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Abstract: The kinematic approach of limit analysis is explored in three-dimensional (3D) stability analysis of slopes. A formal derivation
is first shown indicating that, in a general case, the approach yields an upper bound to the critical height of the slope or an upper bound
on the safety factor. A 3D failure mechanism is used to produce stability charts for slopes. The slope safety factor can be read from the
charts without the need for iterations. While two-dimensional (2D) analyses of uniform slopes lead to lower safety factors than 3D
analyses do, a 3D calculation is justified in cases where the width of the collapse mechanism has physical limitations, for instance, in the
case of excavation slopes, or when the analysis is carried out to back-calculate the properties of the soil from 3D failure case histories.
Also, a 3D failure can be triggered by a load on a portion of the surface area of the slope. Calculations indicate that for the 3D safety
factor of the loaded slope to become lower than the 2D factor for the same slope (but with a load-free surface), the load has to be very

significant and equal to the weight of a soil column of the order 10~! of the slope height.
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Introduction

Three-dimensional (3D) analyses of slope stability are not often
used in practical applications as they are more elaborate than
plane-strain analyses, and no convenient methods have been de-
veloped for performing such analyses. A two-dimensional (2D)
(plane strain) analysis also can be regarded as conservative in
cases where 3D failure should be expected, and it is often pre-
ferred in design (Cornforth 2005). There are cases, however,
where a 3D failure analysis is justified, for instance, in back cal-
culations of soil properties for slopes that have failed, or when the
width of the failure mechanism is well defined, for instance, in
excavation slopes.

An extensive review of the literature regarding stability analy-
sis of slopes was presented by Duncan (1996). Some of the newer
literature, focused particularly on the 3D analyses, can be found
in a more recent paper by Griffiths and Marquez (2007). Of par-
ticular interest in this article is the kinematic approach of limit
analysis with application to 3D failures. An early application of
this method was shown by Drucker and Prager (1952), who con-
sidered a slope failing under plane-strain conditions. A simple 3D
collapse with a single block was analyzed by Drescher (1983) in
the context of collapsing material in storage containers. A multi-
block 3D translational mechanism for slopes was considered in
Michalowski (1989), whereas a rotational mechanism was con-
structed by de Buhan and Garnier (1998). Several authors used an
approach to 3D analysis that is equivalent to limit analysis, but
based on global equilibrium of forces or moments (Baligh and
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Azzouz 1975; Leshchinsky and Baker 1986; Gens et al. 1983);
many of those relate only to the limit states under undrained
conditions.

In his limit analysis of a 2D slope collapse, Chen (1975) no-
ticed that it is a rotational mechanism (not translational) that leads
to the most critical case. This motivated Michalowski and
Drescher (2009) to construct a 3D rotational mechanism for slope
collapse, and this mechanism is adopted here to develop stability
charts for slopes failing in a 3D fashion. These charts allow esti-
mation of the factor of safety against a 3D failure without the
need for an iterative procedure. First, the use of kinematic limit
analysis is considered to obtain a rigorous bound on the safety
factor, followed by a discussion of applicability of the analysis to
soils described by the Mohr-Coulomb yield condition. Next, a 3D
mechanism of failure is described, the numerical procedure is
briefly explained, and the stability charts are developed. The con-
cept of a “significant load” is introduced to define a load distrib-
uted on some portion of the slope surface that would produce a
3D safety factor that is lower than one from a 2D analysis. The
paper is concluded with some final remarks.

Limit Analysis in Slope Stability

Most engineering analyses of slope stability seek the factor of
safety, which is a traditional measure of the safety margin. Hence,
these analyses are not typical limit state problems where the mag-
nitude of the load is sought, causing the structure to fail. The
solution to a stability problem must be dependent on the geometry
of the slope (height, inclination angle, and the width of the
mechanism B, if 3D analysis is carried out) and the strength prop-
erties of the soil (consider first the undrained shear strength c,,), as
well as the soil weight (measured by its unit weight +y). Introduc-
ing a dimensionless group yH/c,, the number of independent
parameters in the analysis can be reduced by two. The limit value
of yH/c, is often called the dimensionless critical height. The
ratio of the critical rate of yH/c, to its true value for an existing
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slope is a measure of the slope safety and, for the soil character-
ized by the undrained shear strength, it is identical to the tradi-
tional factor of safety.

The notion of a critical height in the context of limit analysis
appears in an early paper of Drucker and Prager (1952); they
indicate, though only for a special case, that the kinematic ap-
proach of limit analysis leads to an upper bound on the true criti-
cal height. Intuitively, the factor of safety following from the
kinematic approach is also an upper-bound estimate (e.g., Micha-
lowski 1989); a more rigorous justification of this statement is
given below.

