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Abstract

This paper intends to explore bifurcation behavior of limit cycles for
a cubic Hamiltonian system with quintic perturbed terms using both
qualitative analysis and numerical exploration. To obtain the max-
imum number of limit cycles, a quintic perturbed function with the
form of R(x, y, λ) = S(x, y, λ) = mx2 + ny2 + ky4 − λ is added to a
cubic Hamiltonian system, where m, n, k and λ are all variable. The
investigation is based on detection functions which are particularly ef-
fective for the perturbed cubic Hamiltonian system. The study reveals
that, for the Hamiltonian system [equation (1.5) in the introduction]
with the perturbed terms mentioned above, there are 15 limit cycles if
15.1149 < λ < 15.1249; and 11 limit cycles if 15.1102 < λ < 15.1149.
As numerical illustration, we numerically predict the detection curves
and display graphically the distribution of limit cycles for the proposed
perturbed Hamiltonian system.
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1 Introduction

The bifurcation of limit cycles in Hamiltonian system has long been of

research interests in the circle of applied mathematics[1-6]. In particular, the

bifurcation of limit cycles of the following planar polynomial system

dx

dt
= Pn(x, y),

dy

dt
= Qn(x, y). (1.1)

has been considerably investigated during the past years and has now become

a very popular topic in the area of applied mathematics, where Pn and Qn

are two polynomials of degree n. It should be mentioned that the system

(1.1) is related to the celebrated Hibert’s 16th problem. For perturbed cubic

Hamiltonian systems, which is extensively studied in the applied mathematical

circle in comparison with other degrees of n of the system (1.1). For example,

Liu and Li [7] considered a class of cubic Hamiltonian system perturbed with

four centers and presented explicit formulas for the global and local bifurcations

of the flow. Zang et al [8] studied the number of limit cycles for a cubic

Hamiltonian system under quartic perturbation. Zhang et al [4] analyzed the

number of limit cycles for a different cubic Hamiltonian system with cubic

perturbation.

For perturbed cubic Hamiltonian system

dx

dt
= y(1 − cy2) − µxR(x, y, λ),

dy

dt
= −x(1 − ax2) − µyS(x, y, λ). (1.2)

where a, c, µ and λ are real parameters, a > 0, c > 0, 0 < µ � 1, R(x, y, λ)

and S(x, y, λ) are two polynomials. Among these studies, Li and Huang [9]

showed that the system (1.2) has 11 limit cycles when R(x, y, λ) = S(x, y, λ) =

mx2 + ny2 − λ, and obtained the Hilbert number H(3) ≥ 11. Further, Hong

and Liu [10] showed that the system (1.2) has 14 limit cycles when R(x, y, λ) =

S(x, y, λ) = mxk + nyk − λ, k = 10, 12, 14.

For the perturbed Hamiltonian system which is slightly different from the

system (1.2)

⎧⎪⎨
⎪⎩
dx

dt
= y(1 + x2 − ay2) − µxR(x, y, λ),

dy

dt
= −x(1 − cx2 + y2) − µyS(x, y, λ).

(1.3)

where a, c, µ(0 < µ � 1) and λ are real parameters, R(x, y, λ) and S(x, y, λ)

are polynomials, the work of Li and Liu [11] showed that the system above has

11 limit cycles when R(x, y, λ) = S(x, y, λ) = mx2 + ny2 − λ and obtained the



Limit cycle analysis on a cubic Hamiltonian system 1807

Hilbert number H(3) ≥ 11. Cao et als study [3] indicated that this system has

13 limit cycles when R(x, y, λ) = S(x, y, λ) = mx6 + ny6 − λ. Further, Tang

and Hong [12] found that the system (1.3) has 14 limit cycles when R(x, y, λ) =

S(x, y, λ) = mx8 +ny8 − λ. Zhang et al [13] also explored the number of limit

cycles for the Hamiltonian system of (1.3) under quartic perturbations. Wu et

al [6] also explored the number of limit cycles for the Hamiltonian system of

(1.3) under quintic perturbations.

For the Hamiltonian system

dx

dt
= y(1 + x2 + ay2),

dy

dt
= x(1 − cx2 − y2). (1.4)

Zhang et al [14] showed that the system (1.4) has 11 limit cycles under cubic

perturbations. Zhang et al [8] showed that the system (1.4) has 13 limit cycles

under quartic perturbations.

