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LIMIT BEHAVIORS OF THE DEVIATION BETWEEN
THE SAMPLE QUANTILES AND THE QUANTILE

Shoufang Xu and Yu Miao

Abstract

In this article, we discuss the limit behaviors for the deviation between
the sample p-quantile ξ̂np and the p-quantile ξp by sampling from a sequence
of independent and identically distributed samples of size n. The moderate
deviation, large deviation and Bahadur asymptotic efficiency for (ξ̂pn − ξp)
are established under some weak conditions.

1 Introduction

It is well known that the time series data is particularly important in the research
on economic, finance, biostatistics and so on. However, time series data often are
heavy-tailed, so in this case, the classical statistical analysis can not be used because
of the restrictions of moment conditions. While quantile can be used for describing
some properties of random variables, and there are not the restrictions of moment
conditions. As a result, it is being widely employed in diverse problems in finance,
such as, quantile-hedging, optimal portfolio allocation, risk management, and so
on. In practice, the large sample theory which can give the asymptotic properties
of sample estimator is an important method to analyze statistical problems.

To describe the results of the paper, suppose that we have an independent and
identically distributed sample of size n from a distribution function F (x) with a
continuous probability density function f(x). Let ξp denote an p-th quantile of F ,
i.e.,

ξp = inf{x : F (x) ≥ p}, p ∈ (0, 1).

It is well known that there are two important estimators to estimate the p-th quan-
tile: sample quantiles and order statistics. Let Fn(x) denote the sample distribution
function

Fn(x) =
1
n

n∑

i=1

1{Xi≤x}, −∞ < x < ∞.
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and ξ̂np denote the sample quantile, thus ξ̂np can be represented as

ξ̂np = inf{x : Fn(x) ≥ p}, p ∈ (0, 1).

Let X(1) ≤ · · · ≤ X(n) denote the order statistics of X1, . . . , Xn.

There are numerous literatures to study the order statistics and the sample
quantiles. Adler [1, 2] obtained some limit theorems for maximal and minimal order
statistics. Park [12, 13] gave the asymptotic Fisher information in order statistics.
Suppose 0 < p < 1, (k/n) → p, p ≤ (k/n) ≤ p + (1/n) for n → ∞, k → ∞, then
in the latter limit X(k) converges in probability to ξp (see [5, 15]). In addition, if F
has a continuous first derivative f in the neighborhood of ξp and f(ξp) > 0, then

√
nf(ξp)(X(k) − ξp)√

p(1− p)
→ N(0, 1), as n →∞,

where N(0, 1) denotes the standard normal random variable (see [5, 10, 15]). As-
sume that F (x) is twice differentiable at ξp, with F

′
(ξp) = f(ξp) > 0. If k =

np + o(
√

n(log n)δ) for some δ ≥ 2, then Bahadur [3] proved

X(k) = ξp +
k/n−∑n

i=1 I{Xi≤ξp}
f(ξp)

+ Rn, a.e.

where Rn = O(n−3/4(log n)(1/2)(δ+1)), a.e. as n → ∞. In his paper, he also raised
the question of finding the exact order of Rn. Further analysis by Eicker [7] revealed
that Rn = op(n−3/4g(n)) if and only if g(n) →∞. Kiefer [8] obtained very precise
details. Lahiri and Sun [9] gave a Berry-Esseen theorem for sample quantiles of
strongly-mixing random variables under a polynomial mixing rate. Very recently,
Miao, Chen and Xu [11] studied some precise asymptotic properties of the deviation
between the order statistics and the p-quantile.

For the sample quantiles, let p ∈ (0, 1), if ξp is the unique solution x of F (x−) ≤
p ≤ F (x), then ξ̂np

a.e.−−→ ξp (see [14]). In addition, if F (x) possesses a continuous
density function f(x) in a neighborhood of ξp and f(ξp) > 0, then

n
1
2 f(ξp)(ξ̂np − ξp)

[p(1− p)]
1
2

−→ N(0, 1), as n →∞,

where N(0, 1) denotes the standard normal variable (see [15, 14]). Suppose that
F (x) is twice differentiable at ξp, with F ′(ξp) = f(ξp) > 0, then Bahadur [3] proved

ξ̂np = ξp +
p− Fn(ξp)

f(ξp)
+ R̃n, a.e.,

where R̃n = O(n−
3
4 (log n)

3
4 ), a.e, as n →∞.

