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Abstract This study concerns a commonly-used procedure for evaluating the steady state

creep stress exponent, n, from indentation data. The procedure involves monitoring the in-

denter displacement history under constant load and making the assumption that, once its

velocity has stabilised, the system is in a quasi-steady state, with stage II creep dominating

the behaviour. The stress and strain fields under the indenter are represented by “equiva-

lent stress” and “equivalent strain rate” values. The estimate of n is then obtained as the

gradient of a plot of the logarithm of the equivalent strain rate against the logarithm of the

equivalent stress. Concerns have, however, been expressed about the reliability of this pro-

cedure, and indeed it has already been shown to be fundamentally flawed. In the present

paper, it is demonstrated, using a very simple analysis, that, for a genuinely stable velocity,

the procedure always leads to the same, constant value for n (either 1.0 or 0.5, depending

on whether the tip shape is spherical or self-similar). This occurs irrespective of the value

of the measured velocity, or indeed of any creep characteristic of the material. It is now

clear that previously-measured values of n, obtained using this procedure, have varied in

a more or less random fashion, depending on the functional form chosen to represent the

displacement–time history and the experimental variables (tip shape and size, penetration

depth, etc.), with little or no sensitivity to the true value of n.

Keywords Instrumented indentation · Creep

1 Introduction

It has been shown (Guelorget et al. 2007; Lee et al. 2008; Heinrich et al. 2009; Dean et al.

2010, 2013) that inverse FEM modelling procedures can be used to infer material property

values, including plasticity and creep characteristics, from instrumented indentation data,
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although it should be recognised that considerable work remains to be done (on identification

of optimal comparator data sets, implementation of convergence criteria and development of

user-friendly software packages) before the approach can be widely regarded as reliable and

convenient. Nevertheless, the procedures, which in the case of creep can take full account of

the roles of primary and secondary regimes of behaviour, are basically sound and, in view

of the considerable attractions of indentation testing, it seems likely that this approach will

ultimately lead to the wide availability and utilisation of tractable tools and procedures for

these purposes.

In the meantime, there has been a strong motivation to develop analytical methods of

interpreting indentation data so as to obtain material property values. Such methodology is

well-established for the Young’s modulus and reliable expressions are also available for the

yield stress, at least when the effect of work hardening can be neglected. Moreover, a simple

analytical procedure has evolved for derivation of the steady-state creep stress exponent (n)

from indentation creep dwell data. The analysis is based on identifying “equivalent” values

for both the stress and the strain rate beneath the indenter. The equivalent stress is taken to

be the load over the projected area, while the equivalent strain rate is taken as the indenter

velocity (dh/dt) over the current indenter depth (h). It is assumed that steady-state (stage

II) creep is rapidly established throughout the deforming volume, and that this condition

applies as soon as the indenter velocity has become constant. Closely-related procedures are

sometimes employed that are based on a “strain rate sensitivity” formulation.

It is perhaps worth mentioning that, while the common assumption has been that a

“steady state” is attained when the indenter velocity has become constant, one early treat-

ment (Lucas and Oliver 1999) was based on the concept of actually fixing the “indentation

strain rate” (i.e. (dh/dt)/h). It would be very unlikely for this condition to be satisfied under

“normal” conditions (i.e. with a fixed applied load), since it would require the penetration

velocity to increase with increasing depth (which has never been reported under constant

load, and would certainly not be expected). Of course, under displacement control, it would

be possible to impose this condition (almost certainly resulting in the applied load having to

be increased during the test). However, this has virtually never been done and the method-

ology being investigated here is based on the constant load condition that is in widespread

use.