In a typical slope stability analysis the only load considered is
that of the soil weight. This load is given in terms of the unit
weight v, and the limit analysis problem can be stated in the
following manner: find the magnitude of unit weight vy that will
cause the slope of given geometry to fail. Considering that the
slope also may be loaded with a given distributed load (traction)
p; on boundary S, the principle of virtual work written for the true
(but unknown) stresses field o;; produced by the soil weight -y, on
the kinematically admissible mechanism with strain rates sf‘j
takes the form

f O'ijéf-‘jdV=yf ntdv + f pvtds (1)
v v s

where the unit weight vector vy; was written as the product of its
magnitude y and the unit vector »; in the direction of gravity. V is
the volume of the mechanism, and § is its surface; superscript k
denotes the kinematically admissible velocity and strain rate
fields. An energy balance equation for stresses and loads associ-
ated with the same kinematically admissible mechanism can be
written as

f olgidV =~ f nytdv + f pvids ()
14 v N

where stress (rf-‘/- is associated with the admissible kinematics &%,
but it is not necessarily in equilibrium [therefore, balance Eq. (2)
is not the principle of virtual work]. Subtracting Eq. (1) from Eq.
(2) we have

f(Ug—Ufj)éng:(Yk—Y)f n,-v;‘dV (3)
1% 1%

For the flow rule associated with a convex yield condition, the
integral on the left-hand side of Eq. (3) is never negative, whereas
the integral on the right-hand side is always positive, hence

Y=y 4)

Therefore, if the balance Eq. (2) is used to calculate an estimate
of the unit weight causing failure, yk, this estimate will be not less
than the true value of vy causing the slope to collapse. Because
vH/c, is a dimensionless group in the problem, the inequality in
Eq. (4) can be multiplied by the true value of H/c,, to yield

kg H\* ~H
YA _(yHd)_ vl (5)
cy c c

u u

So it becomes evident that y*H/c, calculated from the kinematic
approach is an upper estimate of its true critical value. This con-
clusion was obtained earlier for special cases (vertical cut, uni-
form slopes) directly from the kinematic theorem of limit analysis
(Drucker and Prager 1952; Salengon 1990). However, the result

in Eq. (5) is more general, as it has been derived without refer-
ence to a specific example.

Alternatively, the kinematic approach yields the lower estimate
of the stability factor ¢,/yH (introduced earlier by Taylor 1937)

k
c c
( . ) = (6)
yH vyH
Traditional slope analyses seek the safety factor, typically defined

as the ratio of the shear strength of the soil to that necessary to
maintain limit equilibrium; for undrained shear strength

F=-t (7)
Cud
where c,,=undrained shear strength needed to maintain limit
equilibrium. The kinematic limit analysis leads to (yH/c,)k,
which is an upper estimate of true yH/c, at failure, as indicated in
inequality (5). Given true yH for a slope, one can write

k
-

K
Ccy C,

where cﬁ:lower estimate of the undrained shear strength ¢, nec-
essary to keep the slope stable. Now, considering Egs. (5) and (8),
and replacing c’; with ¢,/F* and ¢, with ¢,/F, one obtains
Fkﬂ = Fﬂ or Ff=F 9)
cu Cu
Hence, kinematic analysis leads to the upper-bound estimate on
the factor of safety as defined in Eq. (7). This conclusion holds
true, of course, for both the 2D and 3D limit analysis calculations.
It might be of interest to note that the conclusion above also
holds for traditional limit equilibrium considerations, for as long
as the failure pattern is kinematically admissible, and no arbitrary
assumption regarding distribution of forces is used. The proof of
this equivalency was included in Michalowski (1989), and a more
comprehensive consideration of the duality of this approach can
be found in Salengon (1990).

3D versus 2D Safety Analyses

It is commonly accepted that 3D analyses yield safety factors for
slopes that are not lower than those from plane-strain (2D) analy-
ses. This statement is supported by direct comparison of analyti-
cal results, and by intuition (2D analysis is less restrictive). Some
effort was made earlier by Cavounidis (1987) to justify this state-
ment. He concluded that the occasional result of a 3D safety
factor being lower than that from a 2D analysis is due to simpli-
fying assumptions often made in the former. Here, we offer a
more formal justification for the statement that a 2D safety factor
for a uniform slope cannot be larger than that from a 3D analysis.