In this paper, we are interested in the exponential convergent rate of the de-
viation (ξ̂np − ξp) under some suitable conditions. The moderate deviation, large
deviation and Bahadur’s asymptotic efficiency of the deviation (ξ̂np − ξp) will be
stated in the next section, and their proofs will be given in Section 3.
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2 Main Results

First we give the following moderate deviation principle.

Theorem 1. Let X1, · · · , Xn be independent identically distributed random vari-
ables with a continuous distribution F (x), and let ξp be a p-th quantile of F for
p ∈ (0, 1). Corresponding to the sample {X1, · · · , Xn}, the sample p-th quantile
which is denoted by ξ̂pn is defined as the p-th quantile of the sample distribution
function Fn(x). Assume that F (x) has a continuous density function f(x) in the
neighborhood of ξp and f(ξp) > 0. In addition, let {bn} be a positive sequence
satisfying

bn →∞ and
bn√
n
→ 0, as n →∞.

Then for any r > 0, we have

lim
n→∞

1
b2
n

log P

(√
n

bn
|ξ̂pn − ξp| ≥ r

)
= − f(ξp)2r2

2p(1− p)
.

The following result is the large deviation principle.

Theorem 2. Let X1, · · · , Xn be independent identically distributed random vari-
ables with a continuous distribution F (x), and let ξp be a p-th quantile of F for
p ∈ (0, 1). Corresponding to the sample {X1, · · · , Xn}, the sample p-th quantile
which is denoted by ξ̂pn is defined as the p-th quantile of the sample distribution
function Fn(x). Then for any r > 0, we have

lim
n→∞

1
n

log P
(
ξ̂pn − ξp ≥ r

)
= − inf

x≥1−p
Λ∗+(x)

and
lim

n→∞
1
n

log P
(
ξ̂pn − ξp ≤ −r

)
= − inf

x≥p
Λ∗−(x)

where
Λ∗+(x) = x log

x

1− F (ξp + r)
+ (1− x) log

1− x

F (ξp + r)

and
Λ∗−(x) = x log

x

F (ξp − r)
+ (1− x) log

1− x

1− F (ξp − r)

for x ∈ [0, 1], and Λ∗+(x) = Λ∗−(x) = ∞, for x 6∈ [0, 1]. In particular, it follows that

lim
n→∞

1
n

log P
(
|ξ̂pn − ξp| ≥ r

)
= −min

{
inf

x≥1−p
Λ∗+(x), inf

x≥p
Λ∗−(x)

}
.

Remark 1. It is not difficult to check that

inf
x≥1−p

Λ∗+(x) = (1− p) log
1− p

1− F (ξp + r)
+ p log

p

F (ξp + r)
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and

inf
x≥p

Λ∗−(x) = p log
p

F (ξp − r)
+ (1− p) log

1− p

1− F (ξp − r)
.

Theorem 3. Under the conditions of Theorem 2, assume that F (x) has a continu-
ous first derivative f(x) in the neighborhood of ξp and f(ξp) > 0, then we have the
following Bahadur’s asymptotic efficiency

lim
r→0

lim
n→∞

1
r2

1
n

logP (ξ̂pn − ξp ≥ r)

= − lim
r→0

1
r2

inf
x≥1−p

Λ∗+(x) = − f(ξp)2

2p(1− p)

and

lim
r→0

lim
n→∞

1
r2

1
n

logP
(
ξ̂pn − ξp ≤ −r

)

= − lim
r→0

1
r2

inf
x≥p

Λ∗−(x) = − f(ξp)2

2p(1− p)
.

3 Proofs of Main Results

The following lemma will be applied in our proof.

Lemma 1. [14] Let F be a distribution function. The function F−1(t), 0 < t < 1,
is nondecreasing and continuous, and satisfies

F−1(F (x)) ≤ x, x ∈ (−∞, +∞),

and

F (F−1(t)) ≥ t, t ∈ (0, 1).

Hence we have

F (x) ≥ t ⇔ x ≥ F−1(t).