Usage of this methodology, which originated over 20 years ago (Mayo et al. 1990;

Raman and Berriche 1992; Bower et al. 1993), has been, and continues to be, very

extensive (Fujiwara and Otsuka 2001; Liu et al. 2007; Takagi et al. 2008; Mahmudi

et al. 2009, 2013, 2015; Marques et al. 2013; Shen et al. 2013; Geranmayeh and Mah-

mudi 2014; Chinh and Szommer 2014; Kaur and Kaur 2014; Chatterjee et al. 2014;

Wang and Zeng 2015; Nautiyal et al. 2015; Ma et al. 2015). In fact, the number of pa-

pers in which it has been employed now runs into many dozens, if not hundreds, and

its usage actually appears to be accelerating. Values of n obtained in this way are fre-

quently interpreted in terms of creep mechanisms, even when they are implausibly high

(>20), and despite the publication of several critical appraisals (Goodall and Clyne 2006;

Chen and Bull 2009; Dean et al. 2014) of the method, which have exposed serious defi-

ciencies and concerns. There are relatively few cases (Liu et al. 2007; Takagi et al. 2008;

Mahmudi et al. 2009, 2013; Marques et al. 2013; Geranmayeh and Mahmudi 2014) in which

it is claimed that agreement has been obtained between indentation-derived values of n and

those from conventional creep testing, and even these often relate to comparisons with liter-

ature data, rather than to systematic creep testing of the same material.

A partial explanation for its continued usage in the face of many warning signs may lie in

the scope for confusion concerning the shape of penetration–time curves, which often bear
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at least a superficial resemblance to plots of creep strain against time, obtained from uniaxial

(macroscopic) creep tests. Both types of curve exhibit an initial transient, followed by some

kind of steady-state (constant gradient) region. In the case of conventional uniaxial creep

data, the steady state regime commonly has a genuinely constant gradient over an extended

period, associated with a microstructurally stable situation in which there is a well-defined

rate-determining process, often involving the repeated surmounting of obstacles by dislo-

cations. During indentation, however, the stress, strain and strain rate fields are complex,

and vary continuously with position and time. Inevitably, primary creep is taking place in

at least some locations throughout the test, which is commonly of relatively short duration.

The net effect on the indenter velocity is difficult to predict (at least without using numeri-

cal methods), but there is no clear reason why the penetration rate should stabilise, or, if it

does, why the behaviour should under those circumstances be dominated by stage II creep.

In fact, it is now recognised that, even if the indentation velocity does stabilise, neglecting

the effect of primary creep is likely to lead to major inaccuracies (Goodall and Clyne 2006;

Chen and Bull 2009; Dean et al. 2014) in calculated values of n. The underlying point is

that any similarity in shape between conventional creep curves and those obtained during

indentation is largely coincidental and a stable indenter velocity does not in fact indicate

that stage II creep is controlling the behaviour.

A previous paper (Dean et al. 2014) explored in some detail the reliability of the as-

sumptions incorporated in the methodology, including use of “equivalent” stress and strain

rate, and neglect of primary creep. The clear conclusion was reached that the method is fun-

damentally flawed and that inferred stress exponent values can vary widely for any given

material. The current paper is focused on the (occasionally-proposed) contention that, pro-

vided the indentation test is run for long enough, and the penetration rate has become fully

stable, the derived value of n may be reliable.

2 Indentation creep analysis

2.1 Experimental procedures

Indentation runs were carried out with a Micromaterials Nanoindenter. Polished samples of

OFHC copper were used. Two indenter tips were employed—a 50 µm diameter sphere and a

standard Berkovich. The applied load in both cases was 500 mN and the creep dwell period

was 1 hour. Full experimental details are given elsewhere (Dean et al. 2014).

2.2 The analytical methodology

The steady state creep strain rate during uniaxial creep is commonly expressed as

dε

dt
= Cσ n (1)

where ε is the creep strain, C is a constant (with an Arrhenius dependence on temperature),

σ is the applied stress, n is the stress exponent and t is the time. The corresponding equation

commonly applied to indentation creep is

1

h

dh

dt
= C

(

P

Ap(h)

)n

(2)
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Fig. 1 Experimental (creep)

penetration—time plots for

(creep) indentation into copper

samples under a constant applied

load of 500 mN, obtained with

spherical and Berkovich

indenters. Also shown are the

best fit (power law) curves

corresponding to Eqs. (3) and (4)

where h is the instantaneous indentation depth, P is the applied load and Ap(h) is the pro-

jected contact area (as a function of h). The left hand term is the “equivalent” strain rate,

while the bracketed term on the right hand side is the “equivalent” stress. The stress expo-

nent, n, can thus be obtained as the gradient of a plot of the logarithm of the “equivalent”

indentation strain rate against the logarithm of the “equivalent” indentation stress. It should

be noted here that the value of h is the total penetration depth, which will usually comprise

the depth at the start of the creep dwell period, h0, plus the cumulative penetration during

that period, hcr.