Consider a soil slope limited to some width B by, for instance,
rough walls, or a rock formation. Collapse of such a slope will be
three dimensional, minimizing the effect of the rough constraints.
Now, consider the second slope, similar to the first one, but with
smooth vertical planes at the two ends. The failure mechanism
will now be attracted to these planes as the sliding on the smooth
planes requires no energy to be expanded. This will result in a
plane-strain mechanism of failure, with all velocity vectors paral-
lel to the smooth planes. The difference between the two slopes is
in the smooth planes that can be considered as weak planes (zero
strength), or zones of a weaker material. We now invoke the
corollary theorem (Drucker et al. 1952) stating that: “if the yield
surface of one material contains that of a second material, the first
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Fig. 1. Interpretation of the yield condition used in limit analysis

material will be said to have higher yield strength than the sec-
ond,” and another consequence of the theorems: a decrease in
material strength of a structure will not produce an increase in the
limit load. The yield surfaces of the soil in the two slopes coin-
cide, except along the weak planes, where the yield surface of the
soil in the first slope contains the second one. Consequently, the
limit load on the first slope cannot be lower than that on the
second slope, or, the safety factor for the first one will not be
lower than that for the second one. Because the smooth planes in
the second slope favor the plane mechanism of failure, the safety
factor from the 2D analysis cannot be higher than that from a 3D
analysis.

Applicability of Limit Analysis Calculations to
Slopes

Limit analysis is applicable to soils whose strength is described
with a convex yield condition and whose deformation is governed
by the normality flow rule. Soils failing in undrained conditions
can be characterized by their undrained shear strength ¢, and
incompressible plastic deformation, thus satisfying the require-
ments of limit analysis applicability. Overconsolidated clays and
silts failing in a drained process, however, exhibit some frictional
component of the strength, and their failure envelope is typically
represented by the Mohr-Coulomb yield condition with internal
friction angle ¢’ and cohesion intercept ¢’. In the context of
critical states such an envelope is located on the “dry side,” and is
the locus of the soil peak strength. This is illustrated in Fig. 1. It
is considered here that the strength of the soil is described by the
line passing through Points A and B in Fig. 1, and the computa-
tional results will be presented in term of ¢’ and ¢’ (for brevity,
the prime will be omitted in further description, i.e., $=¢' and
c=c').

It is reasonable to ask whether the strength due to “cohesive-
ness” of fine-grained soils (the shaded area in Fig. 1) should be
accounted for in engineering design. This cohesiveness is often
interpreted as having an origin in bonding between particles or
interlocking. Many short-term stability considerations can rely on
the peak strength, whereas the peak strength in long-term stability
analysis can only be relied on if the cohesiveness in the soil is
maintained, and the peak strength is never reached. For instance,
a footing founded on an overconsolidated clay can usually take
advantage of the peak strength, but a vertical cut in clay, even
though stable at first, will collapse some time after its excavation.
The peak strength is used in limit analysis only to calculate the
limit load, but the applied load on the structure is to be main-

Fig. 2. Schematic of the 3D failure mechanism

tained well below the limit load. An argument for presenting the
charts based on the Mohr-Coulomb yield condition is also in ex-
isting natural slopes with inclination exceeding the limit set by
the critical states, indicating the contribution of soil cohesiveness
to strength. This is not to say that the Mohr-Coulomb yield con-
dition with a cohesion intercept can be used universally for all
slopes; for instance, caution needs to be exercised if slopes are
likely to be submerged.

3D Rotational Failure Pattern of Slopes

3D mechanisms for dilatant soils are difficult to construct because
of the increase in volume that needs to be accommodated as the
material shears. An example of a 3D multiblock translational
mechanism was shown earlier by Michalowski (1989). It was
pointed out by Chen (1975) that, in plane-strain analysis, a rota-
tional failure mechanism yields the least (best) estimate of the
critical height yH/c. More recently, a 3D rotational mechanism
was constructed by Michalowski and Drescher (2009), with the
failure surface being a section of a curvilinear cone (a “horn”). A
surface of this kind was used earlier in consideration of bearing
capacity under square and rectangular footings (Michalowski
2001). This mechanism is adopted here, and it is shown schemati-
cally in Fig. 2. A more comprehensive description and discussion
of this mechanism can be found in Michalowski and Drescher
(2009); here, the main features of the mechanism are described,
and the equations are reproduced for the reader to be able to
recreate the results.

The purpose of the analysis is to develop stability charts for
3D slope failures for a practical range of geometrical and material
parameters, and present them in such a manner so that the safety
factor can be obtained without the need for iterations.