Proof of Theorem 1. For any r > 0, we have

P

(√
n

bn
|ξ̂pn − ξp| ≥ r

)
= P

(
ξ̂pn ≥ ξp +

bnr√
n

)
+ P

(
ξ̂pn ≤ ξp − bnr√

n

)
. (1)

By Lemma 1,

P

(
ξ̂pn ≥ ξp +

bnr√
n

)
= P

(
p ≥ Fn

(
ξp +

bnr√
n

))
. (2)
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Thus, we give the following form firstly

P

(√
n

bn
(ξ̂pn − ξp) ≥ r

)
= P

(
ξ̂pn ≥ ξp +

bnr√
n

)

=P

(
1
n

n∑

i=1

I{Xi≤ bnr√
n

+ξp} ≤ p

)

=P

(
n∑

i=1

I{Xi≥ bnr√
n

+ξp} ≥ n(1− p)

)

=P

(
n∑

i=1

[
I{Xi≥ bnr√

n
+ξp} − EI{Xi≥ bnr√

n
+ξp}

]
≥ n(1− p)− nEI{Xi≥ bnr√

n
+ξp}

)

=P

(
n∑

i=1

Wni ≥ bn

√
nδ1

)
,

(3)

where
Wni = I{Xi≥ bnr√

n
+ξp} − EI{Xi≥ bnr√

n
+ξp}

and

δ1 =
n(1− p)− nEI{Xi≥ bnr√

n
+ξp}

bn
√

n
.

Hence it is easy to check

EI{Xi≥ bnr√
n

+ξp} = P

(
Xi ≥ bnr√

n
+ ξp

)
= 1− F

(
bnr√

n
+ ξp

)
(4)

and by utilizing Taylor’s theorem we have

F

(
bnr√

n
+ ξp

)
=F (ξp) + F

′
(ξp)

bnr√
n

+ o

(
bn√
n

)

=p + f(ξp)
bnr√

n
+ o

(
bn√
n

)
.

(5)

From (4), (5), we have

δ1 =
n(1− p)− n(1− p) + f(ξp)bn

√
nr + o(bn

√
n)

bn
√

n
= f(ξp)r + o(1) (6)

and

Wni = I{Xi≥ξp+ bnr√
n
} − 1 + F

(
ξp +

bnr√
n

)
, (7)

so it is easy to have

E(Wni) = 0, V ar(Wni) = p(1− p) + O(bn/
√

n). (8)
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Through the above discussions, the equation (3) can be rewritten as follows

P

(
ξ̂pn ≥ ξp +

bnr√
n

)
= P

(
1

bn
√

n

n∑

i=1

Wni ≥ f(ξp)r + o(1)

)
.

Now we need give Cramér function of the random variable
∑n

i=1 Wni, i.e., for any
λ ∈ R, by Taylor’s theorem, we have

Λ(λ) = lim
n→∞

1
b2
n

log E exp

{
λbn√

n

n∑

i=1

Wni

}

= lim
n→∞

1
b2
n

log
(

E exp
{

λbn√
n

Wn1

})n

= lim
n→∞

1
b2
n

log
(

1 +
λ2b2

n

n

E(W 2
n1)

2
+ o

(
b2
n

n

))n

=
λ2p(1− p)

2
.

(9)

By the Gärtner-Ellis theorem (see [4, 6]), we have

lim
n→∞

1
b2
n

log P

(
n∑

i=1

Wni ≥ bn

√
nδ1

)
= − f(ξp)2r2

2p(1− p)

which implies the following result

lim
n→∞

1
b2
n

log P

(√
n

bn
(ξ̂pn − ξp) ≥ r

)
= − f(ξp)2r2

2p(1− p)
. (10)

Likewise, by Lemma 1, we have

P

(
ξ̂pn ≤ ξp − bnr√

n

)
= P

(
p ≤ Fn

(
ξp − bnr√

n

))
, (11)

so, we can give the following form

P

(√
n

bn
(ξ̂pn − ξp) ≤ −r

)
= P

(
ξ̂pn ≤ ξp − bnr√

n

)

=P

(
1
n

n∑

i=1

I{Xi≤ξp− bnr√
n
} ≥ p

)

=P

(
n∑

i=1

I{Xi≤ξp− bnr√
n
} ≥ np

)

=P

(
n∑

i=1

[
I{Xi≤ξp− bnr√

n
} − EI{Xi≤ξp− bnr√

n
}
]
≥ np− nEI{Xi≤ξp− bnr√

n
}

)

=P

(
n∑

i=1

Vni ≥ bn

√
nδ2

)
.

(12)
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Here
Vni = I{Xi≤ξp− bnr√

n
} − EI{Xi≤ξp− bnr√

n
},

δ2 =
np− nEI{Xi≤ξp− bnr√

n
}

bn
√

n
.

According to a simple calculation, we have

EI{Xi≤ξp− bnr√
n
} = P

(
Xi ≤ ξp − bnr√

n

)
= F

(
ξp − bnr√

n

)
(13)

and

F

(
ξp − bnr√

n

)
=F (ξp)− F

′
(ξp)

bnr√
n

+ o

(
bn√
n

)

=p− f(ξp)
bnr√

n
+ o

(
bn√
n

)
.