Experimental penetration–time data can be handled in several different ways to obtain

the indenter velocity. One is to use successive hcr(t) data pairs, although this often results

in excessive noise, making evaluation of the gradient a little difficult, and in practice this

is rarely done. More common is to fit smooth (analytical) curves to these data. Power law

relations are often used. This fitting procedure can be applied to the complete hcr(t) data

set, or just to the latter regions of the curve (where the penetration rate is stabilising). Such

expressions can then be differentiated analytically (for any selected time).

3 Illustrative application of the methodology

3.1 Power law curve fitting

In Fig. 1, the experimental hcr(t) data are presented and have also been fitted to simple

power law functions, leading to the following best-fit expressions

hcr = 0.04t0.24 and (3)

hcr = 0.053t0.27 (4)

for spherical and Berkovich tips, respectively. (In these equations, the values of the constants

are those appropriate when hcr is in µm and t is in s.) It can be seen that the fits are good,

particularly for the spherical tip. Corresponding plots of the logarithm of the “equivalent”

strain rate against the logarithm of the “equivalent” stress, after application of Eq. (2) to
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Fig. 2 Plots, for the two sets of

experimental data shown in

Fig. 1, of the logarithm of the

“equivalent” strain rate against

the logarithm of the “equivalent”

stress, obtained by applying

Eq. (2) at a series of points along

the modelled curves (Eqs. (3) and

(4))

the fitted curves, are shown in Fig. 2. It should be noted here that the total penetration, h,

has been used in these equations, since it is this (rather than the creep penetration, hcr) that

dictates the equivalent strain rates and stresses. The values of h0 (to which hcr is added to

give h) were respectively 1.356 and 3.055 µm, for spherical and Berkovich indenters. As is

commonly done, values of n have been calculated from the gradient of these curves towards

the latter stages of the test (as shown). Derived values of n are 18 for the spherical indenter

and 7.2 for the Berkovich indenter, as shown in the plot.

These are high values (representing implausibly high sensitivities of the strain rate to

the stress) and they are, of course, significantly different for the two tip shapes. It is a little

difficult to say whether these two curves do, in fact, appear to be stabilising (tending to a

constant value of n), although they are certainly representative of many previous studies in

which this assumption is made. Of course, the duration of the test (1 hour) is short compared

with “conventional” creep testing, although, again, this is typical of many such indentation

creep tests.

In fact, for the material concerned, conventional creep testing indicated that the “correct”

value of n during stage II creep was about 3.5, so both of the above values represent sub-

stantial over-estimates. The reasons for this were explored in some depth in the previous

publication (Dean et al. 2014).

3.2 Linear curve fitting

While the procedure of Sect. 3.1 is commonly employed, it is in some ways more logical

(and simpler) to just fit a linear plot to the penetration–time curve towards the end of the test.

This has been done in Fig. 3, where, for the same raw experimental data, the latter stages

have been fitted using linear functions, leading to the following best-fit expressions

hcr = 0.199 + 0.000027t and (5)

hcr = 0.26 + 0.000068t (6)

for spherical and Berkovich tips, respectively, with the constants again relating to the case

of hcr being in µm and t in s. These linear plots conform well in both cases to the measured

data (towards the end of the test), reflecting the fact that the indenter velocity appears to have
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Fig. 3 Experimental (creep)

penetration—time plots for

indentation into copper samples

under a constant applied load of

500 mN, obtained with spherical

and Berkovich indenters. Also

shown are the best fit (linear)

plots corresponding to Eqs. (5)

and (6), which are designed to fit

the gradient towards the end of

the test

Fig. 4 Plots, for the two sets of

experimental data shown in

Fig. 3, of the logarithm of the

“equivalent” strain rate against

the logarithm of the “equivalent”

stress, obtained by applying

Eq. (2) at a series of points

(towards the end of the test)

along the linear representation

(Eqs. (5) and (6)).

stabilised quite well. The corresponding plots of the logarithm of the “equivalent” strain

rate against the logarithm of the “equivalent” stress, after application of Eq. (2) to the fitted

curves (for t > 1800 s), are shown in Fig. 4. It can be seen that the values of n obtained in

this way appear to be about 1.0 and 0.5 for spherical and Berkovich tips, respectively. These

values are clearly inconsistent with those obtained in Fig. 2, despite the good agreement

between experimental data and modelled curves in Fig. 1.