It is worthy noting that, based on the cubic Hamiltonian system

dx

dt
= y(1 − x2 + ay2),

dy

dt
= x(1 − cx2 + y2). (1.5)

where a and c are two real parameters and ac > 1, 0 < c < 1, a > 1, a series

of investigations on bifurcation behavior and number of limit cycles has been

conduced in recent years. The work of Li and Lin [15] showed that there are

11 limit cycles for the system (1.5) under cubic perturbed terms and obtained

the Hilbert number H(3) ≥ 11. For the perturbed Hamiltonian system

dx

dt
= y(1−x2 +ay2)−µxR(x, y, λ),

dy

dt
= x(1−cx2 +y2)−µyS(x, y, λ). (1.6)

where a, c, µ(0 < µ � 1) and λ are real parameters, R(x, y, λ) and S(x, y, λ)

are polynomials. More recently, Huang and Liu [16] constructed a quintic poly-

nomial system with a small parameter and eight normal parameters. Zang et

al[17] presented configurations of limit cycles bifurcated from a homoclinic loop

for quintic systems with quintic perturbations. Chen et al [18] explored the

center conditions for degenerate singular points of quintic polynomial vector

field with a small parameter and eight normal parameters.

From the above review, we found that most of previous studies is focused on

the R(x, y, λ) = S(x, y, λ) = mxk+nyk−λ. In this paper, a different perturbed

function R(x, y, λ) = S(x, y, λ) = mx2 +ny2 + ky4 − λ, is employed to explore

the bifurcation behavior and the distribution of limit cycles of the system

(1.6). m,n, k and λ here, rather than m,n and λ only in the existing work,

are all variable. Using the same method of detection function and method of
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numerical exploration as in [10,12], the study firstly shows that the system⎧⎪⎨
⎪⎩
dx

dt
= y(1 − x2 + ay2) − µx(mx2 + ny2 + ky4 − λ),

dy

dt
= x(1 − cx2 + y2) − µy(mx2 + ny2 + ky4 − λ).

(1.7)

has 15 limit cycles when a = 6, c = 0.25, m = 2, n = −13.47, k = 2.3, 0 <

µ � 1, 15.1149 < λ < 15.1249, and 11 limit cycles if 15.1102 < λ < 15.1149.

2 Detection function and detection curves

In this section some preliminary results on the detection functions for the

perturbed Hamiltonian system (1.7) are briefly reviewed in order to provide a

common source of formulation for the analysis in later sections. Let us begin

with considering the perturbed Hamiltonian system.

Ye [2] obtained some useful results by introducing.

Lemma 1. Consider the perturbed Hamiltonian system

dx

dt
= −∂H

∂y
+ P (x, y, α) ,

dy

dt
=
∂H

∂x
+Q (x, y, α) . (2.1)

and the corresponding unperturbed Hamiltonian system

dx

dt
= −∂H

∂y
,

dy

dt
=
∂H

∂x
. (2.2)

Obviously system (2.1) reduces into system (2.2) when P (x, y, 0) ≡ Q (x, y, 0)

≡ 0. The curve Γh defined by Hamiltonian H (x, y) = h of system (2.2) is,

then, closed orbits and will extend to the outside of Γh as h increases, and

Γh (D) is the area inside Γh. If there exists h∗ such that the function

A (h) =

∫∫
Γh(D)

[P ′′
xα (x, y, 0) +Q′′

yα (x, y, 0)]dxdy. (2.3)

satisfies A (h∗) = 0 and A′ (h∗) �= 0, αA′ (h∗) < 0 (> 0), then system (2.1)

has only one stable (unstable) limit cycle near to Γh∗
when α is vary small.

Conversely, If Γh is constrained inside as h increases, the stable properties of the

limit cycle are opposite of that described above, i.e., when αA′ (h∗) < 0 (> 0)

the limit cycle is unstable (stable). If A (h) �= 0, then system (2.1) has no limit

cycle.

Li and Li [19] considered the following system:

dx

dt
= −∂H

∂y
− µx [p (x, y) − λ] ,

dy

dt
=
∂H

∂x
− µy [q (x, y) − λ] . (2.4)
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where p (0, 0) = q (0, 0) = 0. Using the results given in [2] above, it follows

from A (h) = 0 that

λ = λ (h) =

∫∫
Γh(D)

f (x, y) dxdy

2
∫∫

Γh(D)
dxdy

, (2.5)

where

f(x, y) = xp′x + yq′y + p+ q. (2.6)

The function λ (h) is usually known as the detection function of system

(2.4). Using the detection function λ (h) and lemma 1 above, the following

proposition regarding the limit cycle of system (2.4) can be obtained [20]:

Proposition 1. For any given λ0: (1) If (h0, λ(h0)) is an intersecting point

of the line λ = λ0 and the detection curve λ = λ(h), and λ′(h0) > 0(< 0),

then the system (2.4) has only one stable (unstable) limit cycle near Γh0 when

λ = λ0; (2) If line λ = λ0 and the detection curve λ = λ(h) have no intersecting

point, then system (2.4) has no limit cycle when λ = λ0. Conversely, If Γh is

constrained inside as h increases, the stability of the limit cycle is opposite to

the results above.

