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Using an inviscid flow computational fluid dynamic model and a harmonic balance flow

solver, a parametric investigation of how structural-inertial parameters and freestream

Mach number of a transonic flow affect the limit cycle oscillation characteristics of a typi-

cal two degree-of-freedom transonic airfoil configuration is presented. The computational

efficiency of the harmonic balance aerodynamic model allows a much more thorough

exploration of the parameter range than has been possible previously.

Nomenclature

a = nondimensional location of airfoil elastic
axis, a = e

b

b, c = semi-chord and chord, respectively
c̄l, c̄m = nondimensional coefficients of lift and

moment about elastic axis for simple
harmonic motion

e = location of airfoil elastic axis,
measured positive aft of airfoil midchord

h, h̄ = airfoil plunge degree-of-freedom and its
nondimensional amplitude, respectively,
h̄ is identical to h/b

Iα = second moment of inertia about elastic axis
L = aerodynamic lift
Kh,Kα = airfoil plunge stiffness and torsional

stiffness about elastic axis, respectively
M = freestream Mach number
Me.a. = aerodynamic moment about elastic axis
m = airfoil sectional mass
rα = radius of gyration of airfoil about elastic

axis, r2
α is identical to Iα/mb2

Sα = first moment of inertia about elastic axis
or static unbalance

U = freestream velocity
V = reduced velocity, V is identical to U/ωαb
xα = airfoil static unbalance, xα is identical to

Sα/mb
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α, ᾱ = airfoil pitch degree-of-freedom and its
nondimensional amplitude, respectively

µ = mass ratio, µ is identical to m/πρb2

ω, ω̄ = frequency and reduced frequency based on
airfoil chord, ω̄ is identical to ωc/U

ωα, ωh = uncoupled natural frequencies of pitch and
plunge degrees of freedom

ω1, ω2 = coupled structural natural frequencies

Introduction

Transonic flow flutter and limit cycle oscillations
(LCO) are of significant interest in wing and aircraft
design. The large expense incurred in both time-
and frequency-domain transonic aerodynamic compu-
tations is the principal obstacle to the aeroelastician in
obtaining a deeper understanding of these phenomena
through a systematic parameter study.

In the past few years at Duke University a number of
computational fluid dynamic (CFD) based time (dy-
namically) linearized codes have been developed and
converted to the frequency domain. Recently, a novel
nonlinear harmonic balance (HB) solution method
that extends the frequency domain CFD models to the
fully dynamically nonlinear range has been developed1

. This method enables one to model efficiently non-
linear unsteady aerodynamic behavior corresponding
to finite amplitude structural motion of a prescribed
frequency, and which can be subsequently used for
modeling LCO behavior. It is believed that HB based
LCO modeling will significantly advance the aeroelas-
tician’s capability to do rapid parametric studies.

Using a dynamically linearized option of the Euler
HB model the flutter boundary of a typical two degree-
of-freedom (DOF) airfoil aeroelastic configuration was
determined, see Ref. [2, 3]. In the current work, a
subsequent LCO study of the same model undergoing
large motions is described.
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Fig. 1 Generic Display of the LCO Behavior.

Governing Equations and

Computational Method

Consider a typical two DOF airfoil section with the
equations of motion:

mḧ + Sαα̈ + Khh = −L

Sαḧ + Iαα̈ + Kαα = Me.a.
(1)

Here the left-hand side terms represent a linear struc-
tural model for the plunge and pitch coordinates. The
right hand side terms represent the aerodynamic load-
ing terms, which for this study are based upon the
harmonic balance solution approach applied to a CFD
model of the inviscid Euler equations. A summary of
the method, its application to parametric flutter anal-
ysis and a CFD grid convergence study are given in a
recent work of the authors2 . For a more detailed de-
scription of the inviscid computational fluid dynamic
harmonic balance aerodynamic Euler based method
see Ref. [1].

Rewriting the nonlinear aeroelastic equations in the
frequency domain in terms of nondimensional variables
yields

[

−ω̄2

(

1 xα

xαr2
α

)

+
4

V 2

(

ω2

h

ω2
α

0

0 r2
α

)]

{

h̄
ᾱ

}

=
4

πµ

{

− c̄l(h̄, ᾱ, ω̄)
2 c̄m(h̄, ᾱ, ω̄)

}

.