4 Evaluation of n for a constant indenter velocity

4.1 General case

While the outcome of Fig. 4 looks surprising at first sight, it is in fact quite straightforward to

demonstrate that it follows inevitably from the assumption of a truly stable indenter velocity
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(irrespective of the “correct” value of n—in fact, irrespective of any characteristics of the

actual creep behaviour!).

Equation (2) can be expressed in logarithmic form as follows:

ln

(

1

h

dh

dt

)

= lnC + n ln

(

P

Ap

)

. (7)

The stress exponent is thus given by

n =
∂[ln( 1

h
dh
dt

)]

∂[ln( P
Ap

)]
. (8)

4.2 Spherical indenter tip

The necessary manipulation of Eq. (8) is now quite simple. The value of P is constant

throughout, so the only change in the denominator during a test comes from the dependence

of the projected area on the (total) penetration depth, h. For a sphere, this relationship is

Ap = π
(

2Rh − h2
)

so that Eq. (8) can be written

n =
∂[ln( dh

dt
) − ln(h)]

∂[ln(P
π
) − ln(2Rh − h2)]

, (9)

∴ n =
∂[ln( dh

dt
) − ln(h)]

∂[ln(P
π
) − ln(h) − ln(2R − h)]

. (10)

The value of P/π is constant. Provided that (as in the present case) R ≫ h, the value of

(2R −h) is also approximately constant. It follows that, for a situation in which the indenter

velocity (dh/dt ) has become constant, this equation reduces to

∴ n ≈
∂[− ln(h)]

∂[− ln(h)]
= 1. (11)

This is consistent with the plot in Fig. 4. In fact, all values of n derived from linear fits

to experimental penetration–time data for spherical indenter tips will be ∼1. (Even if the tip

diameter is comparable in magnitude to the penetration depth, which would be unusual, the

value of n will still be quite close to unity.)

4.3 Berkovich indenter tip

This case is similar to the above, except that the projected area is now given by

Ap = 24.5h2

so that Eq. (8) can in this case be written

n =
∂[ln( dh

dt
) − ln(h)]

∂[ln( P
24.5

) − 2 ln(h)]
. (12)
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Fig. 5 Plot, for the experimental

data in Fig. 1 corresponding to

the spherical tip, of the logarithm

of the “equivalent” strain rate

(area-based version) against the

logarithm of the “equivalent”

stress, obtained by applying

Eq. (14) at a series of points

along the modelled curves

(Eqs. (3) and (4))

The analysis is thus very similar to that in Sect. 4.2, leading to

∴ n ≈
∂[− ln(h)]

∂[−2 ln(h)]
= 0.5. (13)

For this type of (self-similar) indenter tip, the projected area is always proportional to the

square of the penetration depth, so the inferred value of n, for a truly stable indenter velocity,

will always be 0.5. This is also consistent with the plot in Fig. 4.

4.4 Area-based analysis

Lucas and Oliver (1999) suggested that a more appropriate definition of the indentation

strain rate, for a non-self-similar indenter tip (such as a sphere), is the rate of change of

(projected) contact area divided by the instantaneous (projected) contact area—that is to

say, ((dAp/dt)/Ap), rather than ((dh/dt)/h). (These two expressions are equivalent for

a self-similar tip shape.) The rationale supplied for this is that it is the rate at which the

elastic/plastic boundary moves that is determined by the creep behaviour of the sample. The

equivalent of Eq. (2) in this case is thus

(

1

Ap

)(

dAp

dt

)

= C

(

P

Ap

)n

(14)

where Ap is, of course, a function of h. The plots of Figs. 2 and 4 have been recreated (for the

spherical tip only), using this relationship in place of Eq. (2). The corresponding outcomes

are shown in Figs. 5 and 6. It can be seen that, for this definition of the indentation strain

rate, using the power law expression leads to a different (but still unreasonable) value for n,

while the linear fit leads to n = 1, as before. Of course, for a self-similar tip shape, using this

definition of the indentation strain rate has no effect on the analysis. It is therefore clear that

the exact definition of the equivalent strain rate has no significant effect on the outcome.

