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He’s variational method for finding limit cycles is applied to the Brusselator. The tech-

nique developed in this paper is similar to Kantorovitch’s method in variational theory.

The present theory can be applied not only to weakly nonlinear equations, but also to

strongly ones, and the obtained results are valid for the whole solution domain.
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1. Introduction

The Brusselator originates from a chemical reaction which consists of four steps:

A−→ X , B+X −→D+Y , 2X +Y −→ 3X , X −→ E, (1.1)

where A, B, D, E, X , and Y are all species. The differential equations given in dimension-

less form for these species are

Ẋ = A− (1 +B)X +X2Y , (1.a)

Ẏ = BX −X2Y , (2.a)

where all rate constants are assumed to be equal to 1, and the reactants A and B are

assumed to be in large excess so that their concentrations do not change with time. The

parameters A and B are the controllable parameters.
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For this analysis, the dynamics of the Brusselator reaction can be described by a system

of two ODEs. In dimensionless forms, they are

ẋ = A− (1 +B)x+ x2y, (1.b)

ẏ = Bx− x2y, (2.b)

where x, y ∈ R, and A,B ∈ R are constants with A,B > 0, x and y stand for the dimen-

sionless concentrations of reference reactants.

System (1.b)-(2.b) has been extensively studied in a mathematical view [1–3], but

rarely in an engineering approach. In engineering, we need a design formulation em-

bodying the essential relationships needed by engineers who have to design practical sys-

tems.

System (1.b)-(2.b) has no possible small parameters, so the traditional perturbation

methods [4] cannot be directly applied. Recently, some new perturbation methods and

nonperturbative methods are proposed, for example, nonperturbative method [5], δ-

method [6, 7], artificial small parameter method [8], homotopy perturbation method [9–

14], variational iteration methods [15–18], perturbation-incremental method [21, 22],

various modified Lindstedt-Poincare methods [23–25], a review of the recently developed

analytical methods are given by He [19, 20].

The determination of amplitude and period of limit cycles is a crucial question in

nonlinear problems [26–35]. Ji-Huan He suggested an energy approach to limit cycles

[26, 27], it is a simple but powerful method. The method is similar to Kantorovitch’s

method in variational theory, so the method was called as He’s variational method by

D’Acunto [28, 29]. In this paper, we apply He’s variational method to the Brusselator,

revealing that the method is very effective and convenient.

2. An illustrative example

Generally speaking, limit cycles can be determined approximately in the form [4, 19, 20,

26, 27]

x = b+ a(t)cosωt+
m
∑

n=1

(

Cn cosnωt+Dn sinnωt
)

, (2.1)

where b, Cn, and Dn are constants.

In order to best illustrate the theory, we consider Duffing equation as an illustrative

example,

ẋ = y, (2.2)

ẏ =−x− εx3. (2.3)

Suppose that x = acosωt, where a is a constant. From (2.2), we have y = −aω sinωt.

Substituting the results into (2.3), we get the following residual:

R(t)= ẏ + x+ εx3 =−aω2 cosωt+ acosωt+ εa3 cos3ωt. (2.4)
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Figure 2.1. Comparison of perturbation period (Tpert) of Duffing equation (continuous line) with

the exact one (Tex) ( discontinuous line).

In general, the residual might not be vanishingly small at all points. The best approxima-

tion for the solution is to minimize the residuum R, and the simplest method of obtaining

the solution is the weighted residual method [26, 27], which requires that

∫ T

0
Rcosωtdt = 0, (2.5)

where T is the period.

From (2.5), we readily obtain the following result:

ω =

√

1 +
3

4
εa2. (2.6)

We, therefore, obtain the following approximate period:

T =
2π

√
1 + 0.75εa2

. (2.7)

In addition, from [4], we know that the perturbation solution is

Tpert = 2π

(

1−
3

8
εa2

)

, ε≪ 1, (2.8)

and the exact solution is

Tex =
4

√
1 + εa2

∫ π/2

0

dx
√

1− k sin2 x
, k =

εa2

2
(

1 + εa2
) . (2.9)
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Figure 2.2. Comparison of our result (2.7) of Duffing equation with the exact one. Our result: con-

tinuous line; exact solution: discontinuous line.