Frictional Soils

The curvilinear cone surface with apex at P, Fig. 2, intersects the
top surface of the slope along trace RSR’, and its cross section
with the sloping surface is marked with the curve RTR’. The
surface over which the soil slides has a spoonlike shape. During
failure, the soil contained in the volume determined by the slope
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Fig. 3. 3D mechanism generated by rotation of a circle with variable
diameter [after Michalowski and Drescher (2009)]

contour and the spoonlike surface undergoes rotation about an
axis parallel to the crest line RR’. Kinematical admissibility re-
quires that along the entire sliding surface the vector of velocity
of the rotating soil be inclined at angle ¢ to that surface; this
assures that the dilatancy (volume increase) of the shearing soil is
accommodated by the mechanism. This dilatancy is the direct
consequence of the Mohr-Coulomb yield condition (line AB in
Fig. 1) and the normality flow rule. To satisfy this admissibility
requirement the apex angle of the curvilinear cone in Fig. 2 needs
to be equal to 2¢.

The cross section through the symmetry plane of the mecha-
nism is illustrated in Fig. 3. During failure, the soil mass rotates
about axis passing through Point O. The cross sections of the horn
with planes intersecting the axis of rotation are circular. Two such
cross sections are illustrated in Fig. 3. The trace of the cone on the
plane of the figure is marked by two log-spirals: PAC and PA'C’,
described by equations

r=rye®fotnd (10)

and

= rroe—((-)—eo)tan [ (l ])

with angle 6 measured as indicated in Fig. 3. The shape of this
failure surface is generated by a circle of varying radius

R =r,sinh[(0 - 6,)tan ¢] (12)

rotating about an axis passing through O; r, and 6, are the log-
spiral radius and angle depicting the position of Point P in Fig. 3.

Line ABC marks the contour of the slope. Velocity v of soil
particles within the rotating volume is a function of radius p and
angle 0, and it is defined by equation

V=pw (13)

where w=angular velocity about O, and the velocity is perpen-
dicular to radius p (Fig. 3).

The two circles beneath the slope are cross sections of the
conical surface with two radial planes. The shaded sections indi-
cate portions filled with the soil. The geometry of the mechanism
is fully described by angles 6, and 0,, and the ratio of radii in
Egs. (10) and (11) at 6=60,, i.e., r'y/r,.

The kinematic approach of limit analysis is based on the bal-
ance equation of the work rate, written for an incipient failure
process, with the components of the equation including the work
of the soil weight and the work dissipated by the soil during
failure. The work rate of the soil weight is calculated from a
general expression

WY:f v,-y,-deyf v cos 0dV (14)
v v

where v; and +y;=velocity vector and the unit weight vector, re-
spectively, and v and y=magnitudes. The shape of the rotating
volume V is complicated, and the details of integration are given
in the Appendix.

The work dissipated by the soil during plastic shear, per unit
area, is equal to cv cos ¢ [see, e.g., Drucker and Prager (1952)].
Integrating this dissipation rate over the curvilinear surface
RSR'T (Fig. 2) with varying velocity [Eq. (13)] is an elaborate
exercise; therefore, a different method is used here. This method
is based on the unique relation of shear to the volumetric defor-
mation in plastically deforming soils. Consequently, rather than
calculating the work of shear along the failure surface, one can
calculate the volumetric deformation in the entire mechanism, and
relate the rate of work dissipation to this integrated volumetric
strain rate. The total volumetric strain rate is easily calculated as
an integral of the velocities over surface S bounding the mecha-
nism. The expression for the rate of work dissipation in the
mechanism then becomes

D =c cot d)f nvdS (15)
s

where n; and v;=outward unit vector normal to surface S and the
velocity vector, respectively (Appendix). This method was first
described in the context of 3D bearing capacity calculations
(Michalowski 2001), and more recently it was adopted in 3D
analysis of slopes (Michalowski and Drescher 2009). The reader
will find a more comprehensive description of this method in
either reference.

By equating the work rate of the soil weight in Eq. (14) to the
dissipation rate in Eq. (15), the dimensionless critical height
vH/c¢ was calculated, and the best estimate (upper bound) of its
critical value was sought using a minimization process with geo-
metric parameters 6, 6, and r'y/r, being variable.

In searching for the minimum value of yH/c, the mechanism
in Fig. 3 was modified to a case where the upper log-spiral was
located across Point O as illustrated in Fig. 4, and given in equa-
tion

F=— roe((-)—eo)tan b (16)

This mechanism was automatically included in the optimization
procedure when ratio r',/r, assumed negative values. The mecha-
nism in Fig. 4 is generated by a rotating circle of varying diam-
eter; this time, however, the circle is rotated about its cord passing
through Point O.
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Fig. 4. 3D mechanism generated by a circle of varied diameter ro-
tated about its cord [after Michalowski and Drescher (2009)]

Before calculations were carried out, the mechanism in Fig. 2
was modified with a plane insert as illustrated in Fig. 5. This is to
assure that if no constraint is placed on the width of the failing
soil mass, the collapse pattern will tend to a plane-strain mecha-
nism. The plane portion of the mechanism was consistent with the
geometry of the curvilinear parts, and the composite failure sur-
face was smooth (see comment in the Appendix). The number of
independent parameters describing the surface was then increased
by only one, i.e., the relative width of the plane insert b/H.