4.5 Effect of allowing penetration depth to approach tip radius

The analysis of Sect. 4.2, for the spherical tip, involved the assumption that R ≫ h. Typical

radii for spherical tips are at least about 5–10 µm, and they rarely penetrate more than a few
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Fig. 6 Plot, for the experimental

data in Fig. 1 corresponding to

the spherical tip, of the logarithm

of the “equivalent” strain rate

(area-based version) against the

logarithm of the “equivalent”

stress, obtained by applying

Eq. (14) at a series of points

(towards the end of the test)

along the linear representation

(Eqs. (5) and (6))

Fig. 7 Plot, based on the linear

representation of the

experimental data in Fig. 1 for

the spherical tip (Eq. (5)), of the

logarithm of the “equivalent”

strain rate against the logarithm

of the “equivalent” stress,

obtained by applying Eq. (14) at

a series of points. This plot is

taken well beyond the limit of the

actual experimental data (Fig. 4),

to the regime where the

penetration depth (h) approaches

the tip radius (R)

microns, so this condition commonly applies. However, in the interest of completeness, it is

worth noting whether the analysis should be changed in any way if this condition is relaxed

and the tip is allowed to penetrate up to h = R (i.e. to a depth where the sample surface

has reached the “equator” of the sphere). This also allows an estimate of the range of h/R

values over which the “R ≫ h” condition effectively applies.

The outcome of this investigation is shown in Fig. 7. This is an equivalent plot to that of

Fig. 4 (spherical indenter case), using the same (linear) fit (Eq. (5)), but extending the plot

from the actual limit of the experimental data up to h = 50 µm (h/R = 1). The assumption

is thus made that the penetration velocity remains constant (at 0.027 nm s−1—see Eq. (5))

for the further 1.8 × 106 s (∼21 days) needed to reach this depth. As expected, the gradient

of this plot is close to unity (n ≈ 1) over the portion corresponding to the early stages (where

both the equivalent strain rate and the equivalent stress have higher values). It is also clear

that this regime extends up to relatively high values of h/R(∼0.3)—covering virtually all

plausible experimental cases. It is true that, as h/R exceeds this value, this “limiting” gradi-
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ent (measured n value) starts to increase and, as h becomes close to R, it becomes relatively

large (∼10). The reasons for this are clear when the effect of the geometry is considered.

Of course, these “limiting” values still bear no relation whatsoever to the creep character-

istics of the material—they are simply a function of the conditions chosen for the test. In

any event, these increases in the limiting value of n only occur under conditions outside the

range of “conventional” testing, which “should” yield n = 1. For a self-similar tip shape,

n = 0.5 is expected for any penetration depth.

4.6 Interpretation of outcome

Study of the literature does reveal a number of cases (Nautiyal et al. 2015; Huang et al. 2009;

Choi et al. 2011; Wu et al. 2013; Machaka et al. 2014), covering a wide range of materials,

in which inferred values of n have been in the range “normally” expected in view of the

above analysis (∼1 with spherical tips and ∼0.5 for Berkovich, etc.), although, it is perhaps

surprising that there are not more examples. Of course, this outcome is entirely independent

of the actual creep mechanism, so it is clearly of concern in this context that such values have

commonly been taken to be indicative of diffusional (Nabarro–Herring or Coble) creep. In

fact, since indentation always tends to create conditions (at least in the vicinity of the tip) in

which the deviatoric (von Mises) stress is relatively high (close to the yield stress), there is

a strong tendency for indentation creep to occur via dislocation motion (usually leading to a

value of n in the range 2–5) and diffusional creep is inherently unlikely. Of course, the above

inferences (based on a value of n that should be obtained whenever the indenter velocity has

become truly stable) would clearly be incorrect in any event.