From Figures 2.1 and 2.2, it is obvious that perturbation solution becomes invalid

for large values of ε, however, our result is valid for the whole solution domain, that is,

0 < ε <∞. In case ε→∞, we have

lim
ε→∞

Tex

T
=

2
√

0.75

π

∫ π/2

0

dx
√

1− 0.5sin2 x
=

2
√

0.75

π
× 1.68575= 0.929. (2.10)

The 7.6% accuracy is remarkably good in view of the simplest trial function, x = acosωt,

when ε→∞. The accuracy can be dramatically improved if we choose the trial function

in the form x = acosωt+ bcos3ωt.

In order to improve the accuracy, we can begin with x0 = acosωt, then from (2.3)

we can obtain y0; substituting y0 into (2.2), the function x can be updated as x1. The

procedure can be continued before we use the weighted residual method to identify the

frequency. The technique developed in this paper is similar to Kantorovitch’s method in

variational theory [4].

3. The Brusellator

To simplify the procedure, from (1.2) and (1.3) we can obtain the following equation:

ẏ =−ẋ+A− x. (3.1)

System (1.b)-(2.b) is equivalent to (1.b) and (3.1), or (2.b) and (3.1). Now we begin with

x = a0 cosωt+ a1, (3.2)

where a0, a1, and ω are unknown constants. Substituting (3.2) into (3.1) results in

ẏ = a0ω sinωt+A− a0 cosωt− a1. (3.3)
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No secular terms in y requires that

a1 = A. (3.4)

Solving (3.3), we have

y =−a0 cosωt−
a0

ω
sinωt+ b, (3.5)

where b is a constant to be further determined.

In view of (3.2) and (3.5), we obtain the following residuum:

R=− ẏ +Bx− x2y =−a0ω sinωt+ a0 cosωt+B
(

a0 cosωt+A
)

+
(

a0 cosωt+A
)2
(

a0 cosωt+
a0

ω
sinωt− b

)

=−a0ω sinωt+ a0 cosωt+Ba0 cosωt+AB

+
(

a2
0 cos2ωt+ 2Aa0 cosωt+A2

)

(

a0 cosωt+
a0

ω
sinωt− b

)

=−a0ω sinωt+ a0 cosωt+Ba0 cosωt+AB

+
(

a3
0 cos3ωt+ 2Aa2

0 cos2ωt+A2a0 cosωt
)

+ a2
0

a0

ω
sinωt cos2ωt+ 2Aa0

a0

ω
sinωt cosωt+A2 a0

ω
sinωt

− ba2
0 cos2ωt− 2Aa0bcosωt−A2b.

(3.6)

In order to identify the constants a0, b, and ω, we set

∫ T

0
Rdt = 0,

∫ T

0
Rcosωtdt = 0,

∫ T

0
Rsinωtdt = 0,

(3.7)

where T is the period.

From (3.7), we have

AB+Aa2
0−

1

2
ba2

0−A2b = 0,

a0 +Ba0 +
3

4
a3

0 +A2a0− 2Aa0b = 0,

−a0ω+
a3

0

4ω
+A2 a0

ω
= 0.

(3.8)
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Solving (3.8), simultaneously, we have

b =
(7/2)A2 +B+ 1±

√

−(15/4)A4 + 3A2(B− 3) + (B+ 1)2

4A
,

a2
0 =

AB−A−A3

b− (5/4)A
=

B− 1−A2

(b/A)− (5/4)
,

ω =

√

AB−A−A3

4b− 5A
+A2.

(3.9)

Note that b and a0 are real numbers, so there are

∆=−
15

4
A4 + 3A2(B− 3) + (B+ 1)2 ≥ 0,

B− 1−A2

(b/A)− (5/4)
≥ 0.

(3.10)

By a simple analysis, we can obtain the following results.

(1) When B > 1 +A2, the constant b can be finally determined as

b =
(7/2)A2 +B+ 1 +

√

−(15/4)A4 + 3A2(B− 3) + (B+ 1)2

4A
. (3.11)

(2) When B ≤ 1 +A2 and A2 > 4, the constant b can be finally determined as

b =
(7/2)A2 +B+ 1±

√

−(15/4)A4 + 3A2(B− 3) + (B+ 1)2

4A
. (3.12)

The approximate period can be written in the form

T =
2π

√

((AB−A−A3)/(4b− 5A)) +A2
, (3.13)

where b is defined by (3.11) or (3.12).

4. Conclusion

To summarize, we can conclude from the results thus obtained that the method developed

here is extremely simple in its principle, quite easy to use, and gives a very good accuracy

in the whole solution domain, even with the simplest trial functions. Theoretically, any

accuracy can be arrived at by suitable choice of trial functions or by iterations before

weighted residual method is applied.
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