Mechanism for Undrained Failure

The strength of soils during undrained failure is described by
shear strength c,, and the deformation of the soil is incompress-
ible. The kinematically admissible rotational mechanism is then
described by a curved cylinder (torus) rather than a curved cone.
The procedure for calculations yH/c, is similar to that for fric-
tional soils, but the work dissipation rate needs to be calculated
differently, because formula (15) cannot be applied when &=0.
The rate of work dissipation is now calculated from

D= qu vdS (17)
s

with v being the magnitude of the velocity jump vector on the
sliding surface S (kinematic discontinuity). A more detailed ex-
pression is given in the Appendix.

Plane insert

Fig. 5. Schematic of the mechanism with a plane insert

o,
c cotg

Fig. 6. Independence of parameter ¢ cot ¢ of the safety factor

3D Safety Factors for Slopes

Presentation of Stability Charts

Typical charts representing results of slope stability analyses re-
quire an iterative procedure to arrive at the safety factor. For
instance, the Taylor (1937) charts are given in terms of stability
factor ¢,/ yH=c/vyHF, where c, is the cohesion intercept needed
to maintain limit equilibrium. Factor ¢/yHF is then plotted versus
the slope inclinations angle for a variety of internal friction angles
. The safety factor is described in a manner similar to that for
undrained analysis

¢ tand

Cyq tan (bd

For given 3 and ¢ one can find ¢/yHF from Taylor’s charts, and,
given ¢/yH for the slope, calculate F. But the safety factor needs
to be applied also to tan ¢; hence the process becomes iterative.
There have been some attempts in the past to present the stability
analysis results without the need for iterations. Of those, the
method suggested by Bell (1966) is perhaps the most convenient,
and it was used earlier to present the results from plane-strain
limit analysis (Michalowski 2002). Iterations will not be needed if
the results are plotted as a function of ¢ cot ¢. This is because
¢ cot ¢ is independent of the safety factor. This is a direct conse-
quence of the definition in Eq. (18), and it is illustrated in Fig. 6.
No matter what the safety factor, product c¢ cot ¢ remains the
same. It is useful then to plot the reciprocal of tan &, (or F/tan ¢)
versus dimensionless group c¢/«yH tan ¢, and produce charts for
various slope inclination angles. For 3D analysis the charts also
need to describe the dependency of the safety factor on the width
of the mechanism relative to the slope height.

F= (18)

Minimization Procedure

A computer program was written to calculate the work rate of the
soil weight and the work dissipation rate during incipient slope
failure. The best estimates of critical yH/c were obtained using a
minimization procedure for given slope inclination angle and in-
ternal friction angle ¢. Parameter c¢/yH tan ¢ was then calcu-
lated; this approach yields a rigorous lower bound to ¢/yH tan ¢.
The size of the mechanism was subject to an independent con-
straint on its total width B, and the results are presented as a
function of relative width B/H. However, the relative width b/H
of the plane insert could vary, subject to the constraint on the
overall mechanism width B/H. Independent variables in the mini-
mization procedure were: angles 6, and 6,, ratio r'/ry, and the
relative width of the plane insert b/H. These parameters were
varied by a small increment in a single computational loop, and
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1.0

b/B

B/H

Fig. 7. Change in the relative width of the plane insert b/B as a
function of the overall constraint on the width of the mechanism

the process was repeated until the minimum of yH/c was
reached, with the increments of 0.01° used for angles 6, and 6,,
and 0.001 for ratio r'y/r, and insert width b/H (initial increments
in the procedure were set to 5° and 0.1, respectively, and were
gradually reduced to 0.01° and 0.001; a typical time for calcula-
tion of a single data point on a PC with processor of 2.83 GHz
was about 15 s, and it was dependent on the initial guess). For
failures constrained to a narrow width (e.g., B/H<1.5 for
=45° and $=15°), the best estimate of ¢/yH tan ¢ was found for
the mechanism without the plane insert. However, with an in-
crease in the overall width of the mechanism, the width of the
insert rapidly increases, as illustrated in Fig. 7 for a 1:1 slope. In
all cases, the most critical mechanism reached the constraint B/ H
on the overall width.

Computational Results

Computational results are first presented for undrained failure,
Fig. 8. Coefficient c,/yHF 1is presented as a function of slope
inclination angle for several ratios B/H. The most upper line is
for the plane-strain mechanism, and its horizontal portion de-
scribes results with the mechanism increasing to a great depth
(see Michalowski 2002). The use of this chart is straightforward:
for a given geometry of the slope one reads c,/yHF, and calcu-
lates safety factor F for given (noncritical) ¢, /vH.