It can thus be concluded that there is a stark choice when applying these analytical pro-

cedures to indentation creep data. Either the (most common) route (of representing the data

by a functional expression) can be followed, in which case the outcome is highly unpre-

dictable and variable, but is likely to be a substantial overestimate, or the supposition of a

constant indenter velocity can be rigorously imposed (and measured towards the end of the

test), in which case a value of either 1.0 or 0.5 will be obtained, depending on tip shape (but

independent of the measured velocity value, or indeed of any creep characteristics of the

material). What the methodology certainly cannot deliver is an estimate of n that bears any

systematic relation to the true value of the stress exponent for steady state creep. It is now

completely clear that its usage should be discontinued.

An obvious question to ask under these circumstances is how such extensive usage of

the methodology can possibly have persisted over such a long period. Part of the answer

certainly lies in the development of data processing tools that have made the procedure

simple, quick and convenient, while apparently also being widely accepted and established.

Another relevant factor concerns the nature of certain sensitivities. Clearly, whatever formu-

lation is used to represent the experimental data, its gradient should become constant at long

times—this is the basis of the whole concept. However, in practice this commonly turns out

to require times that are considerably longer than the duration of the test. When plotted us-

ing these logarithmic functions, it often appears that some sort of stabilisation has occurred

in the value of n, when in fact it has not. As the analysis presented here has demonstrated,

actually imposing a constant gradient reveals that all such manipulations of the experimental

data are in fact tending to a universal value of n that bears no relation to the creep behaviour

of the material. Evidently, there are salutary lessons to be learned from the extended time

that it has taken for this to become clear.

To finish on a more positive note, the (many hundreds of) existing indentation creep data

sets probably do, at least in some cases, incorporate information that could be interpreted to
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obtain meaningful creep characterisation parameters (provided that relevant data concerning

tip size and shape, load histories etc have been retained). All that is required is implementa-

tion of suitable inverse FEM modelling procedures, so as to converge iteratively on best fit

values. These parameters will certainly include those describing primary creep, as well as

secondary creep. However, even in (probably common) cases where primary creep is com-

pletely dominating the indentation response, relationships between creep rates in the two

regimes may allow evaluation of steady state parameters. As such procedures become bet-

ter established and easier to implement, identification of optimal comparator data sets will

become clearer. These may involve usage of multiple applied loads and tip shapes, but it’s

certainly possible that some existing data sets would be adequate for this purpose without

further experimental work being necessary.

5 Conclusions

The following conclusions can be drawn from this work, which relates to indentation creep:

(a) Illustrative data have been presented from instrumented indentation of pure copper sam-

ples at room temperature, obtained using both spherical and Berkovich tip shapes, and

an established methodology has been employed, to infer from these data the value of

the (steady state) stress exponent, n. This led to values of about 18 and 7, respectively,

for these two tip shapes (under the conditions employed). The value obtained by con-

ventional creep testing of this material was about 3.5. It is a common observation that

indentation-derived values of n obtained in this way are often variable and are usually

over-estimates.

(b) The methodology is commonly implemented by fitting an analytical curve to the

penetration–time data, but it is based on the concept of the indenter penetration rate

reaching a constant value (“steady state” condition) at relatively long times. By actually

taking the velocity as constant, and evaluating it towards the end of the tests, values of n

were obtained as 1.0 and 0.5, respectively, for spherical and Berkovich tips. This is the

case for both depth-based and area-based expressions for the “indentation strain rate”.

(c) Using a simple mathematical analysis, it is shown that these values (1.0 and 0.5) will

always be obtained if the indenter velocity is taken to have reached a genuinely constant

value (and will exhibit no dependence on the actual measured velocity). It is thus evident

that the methodology is fundamentally flawed and it is now completely clear that any

similarity between values of n obtained using these simple analytical manipulations of

indentation creep data and the true steady state stress exponent of the material must be

entirely fortuitous.

Acknowledgements This work has been supported by EPSRC (grant RG62695) and also by AWE, as

part of an ongoing long term collaboration aimed at the development of robust and user-friendly tools for

the extraction of mechanical property characteristics from instrumented indentation data. The substantial

personal contributions of Dr. Giles Aldrich-Smith (AWE) to all aspects of this programme are gratefully

acknowledged.