(2)

Modeling LCO Behavior

Specifying a real valued amplitude of the pitch DOF
as the independent variable, ᾱ, the real and imaginary
parts of Eq. (2) then constitute a system of four non-
linear real equations for the vector of unknowns

L =

{

ω̄, V, (
h̄

ᾱ
)Re, (

h̄

ᾱ
)Im

}T

. (3)

Eq. (2) can then be written in the vector form
R(L) = 0, or
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
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



=0. (4)

A Newton-Raphson method was used to solve the sys-
tem, Eq. (4).

L
n+1 = L

n −

[

∂R(Ln)

∂L

]

−1

R(L
n
) (5)

where the Jacobian matrix
∂R(L

n
)

∂L
can be approxi-

mated using forward differences. For example,

∂R(Ln)
∂L

∣

∣

∣

1,1
≡ ∂R1(L

n)
∂ω̄

≈ R1(Ln,ω̄n+ε)−R1(Ln,ω̄n)
ε

∂R(Ln)
∂L

∣

∣

∣

1,2
≡ ∂R1(Ln)

∂V
≈ R1(Ln,V n+ε)−R1(Ln,V n)

ε

(6)

for a small ε. Thus, during each iteration, the HB flow
solver is run four times: one time to determine R for
L

n, and three more times to determine R for L
n with

sensitivities in ω̄, (h̄/ᾱ)Re and (h̄/ᾱ)Im. Once the
values of Newton-Raphson’s method sequence are suf-
ficiently close to the root, the convergence is so rapid
that only a few more values are needed.

Using the reduced flutter velocity, the frequency and
eigenvector obtained from a linearized aerodynamic
model as starting solution one can then calculate a
LCO solution for a specified small amplitude of pitch
ᾱ in just a few iterations. The process can then be re-
peated for a larger LCO amplitude. Smaller amplitude
increments must be used for successful convergence if
the nonlinear effect is very strong.

One of the main objectives of this study is to de-
termine the effects of aerodynamic nonlinearity of the
flow on LCO behavior of the airfoil. The dependence
of LCO behavior on the Mach number presents the
greatest challenge especially for transonic Mach num-
bers.

In presenting the results, a distinction will be made
with respect to stable LCO vs. unstable LCO, and
weak vs. strong (stable or unstable) LCO. To explain
these terms, consider Fig. 1, which displays three
generic curves for the amplitude of LCO vs reduced
velocity. If the aerodynamic model is dynamically lin-
ear, then in this limiting case the LCO amplitude vs
reduced velocity curve would simply be a vertical line
indicating that the steady limit cycle amplitude is infi-
nite when the flutter boundary and the corresponding
reduced velocity is reached and exceeded. Hence a
vertical or near vertical graph of LCO amplitude vs
reduced velocity is said to be a “weak” LCO. Note
that a weak LCO in fact corresponds to a large LCO
amplitude. Conversely if the LCO amplitude is smaller
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Fig. 2 LCO Behavior for ωh

ωα
= 0.5 and M = 0.8.
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Fig. 4 LCO Behavior for ωh

ωα
= 1.8 and M = 0.8.

and the graph of LCO amplitude vs reduced velocity
bends more to the right or left it is said to be a “strong”
LCO. Note that weak or strong refers to the strength
of the (aerodynamic) nonlinearity and the LCO am-
plitude itself is correspondingly large or small.

Now the other distinction to be emphasized is that
between stable vs. unstable LCO. If the LCO ampli-
tude increases with increasing reduced velocity beyond
the flutter boundary, then the LCO is said to be sta-
ble. Physically this means that LCO does not occur
below the flutter boundary and that the LCO that oc-
curs above the flutter boundary is stable with respect
to small infinitesimal disturbances. Conversely, if the
LCO amplitude increases as the reduced velocity de-
creases from the flutter boundary, then the LCO is
said to be unstable since LCO may now occur for re-
duced velocities below the flutter boundary. Moreover,
a stability analysis for the LCO per se with respect to
infinitesimal disturbances will usually show that any
perturbation to this unstable LCO will lead to a tran-
sient motion that at large time will reach a new LCO
that is stable (typically at a larger amplitude). Again
see Fig. 1 for a generic display of this latter behavior.

In the present work a perturbation stability analysis
of the LCO per se has not been carried out and the
identification of stable or unstable LCO is made based
solely on the dependence of LCO amplitude on reduced
velocity as shown in Fig. 1.

The discussion of the LCO results begins with the
dependence of LCO on mass and uncoupled natural
frequencies ratios at Mach number M = 0.8.