The remaining computational results (for soil strength charac-
terized by ¢ and c) are presented as functions of F/tan ¢ versus
¢/+vH tan ¢ for widths of the failing slope B/H ranging from 1.0
to 5.0, and for the plane-strain case. Each chart illustrates results
for one inclination angle of the slope. The results for slopes of
inclination of 30° and 45° are shown in Fig. 9, those for 60° and
75° in Fig. 10, and Fig. 11 illustrates the results for vertical
slopes. To make the comparison of this solution to other (future)
solutions possible, Table 1 is included with numerical values of
magnitudes of coefficient ¢/yH tan & for a 1:1 slope (3=45°), as
a function of 1/tan ¢ (i.e., F/tan ¢ when F=1). The precision of
the reported values is for comparative reasons, and it is not to
suggest that all digits are practically meaningful. The last column
in the table (B/H==) is from calculations for a 2D mechanism
(Michalowski 2002). Numerical values of nondimensional critical

0.25

0.20 -

C, 0.15
YHF

0.10

0.05 d : : ; :
30 40 50 60 70 80 90

B

Fig. 8. Undrained slope failure: ¢,/ yHF as a function of the slope
angle

height yH/c for 3D failures obtained using the same method, for
a wide variety of parameters, can be found elsewhere (Micha-
lowski and Drescher 2009).

It was already indicated in Fig. 7 that for slopes with relatively
low constraint on width B/H (for instance, B/H=1.5 for =45°
and ¢$=15°), the most adverse mechanism is defined by the 3D
failure surface alone. The plane insert illustrated in Fig. 5 be-
comes a part of the critical mechanism for wider slopes. Conse-
quently, with an increase in B/H, the safety factor approaches the
one from 2D analysis. The difference in the safety factor of slopes
with different constraints of their failure mechanisms can be mea-
sured by the vertical distance between the respective lines in Figs.
8—11. Typically, once the constraint on the width of the mecha-
nism reaches B/H=5, the difference between the 3D factor of
safety and that from the 2D analysis is less than 10%. However,
this difference can exceed 50% when the mechanism is con-
strained to a narrow width of B/H=1.

Example

A uniform 1:1 slope is built of overconsolidated soil with ¢
=20° and cohesion intercept ¢c=20 kPa; the unit weight of the
soil is y=18 kN/m?>. The height of the slope is 15 m, and its
width is restrained to 30 m by rock formations. To determine the
safety factor of this slope, we first calculate ¢/yH tan ¢ = 0.20.
From Fig. 9 for 3=45° and B/H=2 one reads F/tan $=3.25, and
F=3.25 tan 20° =1.18. Plane-strain analysis yields F=1.09.

Significant Load on Slopes

3D failures can be triggered in slopes by strength inhomogeneities
or hydraulic conditions with 3D seepage patterns, or they can
occur due to geometric constraints, for instance, in the case of
excavation slopes. For uniform slopes, plane-strain analyses al-
ways yield the minimum safety factor. However, a load placed on
a limited area of the top surface of the slope may change this
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Fig. 9. 3D stability charts for slopes: 3=30° and B=45°

outcome. A significant load on the slope is defined here as the
load that would change the tendency of the slope to fail from the
2D mode to a 3D type. It is useful to emphasize that, if the load
distributed on a portion of the surface is small enough (less than
significant), the 3D analysis including this load will still yield a
safety factor that is larger than that from the 2D analysis with no
load at all.

Considerations in this section shed some light on the magni-
tude of the significant load. This problem can be posed as fol-
lows: what is the magnitude of the load spread over a given
portion of the top surface, so that a 3D safety factor for the loaded
slope becomes lower than a factor from a 2D analysis with no
load?

A schematic of a slope loaded on a square area a-a is illus-
trated in Fig. 12. This load can be easily accounted for in calcu-
lations by including a term due to the work rate of given load p.
This term is included in the original balance Eq. (2), but was not

used in arriving at the results presented in Figs. 8—11 for load-free
boundaries.

Depending on the intensity of the load and the size of the
loaded area, the most critical mechanism may include the full
load [Case 1 in Fig. 12(b)], or it may intersect the load (case 2).
Both cases were considered when finding the best estimate (mini-
mum) of the critical height.

If the load is small, the effect on the failure mode is negligible,
and the plane-strain analysis (with no load) will yield the least
safety factor. However, if the load is large, a 3D failure mecha-
nism for loaded slope may produce a lower safety factor than the
plane-strain analysis with load-free boundary does. Attention was
paid to this issue in an earlier paper on 3D slope analysis (Micha-
lowski 1989).