In compliance with EPSRC requirements, the input data for FEM modelling of indentation rele-

vant to the work described in this paper, including meshing and boundary conditions, are available at

www.ccg.msm.cam.ac.uk/publications/resources, and are also accessible via the University repository at

http://www.data.cam.ac.uk/repository. These files can be downloaded and used in ABAQUS FEM models.

Data supplied are for a representative case (with a spherical indenter and radial symmetry).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-

national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,

provide a link to the Creative Commons license, and indicate if changes were made.

http://www.ccg.msm.cam.ac.uk/publications/resources
http://www.data.cam.ac.uk/repository


42 Mech Time-Depend Mater (2017) 21:31–43

References

Bower, A.F., Fleck, N.A., Needleman, A., Ogbonna, N.: Indentation of a power law creeping solid. Proc. R.

Soc. Lond. Ser. A, Math. Phys. Sci. 441, 97–124 (1993)

Chatterjee, A., Srivastava, M., Sharma, G., Chakravartty, J.K.: Investigations on plastic flow and creep be-

haviour in nano and ultrafine grain Ni by nanoindentation. Mater. Lett. 130, 29–31 (2014)

Chen, J., Bull, S.J.: The investigation of creep of electroplated Sn and Ni–Sn coating on copper at room

temperature by nanoindentation. Surf. Coat. Technol. 203(12), 1609–1617 (2009)

Chinh, N.Q., Szommer, P.: Mathematical description of indentation creep and its application for the deter-

mination of strain rate sensitivity. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 611,

333–336 (2014)

Choi, I-C., Yoo, B-G., Kim, Y-J., Seok, M-Y., Wang, Y., Jang, J.-I.: Estimating the creep stress exponent of

nanocrystalline nickel: sharp vs. spherical indentation. Scr. Mater. 65, 300–303 (2011)

Dean, J., Wheeler, J.M., Clyne, T.W.: Use of quasi-static nanoindentation data to obtain stress–strain charac-

teristics for metallic materials. Acta Mater. 58, 3613–3623 (2010)

Dean, J., Bradbury, A., Aldrich-Smith, G., Clyne, T.W.: A procedure for extracting primary and secondary

creep parameters from nanoindentation data. Mech. Mater. 65, 124–134 (2013)

Dean, J., Campbell, J., Aldrich-Smith, G., Clyne, T.W.: A critical assessment of the “stable indenter velocity”

method for obtaining the creep stress exponent from indentation data. Acta Mater. 80, 56–66 (2014)

Fujiwara, M., Otsuka, M.: Indentation creep of beta-Sn and Sn–Pb eutectic alloy. Mater. Sci. Eng. A, Struct.

Mater.: Prop. Microstruct. Process. 319–321, 929–933 (2001)

Geranmayeh, A.R., Mahmudi, R.: Indentation creep of a cast Mg–6Al–1Zn–0.7Si alloy. Mater. Sci. Eng. A,

Struct. Mater.: Prop. Microstruct. Process. 614, 311–318 (2014)

Goodall, R., Clyne, T.W.: A critical appraisal of the extraction of creep parameters from nanoindentation data

obtained at room temperature. Acta Mater. 54(20), 5489–5499 (2006)

Guelorget, B., Francois, M., Liu, C., Lu, J.: Extracting the plastic properties of metal materials from microin-

dentation tests: experimental comparison of recently published methods. J. Mater. Res. 22, 1512–1519

(2007)

Heinrich, C., Waas, A.M., Wineman, A.S.: Determination of material properties using nanoindentation and

multiple indenter tips. Int. J. Solids Struct. 46, 364–376 (2009)

Huang, Y.J., Shen, J., Chiu, Y.L., Chen, J.J.J., Sun, J.F.: Indentation creep of an Fe-based bulk metallic glass.