LCO Sensitivity to Structural-Inertial

Parameters

These LCO results are obtained for a
NACA 64A010A airfoil with the following values
of structural parameters: xα = 0.25, r2

α = 0.75,
a = −0.6. These parameters match those of the
previous flutter studies2 . From these studies, it is
known that the solution variables (i. e. reduced
velocity, frequency and structural eigenmode) vary
little with the mass ratio, µ, and flutter reduced
velocities have a minimum near ωh

ωα
≈ 1. These same

trends are also observed in the following LCO results
(at a given LCO amplitude) for a Mach number of
M = 0.8.
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Fig. 5 LCO Behavior with respect to Mach Number for ωh

ωα
= 0.5 and µ = 100.

A distinct transition from stable LCO to weak LCO
and then to unstable LCO as the ratio of uncoupled
frequencies is increased, is noted. In all cases, a higher
mass ratio is found to correspond to a higher reduced
velocity (for a particular LCO amplitude) and a lower
reduced frequency.

Also considered is harmonic convergence of the com-
puted unsteady aerodynamic forces via the HB solver.

ωh

ωα
= 0.5:

Fig. 2a shows a stable LCO in terms of LCO ampli-
tude vs reduced velocity. Employing just two harmon-
ics in the HB solver provides a good level of harmonic
convergence for moderate LCO amplitudes. The mo-
tion is plunge dominant at low amplitudes and be-
comes even more so (|h̄/ᾱ| increases) for large LCO
amplitudes.

ωh

ωα
= 0.8 and ωh

ωα
= 1.5:

Fig. 3 shows LCO results for frequency ratios of
ωh/ωα = 0.8 and 1.5. In both cases the nonlinear-
ity is rather weak – the LCO results depend weakly
on the amplitude, i. e. the LCO graphs are close to

being straight vertical lines.

The present HB/CFD solver has some numerical
stability problems for large reduced frequencies, which
in turn means that using multiple harmonics for some
cases may not work. For the case of ωh/ωα = 0.8 and
ωh/ωα = 1.5, the LCO reduced frequency is quite high
(0.5 ≤ ω̄ ≤ 0.7), and thus only one harmonic could be
used in most instances in the HB solver. However, the
authors believe, and the case of µ = 100 in Fig. 3a
(where two harmonics were also used) supports this,
that when the nonlinearity is weak, one harmonic used
in the computations of aerodynamic lift and moment
can give a reliable LCO result.

There is a difference in the amplitude of the eigen-
vector (not shown here) for these two frequencies:
for ωh/ωα = 0.8, |h̄/ᾱ| is of the order of one – the
motion is a complex pitch-plunge motion, while for
ωh/ωα = 1.5, it is predominantly pitch motion.

ωh

ωα
= 1.8:

For this rather high frequency ratio (see Fig. 4), the
LCO is unstable (for this Mach number at least), es-
pecially for the higher mass ratio. The aeroelastic
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Fig. 6 LCO Behavior with respect to Mach Number for ωh

ωα
= 0.8 and µ = 100.

LCO eigenmodes are very much pitch dominated as
might be expected. Thus it can be concluded that
an increase in the ratio of uncoupled frequency ratio
(from ωh/ωα = 0.5 to ωh/ωα = 1.8) is accompa-
nied by changes in stability of the LCO (from stable
through weak to unstable) and in the aeroelastic eigen-
mode (from plunge dominance through pitch-plunge
complex motion to pitch dominance). One can also
conclude that a higher mass ratio gives rise to a larger
nonlinear effect for LCO at this Mach number.

Mach Number Effects

LCO behavior as a function of Mach number is
next studied for two ratios of uncoupled frequencies,
ωh/ωα = 0.5 and 0.8 for a mass ratio of µ = 100 (Figs.
5 and 6). Reduced velocity and reduced frequency vs
Mach number trends are shown for various LCO am-
plitudes including the flutter boundary corresponding
to an LCO amplitude of zero. These results allow one
to observe the stability of the LCO over a wide range
of Mach numbers. Recall that when the LCO reduced
velocity is above the flutter reduced velocity, the LCO
is stable, and when it is below the LCO is unstable.

LCO behavior for two frequency ratios are now pre-
sented.

ωh

ωα
= 0.5:

The LCO velocity vs Mach number results in Fig. 5a
and b show that in the range of 0.78 < M < 0.81 the
aerodynamic nonlinearity effects are strong. In the
subsonic Mach number range 0.5 < M < 0.7 the LCO
is unstable, but only weakly so, with the motion be-
ing plunge dominated (see the LCO eigenvectors in
Fig. 5d). For 0.75 < M < 0.81, the LCO becomes
strongly stable with predominantly plunge type mo-
tion. Finally, for 0.84 < M < 0.9 the nonlinearity is
very weak and the motion is pitch dominated.