The outcome of calculations for a 1:1 slope and $=15° is
illustrated in Fig. 13. The load is characterized by dimensionless
number p/yH, and it is spread on a square area of width a/H

JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / APRIL 2010 /589

Downloaded 18 Mar 2010 to 141.212.44.50. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



0.0 0.5 1.0 1.5 20

.ﬂ: 60°

0.0 0.1 0.2 0.3 04 0.5

c
YH tang

0.0 0.5 1.0 1.5 20

(o]
YH tang

5

4 4

3 o
_F_
tang

2 B

14

‘R= 750
0 T T T ;ﬂ
0.0 0.1 0.2 0.3 04 0.5

c
YH tang

Fig. 10. 3D stability charts for slopes: B=60° and B=75°

=0.5, as illustrated in Fig. 12. The critical height yH/c is plotted
versus the width of the mechanism B/H. For a given slope char-
acterized by a noncritical combination of parameters yH/c, the
curves in Fig. 13(a) are in some proportion to the safety factor
(even though the plot is for one value of ¢); i.e., for a slope of
given height, an increase in critical height yH/c indicates an in-
crease in the safety factor and vice versa.

The plane-strain analysis with no load on the slope surface
yields the critical value yH/c=12.052, and it is marked by a
horizontal line in Fig. 13(a). When the load is relatively small, for
instance p/yH=0.2, the critical height decreases with the increase
in the mechanism width, and the mechanism tends to a plane-
strain failure, i.e., the plane mechanism with a loadfree boundary
yields the minimum safety factor. However, if the load is in-
creased to p/yH=0.6, the ascending line in Fig. 13(a) indicates
that a 3D failure mechanism is more critical than a 2D pattern of
failure (with zero load), and the lowest critical height (and the

lowest safety factor) is produced in the analysis with the width of
B/H=1.75. This width is now the outcome of the analysis, and
not an independent constraint.

This tendency for the load to affect the outcome of the analysis
is due to two competing effects. A reduction in the width of the
mechanism tends to increase the safety factor (or critical height)
as the shape of the failure surface becomes geometrically more
restrained (less freedom to assume the least favorable geometry of
failure). However, the adverse effect of the load distributed on a
limited area increases with the decrease of the mechanism width.
For a small load, the 3D effect dominates, and the safety factor
(or critical height) decreases with the increase in the mechanism
width. With an increase in load p however, it is the load that gains
the dominant role, and the safety factor decreases with the de-
crease in the mechanism width. It is interesting to notice that one
can identify a load where the two effects nearly balance out, and

590 / JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING © ASCE / APRIL 2010

Downloaded 18 Mar 2010 to 141.212.44.50. Redistribution subject to ASCE license or copyright; see http://pubs.asce.org/copyright



- B=90°

0.0 0.1

02 0.3

c
YH tang

0.4 0.5

Fig. 11. 3D stability charts for vertical slopes

Plane insert

Case 1 Case 2

C C

Fig. 12. Slope loaded on a square area

the critical height is independent of the mechanism width; for this
example, that load is p/yH=0.35.

The reader will notice that for width B/H <1.75, the 3D effect
becomes dominant for all loads, and the critical height rapidly
increases. The mechanism is now “jam-packed” in a narrow
space, and with the further decrease in the mechanism width an
admissible toe mechanism of the type described can no longer be
found. A 3D rotational failure can still occur, but not reaching the
slope toe.

The “significant load” as defined in this section is shown in
Fig. 13(b) as a function of the slope angle. For the 1:1 slope and
with ¢=15°, this significant load p/yH was equal to 0.35, and it
varies between about 0.47 and 0.29 for slopes with inclination
angle between 30° and 70°. This result is valid for the load on a
square of 0.5H-0.5H at the edge of the top surface. This is a very
substantial load, comparable to the weight of the soil column of a
half to one-third of the slope height. This load is not to be con-
fused with a load on a small area (such as a footing) that might
produce a local bearing capacity type of failure.

