actions, based on film archives of three tra-
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ditional societies. They evidenced only a weak overall lateralization for manual actions
(barely above 50% of right-hand use in the three study populations), but interestingly found
a greater right-hand preference when specifically considering precision tool use (above 84%
of right-hand use). The authors thus noted that “the disparity between the ethological and
the typical psychological findings on handedness may thus be simply explained: question-
naire and performance testing paradigms focus only on a small and selected proportion
of manual activities, those to do with tool use, and especially with skilled, fine-motor tool
use. This gives an artefactual, biased picture of extreme lateralization.” (p. 256). Task
complexity has been hypothesized to affect manual laterality, individuals being more likely
to be lateralized for actions with high level of manipulative requirements [111,161]. This
has been evidenced in diverse mammal species (e.g., in human [365,366]; non-human
primates [367–369]; marsupials [370]; or rodents: [371]), and may be true in other tetrapods,
as authors observed stern clawed frog (Wenopus tropicalis) changing paw for food manipu-
lation depending on the animacy of the target (Pouydebat et al., unpublished data), due to
different levels of manipulative action complexity [372]. To adapt the experimental tasks
and protocols in relation to the cognitive and functional capacities of the species (and even
their ecology)—in order to propose similar tasks in terms of complexity—represents a real
challenge for future studies on limb preference. Moreover, assessing human handedness
based on ethological descriptions of spontaneous manual activities may provide more
reliable research material to compare with animal observations.

Investigating animal forelimb laterality for diverse (clearly defined) tasks by adopting
multi-disciplinary, developmental, and comparative approaches might represent promising
perspectives for the understanding of handedness origins.
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