The proof of this proposition can be found elsewhere [12]. For the sake of

completeness, we briefly present the proof as below:

Proof. In Lemma 1, let α = −µ, P (x, y, α) = αx [p(x, y) − λ], Q(x, y, α) =

αy [q(x, y) − λ]. We have P (x, y, 0) ≡ Q(x, y, 0) ≡ 0 and P ′′
xα+Q′′

yα = f(x, y)−
2λ. Thus the A(h) in Lemma 1 becomes

A(h) =

∫∫
Γh(D)

f(x, y)dxdy − λ

∫∫
Γh(D)

2dxdy. (2.7)

By denoting ψ(h) =
∫∫

Γh(D)
f(x, y)dxdy and φ(h) =

∫∫
Γh(D)

2dxdy, we have

λ =
ψ(h0)

φ(h0)
, from A(h0) = 0, which leads to

A′(h0) = ψ′(h0) − λφ′(h0) =
ψ′(h0)φ(h0) − ψ(h0)φ

′(h0)

φ(h0)
. (2.8)

We also have from (2.5) that

λ′(h0) =
ψ′(h0)φ(h0) − ψ(h0)φ

′(h0)

[φ(h0)]2
. (2.9)

It is noted from (2.5) that φ(h0) > 0. Moreover, both A′(h0) and λ′(h0)

have the same sign by comparing (2.8) with (2.9). Therefore, −µA′(h0) and

−µλ′(h0) also have the same sign. From Lemma 1, the proof of Proposition 1

is thus completed.
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3 Limit cycles distribution of perturbed system

Consider again the Hamiltonian systems (1.5). The related Hamiltonian

function is assumed to be in the form

H(x, y) = cx4 + ay4 − 2x2y2 + 2(y2 − x2). (3.1)

Letting H(x, y) = h, we have

cx4 + ay4 − 2x2y2 + 2(y2 − x2) = h. (3.2)

In polar coordinate system, from (1.5), we get⎧⎪⎨
⎪⎩
dr

dt
=

1

4
r sin(2θ){4 + [(a+ c) − (a− c+ 2) cos(2θ)]r2},

dθ

dt
= −1

4
[(a+ c− 2) − 2(a− c) cos(2θ) + (a+ c+ 2) cos2 θ]r2 + cos(2θ).

(3.3)

From (3.1) and (3.2), we get

H(r, θ) = r4u(θ) − 2r2 cos(2θ) = h. (3.4)

where

u(θ) = a sin4 θ + c cos4 θ − 2 sin2 θ cos2 θ. (3.5)

It follows from (3.4) that:

R± = r2
±(θ, h) =

cos(2θ) ± √
v(θ)

u(θ)
. (3.6)

where

v(θ) = cos2(2θ) + hu(θ). (3.7)

Letting
dθ

dt
= 0 in (3.3)2, it follows that:

θ± (h) =
1

2
arccos[

a− c± √
(a− c)2 − (a+ c− 2)(a+ c+ 2 + 4h−1)

a + c+ 2 + 4h−1
]. (3.8)

The curves defined by (3.1) or (3.3) form the following three types of closed

orbits when the parameter h varies from −a + c− 2

ac− 1
to +∞.

Γh
1 : −a + c− 2

ac− 1
< h < −1

c
, Γh

2 : −1

c
< h < 0, Γh

3 : 0 < h < +∞.

The phase portrait of (1.5) is shown in Fig. 1. It is noted that the all curves

will extend outwards as h increases.
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Fig. 1. Phase portrait of the unperturbed system (1.5) when a = 6 and c = 0.25.
Consider again the perturbed Hamiltonian system (1.7). Using (2.3), the

system (1.7) has three equations

∫∫
Γh

j (D)

(
∂2P

∂x∂µ
+

∂2Q

∂y∂µ

)
dxdy = 0 (j = 1 − 3). (3.9) − (3.11)

which correspond to the three families of closed orbits Γh
j (j = 1− 3) in Fig. 1.