Intermetallics 17, 190–194 (2009)

Kaur, N., Kaur, D.: Room temperature nanoindentation creep of nanograined NiTiW shape memory alloy

thin films. Surf. Coat. Technol. 260, 260–265 (2014)

Lee, K., Kim, K., Kim, J., Kwon, D.: Derivation of tensile flow characteristics for austenitic materials from

instrumented indentation technique. J. Phys. D, Appl. Phys. 41, 74014 (2008)

Liu, H., Chen, Y., Tang, Y., Wei, S., Nuiu, G.: Tensile and indentation creep behaviour of Mg–5 %Sn and

Mg–5 %Sn–2 %Di alloys. Mater. Sci. Eng. A464, 124–128 (2007)

Lucas, B.N., Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. 30A,

601–610 (1999)

Ma, Y., Peng, G.J., Wen, D.H., Zhang, T.H.: Nanoindentation creep behavior in a CoCrFeCuNi high-entropy

alloy film with two different structure states. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct.

Process. 621, 111–117 (2015)

Machaka, R., Derry, T.E., Sigalas, I.: Room temperature nanoindentation creep of hot-pressed B6O. Mater.

Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 607, 521–524 (2014)

Mahmudi, R., Geranmayeh, A.R., Khanbareh, H., Jahangiri, N.: Indentation creep of lead-free Sn–9Zn and

Sn–8Zn–3Bi solder alloys. Mater. Des. 30, 574–580 (2009)

Mahmudi, R., Pourmajidian, M., Geranmayeh, A.R., Gorgannejad, S., Hashemizadeh, S.: Indentation creep

of lead-free Sn–3.5Ag solder alloy: effects of cooling rate and Zn/Sb addition. Mater. Sci. Eng. A, Struct.

Mater.: Prop. Microstruct. Process. 565, 236–242 (2013)

Mahmudi, R., Shalbafi, M., Karami, M., Geranmayeh, A.R.: Effect of Li content on the indentation creep

characteristics of cast Mg–Li–Zn alloys. Mater. Des. 75, 184–190 (2015)

Marques, V.M.F., Wunderle, B., Johnston, C., Grant, P.S.: Nanomechanical characterisation of Sn–Ag–Cu/Cu

joints. Part 2. Nanoindentation creep and its relationship with uniaxial creep as a function of temperature.

Acta Mater. 61(7), 2471–2480 (2013)

Mayo, M.J., Siegel, R.W., Narayansamy, A., Nix, W.D.: Mechanical properties of nanophase TiO2 as deter-

mined by nanoindentation. J. Mater. Res. 5(5), 1073–1081 (1990)

Nautiyal, P., Jain, J., Agarwal, A.: A comparative study of indentation induced creep in pure magnesium and

AZ61 alloy. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 630, 131–138 (2015)

Raman, V., Berriche, R.: An investigation of the creep processes in tin and aluminium using a depth-sensing

indentation technique. J. Mater. Res. 7(3), 627–638 (1992)



Mech Time-Depend Mater (2017) 21:31–43 43

Shen, L., Lu, P., Wang, S.J., Chen, Z.: Creep behaviour of eutectic SnBi alloy and its constituent phases using

nanoindentation technique. J. Alloys Compd. 574, 98–103 (2013)

Takagi, H., Dao, M., Fujiwara, M.: Analysis on pseudo-steady indentation creep. Acta Mech. Solida Sin. 21,

283–288 (2008)

Wang, Y., Zeng, J.: Effects of Mn addition on the microstructure and indentation creep behaviour of the hot

dip Zn coating. Mater. Des. 69, 64–69 (2015)

Wu, J.L., Pan, Y., Pi, J.H.: On indentation creep of two Cu-based bulk metallic glasses via nanoindentation.

Phys. Rev. B, Condens. Matter 421, 57–62 (2013)


	Limit case analysis of the "stable indenter velocity" method for obtaining creep stress exponents from constant load indentation creep tests
	Abstract
	Introduction
	Indentation creep analysis
	Experimental procedures
	The analytical methodology

	Illustrative application of the methodology
	Power law curve ﬁtting
	Linear curve ﬁtting

	Evaluation of n for a constant indenter velocity
	General case
	Spherical indenter tip
	Berkovich indenter tip
	Area-based analysis
	Effect of allowing penetration depth to approach tip radius
	Interpretation of outcome

	Conclusions
	Acknowledgements
	References