Final Remarks

It has been indicated earlier for specific examples that the kine-
matic approach of limit analysis yields an upper bound to the

Table 1. Critical Values of ¢/yH tan ¢(X 10%) for Slopes with B=45° (All Values Need to Be Multiplied by X 1072)

b 1 B/H

(deg) tan ¢ 1.0 3.0 5.0 o
3.5 16.35 149.53 205.35 218.70 238.09
5 11.43 93.497 122.62 134.49 143.06 155.48
10 5.671 30.741 48.855 52.947 56.332 60.918
15 3.732 18.971 25.089 27.180 28.744 30.965
20 2.747 10.395 13.870 14.998 15.749 17.001
30 1.732 3.158 4.053 4.335 4.559 4.873
40 1.192 0.415 0.536 0.575 0.603 0.642
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Fig. 13. 3D stability analysis of a loaded slope: (a) effect of the load
on critical height of the slope; (b) significant load

critical height of the slope. This statement is now proved to be
more general, and it follows that the factor of safety determined
by the kinematic approach is also an upper bound on its “true”
value. These statements hold true for both 2D and 3D analyses.
A tractable 3D analysis of slope stability was carried out based
on a rotational failure mechanism. The failure surface has a
spoonlike shape, and is a portion of a curvilinear cone surface (a
“horn-type” shape). It is demonstrated that the results can be pre-
sented in the form of stability charts, which do not require an
iterative procedure to arrive at the safety factor. These charts are
useful where the width of the potential failure mechanism is re-
stricted, for instance in cases of excavation slopes. Such analyses
are also relevant in back calculations of soil properties from case
histories with 3D slope failures. The difference in the safety fac-
tor of a slope with a failure mechanism constrained to a width
equal to the slope height (B/H=1) and the safety factor from the

2D analysis can exceed 50%, but this difference drops down,
typically to less than 10%, once the relative width of the mecha-
nism increases to B/H=S5.

3D failures may occur due to inhomogeneities in material
properties, for instance lenses of a weaker material, or a drop in
hydraulic conductivity leading to locally increased seepage. It
may also occur if the slope width is physically limited, or the
slope is loaded on a limited area. The latter was explored in this
paper. It appears that a static load on a limited area producing the
safety factor from a 3D mechanism lower than the 2D factor for a
slope with load-free boundary, is quite large. For instance, for a
1:1 slope, and the load distributed on a square area H/2-H/2, the
distributed load needs to be larger than 0.35yH for the 3D analy-
sis to give a safety factor lower than the 2D analysis does.
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Appendix

The contours of the “trumpet” (or a “horn”) in Fig. 3 are de-
scribed in Egs. (10) and (11). This shape of the trumpet is gener-
ated by a circle of varying radius R with its center described by
radius r,,

(19)

2 rm =

2

A local coordinate system x,y in each radial cross section is now
introduced, as shown in Fig. 3 (x perpendicular to the plane of the
figure). The velocity in Eq. (13) during rotation about Point O is
now expressed as

v=(r,+yo (20)

where w=angular velocity about O. The infinitesimal volume el-
ement is

dV =dxdy(r,, +y)dd (21)

and the work rate of the soil weight in Eq. (14) now can be
written as

Op y* v
W, =20y f f f (r,, +v)?cos Bdydxd®
0o 0 a
eh x* }'*
+ f f f (r,, + ¥)*cos Ocdydxd® (22)
o Jo Ja

The two integrals in Eq. (22) include the work of the soil weight
in two portions of the rotating volume separated by the plane
perpendicular to the plane of Fig. 3 and passing through Points O
and B. Angle 05 defining this plane was found from the geometri-
cal relations in Fig. 3

in 0,

0p=arctan————
cos Bp—A
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s sin(, — 0,) %@ gin g, —sin 6,

in(0,+B) (23
sin 0, sin 0, sin B sin(6,+B) (23)

The upper integration limit on y is a function of x:y*=VR?>—x?,
and the limits on x are x"=VR"—a~ and x"=\VR"—d" in the first
and the second integral, respectively, and a and d are given in

_sin(B +6,) r

sin 6,
sing 0w 4T sin(B + 0)

Oe(eh—ﬁo)lan ¢ T (24)

The work dissipation rate in Eq. (15) can be more specifically
written as the sum of the integrals on the boundaries with the
trace AB and BC (Fig. 3)

p
. cos 0 —————
= Zwr(z) sin? eof - VR? = &do
in

6o

ccot ¢

(]

h
+ eZ(Qh—GO)tan b sin2(6h + B)f COS(e + B) |
0

IR* — d*d®
sin(0+p)"

(25)

Eq. (25) cannot be used for the case =0, and for undrained cases
the dissipation was calculated from the following equation

0p (R 0, (R
D=2wc,R f f (r,, +v)’dyd® + f f (r,, +)dyd®
0y Ya b Y d

(26)

where radius R=constant.

The plane insert illustrated in Fig. 5 was included with its
geometry matching the 3D portions, so that the composite surface
was smooth. Equations necessary to calculate the work rate of the
soil weight and the internal work for the plane section can be
found elsewhere (e.g., Chen 1975). The compatibility of the com-
posite mechanism requires that angles 6, and 6,, are selected iden-
tical for the 2D and the 3D portions of the sliding surface.
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