ωh

ωα
= 0.8:

For this ratio of uncoupled frequencies (Fig. 6),
there is also only a small range of Mach numbers
where aerodynamic nonlinearity is relatively signifi-
cant. However, it is interesting to note the numerous
changes in the stability of the LCO over the range
of Mach numbers considered. LCO are unstable for
0.5 < M < 0.74, stable for 0.78 < M < 0.85, unstable
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again for 0.86 < M < 0.89, and finally stable again
for 0.91 < M < 0.98. It is not very surprising because
of the weak LCO that the LCO eigenvectors are little
different from the flutter eigenvectors2 . The results
in Fig. 6d show that the motion is a complex pitch-
plunge motion just as was concluded from the flutter
results for the corresponding case2 .

Simulation of a Wind Tunnel

Experiment for Flutter and LCO

Ref. [4] provides detailed flutter data from a NACA
0012 Benchmark Model wind tunnel experiment per-
formed in the NASA Langley Transonic Dynamics
Tunnel. In the authors’ recent paper3 a three pa-
rameter flutter surface was obtained for this model,
see Fig. 7a. The flutter trajectory (for the values of
the speed of sound from Ref. [4]) is marked on the
computed flutter surface and is compared with those
from the wind tunnel test in Fig. 7b. Typical LCO are
shown in Figs. 7c and d. These LCO originate from
the flutter points A, B, and C that are marked on

Figs. 7a and b.

It was concluded in Ref. [3] that for a comparison of
theoretical results with wind tunnel flutter data it is
advantageous to consider 1/µf , which is proportional
to the air density, as the key parameter. In this case,
1/µf replaces V in the vector of unknowns, Eq. (3),
and the value of the reduced velocity, V , is kept con-
stant in Eq. (4) and is related to the Mach number
through a compatibility relation for a wind tunnel held
at constant stagnation temperature. LCO amplitude
curves versus 1/µf for Mach numbers M = 0.70, 0.80,
and 0.95 are shown in Fig. 7c. Corresponding LCO
amplitude versus V results for constant µ ≈ 4000,
5200, and 2700 respectively are shown in Fig. 7d).
These three cases are good examples of

A weakly unstable LCO (in terms of LCO amplitude
vs inverse mass ratio or reduced velocity) that be-
come stable at higher amplitudes (M = 0.70);

B strong stable LCO that become unstable (M =
0.80);
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C weak LCO (M = 0.95).

The similarity of Fig. 7c to Fig. 7d suggests that the
key parameter at these Mach numbers is dynamic pres-
sure rather than mass ratio or flutter velocity per se.

Note however that the flutter boundary drops pre-
cipitously in Fig. 7b for a certain Mach number range,
i. e. 0.82 < M < 0.92. This is because of the change
in flutter mode to single degree of freedom flutter due
to negative aerodynamic damping. At realistic mass
ratios, 1/µ > 0.0001, it appears the LCO amplitudes
are very large although this may be modified if struc-
tural damping were included in the aeroelastic modes.

Conclusions

Using a state of the art Euler CFD based aero-
dynamic code, an investigation is presented of how
structural and aerodynamic parameters (including
freestream transonic Mach number) affect LCO char-
acteristics of a typical two degree-of-freedom airfoil
configuration. The following conclusions have been
drawn.

A study of the effect of the ratio of uncoupled nat-
ural frequencies, ωh/ωα, determined that the reduced
velocities have a minimum near ωh/ωα ≈ 1 for a given
LCO amplitude. For the considered Mach number,
M = 0.8 when the ratio of uncoupled natural frequen-
cies is well below 1, the LCO is found to be stable and
when this ratio is well above 1, the LCO is found to
be unstable.

It is also demonstrated that the LCO solutions are
very sensitive to Mach number especially in the tran-
sonic range. Depending on the frequency and the mass
ratios, there may (or may not) be sudden and signifi-
cant changes in the type of LCO motion as the Mach
number is varied. Moreover, it is found that the aero-
dynamic nonlinearity is most prominent in a limited
range of transonic Mach numbers and rather weak out-
side this Mach number range. Finally, the stability of
LCO is also found to change abruptly with respect to
Mach number.

In summary a parametric aeroelastic analysis of an
airfoil configuration has been conducted using a highly
efficient harmonic balance (HB) computational tech-
nique. Computational results agreed well with a wind
tunnel flutter test while correlation with experimental
LCO results remains an open challenge. The theo-
retical LCO results presented here may provide an
impetus for future LCO experiments.
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