By comparing (1.7) with (2.1) and (2.4), we have

∂2P

∂x∂µ
+

∂2Q

∂y∂µ
= 4mx2 + 4ny2 + 6ky4 − 2λ. (3.12)

By considering (3.2)-(3.12), the detection function λj(h) can finally be given

in the form

λj(h) =

∫∫
Γh

j (D)
(4mx2 + 4ny2 + 6ky4) dxdy

2
∫∫

Γh
j (D)

dxdy
(j = 1 − 3). (3.13) − (3.15)

4 Distribution of limit cycles

For simplicity, let a = 6, c = 0.25 in (1.7). Based on (3.13)-(3.15), the three

detection functions of the system (1.7) can then be expressed in the polar

coordinate system as

λ1 (h) =

∫ θ−
θ+

(R2
+ −R2

−) cos2 θdθ∫ θ−
θ+

(R+ − R−)dθ
m+

∫ θ−
θ+

(R2
+ − R2

−) sin2 θdθ∫ θ−
θ+

(R+ − R−)dθ
n
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+

∫ θ−
θ+

(R3
+ − R3

−) sin4 θdθ∫ θ−
θ+

(R+ −R−)dθ
k,

(
−a + c− 2

ac− 1
< h < −1

c

)
. (4.1)

λ2 (h) =

∫ θ−
−θ−(R2

+ − R2
−) cos2 θdθ∫ θ−

−θ−
(R+ −R−)dθ

m+

∫ θ−
−θ−(R2

+ − R2
−) sin2 θdθ∫ θ−

−θ−
(R+ − R−)dθ

n

+

∫ θ−
−θ−

(R3
+ − R3

−) sin4 θdθ∫ θ−
−θ−(R+ − R−)dθ

k,

(
−1

c
< h < 0

)
. (4.2)

λ3 (h) =

∫ 2π

0
R2

+ cos2 θdθ∫ 2π

0
R+dθ

m+

∫ 2π

0
R2

+ sin2 θdθ∫ 2π

0
R+dθ

n+

∫ 2π

0
R3

+ sin4 θdθ∫ 2π

0
R+dθ

k,

(0 < h < +∞) . (4.3)

which corresponds to the three families of closed orbits Γh
j (j = 1−3) in Fig.

1, where

R± = r2
±(θ, h) =

cos(2θ) ± √
v(θ)

u(θ)
. (4.4)

u(θ) = a sin4 θ + c cos4 θ − 2 sin2 θ cos2 θ. (4.5)

v(θ) = cos2(2θ) + hu(θ). (4.6)

θ± (h) =
1

2
arccos[

a− c± √
(a− c)2 − (a+ c− 2)(a+ c+ 2 + 4h−1)

a + c+ 2 + 4h−1
]. (4.7)

Table 1 lists the values of detection functions λj(h)(j = 1−3), obtained from

(4.1)−(4.3), as they vary with the parameter h. The three detection functions

of system (1.7) listed in Table 1 are also illustrated in Fig. 2.

Table 1 Values of detection functions λj(h)(j = 1 − 3), a = 6, c = 0.25,
m = 2, n = −13.47 and k = 2.3
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h λ1(h) h λ2(h) h λ3(h)