(14)

Thus, by (13), (14) we see that

δ2 =
np− np + f(ξp)bn

√
nr + o(bn

√
n)

bn
√

n
= f(ξp)r + o(1), (15)

and

Vni = I{Xi≤ξp− bnr√
n
} − F

(
ξp − bnr√

n

)
. (16)

Obviously
E(Vni) = 0, V ar(Vni) = p(1− p) + O(bn/

√
n). (17)

So the equation (12) can be rewritten as follows

P

(
ξ̂pn ≤ ξp − bnr√

n

)
= P

(
1

bn
√

n

n∑

i=1

Vni ≥ f(ξp)r + o(1)

)
.

Then we give Cramér function of the random variable
∑n

i=1 Vni: for any λ ∈ R

Λ(λ) = lim
n→∞

1
b2
n

log E exp

{
λbn√

n

n∑

i=1

Vni

}

= lim
n→∞

1
b2
n

log
(

E exp
{

λbn√
n

Vn1

})n

= lim
n→∞

1
b2
n

log
(

1 +
λ2b2

n

n

E(V 2
n1)

2
+ o

(
b2
n

n

))n

=
λ2p(1− p)

2
.

(18)

By the similar proof of (10), we have

lim
n→∞

1
b2
n

log P

(√
n

bn
(ξ̂pn − ξp) ≤ −r

)
= − f(ξp)2r2

2p(1− p)
(19)
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According to (10), (19), we have the following moderate deviation principle

lim
n→∞

1
b2
n

log P

(√
n

bn
|ξ̂pn − ξp| ≥ r

)
= − f(ξp)2r2

2p(1− p)
.

Proof of Theorem 2. As the same as the proof of Theorem 1, we have

P (ξ̂pn − ξp ≥ r) =P (p ≥ Fn(ξp + r))

=P

(
n∑

i=1

I{xi≥ξp+r} ≥ n(1− p)

)

=P

(
n∑

i=1

Uni ≥ n(1− p)

)
,

(20)

where
Uni = I{xi≥ξp+r}.

For any λ ∈ R, the Cramér functional of Uni is

Λ(λ) = log EeλUni = log(eλ[1− F (ξp + r)] + F (ξp + r))

and the Fenchel-Legendre transform of Λ(λ) is
if x ∈ [0, 1], then

Λ∗+(x) = sup
λ∈R

{λx− Λ(λ)}

=x log
x

1− F (ξp + r)
+ (1− x) log

1− x

F (ξp + r)
,

and, if x 6∈ [0, 1], then
Λ∗+(x) = ∞.

Then by Cramér Theorem (see [4, 6]), we have

lim
n→∞

1
n

log P

(
n∑

i=1

Uni ≥ n(1− p)

)
= − inf

x≥p
Λ∗+(x),

that is
lim

n→∞
1
n

log P
(
ξ̂pn − ξp ≥ r

)
= − inf

x≥1−p
Λ∗+(x).

Likewise,

lim
n→∞

1
n

log P
(
ξ̂pn − ξp ≤ −r

)
= − inf

x≥p
Λ∗−(x).

So the proof of the theorem is completed.
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Proof of Theorem 3. By Theorem 2, it is enough to show

lim
r→0

1
r2

inf
x≥1−p

Λ∗+(x) =
f(ξp)2

2p(1− p)
(21)

and

lim
r→0

1
r2

inf
x≥p

Λ∗−(x) =
f(ξp)2

2p(1− p)
. (22)

Here we only give the proof of (21) and the proof of (22) is similar. From Remark
1, we know

1
r2

inf
x≥1−p

Λ∗+(x) =
1
r2

(
(1− p) log

1− p

1− F (ξp + r)
+ p log

p

F (ξp + r)

)
.

Since
F (ξp + r) = F (ξp) + F

′
(ξp)r + o(r) = p + f(ξp)r + o(r),

then by Hospital’s rule, we can obtain

lim
r→0

1
r2

(
(1− p) log

1− p

1− F (ξp + r)
+ p log

p

F (ξp + r)

)

= lim
r→0

1
2r

(
(1− p)F

′
(ξp + r)

1− p− f(ξp)r + o(r)
− pF

′
(ξp + r)

p + f(ξp)r + o(r)

)

= lim
r→0

1
2r

f2(ξp)r
[1− p− f(ξp)r + o(r)][p + f(ξp)r + o(r)]

=
f2(ξp)

2p(1− p)
.

Hence we obtain our desired results.
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