-8.49999 15.1149 -3.99999 15.1252 0.00001 13.7102

-8.40001 15.1161 -3.92001 15.1320 0.10001 13.5600

-8.30001 15.1172 -3.90001 15.1326 0.20001 13.4746

-7.90001 15.1209 -3.89001 15.1326 0.50001 13.3284

-7.70001 15.1222 -3.88001 15.1327 1.00001 13.2367

-7.50001 15.1232 -3.87001 15.1328 1.20001 13.2280

-7.30001 15.1242 -3.80001 15.1319 1.24001 13.2276

-7.10001 15.1246 -3.70001 15.1278 1.25001 13.2275

-6.95001 15.1249 -3.50001 15.1134 1.30001 13.2277

-6.70001 15.1246 -3.30001 15.0926 1.40001 13.2298

-6.50001 15.1244 -2.90001 15.0359 1.50001 13.2342

-6.30001 15.1237 -2.70001 15.0008 1.60001 13.2404

-5.90001 15.1215 -2.50001 14.9616 2.00001 13.2820

-5.70001 15.1200 -2.30001 14.9176 2.50001 13.3633

-5.50001 15.1182 -1.90001 14.8151 3.00001 13.4690

-5.30001 15.1163 -1.70001 14.7557 3.50001 13.5931

-4.90001 15.1126 -1.50001 14.6899 4.00001 13.7313

-4.70001 15.1111 -1.30001 14.6170 4.50001 13.8814

-4.50001 15.1103 -0.90001 14.4442 5.00001 14.0409

-4.45001 15.1102 -0.70001 14.3395 5.50001 14.2087

-4.40001 15.1103 -0.50001 14.2178 6.00001 14.3832

-4.30001 15.1110 -0.30001 14.0701 7.00001 14.7492

-4.10001 15.1160 -0.10001 13.8728 8.00001 15.1332

-4.00001 15.1252 -0.00001 13.7103 9.00001 15.5313

Fig. 2. Detection curves of system (1.7) when a = 6, c = 0.25, m = 2,
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n = −13.47 and k = 2.3.

Based on the three detection curves in Fig 2 and Proposition 1 in Section 2,

the following proposition can be presented:

Proposition 2 For a = 6, c = 0.25, m = 2, n = −13.47, k = 2.3 and

0 < µ� 1, we have the following two conclusions:

(1)The system (1.7) has 15 limit cycles if 15.1149 < λ < 15.1249 (see Fig.

3).

(2)The system (1.7) has 11 limit cycles if 15.1102 < λ < 15.1149 (see Fig.

4).

It should be mentioned that other results can be similarly obtained in addi-

tion to the two cases listed above. But we omit those details for conciseness.

Figures 3 and 4 display the position of each limit cycle obtained by using the

numerical exploration method [21]. In the calculation, λ = 15.12, λ = 15.114

are used.

Fig. 3. The 15 limit cycles and their distribution for system (1.7) when a = 6,

c = 0.25, m = 2, n = −13.47, k = 2.3, λ = 15.12 and µ = 0.0001. Each limit

cycle passes a particular point listed in Table 2.
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Table 2 Points passed by limit cycles in Fig. 3.

limit cycles passing point limit cycles passing point

Γ31 (stable) (0, 0.9988) Γ1
12 (unstable) (3, 0.7900)

Γ1
21 (unstable) (1.6437, 0) Γ2

12 (unstable) (-3, 0.8397)

Γ2
21 (unstable) (-1.6437, 0) Γ3

12 (unstable) (-3, -0.7900)

Γ1
11 (stable) (3, 1.0608) Γ4

12 (unstable) (3, -0.8397)

Γ2
11 (stable) (-3,1.0081) Γ1

13 (stable) (3, 0.6955)

Γ3
11 (stable) (-3, -1.0608) Γ2

13 (stable) (-3, 0.6896)

Γ4
11 (stable) (3, -1.0081) Γ3

13 (stable) (-3, -0.6955)

Γ4
13 (stable) (3, -0.6896)

Fig. 4. The 11 limit cycles and their distribution for system (1.7) when a = 6,

c = 0.25, m = 2, n = −13.47, k = 2.3, λ = 15.114 and µ = 0.0001. Each limit

cycle passes a particular point listed in Table 3.

Table 3 Points passed by limit cycles in Fig. 4.

limit cycles passing point limit cycles passing point

Γ31 (stable) (0, 0.9982) Γ4
11 (unstable) (3, -0.7853)

Γ1
21 (unstable) (1.6126, 0) Γ1

12 (stable) (3, 0.7125)

Γ2
21 (unstable) (-1.6126, 0) Γ2

12 (stable) (-3, 0.6947)

Γ1
11 (unstable) (3, 0.7391) Γ3

12 (stable) (-3, -0.7125)

Γ2
11 (unstable) (-3, 0.7853) Γ4

12 (stable) (3, -0.6947)

Γ3
11 (unstable) (-3, -0.7391)
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5 Conclusions

In the above discussion, we use both qualitative and numerical methods to

investigate the number and distribution of limit cycles in a cubic Hamiltonian

system with quintic perturbed term (1.7). The study is based on assuming that

ac > 1, 0 < c < 1, a > 1, 0 < µ � 1, m, n, k and λ are all real parameters

in (1.7). In particular, for a = 6, c = 0.25, m = 2, n = −13.47, k = 2.3

and 0 < µ � 1, the study reveals that the system (1.7) has 15 limit cycles if

15.1149 < λ < 15.1249 and has 11 limit cycles if 15.1102 < λ < 15.1149. It is

also found that each limit cycle passes a particular point and the position of

these points is obtained by using the numerical exploration method [21] when

a = 6, c = 0.25, m = 2, n = −13.47, k = 2.3 and µ = 0.0001 for two particular

values of parameter λ(15.12 and 15.114).
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